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1 Introduction

This document specifies the RYDE digital signature scheme. It is a quantum-resistant sig-
nature, based on zero-knowledge proofs, and symmetric functions, such as hash functions.
We present a high-level description of the scheme and the MPC-in-the-Head paradigm
(it allows to transform MPC protocols in proofs of knowledge) on which the signatures
are based. The security of the signature relies on the Rank Syndrome Decoding problem:
thanks to the previous process we can transform a proof of knowledge of a witness to a
Rank-SD instance [Fen22] to obtain a signature scheme. We apply then the Fiat-Shamir
transform to obtain signature schemes.

We present a signature scheme, of which we have designed two variants, both based on
the transformation of an additive MPC protocol optimized with the hypercube tech-
nique [AMGH+22]. The difference of these variants is the number of parties we use in
the underlying MPC protocol: taking less parties increases the size of the signature, but
induces a faster one. We refer to the design document [BCDF+23] for the proofs of the
security statements.

2 Background and notations

To understand the mathematical background to the problem, we begin by recalling a few
fundamental definitions and fixing some notations.

Let Fqm be the finite field of size qm. We fix a Fq-basis B = (b1, ..., bm) of Fqm .

Let us consider a vector x = (x1, ..., xn) ∈ Fnqm . Each coordinate xi can be associated with
a vector (xi,1, ..., xi,m) ∈ Fmq such that

xi =

m∑
j=1

xi,jbj .

The matrix M(x) = (xi,j)(i,j)∈[1,n]×[1,m] is called matrix associated to the vector x.

We then define the following notions:

– the rank weight WR(x) of a vector x is defined as the rank of the associated matrix:
WR(x) := Rank(M(x)).

– the distance between two vectors x and y is then given by d(x,y) :=WR(x− y).

– the support of a vector x is the linear subspace of Fqm generated by its coordinates:

Supp(x) = 〈x1, ..., xn〉.

Now that we have defined the mathematical background, we can define the Rank Syndrome
Decoding problem, on which the security of the signature RYDE is based:

Rank Syndrome Decoding problem:
Let (n, k, r) positive integers such that k ≤ n. The Rank Syndrome Decoding (Rank-SD)
problem with parameters (q,m, n, k, r) is the following one:
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Let H, x and y such that:

• H ′ is uniformly sampled from F(n−k)×k
qm , and H = (I | H ′) ∈ F(n−k)×n

qm

• x is uniformly sampled from {x ∈ Fnqm ,WR(x) ≤ r}

• y =Hx

From the public data (H,y), find x.

In the RYDE signature scheme, the public key is an instance (H,y) of the Rank-SD
problem, and the secret key is the corresponding solution x. The principle of the signature
is based on a transformation of a proof of knowledge into a non-interactive protocol thanks
to the Fiat-Shamir transform [FS86]. Iterating this process multiple times gives the verifier
high assurance that the prover knows x.

The interactive proof relies on a prover which simulates a multiparty computation (MPC)
protocol, where each party has a share of the secret witness x. One details here the for-
malism proposed by [FR22]. The sharing of a secret value s into N parties is denoted
(s[1], ..., s[N ]), where s[i] is the share of index i for i ∈ [1, N ], and s[J ] = (s[i])i∈J is the
subset of shares for J ⊂ [1, N ].

Let F a finite field and an integer ` ∈ [1, N ]. A (`,N)-threshold Linear Secret Sharing
Scheme is a method to share a secret s ∈ F into N shares s[1, N ] = (s[1], ..., s[N ]) ∈ FN
such that the secret can be rebuilt from any subset of `+1 shares, while the knowledge of
any subset of ` shares (or less) gives no information on s.

Formally, a (`+ 1, N)−threshold LSSS is a pair of algorithms:{
Share : F×R→ FN

ReconstructJ : F` → F

where R denotes some randomness space, and ReconstructJ is indexed by a subset J ⊂
[1, N ] of `+ 1 elements. These algorithms must verify the following properties:

– Correctness: Reconstruct allows to retrieve s if it has any subset of ` + 1 shares as
input;

– Perfect `-privacy: The distribution of the outputs of Share on two different secrets
are perfectly indistinguishable;

– Linearity: for every v, v′ ∈ Fl, α ∈ F and subset J ⊂ [1, N ] of `+ 1 elements:

ReconstructJ(αv + v′) = αReconstructJ(v) + ReconstructJ(v
′)

We present below the additive secret sharing, that we use in the signature scheme:

Additive secret sharing:
An additive secret sharing over a finite field F is an (N,N)-threshold LSSS where R =
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FN−1. The Share algorithm is defined as:

Share : (s, (r1, ..., rN−1))→ s[1, N ] =

(
r1, ..., rN−1, s−

N−1∑
i=1

ri

)

The Reconstruct[1,N ] outputs the sum of all the shares.

3 High level description of the signature scheme

As mentioned below, the security of the signature scheme relies on the hardness to solve
the Rank-SD problem. The instance (H,y) is the public key of the signature, and the
associated witness x is the secret key. In order to sign a message, we must:

– Build an interactive zero-knowledge proof of the knowledge of x;

– Use the Fiat-Shamir transform to obtain a non-interactive proof

The proof relies on an MPC protocol, and we use the MPC-in-the-Head paradigm to
transform it in a zero-knowledge proof.

3.1 MPC protocol

A multi-party computation protocol is an interactive protocol involving several parties
whose objective is to jointly compute a function f on the shares x[·] they received at the
begin of the protocol, so that they obtained the shares f(x)[·] at the end of the protocol.
At each step, the parties can perform one of the following actions:

– Receiving elements: it can be randomness sent by a random oracle, or the share of a
hint which depends on the witness ω and the previous elements sent;

– Computing: since the sharing is linear, the parties can perform linear transformations
on their shares;

– Broadcasting: it is sometimes necessary to open some shared values (which give no
information about the witness ω) to execute the protocol.

Due to application to zero-knowledge proofs that we will do below, we suppose here that
all parties are honest: they compute and share only correct values.

The interactive proof relies on the application of the the MPC-in-the-Head (MPCitH)
paradigm [IKOS07]: the prover simulates a MPC protocol, where each party has a share
of the secret witness x. Informally, an MPC protocol takes place as follows:

– each party takes a share of the witness;

– they jointly compute (some operations are locally calculated, others are performed
together) a Boolean value indicating whether x is right the witness associated to (H,y)
(in other words, the MPC protocol compute the function f which verifies that x is the
correct solution of the instance (H,y));
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– In the case of the additive sharing, the view of all parties except one gives no information
about x.

We formally describe the MPC protocol [Fen22] used for the RYDE scheme in Figure 1.
Compared to its original version, the protocol of Figure 1 integrates an optimization: it
relies on the fact that L(1) = 0 to save one field element in the communication cost. We
refer to [BCDF+23] for the proof of correctness and the false positive rate.

Public values. An instance of a Rank-SD problem: H = (I H′) ∈ F(n−k)×n
qm and y ∈ Fn−kqm .

Inputs. Each party takes a share of xB [·] where x ∈ Fnqm . Let U a Fq-linear subspace of Fqm of dimension r

which contains x1, . . . , xn and has for annihilator polynomial L =
∏
u∈U (X −u). Each party takes a share of the

following sharing as inputs : L[·] =
∑r−1
i=1 βi[·](X

qi − X) + (Xqr − X), a[·] where a is uniformly sampled from
Frqm·η and c[·] such that c = −〈β,a〉.

