
Five DRBG Algorithms Based on

Hash Functions and Block

Ciphers

John Kelsey

NIST

July 2004

Overview

? Why So Many?

? Preliminaries

? Hash Based DRBGs

? Block Cipher Based DRBGs

? Wrapup

Preliminaries

Why So Many?

Properties of All DRBGs

Some Security Definitions

Five Symmetric DRBGs?

? Three hash-function based

? Two block-cipher based

? Why have so many?
– Performance/security assumption tradeoffs.

– Let designer use what he has available.

– Minimize additional algorithm dependence.

Preliminaries: Every DRBG Has....
?	 Security Level

–	 80, 112, 128, 192, or 256 bits

–	 k-bit security level corresponds to a k-bit AES key

– Security level determines what mechanisms this DRBG
can support.

?	 A Working State
–	 At least k+64 bits, for security level k

–	 Protected just like a key

?	 Assumption: No innocent party ever does more than
264 of anything!

6

Every DRBG Supports Three
“Methods”

? Instantiate—Start the DRBG in a secure state.

? Reseed—Put the DRBG into a new, secure state.

? Generate—Produce pseudorandom output.
– Update state after call for backtracking resistance.

– Limit of 232 bytes of output per request.

– Limit of 232 Generate requests.

– Optionally accept additional input—prediction
resistance.

Backtracking Resistance

compromised!

State 1 State 2 State 3 State 4 State 5

Output 1 Output 2 Output 3 Output 4 Output 5

?	 Compromise of state has no effect on security of
previous outputs.

– Example: Compromised State 3 has no effect on
security of Outputs 1,2.

?	 All our DRBGs provide backtracking resistance!
–	 Easy to do algorithmically
– Per Generate call

? Captured modules, forward secrecy

Prediction Resistance

compromised!

State 1 State 2 State 3 State 4 State 5

Output 1 Output 2 Output 3 Output 4 Output 5

?	 Compromise of state has no effect on security of
later outputs.

– Example: Compromised State 3 has no effect on
security of Outputs 4, 5.

?	 Requires additional entropy
– Our DRBGs can support it per Generate call

? Allows recovery from compromise or weak state.

Basic Outline of All Symmetric
DRBGs' Generate Calls:

? Process additional-input, if any
– Update state with additional-input, if it exists.

Otherwise, skip this step.

? Generate the pseudorandom bits
– Use current state to produce the bits as requested.

? Update state to provide backtracking resistance
– If additional-input is present, use it;

– Otherwise, update with just current state.

Entropy and Derivation Functions

?	 We assume inputs with at least k bits of min
entropy.

?	 We sometimes use derivation functions to process
inputs:

– Map input with k bits of min-entropy to random
looking string of any desired length.

–	 Ideally, indistinguishable outputs from random.

– Practical requirement is no bad interaction with
entropy source distributions or DRBG algorithms.

11

Hash-Based DRBGs

HMAC-DRBG

KHF-DRBG

Hash-DRBG

Preliminaries:

The Compression Function

?	 Hash functions built on top of compression

function:

– Message padded to whole number of blocks,
including length of input

– Each message processed in turn

? Compression function parameters:

–	 Inlen = message input size (512 for SHA1)
–	 Outlen = hash output size (160 for SHA1)

?	 Note: All our designs can be implemented with
top-level hash interface, e.g., hash(X)

Message

Pad

Message || padding

M0 M2M1

Break into blocks

H0
Compress

H3H1
Compress

H2
Compress

Illustration: Hashes and Compression Functions

Hash-Based DRBGs

Security Assumptions

?	 Hashes designed for
–	 Collision Resistance
– Preimage Resistance

? DRBGs need pseudorandomness properties

?	 Possible that all our hash-based DRBGs are

broken, but hashes are still okay

– But for HMAC-DRBG, it would break HMAC as a
PRF.

?	 Note: hashes used same way for key derivation,
etc., all the time!

HMAC-DRBG

HMAC

K

V outputs

? Generation: Run HMAC in OFB-mode
– Derive new HMAC key between generate calls

? Updating State: Apply HMAC to V || inputString

? Security based on PRF assumption for HMAC

16

HMAC-DRBG: Generate

HMAC

K

V outputs

To produce N bits:

tmp = “”

while bitLength(tmp) < N:
V = HMAC(K,V)

tmp = tmp || V

return leftmost N bits of tmp

HMAC-DRBG:

Security of Generate Outputs

?	 If K good HMAC key, then...

