
Efficient Hardware Implementations of the Warbler Pseudorandom

Number Generator

Gangqiang Yang, Mark D. Aagaard, and Guang Gong

Electrical and Computer Engineering,
University of Waterloo

g37yang@uwaterloo.ca

July 21, 2015

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 1 / 23

mailto:g37yang@uwaterloo.ca

Outline

1 Lightweight Pseudorandom Number Generator (PRNG) in RFID

2 The Warbler Pseudorandom Number Generator

3 Efficient Hardware Implementations of Warbler

4 Conclusion

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 2 / 23

Lightweight Pseudorandom Number Generator (PRNG) in RFID

Outline

1 Lightweight Pseudorandom Number Generator (PRNG) in RFID

2 The Warbler Pseudorandom Number Generator

3 Efficient Hardware Implementations of Warbler

4 Conclusion

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 3 / 23

Lightweight Pseudorandom Number Generator (PRNG) in RFID

Lightweight Cryptography in Passive RFID Systems

Lightweight cryptography is used for these highly constrained devices (such as
passive RFID tags and WSN nodes), i.e., the area should be less than 2000 GEs.

The typical passive RFID systems include three parts: readers, tags, and

database.

The tiny and inexpensive properties of such RFID systems mean that the tags
have very limited power consumption, constrained memory and computing
capability.

The pseudorandom numbers are used frequently in the current EPC Class 1
Generation 2 RFID systems and will also play a critical role in the future passive
RFID standards.

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 4 / 23

Lightweight Pseudorandom Number Generator (PRNG) in RFID

The Random Numbers in the Passive RFID Systems

RN16 (16-bit random number) is used in many commands of the EPC RFID
systems. It is mainly used for providing verification of the reader identity for the
tags, and providing cover-code (mask) for the data in access,kill,and write
commands.

Reader Tag

Req_RN

RN16

Command||RN16

Figure 1: The RN16 Used for Verification of the Reader Identity.

The random numbers can also be used in the future security extensions of the
EPC Class 1 Generation 2 standard.

Used in the challenge-response based mutual authentication protocols between the
readers and tags.

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 5 / 23

Lightweight Pseudorandom Number Generator (PRNG) in RFID

The Lightweight Pseudorandom Number Generators (PRNGs)

LAMED is designed based on registers, arithmetic logic unit (ALU), XOR and
modular operations. Its estimated area is 1585 GEs.

Melia-Segui et al.’s PRNG and J3Gen rely on the security of linear feedback shift
registers (LFSRs) and a truly random number generator (TRNG). The estimated
area of Melia-Segui et al.’s PRNG is 761 GEs, and the estimated area of J3Gen
with an internal state size 64 is 1419 GEs.

Warbler is designed by using the properties of nonlinear feedback shift registers
(NLFSRs) and the WG-5 transformation modules.

AKARI1B is designed based on the T-function and a non-linear filter function, and
the area before the place and route phase for AKARI1B with an internal state size
64 is 1749 GEs in the UMC Faraday 90nm technology.

The estimated areas (no actual hardware implementations) of the four PRNGs
(LAMED, Melia-Segui et al’s PRNG, Warbler, and J3Gen) are all below 2000 GEs,
the maximum area limit for resource constrained applications.

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 6 / 23

Lightweight Pseudorandom Number Generator (PRNG) in RFID

The Warbler Pseudorandom Number Generator

The sequences generated by Warbler can pass the EPC C1 G2 standard’s

statistical tests as well as the NIST randomness test suite.

This sequence has guaranteed randomness properties, such as period and linear
span.

Warbler has been proved to be sufficiently secure in the EPC C1 G2 RFID

systems.

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 7 / 23

Lightweight Pseudorandom Number Generator (PRNG) in RFID

This Work

In this work, we pay attention to the low-area implementation of Warbler in CMOS
65nm and CMOS 130nm ASICs, and provide the area, maximum clock frequency, and
total power consumption results.

We can achieve areas of 498 GEs and 534 GEs after the place and route phase in
the CMOS 65nm and 130nm ASICs respectively.

