Users are not stupid: Six cyber security pitfalls overturned

Revised (in revised form): 9th November, 2022

Julie Haney
Usable Cybersecurity Program Lead, National Institute of Standards and Technology, USA

Julie Haney conducts research about the human element of cyber security, including the usability and adoption of cyber security solutions, work practices of cyber security professionals and people’s perceptions of privacy and cyber security. She has been an invited speaker at numerous cyber security forums spanning industry, government and academia, and has published peer-reviewed articles in both research and practitioner publications. Prior to joining NIST in 2018, Julie spent over 20 years working in the U.S. Department of Defense as a cyber security professional and technical director where she conducted vulnerability assessments, wrote widely used cyber security guidance, and advocated for the adoption of cyber security mitigations. She has a PhD in human-centred computing from University of Maryland, Baltimore County, an MSc in computer science from University of Maryland and a BSc in computer science from Loyola University Maryland.

National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
E-mail: julie.haney@nist.gov

Abstract The skilled and dedicated professionals who strive to improve cyber security may unwittingly fall victim to misconceptions and pitfalls that hold other people back from reaching their full potential of being active partners in security. These pitfalls often reflect the cyber security community’s dependence on technology and failure to fully appreciate the human element. This paper offers cyber security professionals a primer so they can recognise and overcome six human element pitfalls in cyber security. In addition to gaining an awareness of these pitfalls, readers will learn about specific strategies on how to improve cyber security and empower users by addressing the human element in their organisations’ cyber security products, processes and policies.

KEYWORDS: cyber security, usability, usable security, human element, users

INTRODUCTION Cyber security professionals perform a tremendous service in protecting their organisations, customers, communities and even nations from cyber threats. Yet, despite having the noblest of intentions, they may be falling victim to misconceptions and pitfalls that hold people back from reaching their full potential of being active, informed partners in security. The six pitfalls in this paper — illustrated by real-world examples and research findings — reflect the cyber security community’s general tendency to focus and depend on technology to solve today’s security problems while at the same time failing to fully appreciate the human element: the individual and social factors affecting security adoption. The intent of the paper is not to criticise the cyber security community, but rather to prompt introspection and encourage consideration of the human element when developing and implementing cyber security technologies, processes and policies.

THE HUMAN ELEMENT IN CYBER SECURITY To appreciate the implications and importance of the human element in cyber security, it is helpful to first understand the
foundational concepts of usability and usable cyber security.

Usability

The International Organization for Standardization definition of usability is ‘the extent to which people can use systems, products, and services with effectiveness, efficiency, and satisfaction to accomplish their goals in a specified context of use’.¹

In the cyber security context, *systems*, *products*, and *services* can be many different things: traditional information technology (IT) (eg computers, mobile devices, software, services); processes (eg steps involved in authenticating to a system); cyber security policies and guidance documents (eg checklists, baselines); or cyber security training (eg awareness training).

Users are simply the people involved in or affected by interactions with the systems, products and services. A first inclination when hearing the term ‘users’ might be to think about ‘end users’, ie individuals who are not experts in IT or cyber security. In certain contexts, however, users can be more specific. For example, organisational decision makers (eg chief information officers, chief information security officers, other executives and managers) and policy makers are users of cyber security information, guidance or policies. Technical staff (eg system administrators, help desk staff, cyber security analysts) can also be users as they ultimately implement and maintain cyber security technologies and processes and deal with the aftermath if something goes wrong. Software and hardware developers may be users of secure development guidance or security libraries when implementing mechanisms to protect their products.²

Goals are what people want to accomplish when using systems, products and services. For example, an employee may have a goal of securely sending a file to a co-worker or logging into a system. A policy maker may have a goal of taking a generic cyber security guidance document and customising it for the organisation. A security administrator may have a goal of setting up access control on a server.

Effectiveness, efficiency and satisfaction are the core components of usability. Effectiveness is whether people can successfully achieve their goals — for example, whether an employee is able to report a phishing e-mail to cyber security staff. Efficiency refers to the resources (eg time, cognitive) used to achieve those goals — for instance, how long it takes an employee to successfully authenticate to an application. Satisfaction is the intersection between a user’s physical, cognitive and emotional responses when using a system, product, or service, and how well the user’s needs and expectations are met. For example, in the cyber security context, satisfaction could be influenced by the frustration a user experiences when being confronted with repeated security warnings.

