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1 Introduction

1.1 History

Currently used public key cryptosystems such as RSA and ECC can be broken in
polynomial time using a quantum computer executing Shor’s algorithm [Sho99].
Thus, there has been growing interest in post-quantum cryptography (PQC),
which is secure against quantum computing attacks. Indeed, the U.S. National
Institute for Standards and Technology (NIST) has initiated a PQC standard-
ization project [NIS].

Multivariate public key cryptography (MPKC), based on the difficulty of
solving a system of multivariate quadratic polynomial equations over a finite
field (the multivariate quadratic (MQ) problem), is regarded as a strong can-
didate for PQC. TheMQ problem is NP-complete [GJ90] and is thus likely to
be secure in the post-quantum era.

The unbalanced oil and vinegar signature scheme (UOV) [KPG99], a mul-
tivariate signature scheme proposed by Kipnis et al. at EUROCRYPT 1999,
has withstood various types of attacks for approximately 20 years. UOV is a
well-established signature scheme owing to its short signature and short execu-
tion time. Indeed, a multilayer UOV variant Rainbow [DS05] was selected as
a third-round finalist in the NIST PQC project [AASA+19]. However, a new
attack on Rainbow proposed by Beullens at 2022 [Beu22] broke the security of
third round parameters and make the Rainbow scheme inefficient. Thus, the
research following the approach to return to the original UOV has been accel-
erating. One problem of UOV is that the public key is much larger than those
of other PQC candidates, for example, lattice-based signature schemes. In-
deed, Rainbow, whose public key size is close to that of the plain UOV, had the
largest public key among the third-round-finalist signature schemes, and NIST’s
report [AASA+19] stated that Rainbow is unsuitable as a general-purpose sig-
nature scheme owing to this problem.

One of the approaches to solving this problem of the large public key of UOV
is utilizing an algebraic structure. The CRYSTALS-DILITHIUM [DKL+18]
lattice-based signature scheme is one of the selected algorithms in the NIST
PQC project. It is based on the hardness of the module learning with errors
(MLWE) problem [BGV14]. As is well known, LWE [Reg09] is a confidential
hard problem in cryptography, and the MLWE problem is a generalization of it
using a module comprising vectors over a ring. This illustrates that a natural
way to develop an efficient multivariate scheme with a small public key is to
improve confidential schemes such as UOV in MPKC by investigating further
algebraic theory. We present our QR-UOV following this direction to realize a
UOV variant with a small public key.

1.2 Quotient Ring UOV at ASIACRYPT 2021

At ASIACRYPT 2021, Furue et al. [FIKT21] proposed a new variant of UOV,
which is called quotient ring UOV (QR-UOV). The public key of QR-UOV
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is represented by block matrices in which every component corresponds to an
element of a quotient ring Fq[x]/(f). More precisely, we use an injective ring
homomorphism from the quotient ring Fq[x]/(f) to the matrix ring Fℓ×ℓ

q , where

f ∈ Fq[x] is a polynomial with deg f = ℓ. In this study, the image Φf
g of the

homomorphism for g ∈ Fq[x]/(f) is called the polynomial matrix of g. From
this homomorphism, we can compress the ℓ2 components in Φf

g to ℓ elements

of Fq because the polynomial matrix Φf
g is determined by the ℓ coefficients of

g. This can be considered as a generalization of the block-anti-circulant UOV
(BAC-UOV) presented at SAC 2019 [SP20], which is the case for f = xℓ − 1.
Utilizing the elements of a quotient ring in block matrices is similar to the
MLWE problem [BGV14] because the MLWE problem uses elements of a ring
in vectors. Namely, we can consider that the research undertaken to obtain
from UOV to QR-UOV (including BAC-UOV) corresponds to that obtained
from LWE to MLWE. Therefore, as with the MLWE problem, this type of
research deserves more attention than passing notice.

To construct the QR-UOV, we must consider the symmetry of the poly-
nomial matrices Φf

g . In UOV, the public key P = (p1, . . . , pm), which com-
prises quadratic polynomials pi, is obtained by composing a central map F =
(f1, . . . , fm) and a linear map S, that is, P = F ◦ S. Then, the correspond-
ing matrices P1, . . . , Pm of the public key P are given by Pi = S⊤FiS, where
F1, . . . , Fm, and S are matrices corresponding to F and S, respectively. If we
choose F1, . . . , Fm, and S as block matrices, where the components are polyno-
mial matrices Φf

g , the polynomial matrices must be stable under the transpose

operation, namely, (Φf
g )

⊤ = Φf
g′ for some g′. Otherwise, P1, . . . , Pm are not

block matrices of Φf
g , and we cannot reduce the public key size using them.

Polynomial matrices Φf
g are generally unstable under the transpose operation;

therefore, we cannot directly use polynomial matrices Φf
g to construct an effi-

cient UOV variant. To solve this problem, we introduce the concept of an ℓ× ℓ
invertible matrix W such that WΦf

g is symmetric for any g ∈ Fq[x]/(f); that

is, WΦf
g is stable under the transpose operation. In Theorem 1, we prove that

there exists such symmetric W for any quotient ring Fq[x]/(f). Therefore, from
equations

(Φf
g1)

⊤(WΦf
g2)Φ

f
g1 = (WΦf

g1)
⊤Φf

g2Φ
f
g1 = WΦf

g1g2g1 ,

we can construct a UOV variant using the quotient ring Fq[x]/(f) by choosing
F1, . . . , Fm as block matrices using WΦf

g and S as a block matrix with Φf
g .

Moreover, we should consider how the choice of f affects the security of
the QR-UOV. Indeed, Furue et al. [FKI+20] broke BAC-UOV by transforming
its anti-circulant matrices into diagonal concatenations of two smaller matrices.
This transformation is obtained from the decomposition xℓ−1 = (x−1)(xℓ−1+
· · ·+1). Therefore, we investigate the relationship between the irreducibility of
the polynomial f used to generate the quotient ring Fq[x]/(f) and the existence
of such a transformation for symmetric matrices WΦf

g . In Theorem 2 herein,
we show that if f is irreducible (i.e., Fq[x]/(f) is a field), then there is no such
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transformation for matricesWΦf
g , indicating that such an f is resistant to Furue

et al.’s structural attack [FKI+20].

1.3 Our Purpose of this Document

In this document, we present a multivariate polynomial based digital signa-
ture scheme QR-UOV. The basic structure of QR-UOV is based on the original
scheme at ASIACRYPT 2021 [FIKT21]. Moreover, we adopt the following de-
velopments [HFI+23, FI23, FIH+23] presented at SCIS 2023:

• The EUF-CMA security proof in the QROM is given, and we modify the
signature generation for this proof. (The proof is mainly based on the
result by Kosuge and Xagawa [KX22].)

• We provide a variety of parameter sets.

• We offer more optimized implementation and analyze its performance.

• We give a new security analysis using the rectangular MinRank attack.

Organizations The rest of this document is organized as follows. Section 2
prepares some notations. Section 3 gives preliminaries on the description of our
QR-UOV. Section 4 and Section 5 describe the details of our algorithm and
implementation, respectively. Section 6 provides the results of our performance
analysis. Section 7 gives our security statements. Section 8 explains considerable
attacks on QR-UOV. Section 9 discusses advantages and limitations of QR-
UOV.

Acknowledgements We are grateful for help from Makoto Yanagisawa and
Atsuhito Nakase. We also acknowledge Noriki Mo for pointing out inconsisten-
cies between the spec and implementation and Testutaro Kobayashi for correct-
ing a typo. We would like to thank Rika Akiyama and Satoshi Nakamura for
their assistance in preparing the intermediate values. We are grateful to Shuhei
Nakamura for his useful technical comments.

2 Notations and Parameters

This section describes the notations and parameters used in this document. We
also define more specific basic methods used later in the specification.
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2.1 Notations

bit one of the two symbols ‘0’ or ‘1’.
bit string an ordered sequence of bits.
octet a bit string of length 8.
octet string an ordered sequence of octets
|| a concatenation operator for two bit strings or for two octet

strings.
Fq finite field with q elements for a prime power q
⌈x⌉ for x a real number returns the smallest integer greater than

or equal to x.
⌊x⌋ for x a real number returns the largest integer less than or

equal to x.
[n] for n a positive integer returns the set {1, . . . , n}.
a

$←−A a ∈ A is chosen uniformly at random from A.

We here also give some notations for representation matrices of elements of a
quotient ring described in Subsection 3.2.

f an irreducible polynomial in Fq[x] with degree ℓ
Φf

g an ℓ× ℓ matrix over Fq defined by equation (4) in
Subsection 3.2

Af

{
Φf

g ∈ Fℓ×ℓ
q

∣∣ g ∈ Fq[x]/(f)
}

W an ℓ× ℓ matrix over Fq such that WX is symmetric for any
X ∈ Af

WAf {WX ∈ Fℓ×ℓ
q | X ∈ Af}

Aa,b
f the set of aℓ× bℓ block matrices whose each component is

an element of Af

W (a) the aℓ× aℓ block diagonal matrix concatenating W diagonally
a times

2.2 Parameters

ℓ, V , M positive integers
v number of vinegar variables: v = ℓ · V
m number of oil variables (equals to # of equations): m = ℓ ·M
n number of variables: n = v +m
N N = V +M
λ secuirty parameter
r a random λ-bit string
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2.3 MGF1

MGF1 is a mask generation function parameterized by a hash function. MGF1
is defined in [MKJR16] and is also called KDF1 in [Sho01].

3 Preliminaries

Our QR-UOV is an extension of the plain UOV, and thus we recall the con-
struction of the plain UOV to describe QR-UOV smoothly in Section 4. Fur-
thermore, as preliminaries for the construction of our QR-UOV, we introduce
matrices representing elements of a quotient ring.

3.1 Basic Description of UOV used for QR-UOV

This subsection describes the structure of the unbalanced oil and vinegar sig-
nature scheme (UOV) [KPG99]. For variables x = (x1, . . . , xn) over Fq, we call
x1, . . . , xv vinegar variables and xv+1, . . . , xn oil variables.

We first recall the key generation of UOV as follows: We design F =
(f1, . . . , fm) : Fn

q → Fm
q , called a central map, such that each fk with k ∈ [m] is

a quadratic polynomial of the form

fk(x1, . . . , xn) =

v∑
i=1

n∑
j=i

α
(k)
i,j xixj (1)

where α
(k)
i,j ∈ Fq. Next, we choose a random linear map S : Fn

q → Fn
q to hide

the structure of F . The public key P is then provided as a polynomial map,

P = F ◦ S : Fn
q → Fm

q , (2)

and the secret key comprises F and S. We here omit linear and constant terms
of F and constant terms of S for simplicity.

Next, we describe the inversion of the central map F . When we find x ∈ Fn
q

satisfying F(x) = t for a given t ∈ Fm
q , we first choose random values y1, . . . , yv

in Fq as the values of the vinegar variables. We can then easily obtain a solution
for the equation F(y1, . . . , yv, xv+1, . . . , xn) = t, because this is a linear system
of m equations in m oil variables from the construction of the central map (1).
If there is no solution to this equation, we choose new random values y′1, . . . , y

′
v,

and repeat the above procedure.
By using this inversion approach, the signature is generated as follows: Given

a message m ∈ Fm
q to be signed, find a solution m1 to the equation F(x) = m,

and this gives a signature s = S−1(m1) ∈ Fn
q for the messagem. The verification

is performed by confirming whether P(s) = m.
Finally, we introduce matrices representing the public and secret keys of

UOV. For each polynomial pi of the public key P, there exists an n× n matrix
Pi such that pi(x) = x⊤ · Pi · x. Similarly, an n× n matrix Fi can be taken for
each fi with 1 ≤ i ≤ m, and an n×n matrix S is defined to satisfy S(x) = S ·x.
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In general, these matrices Pi and Fi are taken as symmetric matrices if q is odd,
and are taken as upper triangular matrices if q is even. For these representation
matrices, based on equation (1), Fi has the following form(

∗v×v ∗v×m

∗m×v 0m×m

)
. (3)

Furthermore, from P = F ◦ S, we have

Pi = S⊤FiS, (i ∈ [m]).

