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Abstract—The future development of quantum-computers plications, e.g., e-banking, e-commerce, or e-
could turn many key agreement algorithms used in the health, that depend on its security protocols 
Internet today fully insecure, endangering many applica- TLS and IPSec. At the same time, the Internet 
tions such as online banking, e-commerce, e-health, etc. of Things (IoT) is connecting billions of smart 
At the same time, the Internet is further evolving to enable 

devices deployed in critical applications like the Internet of Things (IoT) in which billions of devices 
deployed in critical applications like healthcare, smart cities healthcare, distributed control systems, smart 
and smart energy are being connected to the Internet. The cities and smart energy. The not only IoT needs 
IoT not only requires strong and quantum-secure security, strong and post-quantum secure solutions, as 
as current Internet applications, but also efficient oper­ today’s Internet, but also efficient approaches 
ation. The recently introduced HIMMO scheme enables to secure the data between smart devices, and 
lightweight identity-based key sharing and verification of 

between smart devices and the Internet. credentials in a non-interactive way. The collusion resis-
Several schemes have been proposed in the tance properties of HIMMO enable direct secure commu­

nication between any pair of Internet-connected devices. last years and are believed to be quantum 
The facts that attacking HIMMO requires lattice techniques secure since they rely on methods for which 
and that it is extremely lightweight make HIMMO an ideal quantum computers do not provide any signif­
lightweight approach for key agreement and information icant advantage. Example of these schemes are 
verification in a post-quantum world. NTRU, public-key systems based on the Learn-

Building on the HIMMO scheme, this paper firstly 
ing With Errors problem. The limitation of shows how HIMMO can be efficiently implemented even 

in resource-constrained devices enabling combined key these schemes is that they very frequently in-
agreement and credential verification one order of magni- volve higher computational costs, longer keys 
tude more efficiently than using ECDH-ECDSA. while being or both. NTRU has excellent performance, but 
quantum secure. We further explain how HIMMO helps requires rather long keys [14]. Schemes based 
to secure the Internet and IoT by introducing the DTLS- on the LWE problem, e.g. [1], perform worse 
HIMMO operation mode. DTLS, the datagram version of 

than existing public-key solutions. TLS, is becoming the standard security protocol in the IoT, 
however, it is very frequently discussed that it does not The Transport Layer Security (TLS)[2] and 
offer the right performance for IoT scenarios. Our design, its Datagram version (DTLS) are two of the 
implementation, and evaluation show that DTLS-HIMMO most important protocols used to secure the 
operation mode achieves the security properties of DTLS- Internet. DTLS is becoming the security stan-
Certificate security suite while being quantum secure and dard to secure the IoT since it is required 
exhibiting the overhead of symmetric-key primitives. 

by many Machine to Machine standards such 
as OneM2M, OMA LWM2M, etc. However, 
with the advent of quantum computers most 1 IN T RO D U C T I O N of the cipher suites of (D)TLS will become 

The advent of quantum computers can mean insecure. Furthermore, already today, it is very 
that most of the algorithms used for key frequently discussed that DTLS and its cipher 
agreement or information verification are not suites are too heavy for many IoT use cases. 
secure any more. This would have severe Thus, there is a need for a (D)TLS cipher suite 
consequences for the Internet and all the ap- that is post-quantum secure, efficient, scalable, 



and simple to use. 
It is estimated that currently 70 % of the 

IoT devices have security risks and are often 
poorly managed 1. Having such a (D)TLS ci­
pher suite would help to address these issues 
in an efficient post-quantum secure way. In 
some cases, IoT scenarios are not secure due 
to the resource limitations (e.g., memory or 
energy) of end devices that may not be able 
to support the standard algorithms. In other 
cases, the large number of devices and lack 
of user interface make the managing of large 
amounts of credentials for all those devices 
extremely complex. In some situations, band­
width consumption plays a role since the de­
vices are managed over a cellular connection 
and each extra byte costs money. The availabil­
ity of quantum computers would make the sit­
uation even worse since most existing cipher-
suites would be broken and most quantum 
resistant alternatives are relatively expensive 
resource-wise. 

The HIMMO scheme [6], [7] is a fully-
collusion resistant key pre-distribution scheme 
that enables lightweight identity-based key 
sharing and verification of credentials between 
devices in a single message,which is ideal for 
real time IoT interactions. With HIMMO, a 
device can directly generate a common key 
with another device based on its identity in a 
very efficient way. We believe that HIMMO is a 
good candidate in a post-quantum world since 
existing attacks require lattice techniques that 
are not known to be efficiently implementable 
in quantum computers. Finally and very im­
portantly, HIMMO is extremely efficient so 
that it can enable secure communication links 
even in IoT scenarios. 

This paper builds on the HIMMO scheme 
by showing how HIMMO can be efficiently 
implemented leading to an operation that is 
around one order of magnitude faster than 
public-key based solutions based on ECDH 
and ECDSA. We further put HIMMO in the 
context of the IoT and describe the design, 
implementation, and evaluation of the (D)TLS­
HIMMO operation mode as a lightweight 
quantum-secure alternative to existing public-
key based solutions. This new operation mode 
for (D)TLS allows us to achieve security prop­
erties of a (D)TLS-certificate exchange – key 

1. HP report. Internet of Things Research Study, 
www.fortifyprotect.com HP IoT Research Study.pdf, 
retrieved on August 21 2014. 

agreement, mutual authentication of client and 
server, and verification of credentials – with 
the resource needs of symmetric-key primi­
tives while being post-quantum secure. 