Distinguishing Generate outputs from random

means

Distinguishing HMAC from random function

HMAC-DRBG: Updating State

? After state, given no additional input, we do:

K = HMAC(K, V || 0x00)
V = HMAC(K, V)

? Backtracking resistance:
– Learn previous K from new K ==

invert hash function

? Random selection of keys:
– Distinguish new K from random w/o old K==>

Distinguish HMAC from random function
– No cycling problems given our limits/assumptions

HMAC-DRBG: Updating With Input

? Instantiate, Reseed, and Generate: all use Update
internal function
K = HMAC(K, V || 0x00 || inputString)

V = HMAC(K, V)

K = HMAC(K, V || 0x01 || inputString)

V = HMAC(K, V)

Question: Do we get required security properties?

HMAC-DRBG: Recovering From
Compromise

? Suppose K known, input not:
K = HMAC(K, V || 0x00 || inputString)

K is just result of hashing inputString with known
prefix, then hashing result with known prefix:

Attacker who can't guess inputString should not know
new K

Recall full procedure:
K = HMAC(K,V || 0x00 || inputString)
V = HMAC(K,V)

K = HMAC(K,V || 0x01 || inputString)

V = HMAC(K,V)

21

HMAC-DRBG: Resisting Chosen
Input Attack

? Attacker chooses inputString, doesn't know K
K = HMAC(K, V || 0x00 || inputString)

V = HMAC(K, V)

K = HMAC(K, V || 0x01 || inputString)

V = HMAC(K, V)

? Attacker gets chosen input attack on HMAC
– Few queries, never more than 264

– Doesn't see outputs directly—can't see collisions!

HMAC-DRBG: Performance

? Overhead on each Generate call:
– 6 compress calls

? Per outlen bits of output:
– 2 compress calls

? Reseed, Instantiate:
– 12 compress calls

HMAC-DRBG: Summary

? HMAC-DRBG is:
– Simple design

– Makes easy assumptions on hash

– Probably most robust hash-based design

? HMAC-DRBG Performance:
– Slowest of hash-based DRBGs proposed

KHF-DRBG

KHF

K0, K1

V outputs

¯

Compress

(pad)V

K0' output

K1

KHF core function

?	 KHF core function takes one compress call

?	 Can be computed less efficiently with generic hash
calls.

?	 Result: better performance, minimal number of input
bits known to attacker

KHF as a PRF

Compress	
output

K0'

KHF core function

?	 KHF is an attempt to make a PRF that's faster
than HMAC—one compress call per KHF() call.

?	 Note:
– Attacker knows only 72 bits of input to compression

function
– Attacker knows precise XOR differences within

Generate call

 ¯
(pad) K1V

26

KHF-DRBG: Security of Generate

? Same basic design as HMAC-DRBG.
– Using OFB-mode instead of counter-mode means

random-looking known-inputs only

– Limits to number of queries

? Distinguishing Generate outputs from random

means

Distinguishing KHF from random function

KHF-DRBG: Update

?	 Internal function update used for Instantiate,
Reseed, and state update within Generate

?	 In words:
– Generate a new key for KHF with KHF-DRBG

– Generate a new key for KHF with hash_df

– XOR the two together to get the new KHF key

KHF-DRBG: Update in pseudocode

Update(inputString):

tmp = “”

while bitLength(tmp) < inlen + outlen - 72:

V = KHF (K0, K1, V)
tmp = tmp || V

K0, K1 = leftmost (inlen + outlen - 72) bits of tmp

XOR

hash_df (inputString)

V = KHF (K0, K1, V)

KHF-DRBG: Update
Recovery from Compromise

? Suppose attacker knows (K0, K1), not inputString

? Attacker knows new (K0, K1) is
–	 Known value XOR hash_df (inputString)

?	 If hash_df (inputString) generates good KHF key
given unguessable input,

then KHF-DRBG recovers from compromise.

KHF-DRBG: Update

Chosen Input Attack

?	 Suppose attacker chooses inputString, doesn't
know (K0, K1).

?	 Attacker knows new value is:
unknown pseudorandom value

XOR

known/chosen hash_df output

?	 Even if attacker allowed to choose hash_df
output, can't mount chosen input attack w/o
breaking KHF-DRBG generate.

31

KHF-DRBG: Summary
?	 Same basic design as HMAC-DRBG: Use PRF in

OFB-mode
?	 Update uses derivation function since KHF not

defined on arbitrary-length inputs.