3.2 Matrix Representation of Quotient Ring Elements

We here introduce polynomial matrices representing elements of a quotient ring.
Let ℓ be a positive integer and f ∈ Fq[x] with deg f = ℓ. For any element g

of the quotient ring Fq[x]/(f), we can uniquely define an ℓ × ℓ matrix Φf
g over

Fq such that (
1 x · · · xℓ−1

)
Φf

g =
(
g xg · · · xℓ−1g

)
. (4)

From this equation, we have

xj−1g =

ℓ∑
i=1

(
Φf

g

)
ij
· xi−1 (1 ≤ j ≤ ℓ),

and
(
Φf

g

)
ij

is the coefficient of xi−1 in xj−1g. We call such a matrix Φf
g the

polynomial matrix of g. The following lemma can be easily derived from this
definition:

Lemma 1. For any g1, g2 ∈ Fq[x]/(f), we have

Φf
g1 +Φf

g2 = Φf
g1+g2 , Φf

g1Φ
f
g2 = Φf

g1g2 .

That is, the map g 7→ Φf
g is an injective ring homomorphism from Fq[x]/(f) to

the matrix ring Fℓ×ℓ
q .

We let the algebra of the matrices Af :=
{
Φf

g ∈ Fℓ×ℓ
q

∣∣ g ∈ Fq[x]/(f)
}
. This

is a subalgebra in the matrix algebra Fℓ×ℓ
q from Lemma 1. Every ℓ×ℓ polynomial

matrix Φf
g in Af can be represented by only ℓ elements in Fq, because Φf

g is
determined by the ℓ coefficients of g ∈ Fq[x]/(f). Our QR-UOV compresses the
public key size of UOV by utilizing this property of Φf

g .
For the construction of QR-UOV, we also give the concept of a matrix W ∈

Fℓ×ℓ
q such that WΦf

g is stable under the transpose operation. Then, note that

any matrix in WAf := {WX ∈ Fℓ×ℓ
q | X ∈ Af} can also be represented by

only ℓ elements in Fq. In the following theorem, we prove that there exists an
invertible matrix W for any f .
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Theorem 1 (Theorem 1 in [FIKT21]). Let f ∈ Fq[x] with deg f = ℓ. Then,
there exists an invertible matrix W ∈ Fℓ×ℓ

q such that WX is a symmetric matrix
for any X ∈ Af .

In the proof of Theorem 1 in [FIKT21], they propose a way of constructing
such a W from a nonzero linear map ϕ : Fq[x]/(f) → Fq such that the ij-
component of W is equal to ϕ(xi+j−2).

For Af and positive integers N , we define the the set AN,N
f of block matrices

in FℓN×ℓN
q whose every component is an element of Af . These matrices are

utilized for the construction of our QR-UOV in Section 4.

Example 1. For f = x3 − 3x− 1 in F7[x], we can take one element of A2,2
f as

follows 
2 0 2 0 0 1
2 2 6 1 0 3
0 2 2 0 1 0
3 2 5 3 6 5
5 2 3 5 0 0
2 5 2 6 5 0

 .

Every 3× 3 block of this matrix can be represented as an element of Fq[x]/(f),
that is, this matrix can be represented as a 2× 2 matrix over Fq[x]/(f)(

2 + 2x x
3 + 5x+ 2x2 3 + 5x+ 6x2

)
.

In the rest of this document, we construct QR-UOV using Af with an irre-
ducible f for the security of QR-UOV. See Subsection 8.1 for the reason that
we use an irreducible polynomial f in QR-UOV.

4 Algorithm Specification

This section mainly provides the following

• the description of key generation, signature generation, and verification
algorithms,

• proposed parameter sets,

• some remarks for our implementation.

We describe the QR-UOV scheme as proposed in [FIKT21] and add a modifi-
cation for the security proof used in [FIH+23].

4.1 Key Generation

Let v be the number of vinegar variables, m be the number of oil variables
which is equal to the number of equations, and n = v +m. From the notations

10



in Subsection 2.1, the public and secret keys of QR-UOV are represented by

elements of AN,N
f and W (N)AN,N

f :=
{
W (N) ·X |X ∈ AN,N

f

}
, where N = n/ℓ

with the number n of variables. Note that we here use an irreducible polynomial
as f of Af for the reason in Subsection 8.1. This subsection presents the key
generation of our QR-UOV. See Algorithm 1 for more details.

The standard key generation of QR-UOV is described as follows:

1. Choose Fi (i ∈ [m]) from W (N)AN,N
f as a symmetric matrix with the

lower-right m×m zero-block as in (3).

2. Choose an invertible matrix S from AN,N
f randomly.

3. Compute the public key Pi = S⊤FiS (i ∈ [m]).

Then, Pi (i ∈ [m]) representing the public key map are elements of W (N)AN,N
f

from the following proposition:

Proposition 1 (Prop. 1 in [FIKT21]). For X ∈ AN,N
f and Y ∈ W (N)AN,N

f ,
we have

X⊤Y X ∈W (N)AN,N
f .

Subsequently, we apply an improved method restricting the secret key S to
a specific compact form, which was first proposed by Czypek et al. [CHT12].
Before describing the improved method, we prepare some notations: For the
public key Pi (i ∈ [m]) and the secret key Fi (i ∈ [m]), we define submatrices
as follows

Pi =

(
Pi,1 Pi,2

P⊤
i,2 Pi,3

)
,

Fi =

(
Fi,1 Fi,2

F⊤
i,2 0m×m

)
,

where Pi,1 and Fi,1 are symmetric v×v matrices, Pi,2 and Fi,2 are v×mmatrices,
and Pi,3 is a symmetric m×m matrix. We then suppose to limit the secret key
S to the following compact form

S =

(
Iv S′

O Im

)
, (5)

where S′ is a v ×m matrix. Then, from Pi = S⊤FiS (i ∈ [m]), we obtain

Fi,1 = Pi,1,

Fi,2 = −Pi,1S
′ + Pi,2, (6)

0m×m = S′⊤Pi,1S
′ − P⊤

i,2S
′ − S′⊤Pi,2 + Pi,3.

By using this equation, in the improved key generation step, Pi,1 ∈W (V )AV,V
f ,

Pi,2 ∈ W (V )AV,M
f (i ∈ [m]), and S′ ∈ AV,M

f , where V = v/ℓ and M = m/ℓ,
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are first generated from random seeds, and Pi,3 ∈ W (M)AM,M
f (i ∈ [m]) is

computed by

Pi,3 = −S′⊤Pi,1S
′ + P⊤

i,2S
′ + S′⊤Pi,2.

As a result, the public key is composed of m ×m matrices Pi,3 (i ∈ [m]) and
the 2λ-bit seed seedpk for Pi,1, Pi,2 (i ∈ [m]), and the secret key is composed of
the 2λ-bit seed seedsk for S′, where λ is the security parameter. The security
of QR-UOV is not weakened by this optimization, since this does not affect the
distribution of the public and secret keys.

We here use the following two functions Expandsk and Expandpk to expand
the public and secret keys from randomly chosen seeds

Expandsk This expands the seed seedsk for the secret key to S′ ∈ AV,M
f . As

we mentioned before, this S′ can be represented as a V × M ma-
trix over Fq[x]/(f). We sample the matrix in row-major order and
sample each polynomial in Fq[x]/(f) in reverse degree order from the
constant term to the coefficient of xℓ−1. See Subsection 4.6 for the
hash function used to generate polynomials.

Expandpk This expands the seed seedpk for the public key to {Pi,1}i∈[m], {Pi,2}i∈[m]

where Pi,1 is a symmetric v × v matrix in W (V )AV,V
f and Pi,2 is a

v ×m matrix in W (V )AV,M
f . Then, this Pi,1 and Pi,2 can be repre-

sented as V × V and V ×M matrices over Fq[x]/(f). We here first
sample P1,1, . . . , Pm,1 and then P1,2, . . . , Pm,2. For each matrix, we
sample in row-major order and sample each polynomial in Fq[x]/(f)
in reverse degree order. Note that for Pi,1 we sample only the upper-
triangular elements due to the symmetry.

Finally, we compare the public key size of the plain QR-UOV with that of
the improved QR-UOV. The public key of the plain QR-UOV is represented
by Pi,1, Pi,2, and Pi,3 (i ∈ [m]), and that of the improved QR-UOV uses a
seed seedpk and Pi,3 (i ∈ [m]). Thus, the number of elements in Fq needed to
represent the public key of the plain QR-UOV is

mn(n+ ℓ)/2ℓ,

whereas that of the improved QR-UOV is

m2(m+ ℓ)/2ℓ.

4.2 Signature Generation

Our signature generation of QR-UOV is mainly depending on the standard
signature generation of the plain UOV: Invert the central map F by fixing v
values of the vinegar variables, and then multiply S−1 in the form of

S−1 =

(
Iv −S′

O Im

)
,

12



Algorithm 1 KeyGen()

Input: parameters (q, v,m, ℓ), security parameter λ
Output: public key pk, secret key sk

1: seedpk, seedsk
$←− {0, 1}2λ

2: {Pi,1}i∈[m], {Pi,2}i∈[m] ← Expandpk(seedpk)

▷ Pi,1 ∈W (V )AV,V
f (symmetric), Pi,2 ∈W (V )AV,M

f

3: S′ ← Expandsk(seedsk) ▷ S′ ∈ AV,M
f

4: for i from 1 to m do
5: Pi,3 ← −S′⊤Pi,1S

′ + P⊤
i,2S

′ + S′⊤Pi,2

6: end for
7: return (pk, sk) =

((
seedpk, {Pi,3}i∈[m]

)
, seedsk

)

from equation (5). We here add a modification for the EUF-CMA security proof
proposed by Sakumoto et al. [SSH11]. See Algorithm 2 for more details.

We here describe the inversion of the central map F in our modified signature
generation. We first choose values for the vinegar variables y1, . . . , yv randomly.
We then choose λ-bit random salt r and compute t ∈ Fm

q by applying a hash
function Hash on the input concatenating a given message M and the salt r,
namely t := Hash(M||r). If the linear system for the oil variables xv+1, . . . , xn

F(y1, . . . , yv, xv+1, . . . , xn) = t, (7)

has solutions, then we obtain the signature by applying S−1 into (y1, . . . , yv,
yv+1, . . . , yn), where (yv+1, . . . , yn) is a randomly chosen solution of equation (7).
If there exists no solution of equation (7), then we choose a new salt and update
t until equation (7) has solutions.

The main difference from the standard signature generation algorithm is that
if equation (7) has no solution, then we choose a new random salt instead of
choosing new vinegar variables. By doing so, the signature s satisfying P(s) =
Hash(M||r) is uniformly distributed in Fn

q , and this fact enables us to prove the
EUF-CMA security of QR-UOV in Subsection 7.1. For the efficiency, we confirm
that the expected number of computing t = Hash(M||r) until equation (7)
has solutions is approximately 2.0 for any parameter sets by assuming that
equation (7) is a randomized system for xv+1, . . . , xn.

