
Hash-based Signatures:
An Outline for a New Standard

Andreas Hülsing∗, Stefan-Lukas Gazdag†, Denis Butin‡ and Johannes Buchmann‡
∗Department of Mathematics and Computer Science

Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

andreas.huelsing@googlemail.com
†genua mbh

Domagkstrasse 7, 85551 Kirchheim bei Muenchen, Germany
stefan-lukas_gazdag@genua.eu

†TU Darmstadt
Hochschulstrasse 10, 64289 Darmstadt, Germany

{dbutin,buchmann}@cdc.informatik.tu-darmstadt.de

Abstract. Hash-based signatures are quantum-
safe and well understood. This paper presents an
outline for a new standard extending the recent
Internet-Draft by McGrew & Curcio. The goals
of this new standard are twofold:
• To extend the existing draft to include XMSS

and its multi-tree version;
• To prepare for possible extensions to cover

stateless schemes.

Keywords: Hash-based signatures, Standard-
ization, Merkle trees, XMSS.

I. Introduction
Hash-based signatures recently gained a lot of

attention as a potential replacement for today’s
signature schemes when large-scale quantum com-
puters are built. The reasons for this are manifold.
The main reason probably consists in the reliable
security estimates — also for security against attacks
aided by quantum computers. This distinguishes hash-
based signatures from other post-quantum signature
schemes. Additionally, hash-based signatures need no
computationally expensive mathematical operations
like big integer arithmetic. The only requirement is a
secure cryptographic hash function.
Hash-based signatures were initially proposed by

Merkle [20] in the late 1970s and regained a lot of
attention over the last decade [1], [3]–[12], [14]–[17],
[21], [22]. These new schemes improve parameter sizes

and runtimes, present security reductions, present
implementations, and finally lower the security as-
sumptions on the used hash function, i.e. provide
collision resilience.

Recently, McGrew and Curcio published an
Internet-Draft [19] for a hash-based signature scheme.
Their draft essentially covers the scheme proposed
by Merkle at the end of the 1970s. The advantage
of this scheme over newer ones is that Merkle was
granted a patent on this basic scheme that already
expired. Hence, there cannot be any IPR claims for
this scheme. However, to the best of our knowledge,
there are no active or pending patents on XMSS and
its variants. On the downside, the scheme in [19] has
large signatures, relatively slow runtimes compared to
other alternatives (especially for key generation), an
unnecessary limit on the number of signatures that
can be generated with one key pair and requires too
strong assumptions about the security of the used
hash-function.

This paper outlines a standard that includes the
scheme from McGrew and Curcio’s draft as a special
case but otherwise covers the most efficient hash-
based signature scheme XMSS [4] and its multi-tree
variant [16]. Thereby, the draft also covers most basic
building blocks used by the recently proposed stateless
hash-based signature scheme SPHINCS [2]. That way,
it prepares for a later extension.

Merkle’s hash-based signatures. A hash-based
signature scheme starts from a one-time signature
scheme (OTS) — a signature scheme where each
key pair must only be used to sign one message.
If an OTS key pair is used to sign two different
messages, an attacker can easily forge signatures.
Merkle used Lamport’s scheme [18] and variants
thereof. To construct a many-time signature scheme,
Merkle [20] proposed to use a binary hash tree later
called Merkle tree. In a Merkle tree, the leaves are
the hash values of OTS public keys. Each inner node
is computed as the hash of the concatenation of its
two child nodes. If a collision resistant hash function
is used, this means that the root node can be used
to authenticate all the leaf nodes, i.e. all the OTS
public keys.

In a Merkle signature scheme (MSS) the root node
of the Merkle tree becomes the public key, the set of
all OTS secret keys becomes the secret key. For hash-
based OTS the secret keys are random bit strings.
Hence, instead of storing all OTS secret keys, one can
store a short seed and (re-)generate the OTS secret
keys using a cryptographically secure pseudorandom
generator. To prevent reuse of OTS key pairs, they
are used according to the order of the leaves, starting
with the leftmost leaf. To do this, the scheme keeps
as an internal state the index of the last used OTS
key pair.
The signature of the ith message is Σ =

(i, σOTS, pkOTS,i,Authi), containing the index i, the
OTS signature σOTS on the message using the ith
OTS secret key, the ith OTS public key pkOTS,i, and
the so called authentication path Authi of the ith OTS
public key. The authentication path Authi consists of
all the sibling nodes of those nodes on the path from
the ith leaf to the root.

To verify the signature Σ on messageM , the verifier
first validates the OTS signature on the message,
using pkOTS,i. If this verification succeeds, the OTS
public key is verified. Towards this end, the ith leaf is
computed as the hash of pkOTS,i. Then, a root value is
computed, using the nodes in Authi. If this root value
matches the one given as public key, the signature is
accepted, otherwise it is rejected.
Recall that a binary tree of height h has 2h

leaves. Hence, a MSS with a tree of height h can
be used to sign N = 2h messages. For runtimes,
the determining parameter is N . Key generation

requires about 2h hash function calls and is hence
linear in N . Signing consists of one OTS signature
and the authentication path computation. This can
be done in time logarithmic in N using e.g. the
BDS tree traversal algorithm from [6] to compute
the authentication path. Verification time is also
logarithmic in N .
For sizes, the important parameter is the output

length of the hash function n. The public key is a n
bit hash value. The secret key consists of a n bit seed
(assuming pseudorandom key generation; and a public
state for the BDS algorithm in the order of n logN
if BDS is used). The signature size of the classical
MSS using Lamport’s scheme is ≈ 2n2 + n log2 N ,
i.e. quadratic in n, where the 2n2 is caused by the
OTS and the n log2 N by the authentication path1.
Typical values for n and N are n = 256 and N = 220.

For a more detailed overview, also describing tree
traversal algorithms, see [7].