The rest of this paper is organized as fol­
lows. Section 2 describes the features of IoT 
scenarios, security needs, and reviews im­
portant IoT security standards. Section 3 re­
views the HIMMO scheme and extensions. 
Section 4 discusses why HIMMO is a good 
candidate in a post-quantum world. Section 5 
presents an efficient algorithm for key agree­
ment and performance results. Section 6 intro­
duces the (D)TLS-HIMMO operation mode. In 
Section 7, we compare DTLS-HIMMO with ex­
isting (D)TLS alternatives. Section 8 concludes 
this paper and discusses future work. 

2 SE C U R I T Y STA N DA R D S I N T H E IN­
T E R N E T (O F TH I N G S ) 

The Internet is protected by two main stan­
dard protocols, the Internet Protocol Security 
(IPSec) and the Transport Layer Security (TLS). 
IPSec offers security at network layer while 
TLS protects exchange of information between 
applications at transport layer. Both IPSec and 
TLS have an initial phase enabling authentica­
tion of peers, agreement on a session key, ne­
gotiation on the cipher-suite, etc. Afterwards, 
the data flow can be secured in the sense 
of confidentiality, authenticity, integrity and 
freshness by making use of the agreed session 
keys. 

The TLS protocol runs on top of TCP and 
is used to secure our HTTP Internet connec­
tions when we access the bank online, to 
do the tax computation, or when we access 
some healthcare services. The Internet is fur­
ther evolving to connect many smart objects 
creating the Internet of Things (IoT) compris­
ing smart meters, healthcare devices, etc. In a 
typical use case, devices communicate end-to­
end with a back-end server, reporting infor­
mation such as energy consumption, mainte­
nance data, etc by means of protocols such 
as OneM2M or LWM2M that are protected 
by Datagram Transport Layer Security (DTLS), 
the equivalent of TLS running on UDP. Note 
that DTLS builds on TLS, and therefore both 
protocols are very similar, the only differences 
are a few extensions ensuring that protocol can 
run on UDP. 

http:www.fortifyprotect.com


There are more than 200 known cipher-
suites for TLS2 . OpenSSL is one of the most 
common and used libraries implementing TLS 
and most of its different cipher-suites. For 
the Internet of Things, other libraries such 
as CyaSSL are also popular due to their 
smaller footprint and simple API 3 supporting 
more that 70 cipher-suites including different 
modes for the key agreement such as ECDH, 
ECDHE, ECDSA, ECDSA, RSA, PSK, several 
hash functions used in the generation of a 
message authentication code, e.g., SHA, MD5, 
SHA256, SHA384 as well as several encryption 
algorithms, e.g., RC4, 3DES, AES128, AES256, 
Camellia128, Camellia256 that can be configured 
in several block cipher modes such as CCM, 
GCM. 

If quantum computers were introduced to­
day, all the cipher suites available for key 
agreement based on ECC and RSA would 
become insecure since Shor ’s algorithm [17] 
(or modification of it) allow for efficient inte­
ger factorization on a quantum computer [12]. 
ECC algorithms would be potentially easier to 
attack than RSA since computers with a lower 
number of qubits are required in practice. For 
instance, ”A 160 bit elliptic curve cryptographic 
key could be broken on a quantum computer using 
around 1000 qubits while factoring the security-
wise equivalent 1024 bit RSA modulus would 
require about 2000 qubits.” [12]. On the other 
hand, it is also likely that once a quantum 
computer of 1000 qubits is available, it is only 
a matter of a few months until the number of 
available qubits doubles. 

The advent of the Internet of Things puts 
further pressure on available schemes since 
these smart devices that rely on DTLS to com­
municate with each other and with back-end 
systems have limited resources from a point 
of view of CPU, energy and bandwidth. This 
requires efficient cryptographic schemes due 
to several reasons. First, resource-constrained 
devices have a relatively constrained CPU and 
have to run on batteries for many years: the 
usage of computationally hungry solutions re­
quire more powerful devices and decrease the 
device lifetime. Second, back-end systems will 
have to manage millions of devices: the usage 
of expensive cryptographic solutions means 
that back-end systems will require many more 

resources. Third, communication often hap­
pens over resource-constrained networks such 
as IEEE 802.15.4/6LoWPAN that are lossy, 
have a low-data rate (250 kbits/sec) and have 
a limited message size ( 127 B): long keys or 
certificates are not recommended since they 
need to be fragmented leading to a consid­
erable decrease in performance. Fourth, data 
communication often happens over cellular 
connections that are not free of charge: if long 
keys or certificates are involved, then the cost 
of exchanging a few bytes of information can 
easily increase several times due to this addi­
tional overhead. 