MPC Protocol:

1. The parties sample uniformly random: (γ1, ..., γn, ε)
$←− Fn+1

qm·η .

2. The parties locally compute xA[·] = y −H′xB [·] and x[·] = (xA[·] ||xB [·]).

3. The parties locally compute z[·] = −
∑n
j=1 γj(xj [·]q

r − xj [·]).

4. The parties locally compute for all k from 1 to r − 1 : ωk[·] =
∑n
j=1 γj(xj [·]q

k − xj [·]).

5. The parties locally compute α[·] = ε · ω[·] + a[·].
6. The parties open α.

7. The parties locally compute v[·] = ε · z[·]− 〈α,β[·]〉 − c[·].
8. The parties open v.

9. The parties output ACCEPT if v = 0, and reject otherwise.

Fig. 1: Protocol Πη: a protocol that checks that the given input is a solution of the considered instance
of Rank-SD problem

3.2 Application of the MPCitH paradigm

The MPC-in-the-Head paradigm, introduced by [IKOS07], is a framework enabling to
convert an MPC protocol into a zero-knowledge proof. The RYDE signature scheme has
two trade-offs, induced by the same proof of knowledge. Both use an additive MPC protocol
turned into zero-knowledge proof thanks to the MPC-in-the-Head paradigm, but with
different numbers of parties.

We start by presenting the main idea of the hypercube optimization [AMGH+22]: splitting
a secret in N = 2D additive shares, and arranging them in a geometrical structure. Let us
consider an hypercube of dimension D, each dimension having 2 slots. These 2D shares are
called “leafs”. Since we use an additive secret sharing, one can intertwine several executions
where each party (what we will call a “main party”) can be the sum of a subset of leafs,
such that these subsets form a partition of the leafs. The main parties’ shares of a secret s
are denoted ŝ. We build here D intertwined protocols, and each of them has 2 main parties
(an interested reader can find more details in [BCDF+23]).
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The proof of knowledge in the additive case works as follows:

– the prover builds the inputs of the MPC protocol, i.e, he generates the states of N
parties;

– he then commits the states of the parties, and receives a first challenge corresponding
to some random values. This challenge consists in the random values (γ1, ..., γn, ε) to
be used in the MPC protocol;

– the prover runs one MPC protocol per dimension of hypercube. For each of the D
dimensions, he builds two main parties, each of them being the sum of the leafs whose
has the same coordinate for this dimension. The prover hashes the shares of α and v;

– thanks to this challenge, he simulates the MPC protocol on the main parties, and
hashes the results of the computations;

– he receives a second challenge, which is a subset of N − 1 parties, and reveals their
views. (In practice, he receives only a subset of 1 party, and reveals the views of every
party except this one). He also reveals one specific share of data for the party whose
views are not revealed;

– the verifier can verify that the computation of the MPC protocol was done honestly.

From the interactive proof of knowledge, we can easily build a non-interactive proof/signature,
using the Fiat-Shamir transform [FS86].

4 Detailed algorithmic description

This section is dedicated to a low-level algorithmic description of the three algorithms of our
scheme: RYDE_Keygen, RYDE_Sign and RYDE_Verify. Before that, we introduce low-level
notation in Section 4.1, and detail subroutines of our main algorithmis in Sections 4.2-4.8.

The MPC protocol from Figure 1 is characterized by a degree η of extension of Fqm in
which the computations are done. The signature size is minimized for η = 1, as presented
in Section 5. The rest of this section assumes η = 1 for simplification purposes.

4.1 Algorithmic notation

For an integer x ∈ [0, 2D−1] and δ ∈ [D], we denote bit(x, δ) the δ-th least significant bit
of the binary repesentation of x. For example, let x = 35 = 1000112, then bit(x, 2) = 1
and bit(x, 3) = 0.
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Indexes:
i [1, N ] Index of a leaf party.
δ [1, D] Index of a main party.
e [1, τ ] Index of an iteration.

Seeds:
seed_pk {0, 1}λ Seed for generation of the public matrix H.
seed_sk {0, 1}λ Seed for generation of the secret vector x and secret annihilator polynomial β.
mseed {0, 1}λ Master seed for generation of the seeds seed(e)

seed(e) {0, 1}λ Root seed of the PRG tree.
seed(e)i {0, 1}λ Leaf seed of the PRG tree.
ptree(e) {0, 1}λD Partial seeds of the PRG tree masking an index i∗(e).

Constants:
DS_M {0, 1}λ Domain separator for the message.
DS_T {0, 1}λ Domain separator for the PRG tree.
DS_C {0, 1}λ Domain separator for the PRG commitments.
DS_1 {0, 1}λ Domain separator for the first response.
DS_2 {0, 1}λ Domain separator for the second response.

Bytestring variables:
cmt(e)i {0, 1}2λ Leaf commitments.
h1 {0, 1}2λ First commitment.
h2 {0, 1}2λ Second commitment.

Field elements, vectors and matrices:
H F(n−k)×n

qm Public matrix.
x Fnqm Secret vector of small rank weight.
β Fr−1

qm Annulator polynomial of the support of x.
y Fn−kqm Public syndrome.
a Fr−1

qm Vector used in the MPC rank checking protocol.
w Fr−1

qm Vector used in the MPC rank checking protocol.
γ Fnqm Vector from the first challenge.
c Fqm Element used in the MPC rank checking protocol.
z Fqm Element used in the MPC rank checking protocol.
ε Fqm Element from the first challenge.

The leaf shares of the above vectors and elements are noted with an array index i (for example a[i]).
The main shares of the above vectors and elements are noted with an hat and an array index δ (for example
â[δ]).

Table 1: Description of low level notation used in our scheme
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4.2 Operations on finite field elements

Representation of finite field elements

In this document we always have Fqm = F2m . We define Fqm as F2[X]/〈P 〉 where P is a
sparse irreducible polynomial of degree m. Table 2 describes the chosen polynomials.

m P

31 X31 +X3 + 1

37 X37 +X6 +X4 +X + 1

43 X43 +X6 +X4 +X3 + 1

Table 2: Polynomials used to define the field Fqm .

Elements of Fqm are represented in the polynomial basis. An array of l = dm8 e bytes
[b1, . . . , bl] is used to store an element u of Fqm . Each byte bi can be converted into a
bitstring β1, . . . , β8 where βj = (bi >> j) & 0x1.

Let β1, . . . , β8l be the bitstring stored in the byte array [b1, . . . , bl], then:

u =
m∑
i=1

βiX
i−1

Converting a byte stream into an element of Fqm

When sampling randomness, we want to convert a byte stream into elements of Fqm .
Sampling an element u is done is the following way:

– Obtain l = dm8 e bytes from the stream. Let β1, . . . , β8l be the obtained bitstring.

– Set u =
m∑
i=1

βiX
i−1.

To sample an array of Fqm elements of length n we simply repeat this process n times, re-
quiring n×dm8 e bytes b of randomness. We refer to this process as FqmArrayFromBytes(b).

To convert an array y of n elements in Fqm into a byte array, we simply revert this process,
writing the values of the bits β1, . . . , β8l for each element of Fqm and repeating the process
n times. We refer to this process as FqmArrayToBytes(y).

Compacting arrays of Fqm elements

In order to obtain a more compact representation (for values that will be sent over the
network for example), we want to use a more compact representation for arrays of Fqm
elements.