The eXtended Merkle Signature Scheme
(XMSS). The improvements of the last decade led
to XMSS and its multi-tree version XMSSMT . The
main differences compared to the basic MSS are
smaller signatures and collision resilience, which
are actually closely related as we will show below.
In addition, XMSSMT allows to speed-up key and
signature generation times at the cost of slightly larger
signatures. These improvements go along with the
following changes:
First, XMSS uses the Winternitz OTS (WOTS).

The main advantage of WOTS is that to verify a
signature a public key is computed and compared to
the given one. When used in a MSS, this means that
the MSS signature does not need to contain pkOTS,i.
Instead, verification first computes pkOTS,i from the
OTS signature and then uses this OTS public key
to compute a root value. If the computed root value
matches the one in the public key, the OTS signature
was valid and the used OTS key pair was authentic.
This reduces signature size from ≈ 2n2 + n log2 N
to ≈ n2 + n log2 N , which is roughly a factor of 2
improvement. Furthermore, WOTS provides a trade-
off between signature size and runtime, controlled by
the Winternitz parameter w ∈ N. Signatures shrink

1Here we consider a straightforward optimization where
not the whole OTS public key is sent but those nodes not
computable from the signature.

logarithmically in w (i.e. ≈ n2/ log2 w+n logN) while
runtimes grow sub-linear in w, i.e. by a factor of
w/ log2 w.
Second, while MSS requires a collision resistant

hash function, XMSS reduces this requirement to
weaker security assumptions. This requires changing
WOTS and the tree construction. Essentially, bit-
masks are introduced and used to mask the inputs
to the hash function before every hash computation.
For a scheme with tree-height h, this comes at the
price of slightly more than h additional 2n bit values
in the public key to publish the bitmasks. The most
important impact of this is that to achieve a security
level of b bits, one can use a n = b bits hash function.
For MSS, a n = 2b bit hash function is required to
protect against birthday attacks. This reduces the
signature size by another factor of two. Moreover,
looking for example at MD5 and SHA1, there exist
‘practical’ collision attacks while the weaker properties
XMSS uses (like second-preimage resistance) are still
unbroken and there is not much progress in this
direction so far.

Finally, XMSSMT introduces a trade-off that allows
to reduce key generation time from O(N) to O(d d

√
N)

at the cost of increasing signature size by a factor of
d. It also slightly improves the worst-case signature
generation time. XMSSMT uses a certification tree
of XMSS key pairs. This means, d layers of XMSS
key pairs are used. The one on the top layer is used
to sign the public keys (i.e. root nodes) of the key
pairs on the layer below. These key pairs are used in
turn to sign the public keys of the key pairs on the
layer below, and so on. Finally, the key pairs on the
lowest layer are used to sign messages. During key
generation only the first key pair on each layer has to
be generated, the generation of the remaining ones is
distributed over signature generations.
This multi-tree construction is necessary for two

cases. On the one hand, it allows to generate key
pairs that can be used for a virtually unlimited
number of signatures, i.e. N = 250. This was not
possible with a single-tree scheme due to the key
generation time linear in N . On the other hand,
this improvement allows to implement key generation
also on resource-constrained devices like smart cards.
Previous implementations of single-tree schemes had
to perform key generation on a more powerful device
like a PC and transfer the key pair to the resource-

constrained device afterwards.
For a more detailed overview that also covers

provable security in detail see [13].

McGrew & Curcio’s draft. The draft in [19] covers
MSS with one change; WOTS is used as an OTS
instead of Lamport’s scheme. The used hash function
has to be collision resistant. Hence, for a security level
of b bits one needs n = 2b. Therefore, the performance
figures look as follows. Key generation time is linear
in N , signing and verification times logarithmic in N .
The public key has 2b bits. The secret key consists
of a 2b bit seed and the BDS state of 2b log2 N bits.
The signature size is ≈ 4b2 +N2b. Please note that
the draft does not dictate a specific algorithm for
authentication path computation. We assume that
the BDS algorithm is used. However, the comparison
is independent of this choice.

Our draft. The draft proposed in this paper uses
WOTS+ from [14] as OTS. As tree construction
we use the XMSS tree construction first proposed
in [10]. These two ingredients already define single-
tree XMSS. As mentioned above, the main technical
difference is that these two constructions use bitmasks
to mask the inputs to the hash function. Hence, the
scheme described in [19] might be viewed as single-tree
XMSS with empty bitmasks. Moreover, we specify a
multi-tree setting.

The used hash function only has to guarantee weak
security properties2. Hence, for a security level of b
bits one needs n = b. Performance figures look as
follows. Key generation time is O(d d

√
N), signing and

verification times logarithmic in N . The public key
has ≈ (2 log2 N + 1)b bits. The secret key consists of
a b bit seed and the BDS state of b log2 N bits. The
signature size is ≈ db2 +Nb.
Allowing for a single-tree scheme with empty bit-

masks includes the scheme from [19] as one case. Fur-
thermore, this prepares for the extension to stateless
schemes, as SPHINCS uses XMSSMT as a building
block. As outlined above the specified scheme has
several security and performance advantages over the
scheme specified in [19]. In addition, the multi-tree
version allows for easy delegation of signing rights.

2To be specific, we require a second-preimage resistant
undetectable one-way function. Actually, in both cases we also
need a PRF and/or a PRG for the pseudorandom key generation
and derandomization of random message hashes.

This is important as it removes the requirement to
keep a synchronized state which becomes necessary
for example if the same key should be shared between
several devices or threads (consider for example TLS
load balancing).

Organization. We start in Sec. II with the draft
for WOTS+. In Sec. III we describe XMSS, and in
Sec. IV its multi-tree variant. In Sec. V, we discuss
parameter choices. We conclude in Sec. VI with a
synthesis and a request for feedback.

Notation. Throughout this paper we use the fol-
lowing notation. The data type bitsx represents
x bit strings, i.e. elements of {0, 1}x. The function
xor(a, b) returns a bitsx which holds the bitwise
exclusive or of the two inputs a, b that also have type
bitsx. Similarly, the function concatenate(a, b) on
input of a bitsx type a and a bitsy type b returns
a bits(a+b) type holding the string concatenation
a‖b. For an array we write array[i] to address its
i + 1th element (i.e. the first element has address
0). We use the functions ceil(x) that for a real
number x returns the smallest integer greater x and a
mod b that returns the remainder of a/b as an integer
between 0 and b− 1.