The area of our Warbler implementation is smaller than the estimated areas of
LAMED, Melia-Segui et al.’s PRNG, and J3Gen, and also smaller than the areas
of AKARI1B, Grain, Trivium, SI MO N, SP E C K, PHOTON-80/20/16, and
SPONGENT-88.

Two design options. The LFSR counter-based design is better than the binary
counter-based one in terms of area and power consumption.

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 8 / 23

The Warbler Pseudorandom Number Generator

Outline

1 Lightweight Pseudorandom Number Generator (PRNG) in RFID

2 The Warbler Pseudorandom Number Generator

3 Efficient Hardware Implementations of Warbler

4 Conclusion

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 9 / 23

The Warbler Pseudorandom Number Generator

The Description of Warbler

WGT1-5

a17 a0

b16 b0

WGT1-5WGT2-5

c5 c0

⊕
⊕⊕

⊕⊕
c1

γ⊕⊕
⊕

1

5

1

5

NLFSR1

NLFSR2

NLFSR3

⊗WGT1-5

Initialization Running

1

s

t

w

o

5

Figure 2: The Initialization and Running Phases of Warbler

Warbler is mainly built upon three NLFSRs and four WG-5 transformation modules.

WGT1-5 module: WGT-5(x3), the WG-5 transformation with decimation 3.

WGT2-5 module: WGT-5(x), the WG-5 transformation with decimation 1.

Warbler has an internal state of 65 bits: a 45-bit Key and a 20-bit IV.

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 10 / 23

The Warbler Pseudorandom Number Generator

The Behavior of Warbler

WGT1-5

a17 a0

b16 b0

WGT1-5WGT2-5

c5 c0

⊕
⊕⊕

⊕⊕
c1

γ⊕⊕
⊕

1

5

1

5

NLFSR1

NLFSR2

NLFSR3

⊗WGT1-5

Initialization Running

1

s

t

w

o

5

Load the Key and IV (18 clock cycles).

The output of the WGT1-5 module in NLFSR3 is used to feed back to the inputs of NLFSR1
and NLFSR2 in the 36-round initialization phase not in the running phase.

tk can be obtained by every five clock cycles from the 5-bit shift register, which results in a
1/5 (i.e., 1-bit per five clock cycles) throughput of the Warbler output sequence
ok+1, k ≥ 35.

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 11 / 23

Efficient Hardware Implementations of Warbler

Outline

1 Lightweight Pseudorandom Number Generator (PRNG) in RFID

2 The Warbler Pseudorandom Number Generator

3 Efficient Hardware Implementations of Warbler

4 Conclusion

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 12 / 23

Efficient Hardware Implementations of Warbler

Entire Architecture of Warbler

The Top-level Architecture.

FSM Datapath

clk

reset

d1
d2

o Warbler

o valid
d3[4:0]

Init
Load

NLFSR ce3
Run

The FSM.
Our FSM has three states: loading, initialization, and running.

NLFSR1 and NLFSR2 always run after reset, which makes them use only the standard
registers without chip-enable signals.

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 13 / 23

Efficient Hardware Implementations of Warbler

Two Design Options for the Counter

Two design options for the counter: binary counter and LFSR counter.
–	 LFSR counter is designed by using a primitive polynomial (X 6 + X + 1) with an initial

value (1, 1, 1, 1, 1, 1).

–	 The feedback logic of the LFSR counter is smaller than the full-adder of the binary
counter.

– Different states transition conditions affect the area.

States Transition Conditions for our FSM.

