
Introduction WebCrypto API Overview Attacks Conclusions

Security Analysis of the W3C Web
Cryptography API

Kelsey Cairs1 Harry Halpin2 Graham Steel3

1Washington State University, Seattle, USA

2W3C/Inria, Paris, France

3Cryptosense, Paris, France

Security Standardization Research Conference, NIST, Dec
5th 2016

Introduction WebCrypto API Overview Attacks Conclusions

Outline

1

2

3

4

Introduction

WebCrypto API Overview

Attacks

Conclusions

Introduction WebCrypto API Overview Attacks Conclusions

Javascript Cryptography

Considered Harmful?
Javascript lacked a cryptographic PNRG (Math.random)
No BigInt support
People creating their own insecure Javascript APIs
(OpenPGP.js)
Or secure ones like Stanford Javascript Crypto Library

World Wide Web Consortium (W3C)
Standards body for Web standards like HTML5
XML-DSIG, Content Security Policy (XSS attack
prevention), Web Authentication ...
Identity in the Browser Workshop
(http://www.w3.org/2011/identity-ws/)
Consensus from browser vendors to fix browser crypto

Introduction WebCrypto API Overview Attacks Conclusions

Role of Formal Verification

Security API
Provide as much functionality as possible
Yet prevent attacks and errors (high vs. low-level API)
A security API consists of a set of functions that are offered
to some other program that uphold some security
properties, regardless of the program making the function
calls and what functions are called (Bond, 2001)
No clear threat model, but clear security properties
Can we prove security properties for standard APIs in
browser before standardization?

Introduction WebCrypto API Overview Attacks Conclusions

Formal Verification of APIs

Set-up
Using model checking and theorem proving to verify
security properties
Dolev-Yao (DY) model: Crypto-primitives are functions on
bitstrings

Tools
Alloy: SAT solving over infinite models (Trusted Platform
Module 1.2)
Scyther: Unbounded sessions, no control flow (Signal)
Tamarin: Unbounded sessions, mutable global state (TLS)
Proverif: Unbounded sessions, Horn clauses (Signal)
AVISPA: Unbounded sessions, mutable global state,
based on rewrite rules with SAT solver (Web Crypto API)

Figure: W3C Web Web Cryptography API Proposed
Recommendation

Introduction WebCrypto API Overview Attacks Conclusions

W3C Web Cryptography API

Introduction WebCrypto API Overview Attacks Conclusions

W3C Web Cryptography API

Overview
RandomSource: Pseudorandom number generation.
CryptoKey: JSON object for key material.
CryptoOperation: Functions such as encryption and
wrapping, along with error codes.

Key Types
Type: Public, private or secret (symmetric)
Extractable: A boolean specifying whether the key
material may be exported to Javascript
Algorithm: The algorithm used to create the key
Usages: Attributes which specify the key’s allowed
operations

Introduction WebCrypto API Overview Attacks Conclusions

Applications of WebCrypto API

Examples
Netflix
uProxy (Google)
Signal
Crypto.cat
Digital Signatures for eGovernment

Introduction WebCrypto API Overview Attacks Conclusions

var algorithmKeyGen = {

name: "RSA-PSS",

modulusLength: 2048,

publicExponent: new Uint8Array([0x01, 0x00, 0x01]),

};

var algorithmSign = {
name: "RSA-PSS",
saltLength: 32,
hash: {
name: "SHA-256"

}
};

Introduction WebCrypto API Overview Attacks Conclusions

window.crypto.subtle.generateKey(algorithmKeyGen,

false, ["sign","verify"]).then(

function(key) {

var dataPart1 = convertPlainTextToArrayBufferView("hello,");

var dataPart2 = convertPlainTextToArrayBufferView(" world!");

return window.crypto.subtle.sign(algorithmSign,

key.privateKey)

.process(dataPart1)

.process(dataPart2)

.finish();

},

console.error.bind(console, "Unable to generate a key")

).then(
console.log.bind(console, "The signature is: "),
console.error.bind(console, "Unable to sign")

);

Introduction WebCrypto API Overview Attacks Conclusions

Security Goals

Security Assumption
The origin is trusted when the WebCrypto API is initialized and
secrets are successfully encrypted and stored on the client.

Threat Model
A temporary compromise of the Javascript environment after
secrets have been encrypted by WebCrypto and stored on the
client (XSS attack). Attacker goal is to decrypt secrets.

Security Property
Access to the raw key material that is private, secret, or
explicitly typed as non-extractable should not be accessible to
Javascript.

