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1. Algorithm Specification

The Xifrat1 family of cryptosystems are based on a randomly generated abelian quasigroup of 16

elements. From which, 3 layers of increasingly large abelian quasigroups are constructed such

that recovering the input operand and computing the output without full knowledge of either

operand become increasingly difficult at exponential rate. 

The Xifrat1-Sign.I digital signature scheme instance is one member of the Xifrat1 family of

cryptosystems. It may be of separate interest should NIST elect to standardize the KEM/PKE

Xifrat1-Kex.I, as it's more compact than Kyber in terms of communication bandwidth. 

1.1. The quasigroup and building block functions

In this section, we present the quasigroup table, discuss the property of restricted commutativity

and its generalization (which we will be using), and present a construction that enlarges the

quasigroup. 

1.1.1. The restricted commutative quasigroup

The quasigroup we're considering has the following properties: 

Non-Associative In General: that is, for most cases,  

Non-Commutative In General: that is, for most cases,  

Restricted-Commutativity: that is, for all cases,  

Additionally, some properties are needed for basic security: 

The quasigroup table should overall be not symmetric;

The quasigroup table should not have any fixed points;

We observed that, in Xifrat0, as well as the StackExchange post that sparked all these discussion,

the quasigroup tables had a regularity that, for each diagonal pair of equal table cells, the opposite

diagonal is also equal. This appears to be a necessary but not sufficient condition for a power-of-2

table to be restricted-commutative; as for non-power-of-2 tables, experiment had shown this

property does not apply to them. 

We used diagonal property for optimization and created a new program that searched for a

random quasigroup table with the seed "xifrat - public-key cryptosystem" which

is the same one that's used in Xifrat0. Additionally in July 2022, we applied an aggressive

assignment optimization to the QGGen-v2 program, and was able to obtain a 16-by-16

quasigroup in about 10 to 15 minutes on an Intel Core i3-8100B (3.6GHz) process. The program

is single-threaded to ensure the result is deterministic. 

• (ab)c ≠ a(bc)

• ab ≠ ba

• (ab)(cd) = (ac)(bd)

• 

• 
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The source code for the new program can be found at our online git repository: https://

github.com/dannyniu/xifrat The new table is as follow: 

// Quasigroup generated using the new program //

 10  11   0   3  12   4   1   5  15   6   8  14   2   9   7  13

 15   8   9   7   2  13   5   1  10  14  11   6  12   0   3   4

  2   3   6  11  15   5  13   4  12   0   7   9  10  14   8   1

  0   5  10   4  14   3   8  11   9   2   1  12   6  15  13   7

  8  15   1  12   3  14   0   9  11  13  10   4   7   5   2   6

  6   4   2   5   9  11   7   3  14  10  13  15   0  12   1   8

 13  14   7   9   5  15   2  12   4   8   6  11   1   3   0  10

 12   7  14   8  10   1   4  13   2   9   3   0  15   6  11   5

  5   0  11   6  13   2  15  10   1   3   9   7   4   8  14  12

 14  13  12   1   0   8   3   7   6  15   4  10   9   2   5  11

  1   9   8  14   4  12  10  15   5   7   0   3  13  11   6   2

  7  12  13  15  11   9   6  14   3   1   2   5   8   4  10   0

  9   1  15  13   6   7  11   8   0  12   5   2  14  10   4   3

  4   6   3   0   1  10  12   2  13  11  14   8   5   7   9  15

 11  10   5   2   7   6   9   0   8   4  15  13   3   1  12  14

  3   2   4  10   8   0  14   6   7   5  12   1  11  13  15   9

The operation  evaluates to the table cell at a'th row and b'th column, in 0-based index. 

1.1.2. The generalized restricted commutativity

Now we introduce an important property, that is both useful, and comes naturally from restricted-

commutativity: the generalized restricted commutativity. 

Theorem 1. Left-associativity of distributiveness 

That is: 

 

Proof:

Observe a case of 3 pairs:  .

due to restricted commutativity:  , 

next, substitute  , we have: 

 , 

again, due to restricted commutativity, we have:  , 

substitute back, we have  , 

generalizing recursively, we have Theorem 1. 

Property 1. Generalized Restricted-Commutativity 

ab

(a
1
 b

1
)(a

2
 b

2
) ... (a

n
 b

n
) = (a

1
 a

2
 ... a

n
)(b

1
 b
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 ... b
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)

(ab)(cd)(ef)

(ac)(bd)(ef)

g=(ac) , h=(bd)

(gh)(ef)

(ge)(hf)

(ace)(bdf)
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That is: 

 

 

Proof: From Theorem 1., we have

 

 

 

 

1.1.3. The Blk block function

The Blk block function is defined to enlarge the quasigroup - it operates on vector of 16 quartets

bitstrings. This is 64-bit in total, which we fit in least-significant- bit&byte -first order. 