II. WOTS+

The main building block of a hash-based signature
scheme is the OTS. We use WOTS+ from [14]. In
the following we specify three functions: WOTS_genPK,
WOTS_sign, and WOTS_pkFromSig. These are the
functions used within XMSS. In addition we specify
the function chain, used by WOTS+ internally. We
start with parameter definitions. For a discussion on
concrete parameters, see Section V.

Parameters. The scheme is instantiated with a
hash function hash_n_n that, given a bitsn type,
outputs a bitsn type holding the message digest.
In practice, hash_n_n might be implemented using
any cryptographically secure hash function with n bit
outputs. As parameters, the scheme takes the message
length m (m will be one of the typical message digest
lengths) and the Winternitz parameter w ∈ {4, 8, 16}.
The scheme can deal with any integer w ≥ 2, but we
decided to limit the choices as these values give the
best trade-offs and allow for easy implementations.
These two parameters determine the value ` computed

as: `1 =
⌈

m
log2(w)

⌉
, `2 =

⌊
log2(`1(w−1))

log2(w)

⌋
+ 1, ` =

`1 + `2.

Function chain. The function chain (Alg. 1) com-
putes an iteration of hash_n_n on an n bit input using
a vector of random n bit bitmasks. In each iteration
a bitmask is first XORed to the intermediate result
before it is processed by hash_n_n. Please note that
these bitmasks are part of the XMSS (or XMSSMT)
public key. Hence, we simply assume they are given
here. In the following, bm is a length w − 2 array of
bitsn types (that will contain the bitmasks).

Algorithm 1: bitsn chain (bitsn X, int i, int
s, bitsn [w-2] bm)
Input: Input value X, start index i, steps s,

bitmasks bm.
Output: The value obtained by iterating

hash_n_n s times on input X using
the bitmasks starting at index i.

1 if s == 0 then
2 return X
3 end
4 if (i+ s) ≥ w then
5 return NULL
6 end
7 bitsn T = chain(X, i, s− 1, bm);
8 T = hash_n_n (xor(T, bm[i+ s− 1]));
9 return T

Function WOTS_genPK. A WOTS+ secret key sk
is a ` element vector of random n bit strings. At
this point we consider this value as given. It can
either be sampled uniformly or generated using a
cryptographically secure pseudorandom generator. A
WOTS+ key pair defines a virtual structure that
consists of ` hash chains of length w. The n bit strings
in the secret key define the start node for one hash
chain, each. The public key (Alg. 2) consists of the
end nodes of these hash chains. To compute the hash
chains the function chain (Alg. 1) is used. Please
note that the same bitmasks are used for all chains.

Function WOTS_sign. A WOTS+ signature σ is a `
element vector of n bit strings. A message is mapped
to ` integers between 0 and w − 1, taking a base w
representation and appending a checksum. Each of

Algorithm 2: bitsn[`] WOTS_genPK
(bitsn[`] sk, bitsn[w − 2] bm)

Input: Secret key vector sk, bitmasks bm.
Output: Public key vector pk.

1 bitsn [`] pk;
2 for int i = 0; i < `; i+ + do
3 pk [i] = chain(sk[i], 0, w − 1, bm);
4 end
5 return pk

these integers is used to select a node from a different
hash chain. These selected nodes form the signature
(Alg. 3). Please recall that all values that we allow
for w are powers of two. Hence, log2 w is an integer.
Assuming log2 w divides m, we can view a bitsm

type as a vector of unsigned integers between 0 and
w − 1, each described by log2 w bits. Similar to [19]
we use a function coef (bitsm X, int i, int b) that
returns the unsigned integer represented by the ith
b bits of X. For instance, coef ((011010110100), i,
3) returns 0112 = 3 (0102 = 2, 1102 = 6) for i = 0
(i = 1, i = 2, respectively).
Function WOTS_pkFromSig. Given a signature σ, a
message M , and the bitmasks bm, WOTS_pkFromSig
(Alg. 4) computes the corresponding public key value
pk. This is done by recomputing the message mapping
and continuing the hash chains from the signature
values. To verify the signature, this public key value
has to be verified. In XMSS, this is done by checking
the authenticity of this public key value.
Choices made. We picked WOTS+ out of the
different available WOTS schemes. Our reasons are
the mild security assumptions made on the hash
function, the tight security reduction which gives
greater exact security, and the performance benefits
(see [13] for a comparison of the different WOTS
variants). We fixed w to be a power of 2 on the
one hand, which allows for a simpler, more efficient
implementation of the message mapping. On the other
hand, we restrict w to the set {4, 8, 16}. We did not
include bigger values, as for these values, signature
size decreases significantly while the decrease becomes
decreasingly significant for greater values of w. We
did not include w = 2 as w = 4 leads to roughly
the same runtimes while shrinking the signature size
by a factor of 2. The reason is that while the chains

Algorithm 3: bitsn[`] WOTS_sign
(bitsn[`] sk, bitsm M, bitsn[w − 2] bm)

Input: Secret key vector sk, message M ,
bitmasks bm.

Output: Signature σ on M .
1 bitsn [`] σ;
2 unsigned int csum = 0;
3 unsigned int[`] msg;
4 unsigned int `3 = ceil(log2 `1(w − 1));
5 Append (m mod log2 w) 0 bits to M ;
6 for int i = 0; i < `1; i+ + do
7 msg[i] = coef(M, i, log2 w);
8 end
9 for int i = 0; i < `1; i+ + do

10 csum += w − 1− msg[i];
11 end
12 Convert csum to a bits`3 and append (`3

mod log2 w) 0 bits;
13 for int i = 0; i < `2; i+ + do
14 msg[i+ `1] = coef(csum, i, log2 w);
15 end
16 for int i = 0; i < `; i+ + do
17 σ[i] = chain(sk[i], 0,msg[i], bm);
18 end
19 return σ

get twice as long and hence increase runtime, the
number of chains is roughly halved. E.g., for the most
important setting of m = n = 256 we get ` = 265
for w = 2 and ` = 133 for w = 4 (Bear in mind
that signature size is `n bits and runtime is `w hash
function calls).