2.1 DTLS-PSK 
The Pre Shared Key (PSK) is an authentication 
and key exchange algorithm used in cipher 
suites, both in TLS [2] and DTLS. Although 
not in common use on the Internet, (D)TLS­
PSK is widely employed by devices that are 
part of the Internet of Things since it has 
very low resource needs. We will also use 
this mode to enable DTLS-HIMMO. The ci­
phersuite TLS PSK WITH AES 128 CCM 

8 [10], for instance, uses PSK as the authenti­
cation and key exchange algorithm. 
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Figure 1. A DTLS PSK exchange (with cookies) 

Figure 1 illustrates PSK based authentica­
tion [3], as applied to the DTLS handshake. 
Since both clients and servers may have pre-
shared keys with different parties, the client 

2. For instance, see https://www.thesprawl.org/research/tls­
and-ssl-cipher-suites/ indicates which key to use with the PSK­

3. http://www.yassl.com/yaSSL/Products-cyassl.html identity in the ClientKeyExchange message. The 

http://www.yassl.com/yaSSL/Products-cyassl.html
https://www.thesprawl.org/research/tls


server may help the client in selecting the iden­
tity to use with the PSK-identity-hint in the 
ServerKeyExchange message. For IoT devices, 
the PSK identity can be based on the domain 
name of the server and, thus, the PSK-identity­
hint need not be sent by the server [18], so the 
ServerKeyExchange is optional (marked with *). 
The credentials (the pre shared keys them­
selves) are stored as part of hardware mod­
ules, such as SIM cards, and sometimes, on 
the firmware of resource-constrained devices 
themselves. The session keys for the DTLS 
record session are derived from the PSK using 
the TLS Pseudo Random Function (PRF) as 
defined in [2]. The cookie exchange is used 
to prevent denial of service attacks on the 
server. The Constrained Application Protocol 
(CoAP) [15] mandates the use of TLS PSK 

WITH AES 128 CCM 8 for the use with 
shared secrets [18]. 

3 HIMMO A N D HIMMO EX T EN ­
S I O N S 

The concept of Key Pre-Distribution Schemes 
(KPS) was introduced by Matsumoto and Imai 
in 1987 [9]. However, there was no known 
KPS that is both efficient and not prone to 
efficient attacks of multiple colluding (or com­
promised) nodes. The HIMMO scheme solves 
this problem. This section reviews the opera­
tion of the HIMMO scheme that enables any 
pair of devices in a system to directly agree on 
a common symmetric-key based on their iden­
tifiers and a secret key generating polynomial. 
Furthermore, we describe two protocol exten­
sions of the HIMMO scheme as introduced in 
[6], [7]. The underlying security principles on 
which HIMMO relies have been analyzed in 
[4] and [5]. 

We use the following notation: for each in­
teger x and positive integer M , we denote by 
(x)M the unique integer y ∈ {0, 1, . . . , M − 
1} such that x ≡ y mod M . 

3.1 HIMMO operation 
Like any KPS, HIMMO requires a trusted third 
party (TTP), and three phases can be distin­
guished in its operation [9]. 

In the setup phase, the TTP selects positive 
integers B, b, m and α, where m ≥ 2. The num­
ber B is the bit length of the identifiers that 
will be used in the system, while b denotes the 
bit length of the keys that will be generated. 

The TTP generates the public modulus N , an 
odd number of length exactly (α + 1)B + b 
bits (so 2(α+1)B+b−1 < N < 2(α+1)B+b). It also 
randomly generates m distinct secret moduli 
q1, . . . , qm of the form qi = N − 2bβi, where 
0 ≤ βi < 2B and at least one of β1, . . . , βm is 
odd. Finally, the TTP generates the secret root 
keying material, that consists of the coefficients 
of m bi-variate symmetric polynomials of de­
gree at most α in each variable. For 1 ≤ i ≤ m, 
the i-th root keying polynomial R(i)(x, y) is 
written as 

α α  
(i) j kR(i)(x, y) = R yj,k x

j=0 k=0 

(i) (i)with 0 ≤ R = R ≤ qi − 1.j,k k,j 

In the keying material extraction phase, 
the TTP provides each node ξ in the system, 
with 0 ≤ ξ < 2B , the coefficients of the key 
generating polynomial Gξ: 

α 
kGξ(y) = Gξ,k y (1) 

k=0 

where  m α   
Gξ,k = ( R

(i) 
ξj )qi . (2)j,k N 

i=1 j=0 

In the key generation phase, a node ξ 
wishing to communicate with node η with 
0 ≤ η < 2B , computes:   

Kξ,η = (Gξ(η))N (3)
2b 

It can be shown that Kξ,η and Kη,ξ need not be 
equal. However, as shown in Theorem 1 in [6], 
for all identifiers ξ and η with 0 ≤ ξ, η ≤ 2B , 

Kξ,η ∈ {(Kη,ξ + jN )2b | 0 ≤ |j| ≤ 2m} 

In order to perform key reconciliation , i.e. to 
make sure that ξ and η use the same key to 
protect their future communications, the ini­
tiator of the key generation (say node ξ) sends 
to the other node, simultaneously with an 
encrypted message, information on Kξ,η that 
enables node η to select Kξ,η from the candi­
date set C = {(Kη,ξ +j N )2b | 0 ≤ |j| ≤ 2m}. No 
additional communication thus is required for 
key reconciliation. The key Kξ,η will be used 
for securing future communication between ξ 
and η. As an example of information used for 
key reconciliation, node ξ sends to node η the 
number r = (Kξ,η )2s , where s = plog2(4m+1)l. 
Node η can efficiently obtain the integer j such 



that |j| ≤ 2m and Kξ,η ≡ Kη,ξ + jN mod 2b by 
using that j N ≡ Kξ,η −Kη,ξ ≡ r −Kη,ξ mod 2s . 
As N is odd, the latter equation allows for de­
termination of j. As r reveals the s least signif­
icant bits of Kξ,η , only the b−s most significant 
bits Kξ,η , that is, the number l2−sKξ,η J, should 
be used as key. 

