

US Federal Cyber Security Research Program

NITRD Program

Purpose

- The primary mechanism by which the U.S. Government coordinates its unclassified Networking and IT R&D (NITRD) investments
- Supports NIT-related policy making in the White House Office of Science and Technology Policy (OSTP)

Scope

- Approximately \$4B/year across 14 agencies, seven program areas
- Cyber Security and Information Assurance (CSIA)
- Human Computer Interaction and Information Management (HCI&IM)
- High Confidence Software and Systems (HCSS)
- High End Computing (HEC)
- Large Scale Networking (LSN)
- Software Design and Productivity (SDP)
- Social, Economic, and Workforce Implications of IT and IT Workforce Development (SEW)
- Established by the High-Performance Computing Act of 1991

3

Coordinated Effort on Game-Changers

- It's about trustworthiness of digital infrastructure
 - Security, reliability, resiliency, privacy, usability
 - How can we:
 - Enable risk-aware safe operations in compromised environments
 - Minimize critical system risk while increasing adversaries' costs and exposure
 - Support informed trust decisions, necessitating flexible security strategies, and allowing for effective risk/benefit analyses and implementations
- Strong commitment to focus on game-changing technologies for coordinated cybersecurity R&D agenda

Federal Cybersecurity R&D Strategic Plan

- Research Themes
- Science of Cyber Security
- Support for National Priorities
- Transition to Practice

http://www.whitehouse.gov/blog/2011/12/06/federal-cybersecurity-rd-strategic-plan-released

5

R&D Coordination Through Themes

- Theme ≠ Hard Problem
- Themes provide shared vision of desired end state
- Themes compel a new way of operating / doing business
- Themes attack underlying causes to bring about changes
- Established through robust community discussion of what matters
- Themes recognize that independent thinking is vital to good research

Research Themes

- Tailored Trustworthy Spaces
 - Supporting context specific trust decisions
- Moving Target
 - Providing resilience through agility
- Cyber Economic Incentives
 - Providing incentives to good security
- Designed-In Security
 - Developing secure software systems
- Annually re-examine themes
 - Enrich with new concepts
 - Provide further definition or decomposition

7

Tailored Trustworthy Spaces

In the physical world, we operate in many spaces with many characteristics

- Home, school, workplace, shopping mall, doctor's office, bank, theatre
- Different behaviors and controls are appropriate in different spaces

Yet we tend to treat the cyber world as a homogenous, undifferentiated space

The vision is of a flexible, distributed trust environment that can support functional, policy, and trustworthiness requirements arising from a wide spectrum of activities in the face of an evolving range of threats

TTS Paradigm

- Users can select/create different environments for different activities satisfying variety of operating capabilities
 - Confidentiality, anonymity, data and system integrity, provenance, availability, performance
- Users can negotiate with others to create new environments with mutually agreed characteristics and lifetimes
- Basing trust decisions on verifiable assertions

ç

TTS R&D Program Examples

- Trusted foundation for cyberspace operations [OSD and Service Labs]
- High assurance security architectures [NSA, ONR, AFRL, NIST]
- Content and Context Aware Trusted Router (C2TR) [AFRL]
- Information Security Automation Program [NIST, NSA, DHS]
 - Security Content Automation Protocol (SCAP)
- Access Control Policy Machine [NIST]
- Military Networking Protocol (MNP) program [DARPA]
- High-Level Language Support for Trustworthy Networks [NSF]

Moving Target

- Controlled change across multiple system dimensions to:
 - Increase uncertainty and apparent complexity for attackers, reduce their windows of opportunity, and increase their costs in time and effort
 - Increase resiliency and fault tolerance within a system

11

Moving Target Paradigm

- All systems are compromised; perfect security is unattainable
- Objective is to continue safe operation in a compromised environment, to have systems that are defensible, rather than perfectly secure
- Shift burden of processing onto attackers

MT R&D Program Examples

- Polymorphic Enclaves and Polymorphic Machines [AFRL]
- Self Regenerative, Incorruptible Enterprise that Dynamically Recovers with Immunity [AFRL]
- Clean-slate design of Resilient, Adaptive, Secure Hosts (CRASH) [DARPA]
- Cyber Camouflage, Concealment, and Deception [DARPA]
- Morphing Network Assets to Restrict Adversarial Reconnaissance (Morphinator) [Army]
- Defensive Enhancements for Information Assurance Technologies (DEFIANT) [Army]
- Robust Autonomic Computing Systems [ONR]