III. XMSS
XMSS is currently the most efficient hash-based

signature scheme. It subsumes different improvements
from the last decade. Compared to the classical MSS,
there are three main differences. First, XMSS uses
a collision resilient WOTS variant. Here we decided
to use WOTS+ described in the last Section. Second,
regarding tree construction, the computation of inner
nodes was changed to achieve collision resilience.
The change consists in XORing bitmasks with the
inputs to the hash function. Third, leaf computation
is altered to achieve collision resilience. Instead of
applying a collision resistant hash function, another
binary hash tree is used to compress the WOTS public

Algorithm 4: bitsn[`] WOTS_pkFromSig
(bitsn[`] σ, bitsm M, bitsn[w − 2] bm)

Input: Signature σ, message M .
Output: Public key vector pk.

1 bitsn [`] pk;
2 unsigned int csum = 0;
3 unsigned int[`] msg;
4 unsigned int `3 = ceil(log2 `1(w − 1));
5 Append (m mod log2 w) 0 bits to M ;
6 for int i = 0; i < `1; i+ + do
7 msg[i] = coef(M, i, log2 w);
8 end
9 for int i = 0; i < `1; i+ + do

10 csum += w − 1− msg[i];
11 end
12 Convert csum to a bits`3 and append (`3

mod log2 w) 0 bits;
13 for int i = 0; i < `2; i+ + do
14 msg[i+ `1] = coef(csum, i, log2 w);
15 end
16 for int i = 0; i < `; i+ + do
17 pk [i]=chain (σ[i], msg[i], w-1-msg[i], bm);
18 end
19 return pk

keys. This tree is called L-tree. Within the L-tree,
bitmasks are used, like for the XMSS tree.
The research paper introducing XMSS [4] also

describes a pseudorandom key generation algorithm.
As this is not relevant for interoperability, we do
not discuss it here. However, we suggest to use
pseudorandom key generation and refer to [4]. The
only requirement is that the used method provides the
same security level as the remaining scheme. Moreover,
for tree and authentication path calculation, a tree
traversal algorithm is needed. We only present a
very simple algorithm since this is irrelevant for
interoperability, too. Note that much more efficient
alternatives — like the BDS algorithm [6] — exist,
and should be used in practice.

We start by listing the parameters for XMSS. Some
required subroutines called ltree and treeHash are
then defined. Afterwards, the key and signature
generation as well as the verification algorithms are
defined.

Parameters. Besides the hash function hash_n_n

needed for WOTS+, XMSS uses a second hash
function hash_2n_n that compresses a bits2n type
to a bitsn type. In addition, a hash function hash_m
which can handle arbitrary length bit strings (bits∗)
as inputs and outputs a bitsm type is used. Moreover,
a pseudorandom function family prf_m is needed. It
takes arbitrary length bit strings (bits∗) and a bitsn

type key as input, and outputs a bitsm type. All these
functions can be implemented using a cryptographic
hash function; see Section V for details. Further
parameters are the tree height h ∈ N that determines
the number of signatures N = 2h per key pair and the
Winternitz parameter w defined in the last section.
The scheme uses a = max{2(h + dlog `e), w − 2}
bitmasks, produced during key generation.

Function ltree. One of the main differences between
XMSS and the MSS is the way the OTS public
keys are compressed to leaves. XMSS uses a separate
binary hash tree for this, called L-tree. The following
function ltree implements this. It takes a WOTS+

public key and compresses it to a single bitsn type
using a binary tree with bitmasks. Again, we assume
that the bitmasks are externally given.

Algorithm 5: bitsn ltree (bitsn [`] pk, bitsn

[a] bm)
Input: WOTS+ public key pk, and bitmasks bm.
Output: The bitsn type root node of a binary

hash tree built on top of pk.
1 unsigned int `′ = `;
2 unsigned int j = 0;
3 while `′ > 1 do
4 for i = 0; i < b`′/2c ; i++ do
5 pk[i] = hash_2n_n (
6 concatenate(xor(pk[2i], bm[j]),
7 xor(pk[2i+ 1], bm[j + 1])));
8 end
9 if l′ == 1 mod 2 then

10 pkbl′/2c+1 = pkl′ ;
11 end
12 l′ = dl′/2e;
13 j = j + 2;
14 end
15 return pk1

Function treeHash. One of the main computations

required for XMSS key and signature generation is
computing nodes inside the tree. This can be done
with the treeHash algorithm proposed by Merkle.
The algorithm computes leaves one by one and, with
each new leaf, tries to finish the computation of
as many inner nodes as possible. We assume the
algorithm takes the whole XMSS secret key SK.
If pseudorandom key generation is used, the seed
together with access to the pseudorandom generator
is enough. The algorithm uses a bitsn[h − 1] type
stack for which we assume that typical stack functions
push and pop are available. To improve readability,
we assume the existence of a function select(SK, x)
that outputs the bitsn[`] type containing the secret
key of the WOTS+ key pair that belongs to the xth
leaf.

Algorithm 6: bitsn treeHash (bitsn[N` +
2] SK, unsigned int s, unsigned int h, bitsn[a] bm)
Input: Secret key SK, start leaf index s, target

node height h, bitmasks bm.
Output: Root node of tree of height h with left

most leaf being the hash of the sth
OTS pk.