3.2 Implicit certification and verification of 
credentials 

Implicit certification and verification of cre­
dentials is further enabled on top of the basic 
HIMMO scheme. A node that wants to register 
with the system provides the TTP with its 
credentials, e.g., device type, manufacturing 
date, etc. The TTP, which can also add further 
information to the node’s credentials such as a 
unique node identifier or the issue date of the 
keying material and its expiration date, obtains 
the node’s identity as ξ = H(credentials), 
where H is a public hash function. When a first 
node with identity ξ wants to securely send a 
message M to a second node with identity η, 
the following steps are taken. 

•	 Step 1: Node ξ computes a common key 
Kξ,η with node η, and uses Kξ,η to en­
crypt and authenticate its credentials and 
message M , say e = EKξ,η (credentials|M). 

•	 Step 2: Node ξ sends (ξ, e) to node η. 
'•	 Step 3: Node η receives (ξ , e'). It com­

'putes its common key Kη,ξe with ξ to 
decrypt e' obtaining the message M and 
verifying the authenticity of the received 
message. Furthermore, it checks whether 

'the credentials’ in e' correspond with ξ , 
'that is, it validates if ξ = H(credentials’). 

This method not only allows not for direct 
secure communication of message M , but also 
for implicit certification and verification of ξ’s 
credentials because the key generating poly­
nomial assigned to a node is linked to its 
credentials by means of H . If the output size 
of H is long enough, e.g., 256 bits, the input 
(i.e., the credentials) contains a unique node 
identifier, andif H is a secure one-way hash 
function, then it is infeasible for an attacker 
to find any other set of credentials leading to 
the same identity ξ. The fact that credential 
verification might be prone to birthday attacks 
motivates the choice for the relation between 
identifier and key sizes, namely, B = 2b. In 
this way, the scheme provides an equivalent 
security level for credential verification and 

key generation. The capability for credential 
verification enables e.g. the verification of the 
expiration date of the credentials (and the 
keying material) of a node, or verification of 
the access roles of the sender node ξ. 

3.3 Enhancing privacy by using multiple 
TTPs 

Using multiple TTPs was introduced by Mat­
sumoto and Imai [9] for KPS and can also be 
elegantly supported by HIMMO [6]. In this 
scheme, a number of TTPs provide a node with 
keying materials linked to the node’s identifier 
during the keying material extraction phase. 
Upon reception, the device combines the dif­
ferent keying materials by adding the coeffi­
cients of the key generating polynomials mod­
ulo N . Key generation is performed as usual. 
This scheme enjoys two interesting properties 
without increasing the resource requirements 
of the nodes. First, privacy is enhanced since 
a single TTP cannot eavesdrop the communi­
cation links. In fact, all TTPs should collude 
to monitor the communication links. Secondly, 
compromising a sub-set of TTPs does not 
break the overall system. 

4 HIMMO I N A P OS T-QUA N T U M 
WO R L D 

In a collusion attack on the HIMMO scheme, 
multiple nodes collaborate in emulating the 
key generation process (3) of a node under 
attack, using their own pairwise keys with the 
node under attack as input. In [6], it is shown 
that this attack amounts to solving a close 
vector problem in a certain lattice, and that 
the minimum required number of nodes, and 
thus the lattice dimension, is (α + 1)(α + 2)/2. 
If α is large enough, α > 20, an approximate 
solution of this close vector problem, using the 
default LLL [11] implementation of Sage [13], 
and Babai’s nearest plane algorithm, fails to 
give a good result, while the lattice dimension 
becomes too large for exact methods, for which 
the running time and memory requirements 
grow exponentially in the lattice dimension. 
While it is quite likely that more elaborate 
approximate classical algorithms would give 
better results, thus increasing the minimum 
required value of α somewhat, currently no 
quantum algorithm exists that would speed 
up the approximate lattice methods, nor is it 



 

foreseen that the quantum speed-ups in the ex­
act lattice algorithms, which use enumeration 
techniques, are sufficient to crack HIMMO for 
these values of α. 

5 IM P L E M E N TAT I O N A N D P ER F OR ­
M A NC E 

HIMMO has been designed keeping in mind 
that we want to achieve very good perfor­
mance. In this section, we explain how the 
key generation algorithm in Equation 3 can be 
implemented in a very efficient way. 

As we see in Equation 3, the key genera­
tion consists of the evaluation of a polynomial 
module N and taking the b LSBs. A good 

2B(α+1)+bchoice for N is − 1 because this 
simplifies the implementation of modular re­
ductions on the devices. In Algorithm 1 we 
show the key generation algorithm whose un­
derlying method is the well-known Horner ’s 
Rule. Each intermediate value is computed as 
follows 

(tempj )N = (tempj+1 × η + Gξ,j )N 

for j = α − 1, . . . , 0. To perform the modular 
reduction we take advantage of N ’s specific 

2B(α+1)+bform, − 1 and the small size of 
× 2(α+1)B+bη. Thus, (tempj )N = (tempH +j 

tempL 
j )N ≈ tempH + tempL where tempH 

j j j 

and tempL 
j are b and (α + 1)B + b bits long, 

respectively. That this is an approximation is 
because there might be a carry in the addition 
of tempH 

j and tempL 
j , requiring a second re­

duction. However, as shown in the appendix, 
this second reduction is needed at most once 
during the calculation, and ignoring it leads 
to a difference of one (mod 2b) between the 
wanted key and the value returned by the 
algorithm, so that 

α 

(( Gξ,j η
j )N )2b ∈ {key , (key + 1)2b }. 

j=0 

The modular reduction happens when the 
value of key is updated with the contribution 
of the MSB stored in temp after being shifted 
(j + 2)B bits and added to key (Line 8). 