Figure 1.1. The algorithm for the Blk function 

Input: 

Output: 

Steps:

Programmatically,  and  are represented as the uint64_t data type. 

1.1.4. The Vec, Red, and Dup functions

The purpose of the Vec function is the same as that of the Blk function, except it works over a

larger domain. The Vec function takes 2 vectors of 6 64-bit slices. each are 384-bit long, and

return 1 vector as result. The construction of Vec is structurally similar to Blk. 

Within the Vec function, each of the 64-bit slices are ''hashed'' in the Blk function, and applied

sequentially twice interlaced with the other operand. An obvious flaw is that, if we can 

individually brutal-force the slices, then we can evaluate either operand without knowing it in full,

which leads to a fatal break. 
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This is why, another layer is needed, which we call Dup. The operands for the Dup function are in

the form of bi-gram of vectors, where the vectors are operands to the Vec function. The purpose

of Dup is, yet again, the same as Blk as well as Vec, but this time, the 6 slices are ''hashed'',

requiring attacker to brutal force  bits. While this may be an overkill for some

scenario, we leave this as an overhead in case any powerful cryptanalytic attack is discovered. 

To show how parameters scale, we specify a variant of the Vec function - the Red function

(meaning 'Reduced'), which operates on vectors of 4 64-bit slices. This function is also meant to

be used under Dup. We've implemented this variant in the "ReduceSec_Implementation" purely

for investigative purposes such as benchmarking and cryptanalysis, and we do not intend this

variant be standardized. 

Figure 1.2. The algorithm for the Vec function 

Input: 

Output: 

Steps:

... 

Figure 1.3. The algorithm for the Red function 
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Figure 1.4. The algorithm for the Dup function 

Input: 

Output: 

Steps:

Programmatically, the operands to Vec and Dup functions are represented as array types: 

uint64_t[6] and uint64_t[12] . For the Dup function, slice indicies 0~5 corresponds to

the vector at index 0 of the bi-gram and indicies 6~12 corresponds to that at 1. We will call

operands to the Dup function "cryptograms" of the Xifrat schemes. 

For ease of readability, we denote the Dup function as  and  as  . 

1.2. The Xifrat1-Sign.I Digital Signature Scheme

In this section, we present the Xifrat1-Sign.I digital signature scheme. We use a hash function,

which is instantiated with the XOF SHAKE-256. We take its initial 768-bit output, interpret it as

12 64-bit unsigned integers in little-endian. We denote this hash function as  . 

Figure 1.5. Xifrat1-Sign.I Key Generation 

Uniformly randomly generate 3 cryptograms:  and  , 

Compute  , 

Return public-key  and private-key  . 

Figure 1.6. Xifrat1-Sign.I Signature Generation 

Input:  - the message 

Compute  , 
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Figure 1.7. Xifrat1-Sign.I Signature Verification 

Input:  - the message ,  - the signature 

Compute  , 

Compute  , 

Compute  , 

If  return [VALID] ; otherwise return [INVALID].

The proof of correctness of the scheme is as follow: 

 

 

By restricted commutativity, we have  . 

Parameters Xifrat1-Sign.I Reduced-Security Variant

private key bytes 480 320

public key bytes 288 192

signature bytes 96 64

2. Performance and Efficiency

The dominant part of Xifrat computation is the computation of the Dup function. We compiled

the codes constituting the Xifrat abelian quasigroup computation with the -O optimization flag,

and ran it for 256x6 times, here's a rough benchmarking result. For Apple M1, we do not have

public documentation that describes its clock speed. For the Intel CPU benchmark, we carried it

out on Windows Subsystem for Linux - WSLv2, using a Debian distribution. In both cases, we

used the Clang/LLVM compiler. 

Dup instantiated with Vec

CPU model
Cycles per 256x6 

iterations of Dup

Cycles per 

once Dup

Times per 

256x6 iterations
Times per once

Apple M1 27727871 18052.00 27.73s 18.05ms

Intel Core i7-10700F 31826300 20720.25 31.83s 20.72ms

For key generation, ignoring the cost of invoking PRNG, it takes 2 Dup computations, therefore 1

keygen takes about 30ms~40ms. For signing operation, ignoring the cost of hashing, only 1 Dup

computation is required. Signature verification however takes 3 Dup computation, which is the

most expensive of these, and it takes about 45ms~60ms. While these costs are high, we believe
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that if Xifrat turn out to be secure, the merit of its compactness will outweight performance

drawbacks. 