Let y be an array of n Fqm elements. Instead of representing each Fqm element in a fixed
number of bytes, we concatenate the n bitstring obtained from the yi into a bitstring of
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length nm. This process thus requires dnm8 e bytes instead of n× dm8 e for representing the
whole array.

We refer to these subroutines as FqmArrayToString(y) and FqmArrayFromString(str)
respectively.

Computing the weight of an array of Fqm elements

The following algorithm computes the rank weight of an Fqm-vector.

Algorithm 1 GetRankWeight
Input: A vector x ∈ Fnqm of length n
Output: Its rank weight r ∈ N

1: Initialize a new zero matrix M ∈ Fm×nq .
2: for j ∈ [n] do
3: Fill the j-th column of M with the coefficients of x[j] seen as a polynomial.

x[j] =

m∑
i=1

M [i][j]Xi−1

4: return Rank(M)

Computing an annihilator polynomial

We use the procedure from [Loi07, Ch. 3, Sec. 2.4] to compute the coefficients of a linearized
polynomial given its roots.

Algorithm 2 ComputeAnnihilatorPolynomial
Input: Support supp ∈ Frqm of rank r
Output: Annihilator polynomial P ∈ Fqm [X] such that for all u ∈ 〈supp〉, P (u) = 0

P1 = Xq − supp[0]q−1

for i from 1 to r do
T = P qi
eval = Pi(supp[i])
Pi+1 = evalq−1Pi + T

return Pr+1

4.3 Randomness generators and hash functions

– RandomBytes(`) is instanciated using the NIST provided randombytes function, it
returns ` bytes from system entropy;

– PRG is a psuedorandom generator instanciated using SHAKE-128 for security category 1
and SHAKE-256 otherwise. It offers two invokable functions:

• PRG.Init(seed) initializes the internal state of the generator with a seed,
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• PRG.GetBytes(`) outputs ` bytes from the generator and updates its internal state.

– Hash functions are instanciated using SHA3-256, SHA3-384 or SHA3-512 for security
categories 1, 3 and 5 respectively.

4.4 Sampling routines

The routines presented in this subsection sample from a seed some set of elements needed
in the scheme.

Algorithm 3 SampleFqmVector
Input: Length n, a seed seed
Output: x ∈ Fnqm

PRG.Init(seed)
xbytes = PRG.GetBytes(n× dm

8
e)

x = FqmArrayFromBytes(xbytes)
return x

Algorithm 4 SampleFqmMatrix
Input: Dimensions k × n, a seed seed
Output: A ∈ Fk×nqm

PRG.Init(seed)
for i ∈ [k] do

xbytes = PRG.GetBytes(n× dm
8
e)

Ai,∗ = FqmArrayFromBytes(xbytes)
return A

The following algorithm samples a support of rank weight r, represented by a basis
supp ∈ Frqm . The support always contain the element 1 ∈ Fqm , as explained in Sec-
tion 3. The algorithm further samples a vector x of support supp.
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Algorithm 5 SampleFqmVectorAndSupport
Input: Length n, rank weight r, a seed seed
Output: x ∈ Fnqm of rank weight r and its support supp ∈ Frqm

1: PRG.Init(seed)
2: r_bytes = rdm

8
e

3: repeat
4: supp[1] = 1 . The support always contains one
5: supp[2, r] = FqmArrayFromBytes(PRG.GetBytes(r_bytes)) . Sampling the rest of the support
6: until GetRankWeight(supp) = r
7: x = (0, . . . , 0) . Initialize x with zeros
8: repeat
9: rand =PRG.GetBytes(dnr

8
e)

10: Convert rand into a bitstring randbits of length 8dnr
8
e

11: for i ∈ [n] do
12: for j ∈ [r] do
13: xi = xi + randbits[ir + j] · supp[j]

14: until GetRankWeight(x) = r
15: return x, supp

Algorithm 6 SampleSeeds
Input: Length `, Number of seeds τ , a seed seed
Output: (seed(e))e∈[τ ] ∈ ({0, 1}`)τ

PRG.Init(seed)
for i ∈ [τ ] do

seed(e) = PRG.GetBytes(`)
return (seed(e))e∈[τ ]

Algorithm 7 SampleShares
Input: A seed seed
Output: A set of shares (xB ,β,a, c) ∈ Fkqm × Fr−1

qm × Fr−1
qm × Fqm

PRG.Init(seed)
xbytes = PRG.GetBytes(k × dm

8
e)

xB = FqmArrayFromBytes(xbytes)
bbytes = PRG.GetBytes((r − 1)× dm

8
e)

β = FqmArrayFromBytes(bbytes)
abytes = PRG.GetBytes((r − 1)× dm

8
e)

a = FqmArrayFromBytes(abytes)
cbytes = PRG.GetBytes(1× dm

8
e)

c = FqmArrayFromBytes(cbytes)[0]
return x

12



Algorithm 8 SampleFirstChallenge
Input: A seed seed
Output: A set of first challenges (γ(e), ε(e))e∈[τ ] ∈ (Fnqm × Fqm)τ

PRG.Init(seed)
for e ∈ [τ ] do

xbytes = PRG.GetBytes((n+ 1)× dm
8
e)

γ(e) = FqmArrayFromBytes(xbytes[..n])
ε(e) = FqmArrayFromBytes(xbytes[n+1])[0]

return (γ(e), ε(e))e∈[τ ]

Algorithm 9 SampleSecondChallenge
Input: A seed seed
Output: A set of second challenges (i∗(e))e∈[τ ] ∈ [N ]τ

PRG.Init(seed)
for e ∈ [τ ] do

i∗(e) = PRG.GetBytes(1) mod N

return (i∗(e))e∈[τ ]

4.5 MPC routines

Algorithm 10 MPC-RSD.ComputeAlpha
Input:

– A set of shares (x,a)
– A protocol challenge

(
(γj)j∈[1,n], ε

)
Output: α

1: for s ∈ [1, r − 1] do
2: wk =

∑n
j=1 γj(x

qk

j − xj)
3: α = ε ·w + a
4: return α
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Algorithm 11 MPC-RSD.Exec
Input:

– A set of main shares (x̂B [δ], β̂[δ], â[δ], ĉ[δ])δ∈[D]

– A protocol challenge
(
(γj)j∈[1,n], ε

)
– A full value α
– The public matrix H and the public syndrome y

Output: (α̂[δ], v̂[δ])δ∈[D]

1: for δ ∈ [D] do
2: x̂A[δ] = y −Hx̂B [δ]
3: x̂[δ] = (x̂A[δ] || x̂B [δ])
4: α̂[δ] = MPC-RSD.ComputeAlpha(x̂[δ], â[δ], (γj)j∈[1,n], ε)

5: ẑ[δ] = −
∑n
j=1 γj(x̂j [δ]

qr − x̂j [δ])
6: v̂[δ] = ε · ẑ[δ]− 〈α, β̂[δ]〉 − ĉ[δ]

7: return (α̂[δ], v̂[δ])δ∈[D]

4.6 Hypercube routines

The N = 2D leaf shares are arranged on a D-dimensional hypercube of side length 2. An
index i ∈ [N ] is positioned according to the binary representation of i − 1 ∈ [0, 2D − 1].
The δ-th coordinate of i in the hypercube is the δ-th least significant bit of the binary
repesentation of i− 1, i.e. bit(i− 1, δ).