Introduction WebCrypto API Overview Attacks Conclusions

AVISPA Model

Keys

keystore(K) : key → fact

Attacker Goal

step i_encrypt(M, K) :=

iknows(M) ∧ iknows(K)

⇒ iknows(scrypt(K , M))

step i_decrypt(M, K) :=

iknows(scrypt(K , M)) ∧ iknows(K)

⇒ iknows(M)

Introduction WebCrypto API Overview Attacks Conclusions

Attacks on WebCrypto API

Goal
Systematically modeling different use cases using AVISPA and
assessing the resulting attacks on the Web Crypto API

WebCrypto API Attack Overview
Export Attack: Exporting extractable key data and
changing usages.
API Attack: Using API calls to recover clear text of
encrypted communication via building on the attack on key
wrapping.

Introduction WebCrypto API Overview Attacks Conclusions

Export Attack

Attack Overview
Usages can be added and changed simply by wrapping and
unwrapping the extractable key:
wrap(skey , ikey), unwrap(skey , ikey)

AVISPA Model
Instance Variables: key , ikey : key
st : type
Initial State: sym(skey) ∧ sym(ikey)
∧keystore(skey , st) ∧ keystore(ikey , st)
∧extract(skey) ∧ usages(ikey)
Goal: addUsage() : encryptUsage(skey)

Introduction WebCrypto API Overview Attacks Conclusions

API Attack

Extending to Key Exchange
As key wrapping is a composition of export and encrypt, if an
attack existed on a wrapped key, then the same attack would
apply to an encrypted message that uses this wrapped key.

Symmetric encryption The sender wraps the key using a symmetric key
shared with the receiver who unwraps the key

Asymmetric encryption The sender wraps the key using public key for
the receiver who unwraps with the corresponding private key

Symmetric encryption with asymmetric signing The symmetric
encryption case augmented by signing with the sender’s private key

Asymmetric encryption with asymmetric signing The asymmetric
encryption case augmented by signing with the sender’s private key

Fixing attack
Using distinct keys for each direction of communication and
using distinct usages attributes prevents this type of attack.

SHA-384 . .
SHA-512 . .
CONCAT . .
HKDF-CTR . .
PBKDF2 . × Known weaknesses

Introduction WebCrypto API Overview Attacks Conclusions

CFRG draft: Security Guidelines for Cryptographic Algorithms in
the W3C Web Cryptography API

Algorithm/Mode legacy future Note
RSAES-PKCS1-v1_5 × ×
RSA-OAEP . .
RSASSA-PKCS1-v1_5
RSA-PSS
ECDSA
ECDH

.

.

.

.

×
.
×
.

No security proof

Weak provable security results

AES-CBC . . NB not CCA secure
AES-CFB . . NB not CCA secure
AES-CTR . . NB not CCA secure
AES-GCM . .
AES-CMAC . .
AES-KW . × No public security proof
HMAC . .
DH . .
SHA-1
SHA-256

×
.

×
.

See text

Introduction WebCrypto API Overview Attacks Conclusions

Fixing the WebCrypto API

Recommendations for Errors
All errors caused by improper padding or incorrect key
length/formatting are indistinguishable. (Padding errors will
be returned from a different subroutine than the other
errors and be discovered first, so any information about the
source of the error is potentially a distinguishing factor.)
Lengths of unwrapped keys are verified to match one of
the predefined key lengths (not accepted)
All bytes of padding are checked for conformance (not
accepted).

Introduction WebCrypto API Overview Attacks Conclusions

High-level API

Defaults?
Randomize the IVs
AES-GCM mode for symmetric crypto
RSA-PSS should be used for digital signatures
emphRSA-OAEP should be used for encryption.
ECDH for Diffie-Hellman Key Exchange (Curve 25519
when added)
SHA-256 for hash functions
HMAC for MACs
Key size 2048 for RSA, 256 for symmetric and EC crypto.

Introduction WebCrypto API Overview Attacks Conclusions

Take-home message

For any future API
Key-wrapping must use special operating environment to
keep private ke material secure
Enforce usages on keys by default
Keep any information out of error codes

Beware of “backwards-compatible” arguments for
algorithms
Larger issues re isolation and key storage (keys are
super-cookies for tracking!) on the Web

Too many frameworks!

Introduction WebCrypto API Overview Attacks Conclusions

Next Steps for Standards Research

API issues
APIs seem simple, but more tricky to test than protocols.
Real-world applications use multiple APIs with user
permissions and (possibly conflicting) security and privacy
goals.
Can we integrate provable security properties into specs?
(WebIDL)
Get independent security expertise involved early
Don’t assume major vendors know what they are doing

Start modeling in design stage
See work on TLS 1.3 for good example.
Make formal verification part of conformance testing.
Automatic Generation of test-suite?

Figure: The take-home lesson

Introduction WebCrypto API Overview Attacks Conclusions

Any Questions?

	Introduction
	WebCrypto API Overview
	Attacks
	Conclusions