4.3 Signature Verification

Our signature verification of QR-UOV is the same as that of the plain UOV.
Given the public key pk, a message M, and a signature σ = (r, s), the authen-
ticity of the signature is checked as follows:

• Use the hash function Hash to compute t = Hash(M||r).

13



Algorithm 2 Sign(M, pk, sk)

Input: message M, public key pk, secret key sk
Output: signature σ
1:
(
seedpk, {Pi,3}i∈[m]

)
← pk

2: seedsk ← sk
3: {Pi,1}i∈[m], {Pi,2}i∈[m] ← Expandpk(seedpk)
4: S′ ← Expandsk(seedsk)
5: for i from 1 to m do
6: Fi,1 ← Pi,1

7: Fi,2 ← −Pi,1S
′ + Pi,2

8: end for

9: S ←
(

Iv S′

0m×v Im

)
10: y = (y1, . . . , yv)

⊤ $←− Fv
q

11: L←

 2y⊤F1,2

...
2y⊤Fm,2

 ▷ L ∈ Fm×m
q

12: u←
(
y⊤F1,1y, . . . ,y

⊤Fm,1y
)⊤

▷ u ∈ Fm
q

13: repeat

14: r
$←− {0, 1}λ

15: t← Hash(M||r) ▷ t ∈ Fm
q

16: until Lx = t− u has solutions for x.
17: Choose one solution (yv+1, . . . , yn) ∈ Fm

q of Lx = t− u randomly.

18: s← S−1(y1, . . . , yv, yv+1, . . . , yn)
⊤

19: return σ = (r, s)

• Compute t′ ∈ Fm
q by substituting the signature s ∈ Fn

q for the public key
map P (namely t′ = P(s)).

If t = t′ holds, the signature σ is accepted, otherwise it is rejected. See Algo-
rithm 3 for more details.

4.4 Parameter Choice

We propose some parameter sets of QR-UOV. These parameter sets are pro-
posed in accordance with security levels I, III, and V of the NIST PQC project.
We take 7, 31, and 127 as the number q of the finite field. The reason that we
do not use a finite field with even characteristics is as follows: If q is even, in
a polynomial obtained as xAx⊤ where A ∈ W (N)AN,N

f , the coefficients corre-
sponding to the non-diagonal components of every diagonal block are zero owing
to the symmetry of WΦf

g . For each security level, we propose four parameter

14



Algorithm 3 Verify(M, pk, σ)

Input: message M, public key pk, signature σ
Output: accept or reject
1:
(
seedpk, {Pi,3}i∈[m]

)
← pk

2: (r, s)← σ
3: {Pi,1}i∈[m], {Pi,2}i∈[m] ← Expandpk(seedpk)
4: for i from 1 to m do

5: Pi ←
(
Pi,1 Pi,2

P⊤
i,2 Pi,3

)
6: end for
7: t← Hash(M||r)
8: t′ ←

(
s⊤P1s, . . . , s

⊤Pms
)⊤

9: return accept if t = t′ and reject otherwise.

sets. (See Table 1.) These parameters are determined based on q and ℓ for the
following purposes

q = 7, ℓ = 10 : to realize a fast implementation,

q = 31, ℓ = 3 : to make the signature size small,

q = 31, ℓ = 10 : to make the public key size small,

q = 127, ℓ = 3 : to vary the order of the finite fields.

Furthermore, we here set the security parameter λ as 128, 192, and 256 for the
security level I, III, and V, respectively.

In QR-UOV, any irreducible polynomial with degree ℓ over Fq can be taken
as f . We here show one example of f andW ∈ Fℓ×ℓ

q used in our implementations
for each set of q and ℓ.

q = 7, ℓ = 10 : f = x10 − 2x− 1, W =



1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0


,

q = 31, ℓ = 3 : f = x3 − x− 1, W =

1 0 0
0 0 1
0 1 0

,
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Table 1: Proposed parameters for security level I, III, and V
SL q v m ℓ

I

7 740 100 10
31 165 60 3
31 600 70 10
127 156 54 3

III

7 1100 140 10
31 246 87 3
31 890 100 10
127 228 78 3

V

7 1490 190 10
31 324 114 3
31 1120 120 10
127 306 105 3

q = 31, ℓ = 10 : f = x10 − 5x3 − 1, W =



0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0


,

q = 127, ℓ = 3 : f = x3 − x− 1, W =

1 0 0
0 0 1
0 1 0

.

4.5 Note on the Hash Function

Basically, we recommend using the hash functions SHAKE128 or SHAKE256,
which can output an arbitrary-length hash value. There is no special mention
when users use these hash functions. When SHAKE is used, SHAKE128 should
be used for security level I and SHAKE256 for security levels III and V. On
the other hand, we describe the case where an arbitrary-length hash value is
generated using a hash function that outputs a fixed-length hash value, such
as SHA256. Depending on the implementation environment, it may be impos-
sible to use SHAKE, and in such cases, this is resolved by using MGF1. (See
Subsection 2.3 to refer to MGF1.) In this case, Hash(M||r) in the Sign and
Verify algorithms would perform MGF1(M||r). When SHA-2 is used, SHA256,
SHA384, and SHA512 should be used according to security level I, III, and V,
respectively.
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4.6 Note on the Generation of Random Finite Field Ele-
ments by using hash functions

Many random finite field elements are used when generating keys and sampling
vinegar variables. For example, since an element of Fq[x]/(f) can be represented
as a matrix Fℓ×ℓ

q , the Expand functions in the KeyGen algorithm would generate
elements of the finite field Fq. A random bit sequence is generated using a hash
function and retrieved for every ⌈log2 q⌉ bit to generate these elements. By
dividing a hash value into ⌈log2 q⌉ bits, a sequence of random numbers in the
range of [0, 2⌈log2 q⌉) can be obtained. Even so, in the range of [0, 2⌈log2 q⌉), q is
the only number that does not belong to Fq. Therefore, when q is obtained from
the sequence of random numbers, q should be skipped and not chosen. Also,
when obtaining the element of Fm

q , the first m numbers that are non q values
should be selected. This method, called rejection sampling, does not result in
constant time, and we describe how to make it constant time in the following
subsection.

4.6.1 Constant-time Rejection Sampling

Since q is an odd prime in QR-UOV, we use a rejection sampling for random
Fq elements in our reference implementation. The rejection sampling may seem
to be incompatible with the constant-time implementation, however, they can
be practically compatible when the maximum number of elements to sample
is known in advance. Algorithm 4 is a conceptual sketch of the constant-time
rejection sampling with failure probability at most 2−λ. Although we do not use
Algorithm 4 in our reference implementation, it should be adopted for applica-
tions where the side-channel attacks are critical. τq,λ(n) in Algorithm 4 is the
threshold for how many or more uniform random numbers in {0, . . . , 2⌈log2 q⌉−1}
are required for n uniform random sampling from Fq. τq,λ(n) can be written as

τq,λ(n) := min{t ∈ N | P (n, t, q/2⌈log2 q⌉) ≤ 2−λ}.

P (n, t, p) is the cumulative binomial distribution,

P (n, t, p) :=

n−1∑
i=0

(
t

i

)
pi(1− p)t−i = I1−p(t− n+ 1, n),

which means the probability of less than n successes in t independent Bernoulli
trials of success probability p. Iz(a, b) is called the regularized incomplete beta
function, which is suitable for numerical evaluation. The threshold τq,λ(n) may
not be accurately evaluated on the fly, however there is no problem in applying
an appropriate upper bound or pre-calculated value in practice.

4.7 Note on Basic Linear Algebra

Like other UOV schemes, QR-UOV also requires solving a system of linear
equations to generate a signature. A tremendous amount of research exists
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Algorithm 4 Constant-time Rejection Sampling for Fn
q

Input: parameters (q, λ, n)
Output: a random sequence (v0, . . . , vn−1) ∈ Fn

q

1: τ ← τq,λ(n),
2: allocate (v0, . . . , vτ−1), ▷ variables to store random elements
3: j ← 0,
4: k ← τ − 1,
5: for i = 1 to τ do
6: r

$← {0, . . . , 2⌈log2 q⌉ − 1},
7: if r ∈ {0, . . . , q − 1} then ▷ needs to be constant-time
8: vj ← r, j ← j + 1,
9: else

10: vk ← r, k ← k − 1,
11: end if
12: end for ▷ Pr[k < n− 1] < 2−λ

13: return (v0, . . . , vn−1).

on algorithms for solving linear equations, including well-known constant-time
implementations[CKY21, BCH+23]. Although we did not use such an algorithm
in our reference implementation, it should be employed for critical applications.

5 Implementation Details

In this section, we first describe how the algebra used in QR-UOV is represented
and how its arithmetic operations are implemented in software. Then, we de-
scribe the way how public keys, private keys, and signatures for QR-UOV are
stored in our implementation.

Of course a naive approach would be storing each finite field element of the
matrix representation as it is, but a more refined method is provided in this
section, that takes advantage of QR-UOV features.

5.1 Representation of Algebra

5.1.1 Representation of Finite Field Elements

In our implementation, each element in Fq is an integer in the range of [0, q),
represented as a bit string of ⌈log2 q⌉ length. However, except in the middle of
solving equation in the QR-UOV signature algorithm, each matrix belonging to
Af is represented in another way described in Subsubsection 5.1.2.
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5.1.2 Representation of Polynomial Matrices of Quotient Ring

Suppose, the order of finite field q, the block size of the representation matrices
ℓ, and an irreducible polynomial f ∈ Fq[x] with deg f = ℓ, are fixed.

Each g ∈ Fq[x]/(f) has ℓ coefficients. Thus it can be represented as the form
of ℓ concatenated finite field elements, in length of ⌈log2 q⌉ · ℓ bits. Since Φf

g is
derived from g, it is also represented exactly in the same way.

5.2 Implementation of arithmetic operations

5.2.1 Arithmetic over Finite Fields

For addition, substraction, and multiplication over Fq, our implementation sim-
ply computes them with the remainder operation. For inversion over Fq, a
look-up table is prepared and referenced, instead of complicated computation.

5.2.2 Arithmetic over Polynomial Matrices of Quotient Ring

For addition, substraction, and multiplication over Fq[x]/(f) or Af , our imple-
mentation simply computes them with the remainder operation.

Another option to implement these operations is to prepare and reference a
look-up table for these operations. This way accelerates these operations, but
requires a sufficiently large amount of memory.

5.2.3 Omission of Some Matrix Symmetrization

Actually, except in the middle of solving equation in the QR-UOV signature
algorithm, both Φf

g and WΦf
g are represented as the same value that represents

the corresponded g in our implementation. This is because all matrix operations
involving WAf used in QR-UOV are possible to be performed without actual
symmetrization of Af , such as Proposition 1 in [FIKT21].

Only in the middle of solving equation, each WΦf
g is to be expanded in the

symmetrized ℓ× ℓ matrix.

5.3 Representation of Keys and Signature

5.3.1 Public Key

The compressed form of a public key in QR-UOV is pk, a pair of seed seedpk
and Pi,3 (i = 1, . . . ,m).

seedpk is stored as an octet string.
For Pi,3, each block matrix WΦf

g in Pi,3 is represented as the same way as g,
in the range of ⌈log2 q⌉ · ℓ, as described in Subsubsection 5.1.2. Note that each
Pi,3 (i = 1, . . . ,m) is a symmetric matrix, so only the upper triangular part are
needed to be stored. Therefore Pi,3 is stored as an octet string converted from
a bit string of length (⌈log2 q⌉ · ℓ) · (m(m+ ℓ)/(2ℓ2)) ·m.
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Remember that the full matrix representation of a public key Pi (i =
1, . . . ,m) is composed of matrices Pi,1, Pi,2, Pi,3 (i = 1, . . . ,m). In the mid-
dle of calculation, Pi,1 and Pi,2 are generated from the seed seedpk, in the way
described in Subsection 4.6. Each block matrix WΦf

g in Pi,1 and Pi,2 is repre-
sented in the same manner as that in Pi,3.