A main share of index δ is the sum of all leaf shares in the hyperface of the hypercube
comprising all vertices whose δ-th coordinate is zero.

Algorithm 12 Hypercube.MainShares-Compute
Input: A set of leaf shares (xB [i],β[i],a[i], c[i])i∈[N ] where N = 2D

Output: A set of main shares (x̂B [δ], β̂[δ], â[δ], ĉ[δ])δ∈[D]

1: for δ ∈ [D] do
2: x̂B [δ] =

∑
i∈[N]

bit(i−1,δ)=0

xB [i]

3: β̂[δ] =
∑

i∈[N]

bit(i−1,δ)=0

β[i]

4: â[δ] =
∑

i∈[N]

bit(i−1,δ)=0

a[i]

5: ĉ[δ] =
∑

i∈[N]

bit(i−1,δ)=0

c[i]
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Algorithm 13 Hypercube.MainAlphaAndV-Compute
Input: A set of leaf shares (α[i], v[i])i∈[N ] where N = 2D

Output: A set of main shares (α̂[δ], v̂[δ])δ∈[D]

1: for δ ∈ [D] do
2: α̂[δ] =

∑
i∈[N]

bit(i−1,δ)=0

α[i]

3: v̂[δ] =
∑

i∈[N]

bit(i−1,δ)=0

v[i]

4.7 Key parsing routines

Algorithm 14 ParseSecretKey
Input: Secret key sk
Output: H,x,y and the annihilator polynomial β

1: (sk_seed, pk_seed) = sk
2: (x, supp) = SampleFqmVectorAndSupport(n, r, sk_seed)
3: H = SampleFqmMatrix(n− k, k, pk_seed)
4: y = (I|H)x
5: β = ComputeAnnihilatorPolynomial(supp)
6: return (H,x,y,β)

Algorithm 15 ParsePublicKey
Input: Public key pk
Output: H,y

1: (pk_seed, y_string) = pk
2: H = SampleFqmMatrix(n− k, k, pk_seed)
3: y = FqmArrayFromString(y_string)
4: return (H,y)

4.8 PRG tree routines

Algorithm 16 PRGTreeExpand
Input: A root seed seed, a number of parties N = 2D, a salt and an iteration index e
Output: A family of seeds (seedi)i∈[N ]

1: if D = 0 then
2: return seed
3: else
4: (seed_left, seed_right) = Hash(DS_T, salt, e, seed)
5: (seedi)i∈[1,N/2] = PRGTreeExpand(seed_left, N/2, salt, e)
6: (seedi)i∈[N/2+1,N ] = PRGTreeExpand(seed_right, N/2, salt, e)
7: return (seedi)i∈[N ]
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Algorithm 17 PRGPartialTreeReveal
Input: A root seed seed, a number of parties N = 2D, a salt and an iteration index e, a hidden index i∗

Output: A partial tree, i.e. a family of seeds (seedi)i∈[D]

1: (seed_left, seed_right) = Hash(DS_T, salt, e, seed)
2: if D = 1 then
3: if i∗ = 1 then
4: return seed_right
5: else
6: return seed_left
7: else
8: if i∗ ≤ N/2 then
9: (seedi)i∈[1,D−1] = PRGPartialTreeReveal(seed_left, N/2, salt, e, i∗)
10: seedD = seed_right
11: else
12: seed1 = seed_left
13: (seedi)i∈[2,D] = PRGPartialTreeReveal(seed_right, N/2, salt, e, i∗ −N/2)

14: return (seedi)i∈[D]

Algorithm 18 PRGPartialTreeExpand
Input: A partial tree, i.e. a family of seeds (seedi)i∈[D], a salt and an iteration index e, a hidden index i∗

Output: All seeds but one (seedi)i∈[N ],i 6=i∗

1: Let N = 2D

2: if i∗ ≤ N/2 then
3: (seedi)i∈[N/2],i 6=i∗ = PRGPartialTreeExpand((seedi)i∈[D−1])
4: (seedi)i∈[N/2+1,N ] = PRGTreeExpand(seedD, N/2, salt, e)
5: else
6: (seedi)i∈[N/2] = PRGTreeExpand(seed1, N/2, salt, e)
7: (seedi)i∈[N/2+1,N ],i 6=i∗ = PRGPartialTreeExpand((seedi)i∈[2,D])

8: return (seedi)i∈[N ],i6=i∗

4.9 Protocol specification

Algorithm 19 RYDE_Keygen
Input: Security level λ
Output: Secret key sk, public key pk

1: sk_seed = RandomBytes(λ)
2: pk_seed = RandomBytes(λ)
3: (x,_) = SampleFqmVectorAndSupport(n, r, sk_seed)
4: H = SampleFqmMatrix(n− k, k, pk_seed)
5: y = (I|H)x
6: pk = pk_seed || FqmArrayToString(y)
7: sk = sk_seed || pk_seed
8: return sk, pk
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Algorithm 20 RYDE_Sign
Input: Secret key sk, public key pk, message m ∈ {0, 1}∗
Output: Signature σ ∈ {0, 1}∗

. Step 0: Parse keys
1: (H,x,y,β) = ParseSecretKey(sk)
2: Define xB as the last k coordinates of x.

. Step 1: Commitment
3: salt = RandomBytes(2λ)
4: mseed = RandomBytes(λ)
5: md = Hash(DS_M, m)
6: (seed(e))e∈[τ ] = SampleSeeds(λ, τ , mseed)
7: for e ∈ [τ ] do
8: (seed(e)i )i∈[N ] = PRGTreeExpand(seed(e), N, salt, e)
9: for i ∈ [N − 1] do . Compute leaf shares
10: (x

(e)
B [i],β(e)[i],a(e)[i], c(e)[i]) = SampleShares(seed(e)i )

11: cmt
(e)
i = Hash(DS_C, salt, e, i, seed(e)i )

12: a(e)[N ] = SampleFqmVector(seed(e)N , r − 1) . Compute final leaf shares
13: a(e) =

∑
i∈[N ] a

(e)[i]

14: x
(e)
B [N ] = xB −

∑N−1
i=1 x

(e)
B [i]

15: β(e)[N ] = β −
∑N−1
i=1 β(e)[i]

16: c(e)[N ] = −〈a(e),β〉 −
∑N−1
i=1 c(e)[i]

17: cmt
(e)
N = Hash(DS_C, salt, e,N, seed(e)i ,x

(e)
B [N ],β(e)[N ], c(e)[N ])

18: (x̂
(e)
B [δ], β̂(e)[δ], â(e)[δ], ĉ(e)[δ])δ∈[D] = Hypercube.MainShares-Compute((x

(e)
B [i],β(e)[i],a(e)[i], c(e)[i])i∈[N ])

19: h1 = Hash(md, pk, salt, DS_1, cmt
(1)
1 , . . . , cmt

(1)
N , cmt

(2)
1 , . . . , cmt

(τ)
1 , · · · , cmt

(τ)
N ) . Commit hypercube

. Step 2: First challenge
20: (γ(e), ε(e))e∈[τ ] = SampleFirstChallenge(h1)

. Step 3: First response
21: for e ∈ [τ ] do
22: α(e) = MPC-RSD.ComputeAlpha(x,a(e),γ(e), ε(e))