States
Binary counter-

based
LFSR counter-

based
Loading (100) → initialization (010) 17 17
Initialization (010) → running (001) 35 39

Gangqiang Yang (University of Waterloo) Warbler PRNG	 July 21, 2015 14 / 23

Efficient Hardware Implementations of Warbler

The Datapath

a17 a0

WGT1-5

⊕
5× 1

a4

Shift5

a7a8a10a15 · · ·· · ·· · ·· · ·· · ·

b16 b0b4b7b8b9b12 · · ·· · ·· · ·· · ·

LoadInit

NLFSR ce3

d1

0

1

0

10

1

′0′
⊕

LoadInit
NLFSR ce3

d2

0

1

1

0

0

1

′0′

⊕

WGT1-5
5× 1

⊕

⊕

s0

s1
s2
s3

s4

c0c1c5 · · ·

⊕⊕

5

Gamma Mult

5× 55

d3

⊕
Load

NLFSR ce3

1

0

WGT1-5
5× 1

WGT2-5
5× 1

(0,0,0,0,WGT2-5)

5

o valid
NLFSR ce3

o Warbler

11

1 1

1

1

1 NLFSR1
o valid

NLFSR2
NLFSR3

Run

5
5

1

1

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 15 / 23

Efficient Hardware Implementations of Warbler

The Implementations of Functions in Finite Field

Logical equation.
2-input AND gate.

o <= a(1) and a(2);

Constant array.
constant and2: std logic vector(0 to 3) := (‘0’, ‘0’, ‘0’, ‘1’);

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 16 / 23

Efficient Hardware Implementations of Warbler

The Implementations of Gamma Mult Module

The Gamma Mult module is used for the calculation of γck in F25 . Under the
polynomial basis representation, the element X ∈ F25 multiplied by γ = α15 can be
computed as follows:

· α15	 + x4α
4) · α15X =	 (x0 + x1α + x2α

2 + x3α
3

x0α
15 + x1α

16 + x2α
17 + x3α

18 + x4α
19 =

= (x2 + x4) + (x2 + x3 + x4)α + (x0 + x3 + x4)α
2 +

(x0 + x1 + x2)α
3 + (x1 + x3 + x4)α

4 .

Thus, Gamama Mult module can be implemented using the logical equation

method.

Gangqiang Yang (University of Waterloo) Warbler PRNG	 July 21, 2015 17 / 23

Efficient Hardware Implementations of Warbler

The Implementations of WGT1-5 and WGT2-5 Modules

We can compute WGT-5(x3) and WGT-5(x) in polynomial basis for every x ∈ F25

by using the logical equation or pre-storing them to two constant arrays (WGT1-5
and WGT2-5 respectively).

The hardware implementations of WGT1-5 module and WGT2-5 module are more
efficient if the constant array method is used rather than the logical equation
method ∗ .

∗G.Yang et al, “Design space exploration of the lightweight stream cipher WG-8 for FPGAs and ASICs”,
WESS 2013.

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 18 / 23

20 65

Efficient Hardware Implementations of Warbler

Table 1: Comparison of Hardware Implementations of Lightweight Primitives.

Key IV/ Internal Area (GEs) Max Throughput Total Tech
Algorithms Block State Before After Frequency @100KHz Power

Size Size* Size P & R P & R (MHz) (Kbps) (nm)

0.296 µWWarbler (LFSR counter) 491† 534‡ 250
@100KHz
0.298 µWWarbler (Binary counter)

45 20 65
500† 543‡ 270

20

@100KHz

130

1.239 µWWarbler (LFSR counter) 464† 498‡ 1430
@100KHz
1.274 µWWarbler (Binary counter)

45 20 65
475† 511‡ 1370

20

@100KHz

65

LAMED 32 32 64 1585 − − − − −
Melia-Segui et al. 16 0 16 761 − − − − −
J3Gen 64 0 64 1419 − − − − −

AKARI1B − − 64 1749† − − 14.2 0.182 µW v

90

PRNG

@100KHz

Grain 80 64 160 − 1259‡ − 100 130
@100KHz

Stream Trivium 80 80 288 − 2088‡ − 100 1.44 µW 130
@100KHz

Cipher Grain 80 64 160 − 1126‡ 1020 100 2.04 mW 65
@1020MHz

Trivium 80 80 288 − 1986‡ 962 100 3.88 mW 65
@962MHz

Block
Cipher

SIMON0

SPECK0
64
64

32
32

96 523† − − 5.6 − 130
96 580† − − 4.2 − 130

0.78 µW

Hash PHOTON-80/20/16 − − 100 865†

Function SPONGENT-88 − − 88 738†

* IV is for PRNGs and stream ciphers, and Block is for block ciphers.
− The corresponding value is not related or not provided by the authors.
 The estimated area.
v The estimated power consumption in UMC Faraday 90nm library.
0 The smallest one in the S IMO N and SPECK families.