5.3.2 Private Key

The compressed form of a secret key in QR-UOV is only the secret seed seedsk.
S′ is generated from the seed seedsk, in the way described in Subsection 4.6.
Fi,1 and Fi,2 (i = 1, . . . ,m) are computed in the QR-UOV signature algo-

rithm. They depends on Pi,1, Pi,2 (i = 1, . . . ,m) generated from the public
seed seedpk, and S′ generated from the secret seed seedsk. Note that Pi,3 (i =
1, . . . ,m) is not required.

Each block matrix WΦf
g in S′, Fi,1 and Fi,2 (i = 1, . . . ,m) is represented as

the same way as the corresponded g, in the range of ⌈log2 q⌉ · ℓ, as described in
Subsubsection 5.1.2.

5.3.3 Signature

A signature σ is a pair of salt r ∈ {0, 1}λ, and s ∈ Fn
q .

r is simply stored as an octet string converted from a bit string of length λ.
s is represented as a sequence of n finite field elements in Fq. Thus, s can be

stored as an octet string that is converted from a bit string of length ⌈log2 q⌉ · ℓ.
Actually, s is represented in the same manner as polynomial matrices of

quotient ring. Assume n
ℓ matrices of size ℓ × ℓ belonging to Af are given. By

concatenating them vertically and ignoring the 2, . . . , ℓ th columns (i.e. leaving
only the 1st column), it can be regarded as a vector belonging to Fn

q .

6 Performance Analysis

6.1 Key and Signature Sizes

We here estimate the public key and signature size for the proposed parameter
sets in Subsection 4.4. From the discussion in Section 4, the size of the public
key, the secret key, and the signature size are given as follows

• public key:
(
⌈log q⌉ · m

2(m+ℓ)
2ℓ + 2λ

)
bits

• secret key: 2λ bits

• signature: (⌈log q⌉ · n+ λ) bits

Note that the public and secret keys and signature include a seed and salt,
respectively. As mentioned in Subsection 4.4, we set the security parameter
λ as 128, 192, and 256 for the security level I, III, V, respectivly. Indeed,
Table 2 computes the public key and signature size of the proposed parameter
sets according to the above formulae.
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Table 2: The public key and signature size of the parameter sets of QR-UOV
proposed in Subsection 4.4

SL (q, v,m, ℓ) public key (B) signature (B)

I

(7, 740, 100, 10) 20,657 331

(31, 165, 60, 3) 23,657 157

(31, 600, 70, 10) 12,282 435

(127, 156, 54, 3) 24,271 200

III

(7, 1100, 140, 10) 55,173 489

(31, 246, 87, 3) 71,007 232

(31, 890, 100, 10) 34,423 643

(127, 228, 78, 3) 71,915 292

V

(7, 1490, 190, 10) 135,439 662

(31, 324, 114, 3) 158,453 306

(31, 1120, 120, 10) 58,564 807

(127, 306, 105, 3) 173,708 392

6.2 Performance on the NIST Reference Platform

Table 3 shows the timing data of experiments on the NIST reference platform for
all parameter sets in Table 2. The target is a software implementation written
in C, and it does not use special processor instructions. The environment is as
follows.

Processor: AMD EPYC 7763.
Clock Speed: Boost Clock : Up to 3.5GHz, Base Clock: 2.45GHz.
Memory: 128GB (32GB RDIMM, 3200MT/s, Dual Rank, 8Gb base x4)
Operating System: Linux 5.19.0-41-generic, gcc version 11.3.0.
Measurement Software: supercop-20221122.
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Table 3: Timing data on the NIST Reference Platform (Mcycles)
category (q, v,m, ℓ) keygen sign verify

I

(127, 156, 54, 3) 96.381 64.885 13.607
(31, 165, 60, 3) 124.631 80.666 15.272
(31, 600, 70, 10) 360.949 337.919 73.979
(7, 740, 100, 10) 1129.934 997.764 168.411

III

(127, 228, 78, 3) 370.704 245.199 45.522
(31, 246, 87, 3) 564.975 362.548 52.448
(31, 890, 100, 10) 1589.343 1443.240 242.067
(7, 1100, 140, 10) 5131.154 4493.868 535.040

V

(127, 306, 105, 3) 1172.189 755.475 104.209
(31, 324, 114, 3) 1632.895 1021.670 112.420
(31, 1120, 120, 10) 3628.424 3269.314 437.942
(7, 1490, 190, 10) 15695.164 13226.016 1212.897

6.3 Performance on Other Platforms

Table 4 shows the results of an almost portable implementation for 64-bit en-
vironments. This implementation is also written in C. It does not use special
processor instructions, but it ignores the 32-bit environment. The experimental
environment is exactly the same as described above.

Table 4: Timing data on the NIST Reference Platform (Mcycles)
category (q, v,m, ℓ) keygen sign verify

I

(127, 156, 54, 3) 16.700 13.419 10.575
(31, 165, 60, 3) 20.223 15.813 11.614
(31, 600, 70, 10) 93.984 92.480 73.814
(7, 740, 100, 10) 177.911 167.711 99.755

III

(127, 228, 78, 3) 65.263 52.290 37.159
(31, 246, 87, 3) 85.616 65.286 42.450
(31, 890, 100, 10) 387.796 362.721 245.240
(7, 1100, 140, 10) 905.595 822.727 385.265

V

(127, 306, 105, 3) 217.373 158.856 81.309
(31, 324, 114, 3) 233.036 168.576 87.673
(31, 1120, 120, 10) 826.049 783.495 474.469
(7, 1490, 190, 10) 2528.767 2220.364 844.445

Table 5 shows the results for an implementation that uses avx2. It seems
that a little more optimization can be done.
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Table 5: Timing data on the avx2 Platform (Mcycles)
category (q, v,m, ℓ) keygen sign verify

I

(127, 156, 54, 3) 30.885 24.823 13.539
(31, 165, 60, 3) 31.691 25.217 15.973
(31, 600, 70, 10) 117.225 135.849 68.947
(7, 740, 100, 10) 355.028 361.728 144.955

III

(127, 228, 78, 3) 125.521 98.376 47.636
(31, 246, 87, 3) 206.605 153.006 53.490
(31, 890, 100, 10) 553.788 573.433 232.156
(7, 1100, 140, 10) 1552.650 1555.131 524.886

V

(127, 306, 105, 3) 293.487 221.341 108.650
(31, 324, 114, 3) 468.632 337.483 119.098
(31, 1120, 120, 10) 1004.973 1074.835 433.574
(7, 1490, 190, 10) 4484.707 4254.736 1169.402

Table 6 shows the results for an implementation that uses avx512. Only
avx512 was measured in the following environment, due to the experimental
reason.

Processor: Intel Xeon W 2223.
Clock Speed: Boost Clock : Up to 3.90GHz, Base Clock: 3.60GHz.
Memory: 32GB (32GB DDR4, 2600MT/s, Dual Channel, 16Gb base x2)
Operating System: Linux 5.15.90.1-microsoft-standard-WSL2, gcc ver-
sion 11.3.0.
Measurement Software: supercop-20221122.

Table 6: Timing data on the avx512 Platform (Mcycles)
category (q, v,m, ℓ) keygen sign verify

I

(127, 156, 54, 3) 92.239 78.676 35.482
(31, 165, 60, 3) 130.975 98.611 38.300
(31, 600, 70, 10) 271.039 304.873 150.258
(7, 740, 100, 10) 793.458 800.165 310.911

III

(127, 228, 78, 3) 279.735 220.191 100.650
(31, 246, 87, 3) 551.029 378.887 112.647
(31, 890, 100, 10) 1164.509 1159.963 442.188
(7, 1100, 140, 10) 3956.843 3632.370 980.261

V

(127, 306, 105, 3) 982.046 685.904 220.980
(31, 324, 114, 3) 1083.549 735.542 246.744
(31, 1120, 120, 10) 2030.460 2068.606 792.030
(7, 1490, 190, 10) 10558.854 8596.815 1964.954
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7 Expected Security Strength

In this section, we first provide underlying problems and the statement for
our security proof. We second estimate the complexity of considerable attacks
against our proposed parameter sets in Subsection 4.4. See Section 8 for the
details of each attack.

7.1 Underlying Problems and Security Proof

This subsection discusses the security of our QR-UOV described in Section 4.
After introducing two assumptions based on which the security proof of QR-
UOV can be constructed and the standard security definition, we show the
statement of the EUF-CMA security of QR-UOV.

We first introduce two problems for the security proof of QR-UOV as follows:

Definition 1 (UOV problem). We let MQq,n,m the set of random quadratic
maps with n = v+o variables and m equations over Fq and let UOVq,v,o,m the set
of public key maps of the plain UOV with v vinegar variables, o oil variables, and
m equations over Fq. The UOV problem asks to distinguish a random quadratic
system from a UOV public key. If we let A be a UOV distinguisher algorithm,
then we say the distinguishing advantage of A is

AdvUOV
q,v,o,m(A) =

|Pr[A(P) = 1 | P ← MQq,(v+o),m]− Pr[A(P) = 1 | P ← UOVq,v,o,m]|.

Definition 2 (QR-MQ problem). Let f be an irreducible polynomial with deg f
= ℓ and N = n/ℓ. We then denote by QRq,n,m,ℓ the set of quadratic maps
constructed as follows

QRq,n,m,ℓ =
{(

x⊤P1x, . . . ,x
⊤Pmx

)
: Fn

q → Fm
q | P1, . . . , Pm ∈W (N)AN,N

f

}
.

For a randomly chosen P ∈ QRq,n,m,ℓ and t ∈ Fm
q , the QR-MQ problem asks to

compute s such that P(s) = t. If we let A be an adversary, then we say that the
advantage of A against the QR-MQ problem is

AdvQR-MQ
q,n,m,ℓ(A) = Pr[P(s) = t | P ← QRq,n,m,ℓ, t← Fm

q , s← A(P, t)].

We prove the security of QR-UOV below assuming the advantages against
the above two problems are negligible. The first assumption is originally utilized
for the security of the plain UOV and thus seems relatively well understood. By
contrast, the second assumption is inherent in QR-UOV. Therefore, it is one of
the important tasks to correctly evaluate the difficulty of the QR-MQ problem.

Subsequently, we give the definition of the EUF-CMA security, which is the
standard security definition for digital signature schemes.

Definition 3 (EUF-CMA security). Let O be a random oracle, and let A be
an adversary. We say the advantage of A against the EUF-CMA game of a
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signature scheme DSS = (KeyGen,SignO,VerifyO) in the random oracle model
is

AdvEUF-CMA
DSS (A) =

Pr[VerifyO(pk,m, σ) = 1 | (pk, sk)← KeyGen(), (m,σ)← AO,SignO(sk,·)(pk)],

where SignO(sk, ·) was not queried on input m. We say DSS is EUF-CMA
secure if its advantage is negligible for any efficient adversary in the security
parameter.

We then show the EUF-CMA security of the QR-UOV signature scheme.
This theorem is proven mainly based on Proposition 5.3 in [KX22] by Kosuge
and Xagawa.