We performed similar benchmark with Dup instantiated with Red, and the results are as follow: 

Dup instantiated with Red

CPU model
Cycles per 256x6 

iterations of Dup

Cycles per 

once Dup

Times per 

256x6 iterations
Times per once

Apple M1 12057375 7849.85 12.06s 7.852ms

Intel Core i7-10700F 14480765 9427.58 14.48s 9.427ms

The working context for Xifrat1-Sign.I only need to contain countably finite number of

cryptograms, additional cryptograms on the stacks of internal subroutines are also few. This is a

drastic contrast when compared to schemes that derive large amount of data from a "seed value"

or that derive some kind of steep tree structure. 

3. Security and Known Attacks

The Xifrat1-Sign.I instance is expected to have category III security, which corresponds to brutal-

forcing a 192-bit symmetric-key encryption algorithm on classical computers. Xifrat1-Sign.I uses

a XOF with 256-bit security, and takes 768-bit output, of which, two 384-bit halves are processed

by the Dup function. The Dup function is expected to have 384-bit classical security against

brutal-force attack, against input operand recovery and evaluation without full knowledge of either

operand. We've doubled it from 192-bit for 2 important reasons: 1.) to prevent partial forgery

against the hash digest, and 2.) to deter potentially unknown future mathematic and group-

theoretic cryptanalysis that may be discovered for both classical and quantum computer; thirdly,

the call for proposal from NIST had requested submitters to be conservative about evaluating

security, which we count as an extra reason. 

It is the opinion of the author, that group-theoretic cryptography is promising, but is still in its

infancy, with mathematical structures being proposed all the time without anything remarkable

turnning up. Many previous attempts had failed: Algebraic Eraser[BzBT16],

WulnutDSA[HKM+18], and even SIKE[CD22]. 

3.1. Attack 1: Evaluate without Full Knowledge of 1 Operand

The design of the mixing functions at each layer has 2 phases - the cycling phase where 2

intermediate values  and  are computed from vector elements of  and ; the alternating phase

of  . By generalized restricted-commutativity, the cycling and alternating phases can be

computed in either order and results in the same value output. The resulting template mixing

function preserves the restricted-commutativity property from a lower layer to a higher layer 

u v a b

uvuv
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The first attack we discuss is the "evaluation without full knowledge of either operand" attack.

This attack was present in a most fatal form in Xifrat0, and was quickly broken [Niu21] back

then. 

The same apply to Xifrat1. Recall that the "Blk" function works over a vector of 16 quartets. If we

can find either of the intermediate  or  , then we can use that knowledge to compute that

function - because the alternating phase works parallelly over the vector of quartets. This attack

has to be blocked at the cycling phase of a higher layer. 

The cycling phase at a higher layer mixes together the vector elements of the lower layer, making

it necessary to recover the vector in its entirety to be able to compute the mixing function. This is

why at 384 bits, we still need a "Dup" layer on top of the "Vec" layer. 

3.2. Attack 2: Group Theoretic Analysis

This section discusses group theoretic cryptanalysis on Xifrat1. 

As we said in [Niu22], the 16x16 latin square was chosen randomly; and we assume its

quasigroup operation is also random, in the sense that it behave as if randomly. 

It's a fact [Bruck44] [Murdoch39] [Toyoda41] that, any quasigroup, like that we've been using,

can be decomposed into a group with 2 automorphisms: 

 where  is the quasigroup operation,  and  are 2 automorphisms which

we assume are independent of each other and behave as if randomly, and  is a constant from the

quasigroup set, and  is the operation of the decomposed group. 

Now let's see an example: 

 

 

If  and  are truely random, then the only way to find  from  would be to try every

possible solution and verify each of them to find out. Because we generated our 16x16 quasigroup

randomly, we assume that the underlaying automorphisms fulfills this property. It is further

assumed, that composition of randomly-behaving maps are also randomly-behaving. 

The Blk function can now be reverted, by first searching 16 independent quartets from the

alternating phase, then solving the "cycling" equations system, which consists of 16 group

equations, each with 16 automorphisms that we had assumed to be "randomly-behaving". 

u v

f(a,b) = g(a) + h(b) + c f g h

c

+

g(x) + h(y) = u

g(y) + h(x) = v

g h x , y u , v
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There are 2 crucial assumptions we make, as the basis for believing that the mixing funcitons at

higher layer are more difficult to to invert than the Blk function. 