1 bitsn[h− 1]Stack;
2 bitsnnode;
3 bitsn[`] pk;
4 for i = 0; i < 2h; i++ do
5 pk = WOTS_genPK (select(SK, i), bm);
6 node = ltree (pk, bm);
7 while Top node on Stack has same height h′

as node do
8 node = hash_2n_n (concatenate(
9 xor(Stack.pop(), bm[2`+ 2h′]),

10 xor(node, bm[2`+ 2h′ + 1])));
11 end
12 Stack.push(node);
13 end
14 return Stack.pop()

Function XMSS_genPK. The XMSS secret key con-
sists of N`+ 1 uniformly random bitsn types, where
the last one is used as a PRF key, followed by one
bitsn type that is reserved to store the index of the

last used WOTS+ key pair and initialized with 03.
Here, we assume it is given to make the algorithm
independent of the secret key generation procedure. A
complete XMSS key generation algorithm must first
sample these secret key elements, or generate them
using a cryptographically secure pseudorandom gener-
ation procedure. The public key generation algorithm
XMSS_genPK takes the secret key SK as input. Then
a bitmasks are chosen uniformly at random. Here, we
assume the existence of a randomness source rand(x)
that returns x uniformly random bitsn types. The
root node is constructed using TreeHash (Alg. 6).
The public key is a data structure consisting of a+ 1
bitsn: PK = [root, bm[0], bm[1], . . . , bm[a− 1]].
The same bitmasks are used for WOTS+ on the

one hand and the XMSS tree and L-tree on the other
hand. Moreover, if a tree traversal algorithm like the
BDS algorithm is used, the algorithms state also must
be initialized during XMSS_genPK. For more details,
see the respective algorithm descriptions [6].

Algorithm 7: bitsa+1 XMSS_genPK (bitsn[N`+
2] SK)
Input: Secret key SK.
Output: Public key SK.

1 bitsn[a] bm = rand(a);
2 bitsn root;
3 root = treeHash (SK, 0, h, bm);
4 bitsn[a] PK = concatenate(root , bm);
5 return PK

Function XMSS_sign. The signature algorithm signs
a message M given as an arbitrary length bit string4.
The function XMSS_sign takes the message bits∗
M , the secret key SK and the bitmasks bm. During
signature generation, the secret key is updated, i.e.
the index is incremented by one. The algorithm
outputs the evolved key and a signature on M .
An XMSS signature is a bit string of length h +
n + `n + (h − 1)n = h + (` + h)n. The first h
bits keep the index of the used WOTS+ key pair.
The next n bits store the randomness used for

3We stick to a bitsn type to ease notation. To save space,
one can restrict this last element to a bitsh type.

4Actually, the maximum input length for hash_m will deter-
mine the limit here.

randomized hashing. The following `n bits store the
WOTS+ signature and the last (h − 1)n bits store
the authentication path. We assume the existence of
a subroutine bitsn[(h − 1)] buildAuth(bitsn[N` +
2] SK, bitsn[a] bm, bitsh i) that, on input of the
secret key, the bitmasks and an index, outputs the
authentication path for this index. We emphasise
again that this should be replaced by one’s favorite
tree traversal algorithm.

Algorithm 8: bitsh+(N`+`+h+2)n XMSS_sign
(bits∗ M, bitsN`+2 SK, bitsn[a] bm)

Input: Message M , secret key SK, bitmasks bm.
Output: Updated secret key SK followed by

XMSS signature Σ.
1 bitsh i = (unsigned int) SK[N`];
2 SK[N`] = SK[N`] + 1;
3 bitsn[h− 1] Auth = buildAuth(SK, bm, i);
4 bitsn r = prf_m(SK[N`+ 1],M);
5 bitsm M ′ = hash_m(concatenate(r,M));
6 bitsn[`] σ = WOTS_sign(select(SK, i), M ′, bm);
7 bitsh+(`+h)n Σ = (i, r, σ,Auth);
8 return concatenate(SK,Σ)

Function XMSS_verify. XMSS signature verifica-
tion entails computing the WOTS+ public key from
the WOTS+ signature, which is achieved using
WOTS_pkFromSig. The computed WOTS+ public key
is then used together with the authentication path
to compute a root node. This root node is compared
to the first value of the XMSS public key. If they are
identical, the outcome of the signature verification is
successful.

Choices made. Like for WOTS+, the main reason
to choose XMSS is collision resilience and the implied
smaller signature size. While [4] does not deal with
the message hash, we propose randomized hashing
to achieve collision resilience for this part as well.
Based on the presented scheme, it is possible to build
a forward secure construction. To that end, the use of
a forward secure prg is necessary. This aspect is not
describe here, but is to be included in future stages.
For further information about the requirements and
the construction, see [4].

Algorithm 9: Boolean XMSS_verify
(bitsh+(`+h)n Σ, bitsm M, bitsn[a+ 1] PK)

Input: XMSS signature Σ = (i, r, σ,Auth),
message M , and XMSS public key PK.

Output: true if signature is valid, false
otherwise.

1 bitsm M ′ = hash_m(concatenate(r,M));
2 bitsn [`] pk = WOTS_pkFromSig (σ, M ′, bm);
3 bitsn [2] node;
4 node [0] = ltree (pk, bm);
5 for k = 1; k < h; k ++ do
6 if

⌊
i/2k

⌋
mod 2 == 0 then

7 node[1] = hash_2n_n (concatenate(
xor(node[0], bm[2`+ 2k]),
xor(Auth[k − 1], bm[2`+ 2k + 1]));

8 else
9 node[1] = hash_2n_n(concatenate(

xor(Auth[k − 1], bm[2`+ 2k]),
xor(node[0], bm[2`+ 2k + 1]));

10 end
11 node[0] = node[1];
12 end
13 if node[0] == PK[0] then
14 return true
15 else
16 return false
17 end

IV. XMSSMT

XMSSMT [16] is a generalization of XMSS allowing
faster key generation and, as a consequence, more
signatures per key pair. A single XMSSMT tree
consists of several layers of XMSS trees. The trees on
the top and intermediate layers are used to sign the
roots of the trees on the layer below. The trees on
the lowest layer are used to sign the actual messages.
Therefore, the public key still only needs the root of
the top tree (and the bitmasks), while an XMSSMT

signature has to provide all intermediate signatures
and authentication paths on the way to the top tree’s
root. In the following we define the three functions
10, 11 and 12 of XMSSMT . They use the XMSS algo-
rithms from the last section with small modifications.
For instance, randomized message hashing is only
needed on the lowest layer. On the other layers, the
messages to be signed are the root nodes of other trees

that only have n bits. Hence, we add descriptions of
those modified versions, too.
Please note that the full performance potential

of XMSSMT can only be achieved using distributed
key and signature generation. In this case, the key
generation algorithm generates the first tree on each
layer. The generation of remaining trees is distributed
among signature generations. We leave this out here
as it is not linked to interoperability. For details
see [16]. Throughout this section we assume the idea
of pseudorandom key generation is understood and
omit the discussion. We consider a uniformly random
secret key as given. We now start with the parameter
definition for XMSSMT .

