
RECTANGLE: A Lightweight Block Cipher 
Suitable for Multiple Platforms

Wentao Zhang,Zhenzhen Bao, 
Dongdai Lin,Vincent Rijmen, 
Bohan Yang,Ingrid Verbauwhede

2015-7-20



Outline
1. Motivation  

2. The RECTANGLE Block Cipher

3.  Design Rationale

4.  Security Analysis

5.  Hardware and Software Performance

6.  Summary



There is a need for new lightweight designs that 
combine the following properties: 
 good security margin against mathematical attacks 
 easily protectable against side-channel attacks 

(according to current state of the art) 
 good performance in software AND hardware
 public design criteria

1. Motivation



2. The RECTANGLE Block Cipher

RECTANGLE
 Block length: 64 bits
 Key length: 80 or 128 bits
 Structure: SP-network with 25 rounds



2. RECTANGLE – Cipher State



2. RECTANGLE – Round Function

The round transformation: 3 steps
1). AddRoundkey: a simple XOR of the round 

subkey
2). SubColumn
3). ShiftRow



2. RECTANGLE – SubColumn
2). SubColumn: parallel application of S-boxes to 
the 4 bits in the same column



2. RECTANGLE – SubColumn (Cont.)

S-box S : F2
4 → F2

4 



2. RECTANGLE – ShiftRow

3). ShiftRow: a left rotation to each row over 
different offsets



2. RECTANGLE - Key Schedule

Two versions: 80-bit and 128-bit key
 Take 80-bit version for example



2. RECTANGLE - Key Schedule (Cont.)

At round i (i = 0, 1,…, 24), the 64-bit subkey
Ki consists of the first 4 rows of the current 
contents of the key register.

A 80-bit Key State and its Two-dimensional Representation



2. RECTANGLE - Key Schedule (Cont.)

After extracting Ki , the key register is 
updated as follows:
1).  Applying 4 S-box operations to the upper right 

part of the key register



2. RECTANGLE - Key Schedule (Cont.)

2). Applying a 1-round generalized Feistel transformation 
to the key register:



2. RECTANGLE - Key Schedule (Cont.)

3).  A 5-bit round constant RC[ i ] is XORed with the 
5-bit key state  (κ0,4||κ0,3||κ0,2||κ0,1||κ0,0)

Note:  the round constants are generated using a LFSR



2. RECTANGLE - Key Schedule (Cont.)

Finally, K25 is extracted from the updated 
key state



3. Design Rationale

3.1  Bit-slice technique
3.2  Shift-Row transformation
3.3  Choice Criteria of S-box
3.4  Key Schedule



3.1 Bit-slice technique

Bit-slice technique:
 In a bit-slice implementation, one software 

logical instruction corresponds to simultaneous 
execution of n hardware logical gates,  n is the 
length of a subblock.



3.1 Bit-slice technique (Cont.)

Examples: 
 Serpent, Noekeon, Keccak and JH are 4 

cryptographic algorithms that can benefit from the 
bit-slice technique for their software performance.

 It is worth noticing that the 4 ciphers not only 
perform well in hardware but also in software. 



3.1 Bit-slice technique (Cont.)

The main idea of the design of RECTANGLE is 
to make use of bit-slice technique in a lightweight 
manner.



Consider a 64-bit SP-network block cipher
 A 64-bit state is arranged as a 4 × 16 array
 First applying the same S-box to each column 

independently
 Then, the P-layer should make each column 

dependent on some other columns

3.2  Shift-Row transformation 



In such a situation, 16-bit rotations are probably 
the best choice: 
 achieve the goal of mixing up different columns
 simple wirings in hardware implementation
 easily implemented in software using bit-slice 

technique

3.2  Shift-Row transformation (Cont.) 



3.2  Shift-Row transformation (Cont.) 

Parameter selection: full dependency after a 
minimal number of rounds
 16 candidates 
 For each candidate, after 4 rounds, each of the 64 

input bits influence each of the 64 output bits. 
 From them, we choose one: (0, 1, 12, 13)



3.3  Choice Criteria of S-box

For a better security against DC and LC, a new 
idea, restrict the  two values of an S-box:

the number of differentials (a, b) with wt(a)=wt(b)=1
the number of linear approximations (a, b) with 
wt(a)=wt(b)=1

For more details:  A New Classification of 4-bit Optimal S-boxes and 
its Application to PRESENT, RECTANGLE and SPONGENT, 
FSE’2015



efficient implementation
 the RECTANGLE S-box: a sequence of 12 basic 

logical instructions:

3.3  Choice Criteria of S-box (Cont.)



3.4  Key Schedule

Take 80-bit key for example:
 Usage of 4 S-boxes to provide appropriate 

confusion;
 The 1-round generalized Feistel transformation is 

used to provide appropriate diffusion;
 Usage of round constants to eliminate symmetries.



