Secure App Execution On Commercial Mobile Devices By Means Of Bare Metal Hypervisors

KATRIN HOEPER, KEVIN GUDETH, RON BUSKEY (MOTOROLA SOLUTIONS)
MATTHEW PIRRETTI
Outline

Motivation
Why COTS?
Security Challenges
Recommended Solution
Conclusions
Motivation

Mobile devices become dominant computing platform

- estimated 10B+ mobile units vs 1B+ desktop units
- # sensitive apps on personal mobile devices growing

2. CyLab & McAfee, “Mobility and Security”, May 2011
Security Sensitive Apps

Already prominent
• corporate email
• other corporate applications

Emerging
• electronic wallets
• mobile eHealthCare
• broad band public safety applications
• less conspicuous law enforcement use

1. CyLab & McAfee, “Mobility and Security”, May 2011
Why COTS?

Benefits of Commercial-Off-The-Shelf (COTS) Devices

• cost reduction
• shorter time to market
• reduced number of carried devices
• maintained user experience
• inconspicuous form factor
Past Solutions

Meet security requirements of sensitive applications by running the apps on a special-purpose device

- custom hardware design
- locked down capability
- limited or no general connections allowed
- hardened operating system
Security Challenges

Establish trust within commercial products

Verify execution of sensitive applications/processes

Expect attack vectors through

- compromise of the OS
- presence of malicious or exploitable applications
- compromise of software-based crypto
Security Exploit

- Apps
- OS
- Drivers
- Hardware

- App 1
- App 2
- Trusted App
- Trusted App
- Memory management unit
- Memory
Security Exploit
Design Principles

Minimize trusted computing base (TBC)
Isolate trusted applications
Reuse trusted software
Be OS-agnostic
Don’t rely on technical competency of users
Minimize performance degradation
Keep changes to COTS devices to a minimum
Enable portability to new hardware
Uniformly enforce system policy
Our Recommended Solution

Bare metal hypervisor

- runs directly on the processor
- all guest OSs run in their own virtual machine
- shared security-critical device drivers run in individual VMs and are security state aware
- (optionally) individual trusted applications may run in their own virtual machine
Exploit Mitigation

- Attack mitigated by security state aware drivers

- Trusted App
 - Virtualized drivers and hardware
 - Memory management unit
 - Hardware

- Apps
 - App 1
 - App 2

- OS Drivers
- Hypervisor

- Vulnerabilities
Example Use Cases

Perform cryptographic operations in common, trusted, and formally verified partition or in external trusted hardware accessed through virtualized driver.

Provide a policy enforcement engine that is isolated from each guest OS.

Isolate trusted from untrusted apps.

Provide multiple OS environments.
Conclusions

In our recommended solution, bare metal hypervisors

• enable the satisfaction of all design principles
• provide a tool for meeting security and privacy standards and implementation guidelines
• remove significant costs associated with special purpose hardware
• build on the features of COTS devices rather than restrict their use
Thank you!

Katrin.Hoeper@motorolasolutions.com

Kevin.Gudeth@motorolasolutions.com

Ron.Buskey@motorolasolutions.com

Matthew Pirretti
Back Up Slides
Baremetal vs Hosted Hypervisor