From Algorithm 1 it is also clear that part 
of the coefficients Gξ,j with j ∈ {0, . . . , α} are 
not used in the key generation process. This 
is because of the smaller size of the HIMMO 
identifiers (B bits) compared with the rela­
tively long coefficients ((α + 1)B bits). This 
allows for a further optimization in which only 

Algorithm 1 Optimized key generation 
1: INPUT: B, b, α, η, Gξ,j with j ∈ {0, . . . , α}
2: OUTPUT: key 
3:	 key ← (Gξ,α )2b
 

Gξ,α
 4: temp ← l 
2b J 

5: for j = α − 1 to 0 do 
Gξ,j 6: temp ← temp × η + l 

2(α−1−j)B+b J 
7:	 key ← (key × η)2b + (Gξ,j )2b
 

temp
8: key ← (key + l J)2b2(j+2)B 

(temp�
2(j+2)B9: temp ← l 

2B J 
10: end for 
11: return key 

the required parts of the coefficients are stored, 
namely the b least significant bits and the j B 
most significant bits of each coefficient Gξ,j . 

Figure 2 provides a brief summary of the 
performance of the HIMMO scheme on the 8­
bit CPU ATMEGA128L. The first graph shows 
the key generation time for α = 26 as a 
function of b = B. In the next two figures, we 
see – as a function of α and for b = B = 128 
– the key generation time and the size of the 
key generating function. 

We further include a comparison table (Ta­
ble 1) to illustrate the performance advan­
tages of HIMMO compared with ECDH and 
ECDSA when implementing a simple interac­
tion between two nodes: a first node ξ wants 
to send in a secure way information to η, 
and η wants to securely receive the message 
from ξ and verify its credentials. The first two 
protocols involve communicating before node 
ξ can send an encrypted message, whereas 
HIMMO allows node ξ to directly compute 
the key with η based on its identifier and 
send the encrypted message. Also, notice that 
ECDH only provides key agreement, to get 
key agreement and verification of credentials, 
it is needed to use also ECDSA, increasing the 
resource requirements. The results are based 
on an implementation on the ATMEGA128L 
running at 8 MHz and illustrate the perfor­
mance when this protocol is implemented with 
ECDH only, ECDH and ECDSA for a security 
level of 80 bits and HIMMO using security 
parameters α = 26 and 2b = B = 160. In 
Table 1, CPU refers to the overall computing 
needs, the memory refers to the amount of 
information that needs to be stored in flash, 
RAM is the RAM memory needs, exchanged 
data refers to the amount of data exchanged 
between ξ and η, round trips are the number 
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Figure 2. HIMMO Performance: on the left, performance for α = 26 as a function of b = B; in the 
middle and right, performance for b = B = 128 as a function of α. 

of interactions between both nodes, and finally, 
the security properties illustrate the features of 
the security protocols. 

6 (D)TLS-HIMMO 
TLS and DTLS are two of the protocols to pro­
tect the Internet today, while DTLS is becom­
ing the standard for the IoT. Existing (D)TLS 
operational modes have pros and cons. PSK is 
efficient and quantum secure, but it does not 
scale. Raw-public key scales well but does not 
offer authentication, is prone to man-in-the­
middle attacks, and most of existing schemes 
would be broken with quantum computers. 
Certificate-based schemes are too expensive in 
some scenarios, in particular Internet of Things 
related, and most of those schemes would also 
be broken with quantum computers. 

This motivates our research in a new (D)TLS 
cipher suite based on HIMMO that: 

•	 is resilient to quantum computers, 
•	 has the low operational cost of DTLS-PSK, 
•	 enables mutual authentication and cre­

dential verification as with certificate-
based schemes, 

•	 and is scalable like solutions based on 
public-key cryptography and infrastruc­
ture. 

that it can work with HIMMO. The main dif­
ference from the usual PSK profile lies in using 
identities to generate a pairwise symmetric 
key and, then, deriving the session keys from 
the pairwise symmetric key. A TTP provisions 
keying material to client nodes and the server 
as shown in Equation 1 during an initial setup 
(eg. manufacture stage). HIMMO can be di­
rectly used in (D)TLS-PSK mode by exchang­
ing HIMMO’s identifiers in the ClientKeyEx­
change and ServerKeyExchange messages.4 

6.1 DTLS-HIMMO Configurations 

The existing PSK profile, such as the one 
used in TLS PSK WITH AES 128 CCM 

8, involves the exchange of two fields, the 
PSK identity and PSK identity hint, in the Clien­
tKeyExchange and ServerKeyExchange messages 
respectively. Instead of sending a PSK iden­
tifier, we use these fields, which can be up 
to 128 bytes long [18], to exchange HIMMO 
information. 

Table 2 illustrates these fields of information 
with exemplary lengths. First, we find an iden­
tifier/flag indicating the use of DTLS-HIMMO. 
Next, we find a DTLS-HIMMO message type 
to indicate which properties are enabled by 
HIMMO. The third and fourth field refer to 

To this end, we take the DTLS-PSK mode 
4. Creation of a new profile to indicate DTLS-HIMMO that is based on identities, and we extend – (eg. TLS DTLS-HIMMO WITH AES 128 CCM 8) can 

without need of changing the standard – so also be considered, but requires standardization. 