Finally, context of use is a combination of user attributes, characteristics of tasks and goals, and the technical, organisational, social and physical environments in which users are interacting with the technology. A cyber security context of use might include an employee in a coffee shop using a laptop to connect to their company’s network.

Usable cyber security

In 2009, the U.S. Department of Homeland Security identified 11 hard problems in information security research, one of which was usable security.³ The imperative in the report is still relevant today:

‘Security must be usable by persons ranging from nontechnical users to experts and system administrators. Furthermore, systems must be usable while maintaining security. In the absence of usable security, there is ultimately no effective security.’

Usable security involves usability while also more broadly considering the perceptions,
relationships and behaviours of people when engaging with security. In other words, usable security is about considering the human element. Usable security should be an enabler, not a hindrance, to cyber security. The goal of usable security is to develop systems, products and services that are usable and result in improved security outcomes.

Although organisations and cyber security professionals may outwardly acknowledge the significance of the human element, one wonders if real progress to help the humans in cyber security is being made. A recent Verizon report estimated that 82 per cent of 2021 breaches involved the human element. In 2020, 53 per cent of US government cyber incidents resulted from employees violating acceptable usage policies or succumbing to e-mail attacks.

What, then, may be holding the security community back? First, the cyber security field is technology-centric by nature, with technology being viewed as the ultimate solution to security problems.

A security evangelist at a large security awareness training company agreed:

‘Humans have always been a big part of the computing picture, but for some reason, we always thought only technology solutions alone can fix or prevent issues … That is not a workable strategy’.

Second, few security professionals have had formal or professional training about the human element or non-technical skills — such as security risk communication, interpersonal skills or usability — that facilitate interactions with security non-experts. Third, taking a human-centric approach might be viewed as resource-intensive and an impediment to getting security implemented efficiently. Finally, cyber security professionals may hold some misconceptions about the human element and the people they are ultimately supposed to be supporting. These misconceptions, or pitfalls are the focus of this paper.

PITFALL #1: ASSUMING USERS ARE STUPID

The belief that ‘users are the weakest link’ or ‘users are stupid’ is prevalent throughout the cyber security community. The reality is that, yes, people do make mistakes; however, belittling users can result in an unhealthy, ‘us versus them’ relationship between cyber security professionals and the people they are ultimately tasked to support. In this dysfunctional relationship, cyber security professionals may be perceived as arrogant and condescending, while users are perceived as powerless, incompetent or relegated to being rule followers.

Research studies investigating the attitudes and behaviours of security non-experts reveal that users are not actually ‘stupid’, but rather overwhelmed and ill-equipped, not necessarily through their own fault. In particular, one research group interviewed general public individuals about their cyber security perceptions, challenges and actions. The group found evidence that their research subjects were suffering from a phenomenon known as ‘security fatigue’, which is a sense of resignation, weariness, frustration, or loss of control in people’s responses to cyber security.

There are several reasons for security fatigue. First, cyber security is rarely someone’s primary task when they use a computing device or service. Some people think that cyber security is someone else’s responsibility, especially in organisational contexts. Cyber security tasks can also be seen as disruptive — for example, having to go through multiple steps to authenticate or constantly being interrupted with security pop-up warnings. Second, most people are simply not cyber security experts. Yet, those who are experts may have unrealistic expectations about what users understand and how well they can make decisions based on sometimes incomplete or confusing information. Third, cognitive biases may be a factor. For example, people may suffer from an optimism bias in which they might
Users are not stupid: Six cyber security pitfalls overturned

believe, ‘No one would want to target me since I’m not that interesting’ or an availability bias in which they think, ‘I can’t recall anything bad happening recently, so I don’t need to worry as much’.

Overturning pitfall #1

Aim to empower

Instead of the ‘blame game’, focus on empowering users to be active, capable partners in cyber security. Recognise that everyone is influenced by their experiences, goals and expertise and that these influences do not necessarily make them incompetent or purposefully negligent. Make an effort to identify the root causes of why people may be struggling as a first step in determining how they can be better supported.