Theorem 2 (QR-MQ and UOV ⇒ EUF-CMA). For any quantum EUF-CMA
adversary Acma of QR-UOV issuing at most qsign classical queries to the signing
oracle and qqro (quantum) random oracle queries to Hash, there exist adversaries
B and B′ against the UOVqℓ,v/ℓ,o/ℓ,m and QR-MQq,(v+m),m,ℓ assumptions re-
spectively

AdvEUF-CMA
QR-UOV (Acma) ≤ (2qqro + 1)

2
(
AdvUOV

qℓ,v/ℓ,o/ℓ,m(B) + AdvQR-MQ
q,(v+m),m,ℓ(B

′)
)

+
3

2
q′sign

√
q′sign + qqro + 1

2λ
+ 2 (qsign + qqro + 2)

√
q′sign − qqro

2λ
,

where q′sign is a bound on the total number of queries to Hash in all the signing
queries and the running time of B and B′ is about that of Acma.

In the following, we give the proof of Theorem 2. Our proof of Theorem 2
is mainly depending on a result by Kosuge and Xagawa [KX22], which shows
the EUF-CMA security of QR-UOV assuming the difficulty of the INV (non-
INVertibility) game of QR-UOV. If we denote by QRq,v,m,ℓ the set of public key
maps of QR-UOV with parameters (q, v,m, ℓ), then the advantage of A against
the INV game of QR-UOV is given by

AdvINVDSS(A) = Pr[P(x) = t | P ← QRq,v,m,ℓ, t← Fm
q ,x← A(P, t)].

Proposition 5.3 in [KX22] originally shows the EUF-CMA security of the plain
UOV signature scheme with a modification proposed by Sakumoto et al. [SSH11],
and they claim that they can apply this proposition to QR-UOV with the mod-
ification by Sakumoto et al. Note that we here describe the proposition as the
one for QR-UOV and change some notations for consistency.

Lemma 2 (Proposition 5.3 in [KX22], INV ⇒ EUF-CMA (Modified UOV
Signature)). For any quantum EUF-CMA adversary Acma of QR-UOV issuing
at most qsign classical queries to the signing oracle and qqro (quantum) random
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oracle queries to Hash, there exist an INV adversary Binv of QR-UOV such that

AdvEUF-CMA
QR-UOV (Acma) ≤ (2qqro + 1)

2 AdvINVTuov
(Binv) +

3

2
q′sign

√
q′sign + qqro + 1

2λ

+ 2 (qsign + qqro + 2)

√
q′sign − qqro

2λ
,

where q′sign is a bound on the total number of queries to Hash in all the signing
queries and the running time of Binv is about that of Acma.

Subsequently, we discuss the non-invertibility of QR-UOV. Before providing
the proof, we prepare a lemma which shows a bijection from the key space
of QR-UOV to that of the plain UOV over the extension field. We call this
transformation a pull-back method.

Lemma 3. For any parameters (q, v,m, ℓ) of QR-UOV and an irreducible poly-
nomial f with deg f = ℓ, there exists a one-to-one mapping from the key space of
QR-UOV with parameter (q, v,m, ℓ) into that of the plain UOV with v/ℓ vinegar
variables, m/ℓ oil variables, and m equations over Fqℓ .

Proof. We here show the correctness of the statement by constructing such a
one-to-one map representing the keys of QR-UOV as those of the plain UOV
over Fq[x]/(f) ∼= Fqℓ . For each representation matrix Pk of the public key of

QR-UOV, we can take ℓ matrices P̄
(0)
k , . . . , P̄

(ℓ−1)
k ∈ FN×N

q satisfying

Pk =

ℓ−1∑
i=0

(
P̄

(i)
k ⊗WΦf

xi

)
,

due to the structure of the QR-UOV public key. We then can define an N ×N
matrix P̄k over Fq[x]/(f) as follows:

P̄k =

ℓ−1∑
i=0

xiP̄
(i)
k .

By using the same way, we can construct F̄1, . . . , F̄m and S̄ corresponding to
the secret key F1, . . . , Fm and S as follows:

Fk =

ℓ−1∑
i=0

(
F̄

(i)
k ⊗WΦf

xi

)
⇒ F̄k =

ℓ−1∑
i=0

xiF̄
(i)
k ,

S =

ℓ−1∑
i=0

(
S̄(i) ⊗ Φf

xi

)
⇒ S̄ =

ℓ−1∑
i=0

xiS̄(i).

Then, it holds P̄k = S̄⊤F̄kS̄ from Pk = S⊤FkS, and F̄k has the form as in (3).
Thus, these set of P̄k, F̄k, and S̄ can be seen as the keys of the plain UOV with
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N variables and m equations over the extension field Fq[x]/(f). This transfor-
mation is clearly a bijective map from the key space

(
{Pk}k∈[m], {Fk}k∈[m], S

)
of QR-UOV into the key space

(
{P̄k}k∈[m], {F̄k}k∈[m], S̄

)
of the plain UOV over

the extension field Fq[x]/(f).

We then show the security of the INV game of QR-UOV assuming the diffi-
culty of the UOV and QR-MQ problems.

Lemma 4 (UOV and QR-MQ ⇒ INV). For any quantum INV adversary Ainv

of HaS[Tuov,H], there exist adversaries B and B′ against the UOVqℓ,v/ℓ,o/ℓ,m and
QR-MQq,(v+m),m,ℓ assumptions respectively

AdvINVTuov
(Ainv) ≤ AdvUOV

qℓ,v/ℓ,o/ℓ,m(B) + AdvQR-MQ
q,(v+m),m,ℓ(B

′),

where the running time of B and B′ is about that of Ainv.

Proof. Let Game0 be Ainv’s INV game against QR-UOV. We then have the
equation Pr[Game0() = 1] = AdvEUF-CMA

q,v,m,ℓ (Ainv). Let Game1 be just the QR-MQ
game, which is the same as Game0 except that the adversary receives a randomly
chosen map in QRq,n,m,ℓ instead of the public key of QR-UOV. This Game0 and
Game1 can be seen as an adversary against a problem asking to distinguish
the public key of QR-UOV and a randomly chosen map in QRq,n,m,ℓ, and this
problem is equivalent to the UOV problem with v/ℓ vinegar variables, o/ℓ oil
variables, and m equations over the extension field Fqℓ from Lemma 3. We
then can clearly generate adversaries B and B′ against the UOVqℓ,v/ℓ,o/ℓ,m and
QR-MQq,(v+m),m,ℓ assumptions, that run in about the time of Ainv, and we
have

AdvUOV
qℓ,v/ℓ,o/ℓ,m(B) = |Pr[Game0() = 1]− Pr[Game1() = 1]|

= |AdvEUF-CMA
q,v,m,ℓ (Ainv)− AdvQRMQ

q,(v+m),m,ℓ(B
′)|.

From Lemma 2 and 4, we clearly obtain the statement of Theorem 2.

Remark 1. In [CDP23], Chatterjee et al. claimed that there exist some issues in
the EUF-CMA security proof given by Sakumoto et al. [SSH11]. Our QR-UOV
uses the modification of the signature generations for the security proof used in
the proof by Sakumoto et al. However, our security reduction is dependent on a
different result by Kosuge and Xagawa [KX22]. Thus, the result by Chatterjee
et al. does not affect our security proof.

Remark 2. In [Has22], Hashimoto provides a new way of constructing QR-
UOV by a smaller UOV over an extension field. We note that the way of
transforming the public and secret keys of QR-UOV into those of the plain UOV
used in [Has22] is equivalent to the one described in Lemma 3.
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Remark 3. In the proposed scheme, we set the length of the salt included in
signatures as 128, 192, and 256 bits for the security levels I, III, and V, re-
spectively. We can take a more conservative choice of the salt length to make

the additive terms 3
2q

′
sign

√
q′sign+qqro+1

2λ
and 2 (qsign + qqro + 2)

√
q′sign−qqro

2λ
in Theo-

rem 2 negligible. We first consider the size of q′sign which denotes a bound on
the total number of queries to Hash in all the signing queries in Theorem 2. In
the proof of Theorem 2 in [KX22], we have to set this q′sign such that the failure
probability of generating signatures qsign times with a bound q′sign on the number
of queries to Hash. From the expected number of queries to Hash for one time
signature generation, we can estimate q′sign as ≈ 2100 to make the failure proba-

bility ≈ 2−128. Then, the length of salt is determined as approximately 500 bits
to make two additive terms negligible. This can be seen as a tradeoff between
the length of signature and the security. Note that there has not been proposed
any attack that can take advantage of the loss of the security reduction.

7.2 Security Estimation of the Proposed Parameters

In this subsection, we confirm that the proposed parameters in Subsection 4.4
satisfy security levels I, III, and V of the NIST PQC project by estimating the
complexity of considerable attacks on QR-UOV described in Section 8 as seen
in Table 7 and 8.

As stated in Subsection 7.1, the EUF-CMA security of QR-UOV can be re-
duced to the difficulty of the QR-MQ problem and the UOV problems with pa-
rameters (qℓ, v/ℓ,m/ℓ,m), namely UOV with v/ℓ vinegar variables, m/ℓ oil vari-
ables, and m equations over Fqℓ . We here consider the hybrid approach [BFP09]
with Wiedemann XL (WXL) [YCBC07] and the polynomial XL (PXL) [FK21]
as attackers against the (QR-)MQ problem and the Kipnis-Shamir [KS98], rec-
onciliation [DYC+08], intersection [Beu21], and rectangular MinRank [Beu21]
attacks as attackers against the UOV problem with parameters (qℓ, v/ℓ,m/ℓ,m).
(See Subsection 8.3 for the relationship between the difficulty of the QR-MQ
problem and the plain MQ problem.) In addition to these attacks, we con-
sider the claw finding attack and the complexity of these attacks is evaluated in
Table 7.

Furthermore, we can clearly perform the key recovery attacks on QR-UOV
by simply regarding QR-UOV as the plain UOV with parameters (q, v,m,m).
In Table 8, we estimate the complexity of three key recovery attacks, the Kipnis-
Shamir, reconciliation, and intersection attacks, on the plain UOV with param-
eters (q, v,m,m) for each proposed parameter set. (See Subsection 8.5 for the
reason that the rectangular MinRank is not applicable to the plain UOV with
parameters (q, v,m,m).) Then, one can confirm that for each attack, the com-
plexity on the UOV problem with parameters (q, v,m,m) is larger than or equal
to that on the UOV problem with parameters (qℓ, v/ℓ,m/ℓ,m). Therefore, as
mentioned above, our proposed parameters satisfy each claimed security level.

Here, security levels I, III, and V indicate that a classical attacker needs
more than 2143, 2207, and 2272 classical gates to break the parameters, whereas
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a quantum attacker needs more than 261, 2125, and 2189 quantum gates, re-
spectively, from the call for additional digital signature schemes [NIS22]. The
number of gates required for each attack can be computed using

#gates = #fieldmultiplication ·
(
2 · (log2q)2 + log2q

)
.