Table 1
 
HIMMO performance and comparison with ECDH and ECDH+ECDSA.
 

CPU time Key material 
+ code 

RAM Exchanged 
data 

Security properties 

ECDH [8] 3.97 s 16018 B 1774 B 480 B Key agreement 
ECDH 
+ECDSA [8] 

11.9 s 35326 B 3284 B 704 B Key agreement and 
credential verification 

HIMMO 0.290 s 7560 B 1220 B 448 B Key agreement and 
credential verification 

the number of TTPs as well as their iden­
tifiers. These are the TTPs associated with 
generating and distributing the key material 
of the client and server. These two fields are 
followed by an identifier. Next, we optionally 
find the HIMMO credentials length as well as 
the credentials themselves. Finally, a field that 
contains the key reconciliation data is present. 

This message format is used in the PSK­
identity-hint and PSK-identity fields of the 
ServerKeyExchange and ClientKeyExchange mes­
sages. With these fields we can enable differ­
ent ways of using HIMMO with DTLS-PSK. 
If only the HIMMO identifier is exchanged 
in the identifier field, then only mutual au­
thentication is achieved between client and 
server. Alternatively, the client, or server, or 
both of them might exchange their creden­
tials. The credentials could be any informa­
tion that today is exchanged in regular digital 
certificates and, for IoT scenarios, information 
such as manufacturer, device type, date of 
manufacturing, etc. In this case, the exchange 
enables unilateral or mutual implicit credential 
verification of the parties. We note that in 
this case, the identifier field does not contain 
the HIMMO identifier but a unique random 
value that concatenated with the information 
in the HIMMO credentials length and HIMMO 
credentials is hashed to obtain the HIMMO 
identifier. The reason for this construction was 
explained in Section 3.2. Finally, we note that 
the reconciliation data is only exchanged in 
the ClientKeyExchange message since it is the 
server the one performing this operation. 

These two different options gives rise to four 
(two each for client and server) different com­
binations. These combinations, required com­
putations and properties are shown in Table 3. 

6.2 (D)TLS-HIMMO Handshake 
The HIMMO enabled PSK message exchanges 
are shown in Figure 6.2, with the respective 

steps explained below: 

•	 Step 1: The client sends a ClientHello mes­
sage to the server indicating use of the 
PSK mode, such as the TLS PSK WITH 

AES 128 CCM 8. 
•	 Step 2: The usual HelloVerifyRequest mes­

sage, with a cookie, is sent from the server 
to the client. 

•	 Step 3: The client replies back with Clien­
tHello along with the cookie. 

•	 Step 4: The server replies with ServerHello, 
ServerKeyExchange and ServerHelloDone. 
The PSK-identity-hint of the ServerKeyEx­
change contains the DTLS-HIMMO fields 
as in the exemplary format shown in Table 
2. 

•	 Step 5: The client sends the ClientKeyEx­
change with the PSK-identity field contain­
ing the DTLS-HIMMO fields as shown in 
Table 2. It also sends the usual Change-
CipherSpec and Finished messages to the 
server. 

•	 Step 6: The Server would send back the 
usual ChangeCipherSpec and Finished mes­
sages to the client. 

The client computes the symmetric pairwise 
key as follows: 

•	 Step 1: If the server sent its credentials, 
as indicated in the DTLS-HIMMO fields, 
compute 

ID-Server =H(Server Identifier||
Server HIMMO Credentials Length||
Server HIMMO-credentials) 

In case the server sent the HIMMO 
identifier then set ID-Server = 
Server HIMMO-Identifier. 

• Step 2: If the client is also using creden­



Table 2
 
Exemplary format of the PSK-identity-hint and PSK-identity fields enabling DTLS-HIMMO
 

HIMMO 
flag 

Message 
Type 

Number 
of 

TTPs 

TTP 
ID 

Identifier HIMMO 
Credentials 

length 

HIMMO 
Credentials 

Reconci­
lliation 

data 
Length(Bytes) 2 1 1 1/ # TTP B 1 0 . . . (122 − B) 1 
Mandatory (M)/ 
Optional (O) 

M M M M M O O O 

Table 3
 
Modes of operation of DTLS-HIMMO profile
 

Client sends HIMMO’s ID Client sends HIMMO’s credentials 

Server sends HIMMO’s ID 
Messages exchanged 

ClientKeyExchange: Client ID 
and Reconciliation data 
ServerKeyExchange: Server ID 

ClientKeyExchange: Clients credentials 
and Reconciliation data 
ServerKeyExchange: Server ID 

Computations 
Two HIMMO evaluations in total Two HIMMO evaluations in total 

One hash evaluation 
Properties 

Mutual authentication Mutual authentication 
Verification of client’s credentials 

Server sends HIMMO’s credentials 
Messages exchanged 

ClientKeyExchange: Client ID 
and Reconciliation data 
ServerKeyExchange: Servers credentials 

ClientKeyExchange: Clients credentials 
and Reconciliation data 
ServerKeyExchange: Servers credentials 

Computations 
Two HIMMO evaluations in total 
One hash evaluation 

Two HIMMO evaluations in total 
Two hash evaluations 

Properties 
Mutual authentication 
Verification of server ’s credentials 

Mutual authentication 
Verification of the credentials of client 
and server 

tials, compute 

ID-Client = H(Client Identifier||
Client HIMMO Credentials Length||

Client HIMMO-credentials) 

Otherwise, set ID-Client = 
Client HIMMO-Identifier. 