Build relationships and practise empathy

Practise empathy and seek to move beyond the ‘us versus them’ mentality. Empathy and positive relationship building between cyber security executives, professionals, and the users they support has twofold benefits. First, it strengthens professionals’ credibility and commitment in the eyes of users, resulting in more trust, engagement, and willingness to follow the cyber security guidance and seek out help if something seems suspicious. Indeed, empathetic organisations drive higher employee motivation and engagement. Second, the active listening and interactions born from these relationships aid cyber security staff in better understanding users’ needs, perspectives and challenges.

PITFALL #2: NOT TAILORING COMMUNICATIONS TO THE AUDIENCE

Cyber security professionals must frequently communicate security-related information to others — for example, informing employees about a new security policy or process, disseminating awareness information about a new threat, or trying to convince leadership to invest in security. Unfortunately, experts may suffer from ‘curse of knowledge’, ie when experts in a field have a difficult time explaining the field to non-experts. Thus, it is not uncommon for cyber security professionals to have a difficult time translating highly technical information into a language understandable to their intended audience. Unfortunately, the use of technical jargon can negatively affect people's engagement with technical topics. Likewise, professionals may fail to tailor their security communications to appeal to what their audience cares about in their day-to-day work or personal lives. When communications are not tailored appropriately, some users in the intended audience may be unable to properly use the cyber security product, make sound security decisions or understand the importance of cyber security.

An underlying root cause for ineffectual communication is a failure to identify and understand the users of the intended audience. There may be a tendency to lump people together and not account for differences among them (eg motivations, needs and level of expertise) that may affect security attitudes and behaviours. Within an organisation, there may be marked differences in security preferences between employees working in different business units and with different roles. For example, scientists in a mission organisation who desire to openly share information with collaborators may approach the security of information quite differently than human resource specialists who must adhere to strict rules on access to personally identifiable information.

Consider the following example related to cyber security guidance published by the National Institute of Standards and Technology (NIST). Most NIST guidance targets technical staff within organisations and is often quite detailed, and therefore,
lengthy. A larger organisation may have dedicated security staff capable of digesting and acting upon a long, technical document. But what about small businesses, especially micro businesses with few employees? Some of these businesses may be required to comply with NIST guidance — for example, those with a government contract. NIST received feedback that these businesses were overwhelmed by longer guidance and could not always adequately address security issues since they often lacked dedicated cyber security staff. In response, NIST has been taking steps to develop supplementary resources and formats that are tailored to this population — for example, the Small Business Cybersecurity Corner website and quick start guides to simplify the 50+ page Cybersecurity Framework.

Overturning pitfall #2
Be context aware
Being cognisant of the context of the audience is an essential first step in effective communications. Identify the users, their skill levels, constraints, values and environments where users are interacting with cyber security systems, products and services.

Be a translator
Tailor communications to be understandable to the intended audience. Start with plain language; online tools and training can help. Communications may also require some additional explanation and support for users who may lack concrete understanding of cyber security concepts. It is also valuable to engage representatives from the intended audience to provide feedback on draft communications to ensure understandability and appropriateness.

Make a personal connection
Communicate why security is important, including how it affects users’ work and the organisation. Explaining non-security benefits in addition to the cyber security benefits may also motivate users. For example, when communicating to developers, a possible message may be that implementing secure development practices from the start can significantly reduce effort and cost required to detect and fix vulnerabilities later. Storytelling, sharing personal experiences and referencing recent events can also encourage a personal connection and overcome potential cognitive biases.

Use different formats and media
Use a variety of formats and methods to disseminate cyber security information to accommodate different user preferences, learning styles and constraints. For example, some people learn better from and prefer interactive activities, so in-person awareness events may resonate with them more. Others are more visual, so posters or videos might be appropriate.

Enlist help from others
Since many cyber security professionals may not be trained or skilled in communications, collaborate with the communications or marketing groups within the organisation to provide feedback on both language and communications media.