23: (α̂(e)[δ], v̂(e)[δ])δ∈[D] = MPC-RSD.Exec
[
(x̂

(e)
B [δ], β̂(e)[δ], â(e)[δ], ĉ(e)[δ])δ∈[D],γ

(e), ε(e),α(e),H,y
]

24: h2 = Hash(md, pk, salt, h1, DS_2, (α(e), (α̂(e)[δ], v̂(e)[δ])δ∈[D])e∈[τ ])

. Step 4: Second challenge
25: (i∗(e))e∈[τ ] = SampleSecondChallenge(h2)

. Step 5: Second response
26: for e ∈ [τ ] do
27: ptree(e) =PRGPartialTreeReveal(seed(e), i∗(e))

28: x
(e)
A [i∗(e)] =

{
y −Hx(e)

B [i∗(e)] if i∗(e) = 1

−Hx(e)
B [i∗(e)] otherwise

29: x(e)[i∗(e)] = (x
(e)
A [i∗(e)] ||x(e)

B [i∗(e)])

30: MPC-RSD.ComputeAlpha(x(e)[i∗(e)],a(e)[i∗(e)],γ(e), ε(e))
31: if i∗(e) = N then
32: rsp(e) = (ptree(e), cmt

(e)

i∗(e)
,α(e)[i∗(e)],0,0, 0)

33: else
34: rsp(e) = (ptree(e), cmt

(e)

i∗(e)
,α(e)[i∗(e)],x

(e)
B [N ],β(e)[N ], c(e)[N ])

. Step 6: Signature
35: return σ = (salt, h1, h2, (rsp

(e))e∈[τ ])
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Algorithm 21 RYDE_Verify
Input: Public key pk, message m ∈ {0, 1}∗, signature σ ∈ {0, 1}∗
Output: Accept or Reject

. Step 0: Parse keys
1: (H,y) = ParsePublicKey(pk)

. Step 1: Parse challenges
2: (γ(e), ε(e))e∈[τ ] = SampleFirstChallenge(h1)
3: (i∗(e))e∈[τ ] = SampleSecondChallenge(h2)
4: for e ∈ [τ ] do
5: if i∗(e) = N then
6: Check that (x

(e)
B [N ],β(e)[N ], c(e)[N ]) = (0,0, 0). If not, return Reject.

. Step 2: Recompute h1

7: md = Hash(DS_M, m)
8: for e ∈ [τ ] do
9: (seed(e)i )i∈[N ],i 6=i∗(e) = PRGPartialTreeExpand(ptree(e), N, salt, e)
10: for i ∈ [N ], i 6= i∗(e) do
11: if i 6= N then
12: (x

(e)
B [i],β(e)[i],a(e)[i], c(e)[i]) = SampleShares(seed(e)i )

13: cmt
(e)
i = Hash(DS_C, salt, e, i, seed(e)i )

14: else
15: a(e)[N ] = SampleFqmVector(seed(e)N , r − 1)
16: cmt

(e)
N = Hash(DS_C, salt, e,N, seed(e)i ,x

(e)
B [N ],β(e)[N ], c(e)[N ])

17: h̄1 = Hash(DS_1, md, pk, salt, cmt
(1)
1 , . . . , cmt

(1)
N , cmt

(2)
1 , . . . , cmt

(τ)
1 , · · · , cmt

(τ)
N )

. Step 3: Recompute h2

18: for e ∈ [τ ] do
19: for i ∈ [N ], i 6= i∗(e) do

20: x
(e)
A [i] =

{
y −Hx(e)

B [i] if i = 1

−Hx(e)
B [i] otherwise

21: x(e)[i] = (x
(e)
A [i] ||x(e)

B [i])

22: z(e)[i] = −
∑n
j=1 γ

(e)
j (x

(e)
j [i]q

r

− x(e)
j [i])

23: α(e)[i] = MPC-RSD.ComputeAlpha(x(e)[i],a(e)[i],γ(e), ε(e))
24: α(e) =

∑
iα

(e)[i]

25: for i ∈ [N ], i 6= i∗(e) do
26: v(e)[i] = ε(e) · z(e)[i]− 〈α(e),β(e)[i]〉 − c(e)[i]
27: v(e)[i∗(e)] = −

∑
i 6=i∗(e) v

(e)[i]

28: (α̂(e)[δ], v̂(e)[δ])δ∈[D] = Hypercube.MainAlphaAndV-Compute((α(e)[i], v(e)[i])i∈[N ])

29: h̄2 = Hash(DS_2, md, pk, salt, h1, (α
(e), (α̂(e)[δ], v̂(e)[δ])δ∈[D])e∈[τ ])

. Step 4: Verify commitments
30: return h̄1

?
= h1 ∧ h̄2

?
= h2
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5 Parameter Sets

The Rank Syndrome Decoding problem has the following parameters:

– q ∈ N - the order of the base field;

– m ∈ N - the extension degree of the extension field Fqm ;

– n ∈ N - the length of the code C;

– k ∈ N - the dimension of the code;

– r ∈ N - the rank of the vector x.

The other parameters of RYDE include:

– N ∈ N - the number of parties of the MPC protocol;

– τ ∈ N - the number of parallel repetitions;

– η ∈ N - the extension degree for the MPC protocol (checking relations on Fqm·η).

In order to choose the parameters, we need to consider:

– the security of the Rank-SD instance, i.e, the complexity of the attacks on the chosen
parameters;

– the security of the signature scheme, i.e, the cost of a forgery;

– the size of the signature.

5.1 Additive-sharing scheme

The choice of the number N ∈ N of shares in the MPC protocol is a parameter which
impacts performances: the bigger N , the slower the signing and verification, but the shorter
the signature. We propose here two versions of the signature scheme with different values
for N : we set N = 256 for a short version of the signature, and N = 32 for a fast version.
There is also the number τ of repetitions required to reach the desired level of security,
which increases the size and the signing time.

With additive sharing, we take q = 2 since it is the most efficient (and it does not im-
pose a constraint on the number of parties unlike with threshold sharing). The choice of
(q,m, n, k, r) was then made in order to have the necessary security in regards to the con-
sidered attacks. As for the choice of τ , we need to choose it such that our signature scheme
resists to the forgery attack described in [KZ20].

We add a parameter η in the signature: the degree of the extension field on which the
relations are checked in the MPC protocol. While it increases the quantity of information
to transmit per round, it also increases the soundness of the zero-knowledge proof thus
reducing the number of necessary repetitions τ . We choose for each set of parameters the
optimal value of η with respect to the signature size.
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Parameters are chosen based on the effectiveness of existing attacks on the Rank-SD prob-
lem (see section 9.2). We remind that the security levels of the signature 1, 3 and 5
correspond respectively to the security of AES-128, AES-192 and AES-256. The following
table presents our different sets of secured parameters in the case of additive shares:

Instance NIST Security Level q m n k r N η τ sk pk σ

RYDE-128F 1 2 31 33 15 10 32 1 30 32 B 86 B 7.446 kB
RYDE-128S 1 2 31 33 15 10 256 1 20 32 B 86 B 5.956 kB

RYDE-192F 3 2 37 41 18 13 32 1 44 48 B 131 B 16.380 kB
RYDE-192S 3 2 37 41 18 13 256 1 29 48 B 131 B 12.933 kB

RYDE-256F 5 2 43 47 18 17 32 1 58 64 B 188 B 29.134 kB
RYDE-256S 5 2 43 47 18 17 256 1 38 64 B 188 B 22.802 kB

Table 3: Parameters for RYDE with additive sharing, fast and short signatures

We refer to the design document for the computation of the theoretical sizes [BCDF+23].