−

−

−

−

2.82

0.81

−
1.57 µW
@100KHz

180

130

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 19 / 23

Efficient Hardware Implementations of Warbler

Results Analysis

Breakdown of the implementation results of warbler before the place and route phase.

CMOS 65nm CMOS 130nm
Binary

counter-
based
(GEs)

LFSR
counter-
based
(GEs)

Binary
counter-
based
(GEs)

LFSR
counter-
based
(GEs)Components

FSM State transitions + chip enable logic
Counter

35.25
47.50

39.00
39.25

36.75
51.75

37.50
39.50

Datapath

NLFSR1
18-stage register
WGT1-5
Other feedback logic

67.50
15.50
10.00

76.50
14.50
9.50

NLFSR2
17-stage register
WGT1-5
Other feedback logic

63.75
15.50
10.00

72.25
14.50
9.50

NLFSR3

6-stage register (30 registers)
Gamma Mult
WGT1-5
WGT2-5
Other feedback logic

150.00
13.75
15.50
9.25
32.50

180.00
14.00
14.50
9.50
30.75

Shift5 5-stage register
Other combinational logic

18.75
8.00

21.25
8.00

O valid 6.50 6.50

Totals
Compile simple
Compile ultra
Compile ultra + clock gating
Compile ultra + clock gating (after place & route)

519
505
475
511

515
493
464
498

570
555
500
543

558
541
491
534

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 19 / 23

Efficient Hardware Implementations of Warbler

Results Analysis

The LFSR counters are 17.4% and 23.7% smaller than the binary counters in CMOS 65nm
and CMOS 130nm respectively. However, the total areas of the FSM are only 5.5% and 13%
smaller accordingly.

NLFSR1, NLFSR2, and Shift5 are indeed implemented by the standard registers without
chip-enable signals.

The WGT1-5 and WGT2-5 modules are different in the same technology.
They are 15.50 GEs and 9.25 GEs respectively in CMOS 65nm, and 14.50 GEs and
9.50 GEs respectively in CMOS 130nm.

The specific contents of the WGT1-5 and WGT2-5 look-up tables:

Address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
WGT1-5 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1
WGT2-5 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 20 / 23

Conclusion

Outline

1 Lightweight Pseudorandom Number Generator (PRNG) in RFID

2 The Warbler Pseudorandom Number Generator

3 Efficient Hardware Implementations of Warbler

4 Conclusion

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 21 / 23

Conclusion

Conclusion

The area of our Warbler implementation is smaller than the estimated areas of
LAMED, Melia-Segui et al.’s PRNG, and J3Gen, and also smaller than the areas
of AKARI1B, Grain, Trivium, SI MO N, SP E C K, PHOTON-80/20/16, and
SPONGENT-88.

We have presented two design options (binary counter-based and LFSR

counter-based designs) to efficiently implement Warbler in CMOS 65nm and

CMOS 130nm ASICs.

Our results showed that the LFSR counter-based design is better than the binary
counter-based one in terms of area and power consumption.

Our analysis has verified that the areas of NLFSRs and combinational logic are
dependent upon the type of registers and the adopted technologies.

In addition, we demonstrated that the areas of WG-5 transformation look-up tables
depend on the specific decimation values.

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 22 / 23

Conclusion

Thanks very much!

Q & A?

Gangqiang Yang (University of Waterloo) Warbler PRNG July 21, 2015 23 / 23

	Lightweight Pseudorandom Number Generator (PRNG) in RFID
	The Warbler Pseudorandom Number Generator
	Efficient Hardware Implementations of Warbler
	Conclusion