The group automorphisms exploitation is the most efficient attack applicable to the cycling-

alternating mixing function formula when assuming that there is a efficient way to evaluate

the automorphisms. 

There is no efficient way to find or evaluate larger group automorphisms from the group

and automorphisms underlaying the smaller abelian quasigroup assuming the underlaying

abelian quasigroup is randomly-behaving. 

Additionally, we assume that the expansion result of abelian quasigroup formula at higher layer

into group automorphisms is no more efficiently solvable than applying layer-by-layer approach

according to the preceding list, as the expansion of the formula terms is polynomial (which we

believe makes the solution of the equasions system super-exponential, but we have yet no way of

being sure). 

4. Advantages and Limitations

The biggest advantage of Xifrat1-Sign.I (and in general, any scheme in the Xifrat1 family), is

compactness. The signature size of the DSS is 96 bytes. The size of the public and private key

sizes are on par with that of RSA keypairs encoded using the PKCS#1 ASN.1 module. Another

advantage is that, the key generation of Xifrat1-Sign.I is constant-time, and unlike Falcon or

NTRU, Xifrat1-Sign.I doesn't require computing any "inverse" element. Finally, it is a guess of

the submitters that due to the arithmetic property of the Dup function, it may be possible to

implement "implicit certificate" with Xifrat1-Sign.I. 

One disadvantage is the signature verification time is long, although not too long. Another major

disadvantage is that, the underlaying primitive and security assumption are arcane and poorly

understood. 

Annex A. References

[BzBT16] Adi Ben-Zvi, Simon R. Blackburn, Boaz Tsaban; A Practical Cryptanalysis of

the Algebraic Eraser; In: Robshaw, M., Katz, J. (eds) Advances in Cryptology – CRYPTO

2016. CRYPTO 2016. Lecture Notes in Computer Science(), vol 9814. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-662-53018-4_7 

[HKM+18] Daniel Hart, DoHoon Kim, Giacomo Micheli, Guillermo Pascual-Perez,

Christophe Petit, Yuxuan Quek; A Practical Cryptanalysis of WalnutDSA
TM; In: Abdalla,

M., Dahab, R. (eds) Public-Key Cryptography – PKC 2018. PKC 2018. Lecture Notes in

Computer Science(), vol 10769. Springer, Cham. https://doi.org/

10.1007/978-3-319-76578-5_13 

[CD22] Wouter Castryck, Thomas Decru; 2022-07 An efficient key recovery attack on

SIDH https://eprint.iacr.org/2022/975 

1. 

2. 

• 

• 

• 

NIST Submission: Xifrat1-Sign.I DSS

Advantages and Limitations 11

https://doi.org/10.1007/978-3-662-53018-4_7
https://doi.org/10.1007/978-3-319-76578-5_13
https://doi.org/10.1007/978-3-319-76578-5_13
https://eprint.iacr.org/2022/975


[Bruck44] Richard H. Bruck; Some Results in the Theory of Quasigroups; In: Transactions

of the American Mathematical Society 55.1 (1944), pp. 19-52. 

[Murdoch39] David C. Murdoch; Quasi-Groups Which Satisfy Certain Generalized

Associative Laws; In: American Journal of Mathematics 61.2 (1939), pp.509-522. 

[Toyoda41] Koshichi Toyoda; On axioms of linear functions; In: Proceedings of the

Imperial Academy 17.7 (1941), pp.221-227. 

[NN21] Daniel Nager, and Jianfang "Danny" Niu; 2021-04 Xifrat - Compact Public-Key

Cryptosystems based on Quasigroups; https://ia.cr/2021/444 

[Niu21] Jianfang "Danny" Niu; 2021-04 Xifrat Cryptanalysis - Compute the Mixing

Function Without the Key; https://ia.cr/2021/487 

[Niu22] Jianfang "Danny" Niu; 2022-04 Resurrecting Xifrat - Compact Cryptosystems 2nd

Attempt; https://ia.cr/2022/429 

• 

• 

• 

• 

• 

• 

NIST Submission: Xifrat1-Sign.I DSS

12 References

https://ia.cr/2021/444
https://ia.cr/2021/487
https://ia.cr/2022/429

	Algorithm Specification
	The quasigroup and building block functions
	The restricted commutative quasigroup
	The generalized restricted commutativity
	The Blk block function
	The Vec, Red, and Dup functions

	The Xifrat1-Sign.I Digital Signature Scheme

	Performance and Efficiency
	Security and Known Attacks
	Attack 1: Evaluate without Full Knowledge of 1 Operand
	Attack 2: Group Theoretic Analysis

	Advantages and Limitations
	References

