Secure Attribute-Based Messaging with ABE

Rakesh Bobba

With Omid Fatemieh, Fariba Kahn, Arindam Khan, Carl A. Gunter, Himanshu Khurana, and Manoj Prabhakaran

Secure Attribute-Based Messaging with ABE

• Aim:
 • Demonstrate the usefulness and feasibility of attribute-based encryption
 • Illustrate practical challenges faced by ABE - securing a novel messaging paradigm, Attribute-Based Messaging (ABM)
ABM Concept

- ABM – sends messages, e.g., email, to parties described in terms of a collection of attributes.
- Similar to a listserv, but recipients are determined dynamically using one or more enterprise databases
- An ABM address is a database query.
- Ex: female grad students in engineering who have passed their qualifying exams

Advantages

Efficiency: people who do not need an email do not receive it
- Ex: all of the faculty on sabbatical

Exclusivity: sensitive messages can target more limited groups
- Ex: all tenured faculty serving on conflict of interest committees

Intensionality: often easier to describe recipients than list them
- Ex: Smith’s attending and ordering physicians
Applications

• Enterprise Communication
• Alerts and Emergency Communication
 • Disease outbreak monitoring and alerts – CDC
• Health care
 • Messaging oriented - exploring improving convenience and security with ABM
ABM Addresses

- Addresses are disjunctive normal forms
- Ex: ((Position = Faculty) and (Salary > 150000)) or (Position = Graduate Director)
- Defines receiving policy

Challenges

Access Control: on what attributes should a party be allowed to route?
- Ex: All faculty who make more than $150,000/year

Confidentiality: if the senders do not know their specific recipients, how can they encrypt end-to-end?

Privacy: what are senders and recipients allowed to know
Implementation, Use, and Management Challenges

• Interoperation with existing systems
 • Webmail easiest
 • Aim to work with existing Mail User Agents (MUAs) or Mail Transfer Agents (MTAs)
 • Application integration may be necessary
• Efficiency of
 • Access control decisions
 • Encryption
• Manageability
 • Policies must be easy to manage and use

Approach – Attribute-Based Security

• Attribute-Based Access Control (ABAC)
 • “Policy specialization” provides attributes that can be used for routing
• Attribute-Based Encryption (ABE)
 • New public key system provides end-to-end confidentiality
ABAC

- Grants access based on user attributes
- Many established ideas for how to use attributes in AC
 - X.509 attribute certificates
 - Much implicit use in application servers
- New approaches
 - Attributes in dynamic tokens as in Shibboleth
 - Trust negotiation
 - ABE, Secret Handshakes

ABAC for ABM

- Attribute-Based Access Control (ABAC)
 - Uses same attributes used to target messages
 - More flexible rules than with RBAC
- Access policy
 - Sending rules are disjunctive normal forms specified using XACML
 - The sending rules collectively define the sending policy

- Ex: (Position = Faculty) AND (Designation = Director) => (Position = Faculty)
- Sun’s XACML engine is used for policy decision
ABAC for ABM

- Issues
 - Need a sending rule per ABM address
 - Usability – loss of messaging semantics

- Solution
 - One rule per <attribute,value>
 - Any address can be formed with allowed attributes
 - Policy specialization
 - Specifies per user sending policy
 - List of attributes a user is allowed to route on

Strawman Architecture
ABE

• Emerging pairing-based cryptosystems that allow encryption and decryption using attributes (rules)
• Ciphertext Policy ABE (CP-ABE) [BSW07]
 • A pairing-based cryptosystem that allows encrypting data with attribute rules
 • Only users who possess keys for attributes that satisfy the attribute rule can decrypt the data
 • Supports string and numerical attributes and monotonic attribute rules
• Protects against collusion

ABE for ABM

• Encrypt using “attribute rules” and public parameters
 • Use the same attributes used to target messages
• Attribute rules are disjunctive normal forms and define reading policy
• \{Reading policy\} = \{Receiving policy\} – correctness
 • Translate receiving policy into a reading policy
• Ex: (“Position_val_Faculty”) AND (Salary > 150000)
• An Attribute Authority (AA) issues attribute keys to each user based on the enterprise database
 • E.g., “Faculty” attribute has a key
ABE for ABM

• Issues
 • No Revocation
 • Key Management

• Solution
 • Short-lived keys
 • One expiry attribute per user [BSW07]. Key Validity period is maximum tolerable vulnerability window
Protocol Steps