Parameters. As XMSS is a building block of
XMSSMT , it uses all the functions required by XMSS.
Moreover, a total tree height h (a key pair can be used
to sign N = 2h messages) and a Winternitz parameter
w ∈ {4, 8, 16} is needed. The only XMSSMT -specific
parameter is the number of layers d ∈ N∗. In contrast
to [16], we use the same tree height h/d and the same
Winternitz parameter w for all tree layers. When
n 6= m, the parameter ` of WOTS+ key pairs on
the lowest layer differs from the one of WOTS+ key
pairs on higher layers, as only n bit values have to be
signed. We stick to ` for the ‘`’-value on the lowest
layer, computed using w and m. We use `n for the
‘`’-value on all other layers, computed using w and n.
For further information about parameters, see Sec. V.

Function XMSSMT_genPK. The XMSSMT secret key
consists of s = 1 + N` +

∑d−1
i=1 2i(h/d)`n uniformly

random bitsn types. The last one is used as PRF
key, and one bitsn type, set to zero, is reserved
for the index of the last used WOTS+ key pair on
the bottom layer. Like for XMSS, we assume the
existence of a function select(SK, x, y) that outputs
the bitsn[N`n] (bitsn[N`], resp. for layer 0) type
containing the secret key of the XMSS key pair that
belongs to the xth tree on the yth layer without the
PRF key and the index. XMSSMT key generation
(Alg. 10) begins with the random generation of a =
max{2(h+ dlog `e), 2(h+ dlog `ne), w − 2} bitmasks
bm. The same bitmasks are used on each layer. Then,
the root node of the top layer tree is generated using
a slightly modified variant of XMSS_genPK (Alg. 7)
denoted by XMSS_genPK′. The algorithm XMSS_genPK′

equals XMSS_genPK without the first line. as it takes

the bitmasks as input. The XMSSMT public key
PKMT is a bitsn[a+ 1] type that contains the root
of the top layer tree followed by bm, exactly like an
XMSS public key.

Algorithm 10: bitsn[a + 1] XMSSMT_genPK(
bitsn[s+ 1] SKMT)
Input: Secret key SKMT .
Output: Public key PKMT .

1 bitsn[a] bm = rand(a);
2 bitsn root =

XMSS_genPK′(select(SKMT , 0, d− 1), bm);
3 bitsn[a+ 1] PKMT = concatenate(root, bm);
4 return PKMT

Function XMSSMT_sign. The XMSSMT signature
generation algorithm (Alg. 11) consists of the signa-
ture generation proper and of the secret key update.
The latter only consists of increasing the index stored
in the last bitsn of the secret key. The signing itself
involves signing M using a tree on the bottom layer,
generating all its ancestor trees, and signing the roots
of each of these trees using the respective parent
tree. When using distributed signature generation
as described in [16], this is reduced to signing the
message on the bottom layer and a few operations
to update a state. XMSSMT_sign uses XMSS_sign and
a variant we denote by XMSS_sign′. The latter is
equal to XMSS_sign but it omits hashing the message
(lines 4 and 5 are missing, M ′ = M) and the output
signature does not contain index i and randomness r.
An XMSSMT signature is a t = h+(`+(d−1)`n +h)n
bit string. The first h bits take the index i of the
used WOTS+ key pair on the lowest layer, followed
by n bits storing the randomness for the message
hash. Next, there are the d XMSS signatures (without
indices and randomness) starting with the message
signature on layer 0 followed by the signatures on the
root nodes ordered by increasing layer number.
Function XMSSMT_verify. XMSSMT signature verifi-
cation (Alg. 12) roughly consists of d XMSS signature
verifications. As a subroutine, it uses XMSS_verify′

which equals XMSS_verify but returns the com-
puted root node node[0] from line 13 instead of
a boolean. Moreover, it uses XMSS_verify′′ which
equals XMSS_verify′ but also omits the message hash

Algorithm 11: bitst XMSSMT_sign (bits∗M,
bitsn[s+ 1] SKMT , bitsn[a+ 1] bm)
Input: Message M , XMSSMT secret key SK MT ,

bitmasks bm.
Output: A t+ (s+ 1)n bit string holding the

updated secret key, followed by the
XMSSMT signature ΣMT .

1 bitsh i = (unsigned int) SKMT [s];
2 SKMT [s] = SKMT [s] + 1;
3 unsigned int tree = h− h/d most significant bits
of i;

4 unsigned int tree0 = tree;
5 unsigned int leaf = h/d least significant bits of i;
6 bitsN`+2 SK = concatenate(

select(SKMT , tree, 0),SKMT [s− 1], leaf);
7 bitsn root = XMSS_genPK’(SK,bm);
8 bitsh+(`+h)n σ= XMSS_sign (M, SK, bm));
9 bits(`+h−1)n[d− 1]σ′; for j = 1; j < d; j ++ do

10 leaf = h/d least significant bits of tree;
11 tree = h− jh/d most significant bits of tree;
12 SK = concatenate(

select(SKMT , tree, j),SKMT [s− 1], leaf);
13 bitsn root = XMSS_genPK’(SK,bm);
14 σ′[j] = XMSS_sign′(root,SK, bm));
15 end
16 bitst ΣMT = concatenate(tree0, σ, σ′);
17 return concatenate(SKMT ,ΣMT)

(line 1, i.e. M ′ = M) and correspondingly takes a
signature without randomness as input.