In Table 7 and 8, for each parameter set, the upper entry shows the num-
ber of classical gates, whereas the lower entry shows the number of quantum
gates. Furthermore, the values in bold indicate the complexity of the best attack
against each parameter set. As a result, these tables show that the proposed
parameters satisfy the requirements for each security level. One can confirm
that our proposed parameters for security levels I and III also satisfy security
levels II and IV, respectively.
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Table 7: The complexity of the classical and quantum considerable attacks,
the claw finding attack, and the Hashimoto’s method with WXL (WXL)
and PXL on the MQ problem, and the Kipnis-Shamir (KS), reconciliation
(Recon.), intersection (Inter.), and rectangular MinRank (RM) attacks on
UOV(qℓ, v/ℓ,m/ℓ,m) against the proposed parameter sets

SL (q, v,m, ℓ) Claw WXL PXL KS Recon. Inter. RM

I

(7, 740, 100, 10)
154 184 201 1793 148 1641 162
154 105 136 908 148 869 162

(31, 165, 60, 3)
162 163 152 531 151 343 153
162 117 127 279 151 224 153

(31, 600, 70, 10)
187 164 162 2600 152 2415 157
187 111 134 1312 152 1251 157

(127, 156, 54, 3)
202 160 150 718 164 460 158
202 132 128 372 164 282 158

III

(7, 1100, 140, 10)
211 262 283 2693 219 2452 229
211 152 188 1359 219 1287 229

(31, 246, 87, 3)
229 226 215 801 221 508 220
229 171 180 415 220 323 220

(31, 890, 100, 10)
262 235 232 3890 216 3585 220
262 164 193 1958 216 1851 220

(127, 228, 78, 3)
287 222 211 1056 231 653 219
287 182 180 542 227 390 219

V

(7, 1490, 190, 10)
281 354 384 3649 277 3291 292
281 213 253 1838 277 1719 292

(31, 324, 114, 3)
297 286 279 1055 283 658 279
297 218 232 543 280 413 279

(31, 1120, 120, 10)
311 280 275 4931 283 4540 290
311 197 230 2479 283 2335 290

(127, 306, 105, 3)
381 288 279 1414 291 851 277
381 237 238 722 289 505 277
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Table 8: The complexity of the classical and quantum considerable key recovery
attacks on UOV(q, v,m,m), the Kipnis-Shamir (KS), reconciliation (Recon.),
and intersection (Inter.) attacks, against the proposed parameter sets

SL (q, v,m, ℓ) KS Recon. Inter.

I

(7, 740, 100, 10)
1825 1350 2089
928 891 1140

(31, 165, 60, 3)
545 408 666
287 314 450

(31, 600, 70, 10)
2651 1368 2788
1340 1038 1528

(127, 156, 54, 3)
736 421 772
383 348 527

III

(7, 1100, 140, 10)
2725 1980 3088
1379 1302 1673

(31, 246, 87, 3)
814 591 980
423 451 653

(31, 890, 100, 10)
3941 2001 4129
1987 1516 2250

(127, 228, 78, 3)
1073 553 596
553 491 753

V

(7, 1490, 190, 10)
3681 2661 4167
1858 1745 2253

(31, 324, 114, 3)
1069 763 1278
551 581 848

(31, 1120, 120, 10)
4983 2502 5201
2508 1893 2820

(127, 306, 105, 3)
1431 782 1477
732 644 997
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8 Analysis of Attacks against QR-UOV

This section describes considerable attacks on QR-UOV. The rest of this section
is organized as follows. Subsection 8.1 discusses the effect of irreducibility of
the polynomial f constructing the quotient ring of QR-UOV. Subsection 8.2
explains the direct attack which directly finds a signature for a given message.
Subsection 8.3 provides another way of reducing the public and secret keys of
QR-UOV into those of the plain UOV over extension fields. Subsection 8.4 recall
known key recovery attacks on the plain UOV. Subsection 8.5 shows that the
rectangular MinRank attack [Beu21] is applicable to UOV over extension fields.
Subsection 8.6 shows another way of attacking QR-UOV over the extension field
as in the pull-back method given in Lemma 3.

8.1 Irreducibility of f

The public key of our QR-UOV is given as block matrices whose each compo-
nent is an element of WAf . For the security of QR-UOV, we here discuss the
relation between the irreducibility of polynomial f of Af and the existence of
transformation on symmetric matrices WΦf

g into a specific form matrix. In-
deed, the security of BAC-UOV [SP20] whose public key is represented as block
anti-circulant matrices was weakened by transforming anti-circulant matrices
into a specific form with zero submatrices [FKI+20]. Therefore, we have to find
f such that there exists no such a transformation on WΦf

g .
In [FIKT21], they provide the following three theorems for the transforma-

tion on WΦf
g which show the suitability of an irreducible f for QR-UOV.

Theorem 3 (Theorem 4 in [FIKT21]). Let f ∈ Fq[x] be a reducible polynomial
with deg f = ℓ and W be an invertible matrix such that every element of WAf

is a symmetric matrix. If f = f1 · · · fk (k ∈ N), where f1, . . . , fk are distinct
and irreducible, and deg f1 ≤ · · · ≤ deg fk, then there exists an invertible matrix
L ∈ Fℓ×ℓ

q and i ∈ [ℓ− 1] such that for any X ∈WAf ,

L⊤XL =

(
∗i×i 0i×(ℓ−i)

0(ℓ−i)×i ∗(ℓ−i)×(ℓ−i)

)
.

Theorem 4 (Theorem 5 in [FIKT21]). With the same notation as in Theo-

rem 3, if there exists f ′ ∈ Fq[x] such that f ′2 | f , there exists an invertible
matrix L ∈ Fℓ×ℓ

q such that, for any X ∈WAf ,

(L⊤XL)ℓℓ = 0.

Theorem 5 (Theorem 2 in [FIKT21]). Let f ∈ Fq[x] be an irreducible poly-
nomial with deg f = ℓ and W be an invertible matrix such that every element
of WAf is a symmetric matrix. Then, there is no invertible matrix L ∈ Fℓ×ℓ

q

and i, j ∈ [ℓ] such that for any X ∈WAf ,

(L⊤XL)ij = 0.
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Theorems 3 and 4 show that if f is reducible, for any X ∈WAf , X can be
transformed into a matrix with zero submatrices by multiplying an invertible
matrix and its transposition from both sides. By contrast, Theorem 5 shows that
if f is irreducible there exists no such a transformation on WΦf

g . Therefore, we
choose an irreducible polynomial as the f of Af used in our proposed QR-UOV.

8.2 Claw Finding Attack

This subsection considers the claw finding attack on P(s) = Hash(M||r), which
is also called the birthday attack. We estimate the complexity of this attack
according to the estimation in [BCC+22, BCH+23].

For a message M, an attacker computes P(si) for X inputs {si}i∈[X] and
compute Hash(M||rj) for Y salts {rj}j∈[Y ]. IfXY = qm, then there is a collision
with probability ≈ 1 − e−1, and the attacker can output the signature (rj , si)
for the message M. In [BCC+22, BCH+23], they estimate the complexity of
this attack considering the cost of multiplication and addition in Fq as follows:

2
(
qm ·m · 217 ·

(
2 · (log2q)2 + log2q

)) 1
2 . (8)

In this estimation, we suppose that computing Hash has a bit cost of 217 and
applying a fast enumeration algorithm [FT23] in Fq to evaluate P successively.

For the quantum claw finding attack, it is shown that attackers with limited
time will prefer the classical attacks in [JS19]. Thus, in Subsection 7.2, we also
esimate the complexity of the quantum claw finding attack by equation (8).

Remark 4 (Hash Collision Attack). A hash collision attack finds two inputs
M and M ′ for the hush function Hash satisfying Hash(M) = Hash(M′). This
attack does not work on the proposed scheme, since in the signature generation,
the form of inputs for Hash is M||r with a message M and a salt r and this r
is randomly chosen by the signer.

8.3 Direct Attack

This subsection describes the direct attack, whose construction can be described
as follows: Given public key P and a target m ∈ Fm

q , the direct attack tries to
solve the MQ system P(s) = m to find a signature s.

Given a quadratic polynomial system P = (p1, . . . , pm) in n variables over
Fq and m ∈ Fm

q , the direct attack algebraically solves the system P(x) =
m. We first explain the complexity of solving the MQ system with n ≤ m
(overdetermined), second show a way of reducing the MQ system with n > m
(underdetermined) into a smaller overdetermined system, and third discuss the
difficulty of the QR-MQ problem to which the security of QR-UOV is reduced
in Theorem 2.

Overdetermined case We here provide a way of estimating the complexity of
solving the overdetermined MQ system, since an underdetermined system can
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be transformed into an overdetermined system by specifying n − m variables
without disturbing the existence of a solution with high probability. One of
the best-known approaches for algebraically solving the quadratic system is the
hybrid approach [BFP09], which randomly guesses k (k = 0, . . . , n) variables
before applying an MQ solver such as F4 [Fau99], F5 [Fau02], and XL [CKPS00].
The guessing process is repeated until a solution is obtained. The complexity
of this approach with the Wiedemann XL (WXL) [YCBC07], which is a variant
of XL, for a classical adversary is given by

min
k

(
O

(
qk · 3 ·

(
n− k + 2

2

)
·
(
dreg + n− k

dreg

)2
))

, (9)

where dreg is the so-called degree of regularity of the system. The degree of
regularity dreg for a certain class of polynomial systems called semi-regular
systems [Bar04, BFS03, BFSY05] is known to be the degree of the first non-
positive term in the following series [BFSY05, YC05]:(

1− z2
)m

(1− z)
n−k+1

. (10)

Empirically, the public key system of UOV is considered to be a semi-regular
system. Therefore, this series (10) can be used to estimate the degree of regu-
larity. By using Grover’s algorithm [Gro96], the complexity of a quantum direct
attack is estimated as

min
k

(
O

(
qk/2 · 3 ·

(
n− k + 2

2

)
·
(
dreg + n− k

dreg

)2
))

. (11)

Furthermore, a new variant of the hybrid approach with XL, which is called
polynomial XL (PXL), was proposed at 2021 [FK21]. This PXL reduces the
complexity by performing Gaussian elimination on the matrix over a polynomial
ring and the complexity of PXL for classical and quantum attackers is given by

O
(
k2 · α ·

(
n−k+dreg

dreg

)
·
(
n+dreg

dreg

)
+ qk ·

(
α2 ·

(
k+dreg

dreg

)
+ αω

))
,

O
(
k2 · α ·

(
n−k+dreg

dreg

)
·
(
n+dreg

dreg

)
+ q

k
2 ·
(
α2 ·

(
k+dreg

dreg

)
+ αω

))
,

respectively, where k is the number of guessed variables and ω = 2.37 is the
constant in the complexity of matrix multiplication. Furthermore, this α is
given as

dreg∑
d=0

max
{
coeff

(
(1− z)

m−(n−k)
(1 + z)

m
, zd
)
, 0
}
,

where coeff(f, t) denotes the coefficient of t in f .
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Table 9: Theoretical and experimental degree of regularity of public key system
of QR-UOV obtained using the Magma algebra system [BCP97].