The main difference from the theoretical sizes relies on the packing of the vector: RYDE
implementation individually packs each vector in the signature instead of a single vector
containing all the vector coefficients.

5.2 Threshold-sharing scheme

In [BCDF+23], two different variant of RYDE are described, using either an additive
sharing scheme, or a threshold sharing scheme. The present specification contains only the
additive sharing scheme, since, so far, “threshold MPCitH” does not bring a significant
advantage compared to “hypercube MPCitH” for the considered protocol for the Rank-SD
problem (we obtain roughly the same signature sizes while not being particularly faster
with threshold techniques). This might however change in the future, in the case where
threshold techniques were to improve.

6 Performance Analysis

This section provides performance measures of our implementations of RYDE.

Benchmark platform. The benchmarks have been performed on a machine running Ubuntu
Server 22.04.2 LTS equipped with an Intel 13th Gen Intel (R) Core(TM) i9-13900K CPU
running at 3000MHz and 64GB of RAM. All the experiments were performed with Hyper-
Threading, Turbo Boost, and SpeedStep features disabled. The scheme has been compiled
with GCC compiler (version 11.3.0) and uses the XKCP and OpenSSL (version 3.0.2)
libraries.
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For each parameter set, the results have been obtained by computing the mean from 25
random instances. To minimize biases from background tasks running on the benchmark
platform, each instance has been repeated 25 times and averaged.

Constant time. The provided implementations have been implemented in a constant time
way whenever relevant, and as such, the running time should not leak any information
concerning sensitive data. For instance, all If branches depend on public data. Additionally,
Valgrind (version 3.18.1) and LibVEX were used to check that there were no memory leaks
on the implementation.

6.1 Reference Implementation

The performance concerning the reference implementation on the aforementioned bench-
mark platform are described in Table 4. The following optimization flags have been used
during compilation:

– Concerning the C code: -O3 -flto.

– Concerning the ASM code (required in the XKCP library): -x assembler-with-cpp
-Wa,-defsym,old_gas_syntax=1 -Wa,-defsym,no_plt=1.

Instance Key Generation Sign Verify

RYDE-128F 86.0 K 88.9 M 82.8 M
RYDE-128S 85.9 K 340.4 M 331.3 M

RYDE-192F 141.1 K 221.1 M 204.0 M
RYDE-192S 143.9 K 876.5 M 826.7 M

RYDE-256F 186.8 K 415.4 M 385.7 M
RYDE-256S 186.5 K 1500.3 M 1444.9 M

Table 4: Thousand (K) and Million (M) of CPU cycles of RYDE reference implementation.

6.2 Optimized Implementation

The performance concerning the optimized implementation on the aforementioned bench-
mark platform are described in Table 5. The following optimization flags have been used
during compilation:

– Concerning the C code: -O3 -flto -mavx2 -mpclmul -msse4.2 -maes.

– Concerning the ASM code (required in the XKCP library): -x assembler-with-cpp
-Wa,-defsym,old_gas_syntax=1 -Wa,-defsym,no_plt=1.
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Instance Key Generation Sign Verify

RYDE-128F 33.2 K 5.4 M 4.4 M
RYDE-128S 33.1 K 23.4 M 20.1 M

RYDE-192F 48.4 K 12.2 M 10.7 M
RYDE-129S 48.5 K 49.6 M 44.8 M

RYDE-256F 71.9 K 26.0 M 22.7 M
RYDE-256S 72.0 K 105.5 M 94.9 M

Table 5: Thousand (K) and Million (M) of CPU cycles of RYDE optimized implementation.

7 Known Answer Test Values

Known Answer Test (KAT) values have been generated using the script provided by the
NIST and can be retrieved in the KATs/ folder. Both reference and optimized implemen-
tations generate the same KATs. In addition, examples with intermediate values have also
been provided in these folders. The intermediate values correspond with one execution
calling the NIST-provided randombytes function seeded with zero.

Notice that one can generate the test files as mentioned above using the kat and ver-
bose modes of the implementation, respectively. The procedure is detailed in the technical
documentation (README file of the provided code).

8 Expected security strength

Our scheme relies on the hardness of solving a Rank-SD instance. We expect our parameters
to offer the security required for each security category. For the hardness of solving a Rank-
SD instance, we refer to the following section, as well as the design document [BCDF+23],
where we describe the two best attacks on the Rank-SD problem, namely, the kernel attack
and the Support Minor Modeling.

For the hardness of forging the signature, we refer to the following section and the design
document, which gives the complexity of the attack on the Fiat-Shamir transform described
in [KZ20]. This is the best attack on the Fiat-Shamir signature, and as such, this allows
us to choose the parameters τ and η accordingly.

As for the proof of the unforgeability of the scheme, we have the following result in the
EUF-CMA model.

Theorem 1. Let the PRG used in the signature be (t, εPRG)-secure and assume an ad-
versary running in time t has advantage at most εRSD against the underlying Rank-SD
problem. Let H0, H1, H2, H3, and H4 be random oracles with output length 2λ bits. Let an
adversary who makes q0, q1, q2, q3, q4, qS queries to the random oracles and signing oracle
respectively. The probability that the adversary running in time at most t in producing an
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existential forgery under chosen message attack (EUF-CMA) is upper-bounded as:

Pr(forge) ≤ 3 · (q + τ ·N · qS)2

2 · 2λ
+
qS · (qS + 5q)

2λ
+ qS · τ · εPRG + Pr(X + Y = τ) + εRSD

where: τ is the number of rounds of the signature, X = maxi∈[0,q2]{Xi} where Xi ∼ B(τ, p),
Y = maxi∈[0,q4]{Yi} where Yi ∼ B(τ −X, 1

N ) and q = max{q0, q1, q2, q3, q4}.

We refer to the design rationale document for the proof of the theorem and the formal
definition of the EUF-CMA security of a signature.

To summarize, we have an EUF-CMA scheme, relying on the hardness of solving the
Rank-SD scheme. The parameters are taken such that:

– Solving the Rank-SD instance chosen respects the NIST security level aimed at;

– Building the signature without knowing the secret key respects the NIST security level
aimed at;

– Pairs of messages and signatures does not help an attacker to forge a signature

Our signature scheme relies on the security of hash functions and commitments functions
as well. In the proofs for the security of the schemes, they are modeled as random oracles.
In practice, we use SHAKE and SHA3, which are collision resistant and preimage resistant
too. With Grover’s algorithm, the complexity to find a preimage is of O(n2 ) (for an hash
function with an n bits output), while collisions can be found in O(2

n
3 ) with Brassard’s

algorithm [BHT98]. However, this last algorithm is unlikely to perform better than O(2
n
2 )

in practice. Hence, as in many other cryptosystems, we consider here that a hash function
with an output of 2 · λ bits provides a security of λ bits.

8.1 Resistance to quantum attacks

There exist two type of attacks for our problem: combinatorial and algebraic attacks.

Since combinatorial attacks rely for their exponential part on guessing special vector spaces
of a whole space, they can be improved by a square root factor through the Grover algo-
rithm, which basically means dividing by a factor 2 the exponential part of the complexity.
For algebraic attacks, such an improvement cannot be obtained directly. Notice that for
the type considered parameters close to the Gilbert-Varshamov bound, combinatorial and
algebraic attack behave similarly. So that in practice, resistance to quantum attacks may
imply roughly dividing by a factor 2 the classical security.