PITFALL #3: UNINTENTIONALLY CREATING INSIDER THREATS DUE TO POOR USABILITY
Solutions that focus on cyber security without considering usability can backfire. In environments where users may be already pushed to their limits by time pressures or other distractions, unusable security can increase user burden. This burden can then result in the unwitting creation of insider threats — users who are frustrated with cyber security, more prone to making errors and
risky decisions and more likely to try less-secure workarounds.27

Complex password policies are a classic example of burden caused by poor usability in cyber security. Especially now that people have multiple online accounts, having to maintain many complex passwords can be taxing.28 To cope, they resort to practices that may result in reduced security — for example, writing passwords on a sticky note or keeping passwords in an unencrypted text file on their computer. Perhaps most concerning is the frequent reuse of passwords across multiple accounts,29 particularly in light of recent cyberattacks that disclosed customer passwords (eg data breaches of Marriott30 and Plex31) or used previously compromised passwords to hack into customer accounts (eg an attack against the wedding registry site Zola32).

A particularly striking example of a workaround for a security measure was found in a reader-submitted article in a technical newsletter.33 The reader worked in an organisation that had mandated that a screen be automatically locked after five minutes of inactivity to prevent viewing of desktop contents when a user was away from their office. As a scientist, he often read papers or did other non-computer-related tasks at his desk. Therefore, the screen lock was activating many times throughout the day, requiring him to reauthenticate each time. Frustrated, he devised a way to automatically move the computer mouse to avoid the lockout: a watch with a sweep second hand placed under the mouse. The scientist was so proud of his accomplishment that he told his colleagues, and they, too, implemented this solution; however, this workaround reduced security in the organisation. Might this workaround been avoided if cyber security policy makers had taken the time to understand the context of use of their employees, how the policy might have negatively affected them and possible alternatives that were both secure and usable?

Overturning pitfall #3

Conduct basic usability testing

Usability expertise or formal usability testing are not required to identify potential usability issues. Do some simple piloting of proposed security solutions or communications with representative users; even testing with just five users is usually enough.34 During piloting, observe the errors users make or the confusion they express. Then, apply these insights towards improving the security solution.

Provide concrete, achievable guidance

Provide tools and actionable guidance to help people make the right security decisions. Avoid a long laundry list of ‘to-dos’ with complicated steps that may not be achievable by some users. Rather, break recommendations and security tasks down into manageable, prioritised chunks.

Offload burden when possible

Think about what can be done to lessen the burden on end users so that they are not forced to make decisions they may not be equipped to make or may cause significant effort and cognitive load. For example, can more filtering be done at the mail server so fewer phishing e-mails get delivered? How can authentication be simplified to alleviate the burden on users while maintaining a high level of cyber security?

PITFALL #4: HAVING TOO MUCH SECURITY

Cyber security professionals, not surprisingly, want to make systems, products and services as secure as possible, so they may implement a plethora of security solutions throughout the enterprise. Or they may take a ‘one-size-fits-all’ approach in which they believe the most secure solution or configuration should always be implemented. There is, however, such
a thing as ‘too much’ security. The most secure solution may not be necessary in every situation and may be impractical from both a resource and usability perspective. Overly rigid and restrictive security rules and solutions often create the illusion of security but may result in unanticipated negative consequences for both technical and end users, including an increase in complexity and a decrease in users’ understanding.

A survey of over 3,600 IT and cyber security professionals around the world found that complexity in security is rampant. Over half of organisations deployed more than 30 security tools in their enterprises, with 30 per cent deploying more than 50 security tools and 45 per cent utilising more than 20 tools just to respond to a typical security incident. Yet over half still reported a significant data breach in the preceding year, and over 60 per cent of organisations fell victim to ransomware. Unsurprisingly, almost two-thirds said that fragmented IT and security infrastructure was a reason why cyber resiliency had not improved in their organisation. Cyber security professionals are often overwhelmed by the lack of usability in this amalgamation of tools, resulting in an inability to quickly collect, filter, correlate and assess data. This shortfall is clearly illustrated by the 21-day average time between when an attacker infiltrates a network and when they are detected by organisational staff.

From an end user perspective, stringent security measures can sometimes lead to greater insecurity as they are viewed as counterproductive and an impediment to flexibility in users’ day-to-day operations. Therefore, many employees violate cyber security policies at least occasionally. This non-malicious negligence can put organisations at greater risk of cyberattack. For example, the Equifax breach, which exposed the sensitive data of over 140m Americans, resulted from a single individual failing to ‘heed security warnings’.