Choices made. We decided to restrict the parame-
ters such that the same height and Winternitz param-
eter are used on each layer. While this restricts the
trade-offs provided by the scheme, it also significantly
simplifies implementation and makes it less error-
prone. This might actually increase the practical
security of the scheme more than the switch to
collision resilience.

V. Parameters
Only some parameters (e.g. w) are limited to

specific values in this standard outline. We intend
to provide optimized parameter sets in the actual
standard. Techniques to determine optimal param-
eters for the schemes presented here already exist
and have been used before [16]. However, we will

Algorithm 12: Bool XMSSMT_verify
(bitst ΣMT , bits∗M, bitsn[a+ 1]PKMT)

Input: Signature ΣMT , message M , and public
key PKMT .

Output: true if signature is valid, false
otherwise.

1 unsigned int leaf;
2 unsigned int tree = h− h/d most significant bits
of ΣMT ;

3 bitst−h+h/d Σ′ = t− h least significant bits of
ΣMT ;

4 bitsh+(`+h)n σ= h+ (`+ h)n most significant
bits of Σ′;

5 Σ′ = Σ′ << h+ (`+ h)n;
6 bitsn node = XMSS_verify′(σ, M, PKMT);
7 for j = 1; j < d; j ++ do
8 leaf = h/d least significant bits of tree;
9 tree = h− jh/d most significant bits of tree;

10 σ= concatenate(leaf, (`n + h− 1)n most
significant bits of Σ′);

11 Σ′ = Σ′ << (`n + h− 1)n;
12 node = XMSS_verify′′(σ, node, PKMT);
13 end
14 if node == PKMT [0] then
15 return true
16 else
17 return false
18 end

need further input from stakeholders regarding the
requirements.
In general, we intend to propose parameter sets

for three different classical security levels: 128, 256,
and 512 bit. To achieve this, we set the function
output sizes to m = n = 128 (256, 512, respectively).
Considering quantum attacks, these correspond to 64,
128, and 256 bit post-quantum security. We suggest
to support n = 128 as it might encourage adoption in
the pre-quantum era. Similarly, we suggest n = 512
only when considering a post-quantum scenario.

For the n = 128 setting, AES-based hash functions
seem to be the best choice as they can benefit
from hardware acceleration on many platforms. For
constructions of the required functions, see [4]. For
the other two settings, the use of SHA-3 seems a
reasonable choice. However, we can achieve better

results using specially tailored short input length hash
functions like those presented in [2].

For single-tree XMSS, the tree height h should be
at most 20, otherwise key generation time gets too
slow. For XMSSMT , we suggest to keep the height per
layer significantly smaller (e.g. between 10 and 16) to
benefit from the trade-off. A total tree height of 50
appears to be sufficient for any current applications.
For single-tree schemes, we propose to define one

parameter set where the bitmasks are implicitly set
to 0. Implementations should support this, either
replacing the bitmasks by a zero vector or removing
the XOR steps in the code. We suggest that this be
only supported for the n = 256 and n = 512 settings,
as formal security reductions require the used hash
functions to be collision resistant in this case. Hence,
the estimated classical security levels are 128 and 256
bits.

VI. Conclusion

We outline plans for a new standard for hash-based
signatures, including WOTS+ as a Winternitz-type
OTS and the hash-based signature schemes XMSS
and XMSSMT . This extends the current draft by
McGrew and Curcio [19] with schemes that provide
faster key and signature generation, smaller signatures
and milder security requirements. The possibility
of empty bitmasks allows us to include the scheme
from [19] as a special case. We also prepare for the
future, since the standardized schemes constitute
building blocks of recent stateless hash-based signa-
ture schemes [2]. We describe which aspects of the
schemes ought to be specified in a standard, and
which ones are left as implementation choices. The
main algorithms for WOTS+, XMSS and XMSSMT

are defined in pseudo-code. An open point requiring
feedback from stakeholders is parameter selection. We
warmly welcome comments and suggestions on this
proposal.

Acknowledgment

This work was supported by the Netherlands
Organisation for Scientific Research (NWO) under
grant 639.073.005, the Bavarian Ministry of Economic
Affairs and Media, Energy and Technology (StMWi)
and the German Research Foundation (DFG).

References
[1] Piotr Berman, Marek Karpinski, and Yakov Nekrich.

Optimal trade-off for Merkle tree traversal. In Joaquim
Filipe, Helder Coelhas, and Monica Saramago, editors,
E-business and Telecommunication Networks, volume 3 of
Communications in Computer and Information Science,
pages 150–162. Springer Berlin Heidelberg, 2007. 1

[2] Daniel J. Bernstein, Daira Hopwood, Andreas Hüls-
ing, Tanja Lange, Ruben Niederhagen, Louiza Pa-
pachristodoulou, Peter Schwabe, and Zooko Wilcox
O’Hearn. Sphincs: practical stateless hash-based signa-
tures. Cryptology ePrint Archive, Report 2014/795, 2014.
http://eprint.iacr.org/. 1, 11

[3] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas
Hülsing, and Markus Rückert. On the security of the
Winternitz one-time signature scheme. In A. Nitaj and
D. Pointcheval, editors, Africacrypt 2011, volume 6737
of Lecture Notes in Computer Science, pages 363–378.
Springer Berlin / Heidelberg, 2011. 1

[4] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing.
XMSS — A Practical Forward Secure Signature Scheme
Based on Minimal Security Assumptions. In Bo-Yin Yang,
editor, Post-Quantum Cryptography 2011, volume 7071
of Lecture Notes in Computer Science, pages 117–129.
Springer Berlin / Heidelberg, 2011. 1, 6, 8, 10