•	 Step 3: Compute the pairwise key 
KID-Client, ID-Server as shown in Equation 3. 

Similarly, the server, upon receipt of the 
ClientKeyExchange message computes the pair-
wise key as: 

•	 Step 1: Depending upon whether the 
client sent its credentials or its HIMMO 
identifier, compute ID-Client as shown in 
the steps followed by the client before. 
In the same manner, depending upon 
whether the server uses credentials or its’ 
HIMMO identifier, compute ID-Server. 

• Step 2: Compute the pairwise 
key KID-Server, ID-Client using the key 
reconciliation data sent by the client to 
arrive at the symmetric pairwise key. 

Note that the respective key generating poly­
nomials (Gξ,k in Equation 1) in the devices 
would be configured with either the HIMMO 
identifier or the hash of the concatenation of 
the identifier, the length of the credentials and 
the credentials for its identity ξ, depending 
upon which mode of operation is used (see 
Table 3). Once the client and server compute 
the pairwise key, it can be part of the input to 
the standard (D)TLS pseudo-random function 
used to derive the session keys for the DTLS 
session as is done with the PSK profile. The 
DTLS Finished message authenticates the hand­
shake, and thus, authenticates both parties as 
having the correct keying material. If the com­
municating peer is using HIMMO credentials 
for the key exchange, then the successful com­



pletion of the Finished message implies that the 
credentials it provided are correct and, thus, 
authenticates the credentials of the peer. 

4444444
Client Server

ClientHello

HelloVerifyRequest4
44444(with4cookie)

ClientHello4
(with4cookie)

ServerHello
ServerKeyExchange4(Step44)4

ServerHelloDone

ClientKeyExchange4(Step45)
ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

Application4Data

Computes4keys

Computes4keys

Figure 3. A DTLS-HIMMO exchange 

6.3 Privacy protection 
Protecting the privacy of the communication 
links is fundamental. HIMMO and its exten­
sions can be used to ensure the privacy of the 
involved communication parties. 

A first aspect to consider refers to the pro­
tection of the exchanged credentials that might 
contain some private information that is not 
wished to be exposed to the other party, if 
not authenticated before, or to any passive 
eavesdropper. The fact that HIMMO allows 
for identity-based key agreement allows for 
a simple extension of the DTLS-handshake. 
The credentials can be encrypted with the 
pairwise key shared with the other party. For 
instance, in the DTLS-HIMMO exchange, the 
client can protect its credentials by encrypting 
them with the HIMMO key shared with the 
server and that is computed after the reception 
of the ServerKeyExchange message. Thus, the 
ClientKeyExchange could contain the Client’s 
HIMMO identifier and the encrypted client’s 
HIMMO credentials. The server can use the 
HIMMO identifier to obtain the common pair-
wise key, and decrypt the client’s credentials. 

Neither a fake server nor an attacker eaves­
dropping the communication will be able to 
learn the client’s credentials. 

The usage of raw-public keys with out-of­
band verification or of digital certificates re­
quires some type of public-key infrastructure 
that allows validating the authenticity of the 
involved public-keys or installing the digital 
certificates in a secure way. A certification au­
thority (CA), or a hierarchy of CAs, plays this 
role in today’s public-key infrastructure (PKI) 
HIMMO relies on a TTP whose role is similar 
to the one of a CA. Like a CA, the TTP is in 
charge of validating the identity of a joining 
node and securely distributing its key gener­
ating function. The difference is that a single 
TTP could be misused and the TTP (or anyone 
having access to the TTP) could eavesdrop or 
alter the ongoing data exchanges between any 
pair of nodes in a passive way. As explained in 
Section 3.3, the usage of multiple TTPs avoids 
this situation, since each device then registers 
with several TTPs and combines the received 
key generating polynomials from each TTP. 
In this way, the generated keys between any 
pair of entities of the system depend on the 
information shared by all the involved TTPs. 

TTP 1 

TTP 2 

TTP t 

Server 1 Server 2 Server s 

Client 1 Client 2 Client c 

Figure 4. TTP infrastructure for privacy-
protection in DTLS-HIMMO 

6.4 TTP Infrastructure 

The introduction of an infrastructure of TTPs 
(see Figure 4) for the DTLS-HIMMO profile 
would mean the creation of an alternative to 
today’s PKI. As outlined above, each entity 
in the system would register with a num­
ber of TTPs receive the corresponding key 
generating polynomials, each linked to the 
same or related credentials. Each entity would 



store these information either combined, as 
explained in Section 3.3, or independently. In 
this case, the TTP identifiers can be exchanged 
between client and server during a DTLS­
HIMMO handshake as indicated in Figure 2. 
In a first step, the server provides in the 
ServerKeyExchange message the TTP identifiers 
from which it received its key generating poly­
nomials. In a second step, the client answers 
with common or chosen TTPs in the Clien­
tKeyExchange messages. 

Such an infrastructure brings new chal­
lenges but also advantages. Today, if a CA is 
compromised, then it is not possible to easily 
recover. Certificates are often not signed by 
more of a CA, and if they are, this rapidly 
increases the bandwidth and computational 
requirements. The usage of such a TTP In­
frastructure as described above overcomes the 
problem of a TTP being compromised (and 
therefore the whole system being insecure) 
without almost any effect on bandwidth or 
computational resources. 