Overturning pitfall #4

Take a risk-based approach

Avoid a ‘one-size-fits-all’ stance on what security solutions are implemented within organisations. Performing a risk assessment (eg using a risk management framework) can help determine what level of cyber security is appropriate for the environment.

Understand and support the capability of users

To help determine solution feasibility and likelihood of success, it is critical to understand how well the users (both technical staff and end users) are equipped to implement and react to the security measures. Select interoperable solutions and increase automation to reduce complexity and increase usability for technical staff so they can make effective and efficient use of security tools. Furthermore, attempt to understand the current constraints and stresses of end users and how added security processes may negatively affect their work.

PITFALL #5: DEPENDING ON PUNITIVE MEASURES OR NEGATIVE MESSAGING TO GET USERS TO COMPLY

Cyber security professionals and organisations may use punitive measures or focus on negative messaging to prompt users to comply with recommended security practices. Despite non-expert users’ challenges when interacting with security solutions (due to lack of usability, knowledge, etc.), cyber security professionals may hold unrealistic expectations that users will always make good decisions and then punish them when they do not.

Punitive measures are common within organisations today. These measures may include disabling user accounts for not completing security training or publicly shaming employees who cause cyber security incidents — for example,
by posting offenders’ names in common workspaces. In more extreme, but increasingly common situations, companies are firing employees who fall for phishing e-mails or make other cyber security errors.

While appropriate in some situations, in others, punitive measures and focusing too much on negative consequences may be counterproductive. In fact, usable security researchers have found that, while fear appeals — scaring people into taking a recommended action by emphasising potential negative outcomes of not complying — may have short term behavioural effects, they ultimately elicit longer term, negative emotions towards security. Most concerning, punitive measures may fail to consider the root causes and motivations behind users’ actions and the capacity of users to be able to avoid the incident.

A case in point is phishing. With an increase in the sophistication and precision targeting of phishing, anyone can fall prey to a phish. In recent years, researchers have been investigating why people click or do not click on phishing e-mails. In one study, a research team found that, in addition to typical phishing cues (eg spelling errors, sense of urgency), how an e-mail aligned with the user context was a critical factor in determining whether someone clicked. If the phishing e-mail topic was relevant to a user’s work role, the user was more likely to click because they did not want to neglect their duties. This observation played out in a real-world phishing scam against Facebook and Google. Employees who regularly initiated monetary transactions with a vendor responded to a phishing e-mail appearing to be from that vendor, resulting in a loss of over US$100m. While the perpetrator was ultimately brought to justice, who else in this case holds liability? Should the employees be punished for attempting to be diligent in their jobs?

Overturning pitfall #5

Motivate and empower users to take action

To motivate people to take action, cyber security professionals should honestly communicate the severity of the threat and potential consequences, while being careful not to overstate those. In addition to motivation, users must have confidence in their ability to do something about the threat, which requires providing them with specific instructions and tools. If people do not feel their actions will mitigate the threat, they are likely to choose not to act.

Do not rely on fear or punishment alone

Organisations that offer positive incentives (eg virtual badges, small trinkets, formal recognitions or a personal ‘thank you’) to employees who demonstrate strong security behaviours have experienced encouraging shifts in security attitudes and behaviours.

Likewise, taking a collaborative, rather than punitive, approach can also be effective in spurring the adoption of security practices. In the book *Phishing Dark Waters,* the authors provide an example of one organisation’s successful paradigm shift in addressing repeat phishing clickers. The organisation moved from a penalising stance to one that was more collaborative and involved one-on-one interactions with repeat clickers to better understand what challenges they were facing and personally walk them through tips for recognising fraudulent e-mails.

PITFALL #6: NOT CONSIDERING USER-CENTRIC MEASURES OF EFFECTIVENESS

Collecting meaningful security metrics is a well-known challenge, with security return on investment often being difficult to measure. Common security metrics include patches deployed, risk assessment scores, number of malware infections and mean time to remediate risks. In this techno-centric
field, however, organisations may neglect to seek out data about user behaviours and attitudes. Without this data, organisations are left in the dark about areas in which employees are doing well or shortfalls for which they may need more support.