[5] Johannes Buchmann, Erik Dahmen, Elena Klintsevich,
Katsuyuki Okeya, and Camille Vuillaume. Merkle sig-
natures with virtually unlimited signature capacity. In
Jonathan Katz and Moti Yung, editors, ACNS 2007,
volume 4521 of Lecture Notes in Computer Science, pages
31–45. Springer Berlin / Heidelberg, 2007. 1

[6] Johannes Buchmann, Erik Dahmen, and Michael Schnei-
der. Merkle tree traversal revisited. In Johannes Buch-
mann and Jintai Ding, editors, Post-Quantum Cryptogra-
phy, volume 5299 of Lecture Notes in Computer Science,
pages 63–78. Springer Berlin / Heidelberg, 2008. 1, 2, 6, 7

[7] Johannes Buchmann, Erik Dahmen, and Michael Szydlo.
Hash-based digital signature schemes. In Daniel J. Bern-
stein, Johannes Buchmann, and Erik Dahmen, editors,
Post-Quantum Cryptography, pages 35–93. Springer Berlin
Heidelberg, 2009. 1, 2

[8] Johannes Buchmann, L. C. Coronado García, Erik Dah-
men, Martin Döring, and Elena Klintsevich. CMSS — an
improved Merkle signature scheme. In Indocrypt 2006,
volume 4329 of Lecture Notes in Computer Science, pages
349–363. Springer, 2006. 1

[9] Erik Dahmen and Christoph Krauß. Short hash-based
signatures for wireless sensor networks. In Juan Garay,
Atsuko Miyaji, and Akira Otsuka, editors, Cryptology
and Network Security, volume 5888 of Lecture Notes
in Computer Science, pages 463–476. Springer Berlin /
Heidelberg, 2009. 1

[10] Erik Dahmen, Katsuyuki Okeya, Tsuyoshi Takagi, and
Camille Vuillaume. Digital signatures out of second-
preimage resistant hash functions. In Johannes Buchmann
and Jintai Ding, editors, Post-Quantum Cryptography
2008, volume 5299 of Lecture Notes in Computer Science,
pages 109–123. Springer Berlin / Heidelberg, 2008. 1, 3

[11] Chris Dods, Nigel Smart, and Martijn Stam. Hash
based digital signature schemes. In Nigel Smart, editor,
Cryptography and Coding, volume 3796 of Lecture Notes
in Computer Science, pages 96–115. Springer Berlin /
Heidelberg, 2005. 1

http://eprint.iacr.org/

[12] L. C. Coronado García. On the security and the efficiency
of the Merkle signature scheme. Technical Report Report
2005/192, Cryptology ePrint Archive - Report 2005/192,
2005. Available at http://eprint.iacr.org/2005/192/. 1

[13] Andreas Hülsing. Practical Forward Secure Signatures
using Minimal Security Assumptions. PhD thesis, TU
Darmstadt, Darmstadt, August 2013. 3, 5

[14] Andreas Hülsing. W-OTS+ — shorter signatures for hash-
based signature schemes. In Amr Youssef, Abderrahmane
Nitaj, and AboulElla Hassanien, editors, Progress in Cryp-
tology – AFRICACRYPT 2013, volume 7918 of Lecture
Notes in Computer Science, pages 173–188. Springer Berlin
Heidelberg, 2013. http://huelsing.files.wordpress.com/
2013/05/wotsspr.pdf. 1, 3, 4

[15] Andreas Hülsing, Christoph Busold, and Johannes Buch-
mann. Forward secure signatures on smart cards. In Lars R.
Knudsen and Huapeng Wu, editors, Selected Areas in
Cryptography, volume 7707 of Lecture Notes in Computer
Science, pages 66–80. Springer Berlin Heidelberg, 2013. 1

[16] Andreas Hülsing, Lea Rausch, and Johannes Buchmann.
Optimal parameters for XMSSMT . In Alfredo Cuzzocrea,
Christian Kittl, Dimitris E. Simos, Edgar Weippl, and
Lida Xu, editors, Security Engineering and Intelligence
Informatics, volume 8128 of Lecture Notes in Computer
Science, pages 194–208. Springer Berlin Heidelberg, 2013.
1, 8, 9, 10

[17] Markus Jakobsson, Tom Leighton, Silvio Micali, and
Michael Szydlo. Fractal Merkle tree representation and
traversal. In Marc Joye, editor, Topics in Cryptology —
CT-RSA 2003, volume 2612 of Lecture Notes in Computer
Science, pages 314–326. Springer Berlin Heidelberg, 2003.
1

[18] Leslie Lamport. Constructing digital signatures from a
one way function. Technical Report SRI-CSL-98, SRI
International Computer Science Laboratory, 1979. 2

[19] David McGrew and Michael Curcio. Hash-Based Signa-
tures, 2014. 1, 3, 5, 11

[20] Ralph Merkle. A certified digital signature. In Gilles
Brassard, editor, Crypto’89, volume 435 of Lecture Notes
in Computer Science, pages 218–238. Springer Berlin /
Heidelberg, 1990. 1, 2

[21] Sebastian Rohde, Thomas Eisenbarth, Erik Dahmen,
Johannes Buchmann, and Christof Paar. Fast hash-based
signatures on constrained devices. In Gilles Grimaud and
François-Xavier Standaert, editors, Smart Card Research
and Advanced Applications, volume 5189 of Lecture Notes
in Computer Science, pages 104–117. Springer Berlin /
Heidelberg, 2008. 1

[22] Michael Szydlo. Merkle tree traversal in log space and
time. In Christian Cachin and Jan Camenisch, editors,
Advances in Cryptology — EUROCRYPT 2004, volume
3027 of Lecture Notes in Computer Science, pages 541–554.
Springer Berlin / Heidelberg, 2004. 1

http://huelsing.files.wordpress.com/2013/05/wotsspr.pdf
http://huelsing.files.wordpress.com/2013/05/wotsspr.pdf

	Introduction
	WOTS+
	XMSS
	XMSS MT
	Parameters
	Conclusion
	References