13

Cyber Economics & Incentives

- A focus on what impacts cyber economics and what incentives can be provided to enable ubiquitous security:
 - New theories and models of investments, markets, and the social dimensions of cyber economics
 - Data, data, and more data with measurement and analysis based on that data
 - Improved SW development models and support for "personal data ownership"

CEI Paradigm

- Promotion of science-based understanding of markets, decision-making and investment motivation
 - Security deployment decisions based on knowledge, metrics, and proper motivations
 - Promote the role of economics as part of that understanding
- Creation of environments where deployment of security technology is balanced
 - Incentives to engage in socially responsible behavior
 - Deterrence for those who participate in criminal and malicious behavior

15

CEI R&D Program Examples

- Secure and Trustworthy Cyberspace (SaTC) Program (FY12 Solicitation)
 - NSF Computer & Information Science &
 Engineering Directorate + NSF Social, Behavioral
 & Economic Sciences Directorate

Designed-In Security

- Designing and developing SW systems that are resistant to attacks
- Generating assurance artifacts to attest to the system's capabilities to withstand attacks

17

Designed-In Security Paradigm

- Require verifiable assurance about system's attack-resistance to be natively part of the SW design, development, and evolution lifecycle
- Enable reasoning about a diversity of quality attributes (security, safety, reliability, etc.) and the required assurance evidence
- Stimulate further developments in methods and tools for detecting flaws in SW

DIS R&D Program Examples

- Survivable Systems Engineering [OSD/SEI CERT]
- Trusted Computing [DARPA, NSA, OSD, NIST]
- Software Development Environment for Secure System Software & Applications [ONR]
- META (flows, tools, and processes for correctby-construction system design) [DARPA]
- Software Assurance Metrics And Tool Evaluation (SAMATE) [DHS, NIST]

19

Strategic Thrusts

- Research Themes
 - TTS, MT, CEI, DIS
- ⇒ Science of Cyber Security
- Support for National Priorities
- Transition to Practice

Science of Cyber Security

- A major research initiative on the science of security that
 - Organizes the knowledge in the field of security
 - Investigates fundamental laws
 - Results in a cohesive understanding of underlying principles to enable investigations that impact large-scale systems.
 - Enables repeatable experimentation
 - Supports high-risk explorations needed to establish such a scientific basis
 - Forms public-private partnerships of government agencies, universities, and industry

21

Some Potential Science of Security Research Topics

- Methods to model adversaries
- Techniques for component, policy, and system composition
- A control theory for maintaining security in the presence of partially successful attacks
- Sound methods for integrating the human in the system: usability and security
- Quantifiable, forward-looking, security metrics (using formal and stochastic modeling methods)
- Measurement methodologies and testbeds for security properties
- Development of comprehensive, open, and anonymized data repositories

Science of Security Program Examples

- AFOSR 2011 Science of Security MURI
 - Stanford, Berkeley, Cornell, CMU, U of Penn
- NSA Science of Security Lablets
 - UIUC, NC State, CMU
- NSF TRUST Program components
 - Berkeley, CMU, Cornell, San Jose SU, Stanford, Vanderbilt

23

Support for National Priorities

- Goals
 - Maximize cybersecurity R&D impact to support and enable advancements in national priorities
- Examples of Supported National Priorities
 - Health IT
 - Smart Grid
 - Financial Services
 - National Strategy for Trusted Identities in Cyberspace (NSTIC)
 - National Initiative for Cybersecurity Education (NICE)

Transition to Practice

- Concerted effort to get results of federally funded research into broad use
 - Integrated demos
 - Conferences and workshops
 - "Matchmaking" efforts
 - · Among Agencies
 - Between research and product
 - Potential funding for last mile

25

Drivers for next-generation solutions

- Basing trust decisions on verifiable assertions
- Shifting burden of processing onto attackers
- SW (system) lifecycle must natively incorporate verifiable assurance about system's attack-resistance

For More Information

Tomas Vagoun, PhD CSIA IWG Technical Coordinator

National Coordination Office for Networking and Information Technology Research and Development Suite II-405, 4201 Wilson Blvd.

Arlington, VA 22230 Tel: (703) 292-4873 vagoun@nitrd.gov

http://www.nitrd.gov http://cybersecurity.nitrd.gov