?	 Performance: a little better than HMAC-DRBG

–	 Per call overhead (SHA1): 6 compress calls.
–	 Per outlen bit block: 1 compress call.
–	 Not parallelizeable

?	 Arguably somewhat less robust than HMAC
DRBG (depends on which attacks)

Hash-DRBG

outputs

Hashgen—core of Hash-DRBG

V

0x03

V
 +1

Hash

Hash ctr+

C +1

Hash-DRBG: Updating State

Hash-DRBG: History and Overview

? In some sense, derived from
– FIPS-186 (DSA) PRNG

– RSAREF/BSAFE PRNG

? Many revisions as requirements changed

? Good performance, but strong assumptions on
hash function required

Note: seedlen is size of seed, always at least
k + 64, where k is security level

Hash-DRBG: Security of Generate

? Output generation handled by Hashgen(V, n):

tmp = “”
while bitLength (tmp) < n:

tmp = tmp || hash (V)

V = V + 1

return leftmost n bits of tmp

? Security not closely related to hash fn properties
? Attacker sees many successive hash outputs, tries

to learn V or distinguish output sequence from
random.

Hashgen: Black Box Attacks

?	 Trivial attack (theoretical): If Hashgen visits 2N

states, attacker guesses 2seedlen-N states, computes
outputs, waits for match.

?	 Extends to whole Hash-DRBG:
–	 Precompute 2seedlen-N states and resulting outputs

–	 Wait for outputs from 2N states

– Match and recover state

? Requires seedlen >= k+64 for k = security level.

36

Hashgen and Hash Function Attacks

?	 Attacker facing hashgen:
–	 Knows all but seedlen bits of input for each output

–	 Knows relationships between each input

?	 If compression function is random oracle, this is
secure.

?	 No known or suspected weaknesses when used
with SHA family of hashes.

Hash-DRBG: Updating State in
Generate

? At end of Generate, low outlen bits of V updated
V = (V + C + ctr + hash(0x03 || V)) mod 2seedlen

ctr = ctr + 1

? Backtracking resistance from hashing V

– Hash with constant to avoid duplicating other hash

computations
– Computing previous V from new V given C,ctr ==>

inverting hash

? C is constant of size outlen
? ctr is 32-bit integer

Hash-DRBG: Instantiate and Reseed

? Instantiate and Reseed use hash_df:
Instantiate (seed):

V = hash_df (seed)

C = hash (0x00 || V)

ctr = 0

Reseed (seed):

V = hash_df (0x01 || V || seed)

C = hash (0x00 || V)

ctr = 0

Hash-DRBG Instantiate/Reseed:
Recovery From Compromise

? Does Instantiate get to a secure state? Does
Reseed recover from compromise? Recall:
V = hash_df(seed)

or

V = hash_df(0x01 || V || seed)

? Suppose attacker can't guess seed
– If hash_df gives good Hash-DRBG seed when input

unguessable, we get secure state

– V should look random w/o knowledge of seed

Hash-DRBG: Chosen Input Attacks
? Reseed chooses new V as:

V = hash_df (0x01 || V || seed)

? Generate chooses new V before generation as:
V = V + C + ctr + hash (0x02 || V || inputString)

? Suppose attacker doesn't know V, knows seed or
inputString

– hash_df has unguessable input string—good seed

– Even if attacker chose output of hash, couldn't do
anything to V

– But if can choose inputString to output V....

41

Hash-DRBG: Summary
?	 Hashgen is the core: runs hash function in counter

mode

?	 Best performance of any hash-based DRBG
–	 Per-call overhead: 1 compress call

–	 Per outlen-bit block: 1 compress call

– Hashgen is parallelizeable

? Security based on more demanding assumptions.
–	 Attacks on compression function more powerful...

–	 ...but no known attacks exist.

Hash-Based DRBGs: Wrapup

? Do we need all three?

? Performance issues:
– Per call overhead important in some applications

– Per outlen-bit block important in others

? Security issues:
– HMAC-DRBG and KHF-DRBG expose hash function

to fewer possible attacks.

– Hash-DRBG exposes hash to much more powerful
attacks, but gives better performance.

43

Block Cipher Based DRBGs

AES-OFB

AES-CTR

TDEA-OFB

TDEA-CTR

Block Cipher Based DRBGs:
Preliminaries

? Counter and OFB-modes.

? New key generated after each Generate request.

? State is always keysize + blocksize.

? Can use derivation function or conditioned

entropy bits.

? Choice of approved ciphers:
– Best performance and security from AES.