9 Analysis of known attacks

9.1 Kales and Zaverucha’s attack against Fiat-Shamir Signatures

There are several attacks against signatures from zero-knowledge proofs obtained thanks
to the Fiat-Shamir heuristic. [AABN02] propose an attack more efficient than the brute-
force one for protocols with more than one challenge, i.e. for protocols of a minimum of 5
rounds.
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Kales and Zaverucha describe in [KZ20] an approach which consists in guessing separately
the two challenge of the protocol. It results in an additive cost rather than the expected
multiplicative cost. The cost associated with forging a transcript that passes the proof of
knowledge relies on achieving an optimal trade-off between the work needed for passing the
first step and the work needed for passing the second step. Let C1 and C2 the respective
cardinals to the first and second challenge sets, the probability P1 of guessing at least r of
the τ first-round challenges correctly is given by the equation:

P1 =
τ∑
k=r

(
τ

k

)(
1

C1

)k (C1 − 1

C1

)τ−k
The optimal number of repetitions to achieve the attack is:

τ ′ = arg min
0≤τ≤r

{
1

P1
+ Cr−τ

′

2

}
then the number of repetitions τ must be chosen such that this number allows to achieve
the desired security.

In the case of the additive case, one obtains:

costforge = min
0≤τ ′≤τ

{
1∑τ

i=τ ′
(
τ
i

)
pi(1− p)τ−i

+N τ−τ ′
}

(1)

9.2 Combinatorial attacks against Rank-SD problem

We describe in this section the two most efficient combinatorial attacks against Rank-SD
problem.

9.2.1 Enumeration of basis Chabaud and Stern proposed an algorithm in [CS96]
which solve the problem by enumerating the possible supports for the vector x. For each
of them, one must translate the equations in Fqm to equations in Fq as follows.

If trying all the different possible supports in Hamming metric is inefficient due to their
large number (there are

(
n
ω

)
vectors of weight ω in Fn2 ), this is a viable method in rank

metric: there are approximately q(m−r)r linear subspaces in Fqm of dimension r. Moreover,
one can always make the assumption that 1 is in the support, since it is enough to multiply
by an invertible constant in Fqm to make it appear in the coefficients of x. There are
approximately q(m−r)(r−1) linear subspaces in Fqm which contains 1.

One obtains a system that has (n − k)m independent equations and nr + m variables
in Fq. Thanks to the gaussian elimination, this system can be solved with O((nr +m)3)
operations in Fq. It is deduced that the complexity of this attack is upper bounded by
O((nr +m)3q(m−r)(r−1)).
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9.2.2 GRS Algorithm This method is an adaptation of the information set decoding
attack used in Hamming metric. From the syndrome y of length n − k, the algorithm
consists in guessing a set of n− k coordinates which contains the support of the vector x.
One obtains n− k equations and n− k unknown coordinates of x, which can be recovered
by inverting an extracted matrix from H of size (n− k)× (n− k).

In order to adapt this method to coding theory in rank metric, Gaborit, Ruatta and Schrek
proposed in [GRS13] to consider a linear subspace in Fqm of dimension r′ ≥ r, and hope
that includes the support of the vector x.The probability that E of dimension r is included
in E′ of dimension r′ (for r′ ≥ r) is q−(m−r′)r.

Suppose one knows a subspace E′ of dimension r′ which contains E = Supp(x). It is
possible to recover x by solving a this linear system as long as: r′n ≤ (n − k)m i.e.

r′ ≤
⌊
(n− k)m

n

⌋
Choosing the higher possible value r = b (n−k)mn c, one gets the probability to obtain a suit-
able subspace E′ equal to q−(m−r′)r = q−rb

km
n c. As in the previous attack, one can recover

x by executing gaussian elimination, which can be perform in O((n − k)3m3) operations
in Fq. This attack can be achieved with an average complexity: O((n− k)3m3qrb

km
n
c).

9.2.3 An improvement of GRS Algorithm The idea proposed in [AGHT18] is,
instead of consider a linear subspace in Fqm which contains 1, choose a completely random
subspace E′. If E′ contains a subspace of the form αE, with α ∈ F∗qm , then one can retrieve
the code word as before.

At the cost of an increase in the dimension of the code (k becomes k+1, since we multiply
by an element α which does not belong to the code), we can obtain a new subspace that
contains αE.

This attack can be achieved with an average complexity: O((n − k)ωmωqrb
(k+1)m

n
c−m),

where ω is in practice equal to 2.

9.3 Algebraic attacks against Rank-SD problem

Algebraic attacks amount to solve the system of equationsHx = y using computer algebra
techniques like Gröbner basis. Today, the best algebraic modelings for solving the Rank-
SD problem are the MaxMinors modeling [BBB+20,BBC+20] and the Support Minors
modeling [BBC+20,BBB+22]. They can both benefits from a classical improvement that
is the hybrid approach, that consists in specializing some variables with all possible values
and solving the resulting system with less variables, but the same number of equations. In
certain cases, the gain in complexity for solving the specialized system compared to the
original one superseeds the lost in complexity coming from the exhausive search.

Hybrid methods As shown in [BBB+22, Section 5], solving a Rank-SD problem of parame-
ters (q,m, n, k, r) amount to solve qar smaller Rank-SD problems of parameters (q,m, n−
a, k − a, r).
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MaxMinors Modeling Let H,x,y be a Rank-SD problem with parameters (q,m, n, k, r),
i.e. H = (I H ′) ∈ F(n−k)×n

qm is uniformly sampled, x ∈ Fnqm has rank exactly9 r, and
y =Hx.

The idea of the MaxMinors modeling from [BBB+20] is the following: let E = (E1, . . . , Er)
be a basis of Supp(x), andX = (xi,j) ∈ Fr×nq a matrix representing the coordinates of x in
the basis E, then x> = (E1, . . . , Er)X. Considering the extended code C ′ described in the
previous section, and a parity-check H ′ ∈ F(n−k−1)×n

qm of this code, we have the relation :

H ′x = 0, i.e. (E1, . . . , Er)XH
′> = 0.

This implies that the matrix XH ′> is not full rank, and that all its maximal minors are
equal to zero. By using the Cauchy-Binet formula that expresses the determinant of the
product of two matrices A ∈ Kr×n and B ∈ Kn×r as

|AB| =
∑

T⊂{1..n},#T=r |A|∗,T |B|T,∗, (2)

each of these maximal minors can be expressed as a linear combination of the maximal
minors of the matrixX. Using these minors as new variables, we obtain a system of

(
n−k−1

r

)
linear equations in

(
n
r

)
variables with coefficients over Fqm , that can be unfolded over Fq

as m
(
n−k−1

r

)
equations in the same number of variables (that are searched over Fq).

It is possible to solve the Rank-SD problem with the MaxMinors modeling as soon as{
m
(
n−k−1

r

)
≥
(
n
r

)
− 1, if the system has 1 solution,

m
(
n−k−1

r

)
≥
(
n
r

)
, if the system has no solution.