The protocols for the ABM system are given in terms of three “paths”
- Policy specialization path
- Messaging and address resolution path
- Attribute keying path

Policy Specialization Path

Policy Specialization (PS) Path:
1. Authenticate User
2. User Info. (ID)
3. User Info. (ID)
4. User Attributes
5. User ID and Attributes
6. Routable Attributes
7. Routable Attributes
8. ABM Address
Messaging and Address Resolution Path

Messaging (MS) Path:
1. Send (ABM) message (SMTP)
2. Notify ABM Host
3. Receive (ABM) messages (SMTP)
4. Send resolved messages

Address Resolution (AR) Path:
1. User ID and Authorization
2. Policy Decision
3. ABM Address
4. Resolved list of Addresses

Attribute Keying Path

Attribute Keying (AK) Path:
1. User Info. (ID)
2. User Info. (ID)
3. User Attributes
4. User Secret Key
5. Decrypted Email
Security and Privacy Analysis

• Enforcement of sending, read, and receiving policies
 • S/MIME to authenticate sender to ABM server
 • Vulnerability windows: receive subset of read
• Component compromise and collusion
 • MTA or ABM server
 • Clients
• Privacy
 • What should senders and receivers know?

Efficiency Analysis

• Measure costs on each path and try to estimate latencies for mid-size enterprises
• Must conjecture the attributes and types of policies that will be used
• Implementation uses the CP-ABE library [BSW07].
Encryption Time

Equality – e.g., (Position = Faculty), Relational – e.g., (Salary > 150000)

<table>
<thead>
<tr>
<th>Number of Equality Literals</th>
<th>Number of Relational Literals</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1.53s</td>
<td>3.00s</td>
<td>4.49s</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.05s</td>
<td>1.55s</td>
<td>3.05s</td>
<td>4.56s</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.07s</td>
<td>1.57s</td>
<td>3.08s</td>
<td>4.56s</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.09s</td>
<td>1.59s</td>
<td>3.09s</td>
<td>4.60s</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.12s</td>
<td>1.61s</td>
<td>3.12s</td>
<td>4.61s</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.14s</td>
<td>1.65s</td>
<td>3.16s</td>
<td>4.64s</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.17s</td>
<td>1.66s</td>
<td>3.17s</td>
<td>4.63s</td>
</tr>
</tbody>
</table>

Decryption times averaged 352ms.

Key Generation Time

Boolean – e.g., (Position_VAL_Faculty), Numerical – e.g., (Salary = 150000)

<table>
<thead>
<tr>
<th>Number of Numerical Attributes</th>
<th>Number of Boolean Attributes</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0.05s</td>
<td>0.07s</td>
<td>0.10s</td>
<td>0.12s</td>
<td>0.20</td>
<td>0.17s</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.86s</td>
<td>0.87s</td>
<td>0.88s</td>
<td>0.90s</td>
<td>0.93s</td>
<td>0.95s</td>
<td>0.97s</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.67s</td>
<td>1.68s</td>
<td>1.69s</td>
<td>1.70s</td>
<td>1.73s</td>
<td>1.76s</td>
<td>1.78s</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2.44s</td>
<td>2.48s</td>
<td>2.49s</td>
<td>2.52s</td>
<td>2.54s</td>
<td>2.57s</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3.26s</td>
<td>3.28s</td>
<td>3.29s</td>
<td>3.32s</td>
<td>3.34s</td>
<td>3.35s</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>4.05s</td>
<td>4.07s</td>
<td>4.09s</td>
<td>4.12s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>4.87s</td>
<td>4.89s</td>
<td>4.92s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AA Scalability

![Bar chart showing AA Scalability](image)

Other Results Summary

- Policy Specialization
 - Latency proportional to number of rules
 - < 1 second for 150 rules
 - < 12 seconds for 700 rules
- Address Resolution
 - With access control and without confidentiality
 - < 400ms for a 60K RDB
 - < 8 seconds for 60K XML DB
Conclusions

• Messaging (email) based on attributes collected from an enterprise database is feasible and deployable for mid-size enterprises.
• Access control and confidentiality are manageable using attribute-based security mechanisms.
• Improved ABE schemes with better revocation properties are needed.
• Privacy management of attributes needs to be better understood before deploying ABM and ABE.