Cyber security awareness training is an example of a security initiative necessitating user-centric data to gauge effectiveness. Many organisations, including those in the US government, require their workforce to complete annual awareness training. These training requirements are intended to result in positive impacts on workforce cyber security behaviours.

In a survey of 96 government security awareness professionals and security leaders who oversee awareness programmes, about half believed that compliance (ie employee completion of training) was the most important indicator of success for their awareness programmes. Compliance metrics, however, tell little about how employee behaviours and attitudes have changed. Furthermore, while over two-thirds of surveyed organisations relied on compliance-based indicators such as training completion rates and audit reports, only about 40 per cent examined user security incident trends to identify behavioural impacts of awareness efforts. Less than a quarter surveyed their workforce to obtain first-hand feedback on whether training was valuable.

Employees often find security awareness training to be a boring, ‘check-the-box’ activity. How much of the training, then, are users actually retaining? How engaged are users with the training? Is learning being translated into action? Without direct user feedback and concrete indicators of their behaviours, organisations will likely struggle to answer these important questions.

Overturning pitfall #6

Gather user-centric data

Collect both quantitative and qualitative indicators of users’ security attitudes and behaviours — for example, those identified by security awareness training vendors SANS and Living Security. Think of concrete metrics as an initial identification of the problem (symptoms). For example, help desk calls can reveal user pain points, and user-level security incidents such as phishing clicks or security violations can inform where users may need more support or training or better solutions. Then, try to get to the root cause of the symptoms, which requires understanding the context and going straight to the source (the users). Gather user feedback (eg via surveys, focus groups, one-on-one meetings) about their experiences and where they may be struggling. Provide feedback mechanisms so that employees can anonymously communicate their thoughts about security solutions without fear of reprisal.

Use the data to drive improvements

Use insights gained from the data to improve security solutions. To facilitate employees feeling valued and involved, communicate to them what was done to ensure their input was considered. This creates a sense of ownership and assurance that all stakeholders are viewed as respected partners in security.

SUPPORT IN OVERCOMING THE PITFALLS

Orienting an entire organisation towards considering the human element in cyber security is, obviously, a non-trivial undertaking. While cyber security executives and professionals may have noble intentions of wanting users to be active partners in security, they may not know where to start or what to do. Additionally, addressing the human element may be perceived as ‘one more thing to do’ in an already-long list of responsibilities.

How can cyber security professionals arm themselves with the knowledge and resources they need to address the human element? In
addition to those resources mentioned in the ‘overturning’ recommendations above, there are human-element forums, training materials and guidance from SANS, EDUCAUSE, National Cybersecurity Alliance and NIST among others. Furthermore, cyber security groups can consider hiring team members with diverse skill sets more attuned to the human element (eg communications, psychology) to complement their existing technical expertise. Finally, for future impact, cyber security community leaders can advocate the inclusion of human–technology coursework within university IT, cyber security and computer science programmes to ensure the next generation of cyber security professionals is aware of the importance of the human element.

CONCLUSION
Considering the human element ultimately leads to what should be one of cyber security professionals’ most important goals: empowering users to be informed, capable and active partners in security rather than seeing them as hopeless, ill-equipped victims or obstructionists. After all, cyber security professionals cannot hope to solve today’s cyber security challenges on their own; cyber security is a group effort requiring the commitment of everyone within an organisation.

AUTHOR’S NOTE
Certain commercial companies or products are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology (NIST). Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of NIST or the US government.

© Julie Haney, 2022

References
12. West et al., ref. 10 above.
13. Zimmerman and Renaud, ref. 11 above.

17. Ibid.

21. Haney and Lutters, ref. 18 above.

44. Powers, B. (April 2022), ‘Some companies still fire people for getting phished. It doesn’t make them more secure’, Grid, available from https://www.grid.news/story/technology/2022/04/19/some-companies-still-fire-people-for-getting-
Users are not stupid: Six cyber security pitfalls overturned

51. Haney and Lutters, ref. 18 above.

52. Haney et al., ref. 43 above.

55. Haney et al., ref. 43 above.