(3)

It is possible to improve slightly the solving by puncturing the code on p positions, as long
as

m

(
n− p− k − 1

r

)
≥
(
n− p
r

)
− 1. (4)

With the largest such p, the linear system has almost the same number of equations than
variables. If (3) is not satisfied, then we use the hybrid approach and specialize a ∈ {0..k}
columns of X. The final complexity of the MaxMinors attack is bounded by

O

(
qar
(
n− a− p

r

)ω)
(5)

as n→∞, where ω is the linear algebra constant. In all our estimates, we use conservatively
ω = 2, see Table 6.

We observe in Figures 3, 4, 5 that this approach is efficient for small r’s, and becomes
equivalent or worse than the combinatorial approach for r around the Gibert-Varshamov
bound, as in this case a is close to k (see Figure 2).
9 We assume the rank r is known. Otherwise, we can try to solve for r = 1, r = 2, . . . until we find the
good r.

26



NIST security level q m n k r combi a p CMM b a p CSM+

1 2 31 33 15 10 148 12 2 153 1 11 0 155

3 2 37 41 18 13 217 15 2 238 2 14 0 241

5 2 43 47 18 17 284 15 2 308 - - - 317

Table 6: Complexity of the algebraic attacks for the proposed parameters. a is the hybrid
parameter, p the number of columns on which the code is punctured. The complexities are
given in log2 bit operations. We use ω = 2.
- For the 256 bits of security parameters, the SM attack does not work: as it needs a = k,
it amounts to a combinatorial attack
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Fig. 2: Values of a for the MaxMinors modeling, in terms of r ∈ {0..rGV } below the
Gibert-Varshamov bound. The values are given for the three proposed parameter sets
(λ,m, n, k, r) equal to (128, 31, 33, 15, 10), (192, 37, 41, 18, 13), (256, 43, 47, 18, 17) with q =
2. The horizontal lines represent the value of k. The black points correspond to the selected
value of r for the proposed parameters.

The Support Minors modeling The previous modeling is a linearization technique, that
only works with a large hybrid parameter a for large r. An alternative method is to rely on
the Support Minors modeling, which was initially introduced in [BBC+20] to solve generic
MinRank instances, and that uses a new set of variables. It has been adapted to instances
coming from Fqm-linear codes in [BBB+22].

Write the received vector v = −mG + x with −mG ∈ C a codeword, and Rank(x) = r.
Then, x = v +mG = (E1, . . . , Er)C so that any row ri of M(v +mG) ∈ Fm×nq is in
the row space of C. Therefore, all the maximal minors of the matrix

(
ri
C

)
are equal to 0.

This system is described and analyzed in [BBB+22], where it is shown that it contains the
previous equations from the MaxMinors modeling.
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Fig. 3: Comparison of the MaxMinors complexity and the combinatorial attacks for the
parameters λ = 128, (2, 31, 33, 15) and r ∈ {2..10}. Only the values of the complexities
with a < k are ploted.
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Fig. 4: Comparison of the MaxMinors complexity and the combinatorial attacks for the
parameters λ = 192, (2, 37, 41, 18) and r ∈ {1..13}. Only the values of the complexities
with a < k are ploted.

It is conjectured in [BBB+22], based on a careful theoretical analysis of the system and
some experimental heuristics, that it is possible to solve this bilinear system by linear
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Fig. 5: Comparison of the MaxMinors complexity and the combinatorial attacks for the
parameters λ = 256, (2, 43, 47, 18) and r ∈ {1..17}. Only the values of the complexities
with a < k are ploted.

algebra on a matrix with N rows and M columns, as soon as N ≥M − 1, with:

N =
k∑
i=1

(
n− i
r

)(
k + b− 1− i

b− 1

)
−
(
n− k − 1

r

)(
k + b− 1

b

)
(6)

− (m− 1)
b∑
i=1

(−1)i+1

(
k + b− i− 1

b− i

)(
n− k − 1

r + i

)
. (7)

M =

(
k + b− 1

b

)((
n

r

)
−m

(
n− k − 1

r

))
. (8)

In this case, the final cost in Fq operations is given by

O
(
m2NMω−1) ,

where ω is the linear algebra constant and where the m2 factor comes from expressing
each Fqm operation involved in terms of Fq operations. As previously, it is possible to use
an hybrid approach to reach the constraint N ≥ M − 1, or to puncture the code to get
N and M of the same value. The complexity estimates for the parameters sets are ploted
in Figures 3, 4, 5. We can see that for q = 2, the MaxMinors modeling is (almost) always
better than the Support Minors one.

10 Advantages and limitations

10.1 Advantages

Difficulty of the underlying problem: the security of the signature scheme relies on
the genuine problem of decoding in rank metric Rank-SD, and there exists a probabilis-
tic reduction from a generic NP-complete problem to the Rank-SD problem [GZ14]. The
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Rank-SD problem has been studied for many years. In particular the security of the prob-
lem corresponds to parameters on the Rank-Gilbert-Varshamov bound, the hardest area
for parameters in which recent algebraic attacks [BBC+20] behave similarly to classical
combinatorial attacks.

Size of public keys and signature: the size of our parameters remains low. When
comparing to Dilithium level 1, the sum of public key and signature sizes of RYDE is less
than 60% higher than Dilithium (the sum for Dilithium reaches 3.7kB compared to 5.9kB
for RYDE). It makes RYDE one of the shortest MPCitH signatures.

Size of the public matrix: in our case the public matrix can be generated from a random
seed. Now independently of this, the properties of rank metric make the size of the public
matrix very small (and this without additional cyclic structure), for instance of order 1kB
for the first level of parameters: it could be an advantage if one were to choose not to
generate the public matrix from a seed.

No cyclic structure of the underlying problem: our security is based on a problem
which does not rely on cyclic structure for which the quantum security is not fully known.

Resilience against Rank-SD attacks: the size of the signature is composed of two
parts: a part related to the MPC that only depends on the security level (seeds, hashes)
and a part related to the parameters of the chosen RSD instance. Hence, increasing the
size of the problem parameters has a limited impact on the total size of the signature. For
example, the RYDE-128S instance features a signature size of 5.9kB using the parame-
ters (q,m, n, k, r) = (2, 31, 29, 14, 10) for NIST security level 1. Choosing the parameters
(q,m, n, k, r) = (2, 37, 38, 16, 14) would reach more than 192 bits of security for the under-
lying problem and result in a signature size of 6.9 kB for NIST security level 1. Thus, if
one discovers an efficient attack against the Rank-SD problem that forces us to increase
the problem parameters, only the problem parameter part will be impacted and the overall
effect on the signature length will be mitigated, as explained in the previous example.

10.2 Limitations

Growth rate of the signature size: the size of the signature grows with a quadratic rate
when increasing the security level. This comes from the fact that when the security level
increases, both the parameters of the Rank-SD instance and the number of repetitions
tau need to be increased. For example, going from security level 1 to 3, the number of
repetitions is increased by half (20 to 30) while the quantity of data to be transmitted per
turn grows as well since the parameters of the Rank-SD instance also have to be increased.
Notice that this limitation is coherent with the Rank-SD resilience advantage from Section
10.1. Indeed in that case only the instance parameters need to be increased and not the
number of repetitions nor the size of seeds and hashes.

Signature speed: Compared to lattice based signatures, the speed of our scheme is slower
even if it compares very well with other signature schemes in general.
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Complex implementation: this scheme is relatively complex to implement. Although
it has potential to perform well on hardware, its implementation could be difficult in
embedded systems.
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