(q, v,m, ℓ, k) theoretical dreg experimental dreg
(7, 24, 12, 3, 0) 13 13
(7, 24, 12, 3, 1) 7 7
(7, 24, 12, 3, 2) 6 6
(7, 30, 15, 3, 0) 16 16
(7, 30, 15, 3, 1) 8 9
(7, 30, 15, 3, 2) 7 7

Underdetermined case We here explain a way of solving the underdeter-
mined MQ system efficiently. Thomae and Wolf [TW12] proposed a tech-
nique for reducing the number of variables and equations when n > m. For
α = ⌊ nm⌋−1, they reduce the (n−m+α) variables and α equations and thereby
obtain a quadratic system with m−α variables and equations. In [FNT21], Fu-
rue et al. improved Thomae and Wolf’s technique supposing to guess values
of k variables as in the hybrid approach, and Hashimoto proposed two meth-
ods by modifying this method proposed by Furue et al. to make more efficient
in [Has21]. Then, the complexities of Hashimoto’s techniques on the MQ system
with n variables and m equations are estimated as qk ·MQ(q,m − α − k,m −
α) + (m − k) ·MQ(q, α, α) under the condition n −m + k ≥ α · (m − k) and
qk · (MQ(q,m−α− k,m−α)+MQ(q, α, α))+ (m−α− k) ·MQ(q, α, α) under
the condition n−m ≥ α·(m−k−α), where MQ(q, n,m) denotes the complexity
of solving the MQ system with n variables and m equations in Fq. In Subsec-
tion 7.2, we confirm the security of the proposed parameters by the complexity
of the hybrid approach with WXL given by equation (9) using one of these
Hashimoto’s techniques which has smaller complexity. Note that it is difficult
to combine PXL and Hashimoto’s techniques since both algorithms utilize the
guessed k variables before substituting k values, and thus we apply Thomae and
Wolf [TW12] technique to PXL to estimate the complexity in Subsection 7.2.

QR-MQ probelm We finally discuss the security of the QR-MQ problem.
In Table 9, for a QR-UOV public key system, we compare the theoretical dreg
and experimental dreg using the F4 algorithm. The theoretical dreg is the de-
gree of regularity of F4 as the smallest degree with a non-positive coefficient
in
(
1− z2

)m
/ (1− z)

m−k
, assuming that the system is semi-regular. The ex-

perimental dreg is the highest degree among the step degrees, where nonzero
polynomials are generated in experiments of F4 using the Magma algebra sys-
tem [BCP97]. In our experiment, m was set to sufficiently large values so that
our computation for one parameter was performed within one day, and v is set
equal to 2m. For the public key of the QR-UOV with (v + m) variables and
m equations, we fix the last v variables and execute the hybrid approach by
fixing k variables additionally. That is, the direct attack is executed on the
system of m equations in m− k variables. As a result, Table 9 shows that the
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degrees of regularity obtained experimentally were the same as those obtained
theoretically. These results indicate that the difficulty of solving the public key
system of QR-UOV is equivalent to that of solving the randomized MQ system.

Remark 5. In the case of (q, v,m, ℓ, k) = (7, 30, 15, 3, 1) in Table 9, the exper-
imental dreg is larger than the theoretical dreg. However, our experiment shows
that the experimental dreg of the same size randomized quadratic system of m
equations in (m − k) variables over F7 is not different from our experimental
dreg of (q, v,m, ℓ, k) = (7, 30, 15, 3, 1).

8.4 Key Recovery Attacks on UOV

This subsection recalls some proposed existing key recovery attacks, the Kipnis-
Shamir [KS98], reconciliation [DYC+08], and intersection [Beu21] attacks. These
key recovery attacks can be performed on the following two problems:

• UOV(qℓ, v/ℓ,m/ℓ,m),

• UOV(q, v,m,m),

where UOV(q, v, o,m) denotes the plain UOV with v vinegar variables, o oil
variables, and m equations over Fq. The first one is corresponding to one of
the underlying problems of our security proof obtained by the pull-back trans-
formation descrived in Lemma 3, and the second one is enabled by ignoring
the quotient ring structure of QR-UOV. This subsection describes the behav-
ior of the key recovery attacks on UOV(q, v, o,m), and thus, by substituting
(qℓ, v/ℓ,m/ℓ,m) and (q, v,m,m) for (q, v, o,m) in the following estimations, we
can obtain the complexity of the key recovery attacks on UOV(qℓ, v/ℓ,m/ℓ,m)
and UOV(q, v,m,m), respectively.

Recall that the key recovery attacks aim to obtain the subspace S−1(O) of
Fn
q , where O is the oil subspace defined as

O :=
{
(0, . . . , 0, α1, . . . , αo)

⊤ ∣∣ αi ∈ Fq

}
.

8.4.1 Kipnis-Shamir Attack

The Kipnis-Shamir attack [KS98] chooses two invertible matrices Wi,Wj from
the set of linear combinations of the representation matrices P1, . . . , Pm for the
public key. Then, it probabilistically recovers a part of the subspace S−1(O) by
computing the invariant subspace of W−1

i Wj . The complexity of the Kipnis-
Shamir attack is estimated as

O
(
qv−o−1 · o4

)
.

Grover’s algorithm [Gro96] can be used to reduce the complexity for a quantum
adversary to

O
(
q

v−o−1
2 · o4

)
.
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Then, the complexity of the Kipnis-Shamir attack for classical and quantum
adversaries against UOV(qℓ, v/ℓ,m/ℓ,m) is given as

O
(
qv−m−ℓ · (m/ℓ)4

)
, O

(
q

v−m−ℓ
2 · (m/ℓ)4

)
.

Furthermore, the complexity of the Kipnis-Shamir attack for classical and quan-
tum adversaries against UOV(q, v,m,m) is given as

O
(
qv−m−1 ·m4

)
, O

(
q

v−m−1
2 ·m4

)
.

8.4.2 Reconciliation Attack

The reconciliation attack [DYC+08] treats a vector y of S−1(O) as variables
and solves the quadratic system y⊤Piy = 0 (i ∈ [m]). Here, the dimension of
S−1(O) is o, and thus if we impose affine constraints, we then solve a system of
m equations in n−o = v variables and still have a solution with high probability.
Parameters of UOV are generally set to satisfy v > m for the security against
the Kipnis-Shamir attack, and in this case the system of y⊤Piy = 0 has a large
number of solutions. Therefore, to determine a solution uniquely, we need to
solve the following system to find multiple vectors y1, . . . , yk of S−1(O):{

y⊤j Piyj = 0 (1 ≤ i ≤ m, 1 ≤ j ≤ k),
y⊤j Piyℓ = 0 (1 ≤ i ≤ m, 1 ≤ j < ℓ ≤ k).

We here lower bound the complexity of solving this problem by that of solving
the MQ problem with v variables and equations. On the other hand, if the
number v of the vinegar variables is smaller than the number m of equations,
then the complexity of the reconciliation attack is estimated as that of solving a
quadratic system of m equations in v variables. We estimate the complexity of
solving these problems with the complexity of the hybrid approach with WXL
in equations (9) and (11).

Then, the complexity agianst UOV(qℓ, v/ℓ,m/ℓ,m) is given by

min
k

(
O

(
qℓ·k · 3 ·

(
v/ℓ− k + 2

2

)
·
(
dreg + v/ℓ− k

dreg

)2
))

,

where 0 ≤ k ≤ v/ℓ, since v/ℓ < m. Furthermore, the complexity agianst
UOV(q, v,m,m) is given by

min
k

(
O

(
qk · 3 ·

(
v − k + 2

2

)
·
(
dreg + v − k

dreg

)2
))

,

where 0 ≤ k ≤ v.
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8.4.3 Intersection Attack

In [Beu21], Beullens proposed a new key recovery attack against UOV, called
an intersection attack. In the case of v < 2o, for an integer k ≥ 2 satisfying
k < v

v−o , let L1, . . . , Lk be k invertible matrices randomly chosen from a set
of linear combinations of the representation matrices P1, . . . , Pm for the public
key. This attack then solves the following equations for y ∈ Fn

q :{
(L−1

j y)⊤Pi(L
−1
j y) = 0 (1 ≤ i ≤ m, 1 ≤ j ≤ k),

(L−1
j y)⊤Pi(L

−1
ℓ y) = 0 (1 ≤ i ≤ m, 1 ≤ j < ℓ ≤ k).

(12)

Note that, for a solution z for this system, a vector in S−1(O) is not z but
L−1
j z unlike the Kipnis-Shamir and reconciliation attacks. The solution space

obtained from the above equation has ko − (k − 1)v dimensions. Thus, its
complexity is equivalent to that of solving the quadratic system with n− (ko−
(k − 1)v) = kv − (k − 1)o variables and

(
k+1
2

)
m − 2

(
k
2

)
equations owing to its

linear dependency. The value of k is generally chosen such that the complexity
of solving the above system takes the minimum value under the condition of k <
v

v−o . On the other hand, in the case of v ≥ 2o, the intersection attack becomes a
probabilistic algorithm, which solves the system of equation (12) as k = 2 with
n variables and (3m−2) equations and one of solutions is a target vector with a
probability of approximately q−v+2o−1. Therefore, its complexity is estimated
by qv−2o+1 times the complexity of solving the quadratic system with n variables
and (3m− 2) equations. We estimate the complexity of solving these problems
with the complexity of the hybrid approach with WXL in equations (9) and
(11).

Then, the complexity agianst UOV(qℓ, v/ℓ,m/ℓ,m) is given by

min
k

(
O

(
qv/ℓ−2m/ℓ+1 · qk · 3 ·

(
n/ℓ− k + 2

2

)
·
(
dreg + n/ℓ− k

dreg

)2
))

,

where 0 ≤ k ≤ n/ℓ, since v/ℓ > 2m/ℓ. Furthermore, the complexity agianst
UOV(q, v,m,m) is given by

min
k

(
O

(
qv−2m+1 · qk · 3 ·

(
n− k + 2

2

)
·
(
dreg + n− k

dreg

)2
))

,

where 0 ≤ k ≤ n, since v > 2m.

8.5 Rectangular MinRank Attack

This subsection shows that the rectangular MinRank attack [Beu21] is applica-
ble to only UOV(qℓ, V,M,m), where V = v/ℓ and M = m/ℓ, and estimates the
complexity.

The rectangular MinRank attack was recently proposed for the Rainbow
scheme by Beullens, and it tries to solve a new MinRank problem obtained by
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transforming the public key of Rainbow. Rainbow is a multi-layered variant of
the UOV scheme, and UOV has resistance to all MinRank attacks since UOV
does not have a structure of MinRank problem. However, we show that the
rectangular MinRank is applicable to UOV(qℓ, V,M,m) which is one of the
underlying problems of the security of QR-UOV. Note that we here suppose
that (P1, . . . , Pm) and (F1, . . . , Fm), S are matrices representing the public and
secret keys of UOV with parameters (qℓ, V,M,m).

Before describing the rectangular MinRank attack, we introduce a way of
transforming sets of matrices used in the attack. Let (G1, . . . , Gm) be a set of

n-by-n matrices over Fq, and g
(j)
i denotes the j-th column vector of Gi, namely,

Gi =
(
g
(1)
i g

(2)
i · · · g

(n)
i

)
∈Mn(Fq).

Then, we define the new set (G̃1, . . . , G̃n) of n-by-m matrices as follows:

G̃1 :=
(
g
(1)
1 g

(1)
2 · · · g

(1)
m

)
,

G̃2 :=
(
g
(2)
1 g

(2)
2 · · · g

(2)
m

)
,

...

G̃n :=
(
g
(n)
1 g

(n)
2 · · · g

(n)
m

)
.

Then, when we apply this deformation to (P1, . . . , Pm) and (F1, . . . , Fm), we
have

(P̃1, . . . , P̃n) = (S⊤F̃1, . . . , S
⊤F̃n) · S.

For the proposed parameters in Subsection 4.4, we have m > V > M . From
this relation, it is easily seen that the deformation matrices F̃V+1, . . . , F̃N ∈
MN×m(Fq) are of rank ≤ V since they have the following form:(

∗V×m

0M×m

)
.

Then, there exists a linear combination of P̃1, . . . , P̃N ∈Mn×m(Fq) whose rank
is ≤ V , and thus, as in Rainbow, the rectangular MinRank attack can be applied
to UOV(qℓ, V,M,m). In order to estimate the complexity, we describe the attack
in detail.