– Tighter limits on number of outputs for TDEA

Block Cipher DRBGS:
General Security Comments

?	 DRBG security always relates cleanly to block
cipher security

?	 Distinguishing DRBG outputs from random

means

Distinguishing block cipher from random
permutation

?	 Block size is very important, choice of OFB/CTR
much less so.

Counter and OFB DRBGs

Enc

K

V

+1

outputs

Counter-mode DRBG

Enc

K

V outputs

OFB-mode DRBG

Both DRBGs share some
properties:

? One encryption per
blocksize bit output

? Cipher is used only in
forward direction

? Rekey after each Generate
request

? Simple relation between
DRBG security and cipher
security

Block Cipher DRBGs: Security of
Generate Outputs

?	 Both DRBGs have straightforward reduction to
security of block cipher for one Generate call

?	 New key generated from same mechanism to

satisfy next call

– If attacker given key, can distinguish from random,
can break DRBG

?	 Permutation/Function difference is relevant
–	 TDEA's 64-bit block causes some problems
–	 AES' 128-bit block is easier to work with

48

Distinguishing DRBG Outputs

?	 Generate output: no blocks repeat

–	 Can't happen for CTR
–	 Won't happen for OFB (if so, disaster!)

?	 Ideal random sequence expects some chance of
repeats:

– In 228 128-bit output blocks, prob. about 2-73.

Given 232 such output sequences, about 2-41.

– In 213 64-bit output blocks, prob. about 2-39

In 216 such requests, prob. about 2-23.

But this is less than 264 bound on innocent operations

used elsewhere!

Block Cipher DRBGs: Updating State

?	 New state (K, V) generated as follows:
update (seed):

T = DRBG run to generate keysize + blocksize bits
T = T ¯ seed
(K, V) = T

? Assumes seed is keysize + blocksize bits
?	 When seed comes from freeform input, DRBG

uses bc_df to derive random-looking input of

right size.

Block Cipher DRBGs:
Backtracking Resistance

?	 Consider attacker who learns (K, V), and wants to
know previous K.

–	 (K, V) = known value XOR DRBG outputs from old K

– If attacker can recover old K, can break DRBG

? New K, V selected almost at random:
– Attacker knows no block of K, V can be same as block

seen in output sequence

–	 This is never relevant

Block Cipher DRBGs:

Derivation Functions and Conditioned

Entropy Sources

?	 Block cipher DRBGs support two kinds of input:

– Freeform input—process with block cipher derivation
function.

–	 Conditioned entropy input—use directly

?	 Block cipher derivation function is expensive and
complicated

– When gate count or code size is an issue, nice to be
able to avoid using it!

Block Cipher DRBGs: Instantiation
and Recovery from Compromise

?	 Instantiate sets (K, V) to constants and calls

Reseed.

?	 Suppose attacker knows (K, V), not seed input to
update function.

– (K, V) = known values XOR seed

? Note that seed is either

–	 Conditioned entropy source output (random)
–	 bc_df output (pseudorandom when input unguessable)

?	 In either case, attacker knows nothing of (K,V)

after update function.

53

Block Cipher DRBGs:

Chosen Input Attacks

?	 Consider update function (K, V) not known to
attacker; input seed chosen by attacker.

?	 New (K, V) is DRBG output XOR seed

?	 Attacker who can't break DRBG can't even
distinguish new (K, V) from random

Block Cipher DRBGs: Wrapup

? CTR vs OFB: No practical security difference
– Both included for implementor convenience

– Likely reuse of code/hardware from other chaining
modes or protocols

? AES vs TDEA: Block size is a big deal!
– TDEA has distinguishers for large output sequences

from many different Generate requests

– Probably not practically relevant

– AES’s larger block size is a win

Symmetric DRBGs Wrapup:

How Do I Choose a DRBG?

? Implementation complexity / gate count
– Reuse existing components

? Performance requirements
– Overhead per Generate call
– Work per bit of output
– Parallelism in Hash_DRBG and CTR_DRBG

? Security assumptions
– Based on block cipher strength
– Based on various assumptions on hash function

Symmetric DRBGs Wrapup:
Open Issues
?	 Current designs assume large outputs per

Generate request
– Should we tune these to smaller Generate outputs,

larger numbers of Generate calls per reseed?
–	 Biggest impact with TDEA-OFB/TDEA-CTR:
– Limit Generate to 256 output bytes, and we can allow

232 Generate calls!

?	 Do we always need backtracking resistance?
–	 DSA/ECDSA?

?	 Should we assume outlen bit security in hash
based DRBGs, or outlen/2 bit security?