4. Security Analysis

4.1  Security against Mathematical Attacks

4.2  Protection against Side Channel Attacks



4.1 Security against Mathematical Attacks

We evaluated in detail the security of RECTANGLE 
against differential, linear, impossible differential, 
integral and key schedule attacks.
 we can mount a differential attack on 18-round 

RECTANGLE, which is the highest number of rounds 
that we can attack.

We believe that 25-round RECTANGLE has an 
enough and comfortable security margin.



4.2  Protection against Side Channel Attacks 

Threshold implementation and masking of 
RECTANGLE are feasible and not harder than 
other lightweight block ciphers:
 the RECTANGLE S-box: the only nontrivial part in 

threshold implementation and masking
 According to the work of Begul Bilgin et al 

(CHES’2012), the RECTANGLE S-box belongs to 
class 266, only 3 shares and within each share only one 
pair of G and F are required for protection against 1st 
order attack. 



5.  Hardware and Software Performance

5.1  Hardware performance

5.2  Software performance on 64-bit CPU

5.3 Software performance on 8-bit AVR



5.1  Hardware Performance

Verilog HDL, Mentor Graphics Modelsim SE PLUS 
6.6d 
Synopsys Design Compiler D-2010.03-SP4, UMC’s 
0.13μm.1P8M Low Leakage Library





5.2  Software Performance on 64-bit CPU

2.5GHz Intel(R) Core i5-2520M CPU, Intel C++ 
compiler



A Comparison with several other ciphers:



Atmel ATtiny45, AVR  studio 6.0

Static implementation:  the seed key is expanded 
and the round keys are loaded into SRAM

5.3  Software Performance on 8-bit AVR

Key size 
[bits]

Code size 
[bytes]

(enc. + k.s.)

RAM
[bytes]

Enc. 
[Cycles]

Key Schedule 
[Cycles]

80 636 226 1920 1878
128 614 232 1920 1462



3 different implementations:



6. Summary

RECTANGLE satisfies all the requirements that 
we listed in the motivation:



6. Summary

RECTANGLE satisfies all the requirements that 
we listed in the motivation:
 good security margin against mathematical attacks 
 easily protectable against side-channel attacks 
 good performance in software AND hardware
 public design criteria



6. Summary

Furthermore:
 Largely due to our careful selection of the S-box, 

RECTANGLE achieves a very good security-
performance tradeoff. 

 The selection of the P-layer is also important: 
 3 rotations: extremely low-cost in hardware, but 

also very efficient in software.
 The combination of the S-box and the P-layer 

brings the cipher a very limited clustering of 
differential/linear trails. 



6. Summary

In the end, we strongly encourage further security 
analysis of RECTANGLE.



Thanks for your attention！

Questions?


	RECTANGLE: A Lightweight Block Cipher Suitable for Multiple Platforms
	Outline
	1. Motivation
	2. The RECTANGLE Block Cipher
	2. RECTANGLE – Cipher State
	2. RECTANGLE – Round Function
	2. RECTANGLE – SubColumn
	2. RECTANGLE – SubColumn (Cont.)
	2. RECTANGLE – ShiftRow
	2. RECTANGLE - Key Schedule
	2. RECTANGLE - Key Schedule (Cont.)
	2. RECTANGLE - Key Schedule (Cont.)
	2. RECTANGLE - Key Schedule (Cont.)
	2. RECTANGLE - Key Schedule (Cont.)
	2. RECTANGLE - Key Schedule (Cont.)
	3. Design Rationale
	3.1 Bit-slice technique
	3.1 Bit-slice technique (Cont.)
	3.1 Bit-slice technique (Cont.)
	3.2  Shift-Row transformation 
	3.2  Shift-Row transformation (Cont.) 
	3.2  Shift-Row transformation (Cont.) 
	3.3  Choice Criteria of S-box
	3.3  Choice Criteria of S-box (Cont.)
	3.4  Key Schedule
	4.  Security Analysis
	4.1  Security against Mathematical Attacks
	4.2  Protection against Side Channel Attacks 
	5.  Hardware and Software Performance
	5.1  Hardware Performance
	幻灯片编号 31
	5.2  Software Performance on 64-bit CPU
	幻灯片编号 33
	5.3  Software Performance on 8-bit AVR
	幻灯片编号 35
	6. Summary
	6. Summary
	6. Summary
	6. Summary
	幻灯片编号 40