The rectangular MinRank attack tries to find a non-zero element of S−1(O).
As in the case of Rainbow, the rectangular MinRank attack against UOV with
(qℓ, V,M,m) is constructed as follows. Since dim

(
S−1(O)

)
= m, there exists a

non-zero N -by-1 vector with the following form:

a = (a1, a2, . . . , aV+1, 0, . . . , 0) ∈ S−1(O).

Then, it is shown that

V+1∑
i=1

aiP̃i = (P̃1, . . . , P̃N ) · a = (S⊤F̃1, . . . , S
⊤F̃N ) · (S · a)
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is a linear combination of S⊤F̃v+1, . . . , S
⊤F̃N . Thus, this linear combination is

of rank ≤ V . Namely, the vector a gives a solution to the MinRank problem for
(P̃1, . . . , P̃V+1) with the target rank V . Moreover, we have

p1(a) = · · · = pm(a) = 0.

As a result, the vector a = (a1, a2, . . . , aV+1, 0, . . . , 0) we want to find is a
common solution to the following problems:

(i) Rank

(
V+1∑
i=1

aiP̃i

)
≤ V ,

(ii) p1(a) = · · · = pm(a) = 0.

Complexity analysis

We then describe the estimation of the complexity to solve the above problems
(i) and (ii). This is done along Beullens’ estimation [Beu21] for the rectangular
MinRank attack against Rainbow. Note that the characteristic of Fqℓ is always
odd in QR-UOV.

First, consider problem (i). Fix an integer m′ such that V + 1 ≤ m′ ≤ m.
Let P̃ ′

i be the N × m′ matrix obtained by removing the column vectors from
(m′ + 1)-th to m-th of P̃i. Then one considers to apply the support minor
modeling method [BBC+20] to the MinRank problem (P̃ ′

1, . . . , P̃
′
V+1) with the

target rank V . Let I ′ be the ideal in Fqℓ [a, c] generated by the bilinear equations

obtained from the support minor modeling, where c is the set of
(

m′

V+1

)
minor

variables. For b ∈ N, set

R′(b) :=

b∑
i=1

(−1)i+1

(
m′

V + i

)(
N + i− 1

i

)(
V + 1 + b− i

b− i

)
.

Let I ′b,1 be the subspace of (b, 1)-degree homogeneous polynomials of I ′ in

Fqℓ [a, c]. Then, Bardet et al. [BBC+20] calculated that dimF
qℓ
I ′b,1 = R′(b)

for 1 ≤ b ≤ V + 1.
Next, one considers adding problem (ii). We assume that p1(a), . . . , pm(a)

behave as a semi-regular system, where

a = (a1, a2, . . . , aV+1, 0, . . . , 0).

Let I be the ideal generated by I ′ and p1(a), . . . , pm(a), namely,

I := I ′ + ⟨p1(a), . . . , pm(a)⟩ ⊂ Fqℓ [a, c].

Moreover, set

G′(t1, t2) :=

(
m′

V

)
t2 +

V+1∑
b=1

((
m′

V

)(
V + b− 1

b

)
−R′(b)

)
tb1t2,

G(t1, t2) := G′(t1, t2) · (1− t21)
m.
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Table 10: Experiments for bmin and b
(predict)
min

(q, V,M, l) m′ b
(predict)
min bmin

(7, 5, 2, 3) 6 4 4

(7, 6, 3, 3)
7 3 3
8 3 3
9 2 2

(7, 7, 3, 3)
8 4 4
9 3 3

(7, 8, 3, 3) 9 5 5

Let bmin ∈ N be the minimum of b such that

dimF
qℓ
Ib,1 = dimF

qℓ
Fqℓ [a, c]b,1 − 1.

Then, following Beullens’ estimation, we can state that bmin is predicted by

b
(predict)
min := min {b | G(t1, t2)b,1 ≤ 1} , (13)

where G(t1, t2)b,1 is the coefficient of tb1t2.
Finally, by applying to Ibmin,1 the bilinear XL algorithm with Wiedemann

algorithm [Wie86], we can find a solution a to problem (i) and (ii) with the
following complexity:

3

(
m′

V

)2(
V + bmin − 1

bmin

)2

(V + 1)
2
. (14)

In Table 10, we experimented that bmin is equal to b
(predict)
min for some small

parameters. As seen in Table 10, we have bmin = b
(predict)
min , and thus we use

b
(predict)
min instead of bmin to estimate the complexity of the rectangular MinRank
attack against QR-UOV theoretically in Subsection 7.2.

8.6 Lifting Method

Lifting method is a method of attacking QR-UOV by diagonalizing the matrices
in Af over the extension field Fqℓ and was proposed in [FIKT21]. In this sub-
section, we show that the lifting method is essentially the same as the pull-back
method given in the proof of Lemma 3. To explain it, we prepare some results.

Theorem 6. With the same notation as in Theorem 5,

(i) There exists an invertible matrix L ∈ Fℓ×ℓ
qℓ

such that

L−1Φf
xL =


x

xq

xq2

. . .

xqℓ−1

 .
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In particular, this L diagonalizes any matrix in Af .

(ii) The matrix L described in (i) satisfies the condition that L⊤WL is diag-
onal. Therefore, we can write

L⊤WL =


α0

α1

. . .

αℓ−1

 .

See [FIKT21] for the proof of this theorem. We recall the idea of the lifting
method stated in [FIKT21]. The first and second statements in the theorem
show that for any g ∈ Fq[x]/(f) ∼= Fqℓ the matrix L⊤WΦf

gL is diagonal. This
indicates that P1, . . . , Pm of QR-UOV can be transformed into block diagonal
matrices for which the block size is N×N . Let L(N) = IN ⊗L be an n×n block
diagonal matrix with block size ℓ (n = ℓ ·N), for which the N diagonal blocks
are L. Then, (L(N))⊤PiL

(N) (i ∈ [m]) become block matrices wherein every
component is in a diagonal form. Furthermore, there exists a permutation ma-
trix A such that (L(N)A)⊤Pi(L

(N)A) is a block diagonal matrix with block size
N , and let L̄ := L(N)A. The transformed matrices L̄⊤PiL̄ can be represented
by (L̄−1SL̄)⊤(L̄⊤FiL̄) (L̄

−1SL̄). Then, L̄⊤FiL̄ is the diagonal concatenation of
ℓ smaller matrices, similar to L̄⊤PiL̄. Furthermore, L̄−1SL̄ is also the diagonal
concatenation of ℓ smaller matrices from (i) in Theorem 6. Then, owing to the
structure of Fi, every diagonal block of L̄⊤FiL̄ has an M ×M zero block, sim-
ilar to Fi. Therefore, each diagonal block of L̄⊤PiL̄ has the same form as the
matrix representing the public key of UOV with V vinegar variables and M oil
variables over Fqℓ . The lifting method proposed in [FIKT21] executes the key
recovery attacks on one of such diagonal blocks.

In the following, we describe such diagonal blocks in detail and show that the
lifting method is essentially the same as the pull-back method. Let A ∈ Fn×n

q

be a permutation matrix such that

A⊤ (X ⊗ Y )A = Y ⊗X

for any X ∈ FN×N
q and Y ∈ Fℓ×ℓ

q . Also, we recall the equation in Lemma 3

Pk =

ℓ−1∑
i=0

P̄
(i)
k ⊗WΦf

xi .

Then the transformation in the above lifting method is described as follows:
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A⊤(L(N))⊤PkL
(N)A = A⊤(L(N))⊤

(
ℓ−1∑
i=0

P̄
(i)
k ⊗WΦf

xi

)
L(N)A

=A⊤

(
ℓ−1∑
i=0

P̄
(i)
k ⊗ L⊤WΦf

xiL

)
A = A⊤

(
ℓ−1∑
i=0

P̄
(i)
k ⊗ L⊤WL · L−1Φf

xiL

)
A

=A⊤


ℓ−1∑
i=0

P̄
(i)
k ⊗


α0x

i

α1x
qi

α2x
q2i

. . .

αℓ−1x
qℓ−1i



A

=

ℓ−1∑
i=0


α0x

i

α1x
qi

α2x
q2i

. . .

αℓ−1x
qℓ−1i

⊗ P̄
(i)
k

=


α0

∑ℓ−1
i=0 P̄

(i)
k xi

α1

∑ℓ−1
i=0 P̄

(i)
k xqi

α2

∑ℓ−1
i=0 P̄

(i)
k xq2i

. . .

αℓ−1

∑ℓ−1
i=0 P̄

(i)
k xqℓ−1i



=


α0P̄k

α1P̄k,q

α2P̄k,q2

. . .

αℓ−1P̄k,qℓ−1

 .

Here, we have set P̄k,qa := (pq
a

i,j)i,j , where P̄k = (pi,j). Therefore, P̄k,q, . . . , P̄k,qℓ−1

are easily recovered from P̄k. Thus, when we consider a key recovery attack us-
ing the lifting method, it is enough to treat only P̄k (k ∈ [m]). Since the
pull-back method is also to execute a key recovery attack on P̄k, we conclude
that a key recovery attack using the pull-back method is the same as that using
the lifting method. The only difference from the pull-back method is that we
can apply the direct attack on the system of L̄⊤PiL̄ (i = 1, . . . ,m) obtained by
applying the lifting method. However, for most cases, this lifting direct attack
is not more efficient than the plain direct attack, since the large finite field Fqℓ

disturbs guessing some variables in the hybrid approach. Therefore, we list only
the complexity of the plain direct attack in Subsection 7.2.
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9 Advantages and Limitations

The main advantages of QR-UOV are

• Public key and signature size. The plain UOV is known as a scheme
with a small signature and a large public key. (Currently proposed pa-
rameters in security level I have approximately 50KB public key and 100B
signature [BCH+23].) Our proposed parameter sets with q = 31 and ℓ = 3
reduce the public key size by approximately 50-60% compared with the
plain UOV (approximately 20KB in security level I) with a few hundred
bits of signature.

• Efficiency. The signature generation and verification processes consist of
simple linear algebra operations over small finite fields (e.g. F7, F31, and
F127) and thus QR-UOV can be implemented very efficiently.

• Security. The EUF-CMA security of QR-UOV is formally proven in the
QROM assuming the difficulty of two problems, the UOV and QR-MQ
problems. The security of the plain UOV is based on the UOV problem
and thus it seems relatively well understood. By contrast, the QR-MQ
problem is a new assumption generated by us to construct our security
proof. There exists no formal reduction from the QR-MQ problem into
the plain MQ problem, but we provide some experimental facts which
indicate that the difficulty of solving the QR-MQ problem is equivalent to
that of solving the plain MQ problem.

• Simplicity. The design of the plain UOV is extremely simple, and our
QR-UOV is a natural extension of UOV utilizing the quotient rings struc-
ture. We can consider that the research undertaken to obtain from UOV
to QR-UOV corresponds to that obtained from LWE to MLWE, where
MLWE problem is a generalization of LWE using a module comprising
vectors over a ring. Therefore, it requires only a minimum knowledge of
algebra to understand and implement the scheme.

The main disadvantage of QR-UOV is the large size of the public key com-
pared with other post-quantum signature schemes such as lattice-based signa-
tures. As we mentioned above, the public key size of QR-UOV is reduced from
that of the plain UOV and third round parameters of Rainow. However, some
selected lattice-based signature schemes have further small public keys with
approximately 1000B in security level I. This disadvantage might make it dif-
ficult to apply QR-UOV to constrained devices such as smart cards. However,
the increase in memory capabilities in the future will relax the impact of this
disadvantage.
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