7 DTLS-HIMMO A N D C O M PA R I S O N 
W I T H E X I S T I N G (D)TLS A LT E R N AT I V E S 

We have implemented the DTLS-HIMMO op­
eration mode in the CyaSSL library (version 
3.0.0) such that the client and server run on 
a Intel Core i5-3437U @ 1.90 GHz with Win­
dows 7 Enterprise. The DTLS-HIMMO ex­
tension is carried out by using DTLSv1.2 in 
PSK mode as starting point as explained in 
Section 6. The HIMMO-based DTLS operation 
modes include: (i) HIMMO enabling mutual 
authentication, (ii) HIMMO enabling mutual 
authentication and server verification, and (iii) 
HIMMO enabling mutual authentication and 
client and server verification. We compare 
DTLS-HIMMO with (iv) DTLS in PSK mode, 
(v) DTLS certificates enabling sever verifica­
tion only and (vi) DTLS certificates with both 
server and client verification. Both modes are 
implemented using the ECDHE and ECDSA 
on NIST secp256r1 curve. All of the analyzed 
DTLS operation modes rely on a 128-bit AES 
in CCM operation mode to secure the DTLS 
record layer. 

Table 4 provides the reader with a quali­
tative comparison of the above DTLS modes 
of operation against their performance and 
security properties. Performance-wise we dis­
cuss the resource requirements on the client 
and server and the communication overhead. 

Security-wise we consider the capability of the 
handshakes for key agreement, authentication, 
information verification, and scalability. 

It is worth noting that the verification of the 
client or server credentials only costs an addi­
tional hash computation due to the identity-
based nature of HIMMO. This is also the rea­
son why the communication overhead can be 
kept at a very low level compared with certifi­
cates. At the same time, we also observe that 
the realization of the key agreement and ver­
ification of information requires several scalar 
ECC point multiplications while in the case 
of HIMMO only a polynomial evaluation is 
involved. 

This qualitative comparison is supported by 
the experimental results in which we have 
measured (i) the elapsed time, (ii) the amount 
of data exchanged, and (iii) the ratio between 
data exchanged and payload in three different 
scenarios for different DTLS modes of opera­
tion: 

•	 the DTLS connection is established and 1 
KB of data are exchanged, 

•	 the DTLS connection is established and 10 
KB of data are exchanged, and 

•	 the DTLS connection is established and 
100 KB of data are exchanged. 

Figure 5 shows the required time to establish a 
secure connection and send the data for differ­
ent cipher suites. We observe that DTLS-PSK 
is the fastest followed by DTLS-HIMMO with­
out credential verification capabilities. DTLS­
HIMMO with credential verification capabili­
ties becomes slightly more expensive since B 
needs to be 2b in this case. We also observe that 
the usage of a small or high security parameter 
α does not heavily impact the performance of 
the scheme remaining around a factor 8 faster 
than the ECC alternative. A value of α of 26 
and 50 implies than an attacker has to deal 
with lattices of dimensions 405 and 1377 for 
the HI problem [5]. It is also worth noting 
that in all cases the cryptographic operations 
involved in the transfer of data are negligible 
compared with the DTLS handshake. Figure 6 
depicts the total amount of exchanged data 
for all the cipher suites. This includes the 
headers of the underlying protocols (UDP, IP, 
etc) as well as the transfer of 1 KB of data. 
Figure 7 shows the ratio between the required 
bandwidth and the exchanged payload mak­
ing clear that the usage of schemes relying on 
long keys might not be the best solution for 



Table 4
 
Qualitative comparison of the HIMMO based PSK profile with other algorithms
 

DTLS Client CPU Server CPU Handshake Certificate Key Authentication Information Scalability 
mode Needs Needs size size Agreement verification 

DTLS-HIMMO 1 HIMMO key generation 1 HIMMO key generation Low Low Yes Mutual No Gξ (x) 
(b=B ) (b=B) installation 

Key reconciliation 
DTLS-HIMMO(SA) 1 SHA-256 1 HIMMO key generation Server Gξ (x) 

(Server 1 HIMMO key generation Key reconciliation Low Low Yes Mutual authentication installation 
authentication) (2b = B) (2b = B ) 
DTLS-HIMMO 1 SHA-256 1 SHA-256 Server Gξ (x) 

(Mutual 1 HIMMO key generation 1 HIMMO key generation Low Low Yes Mutual and installation 
authentication) (2b = B) (2b = B) Client 

Key reconciliation 
PSK - - Low Low Yes Mutual No Installation of PSKs 

ECDHE + ECDSA Three ECC point One ECC point High High Yes Unilateral Server Root Certificate 
(Server authentication) multiplications multiplication verification installation 

ECDHE + ECDSA Three ECC point Three ECC point Higher Higher Yes Mutual Server and client Root Certificate 
(Mutual authentication) multiplications multiplication verification installation 

use cases in which little payload needs to be 
exchanged. 

These figures together with Figure 1 show 
several advantages of HIMMO compared with 
other alternatives. The first one is that Inter­
net of Things applications that involve the 
exchange of little data, frequently under 10 
KB, can profit from HIMMO since it offers a 
better ratio between the amount of transmitted 
payload and the overall amount of transmitted 
data. This is due to HIMMO’s identity based 
nature that does not require the exchange of 
public-keys or long certificates. As a result, the 
underlying constrained networks are less over­
loaded, thus enabling IoT applications with 
less costs to network operators. The second 
one is that same back-end can handle many 
more clients with the same resources. This 
prevents potential DoS attacks and decreases 
again the price to enable those applications. 
Finally, Figures 5 and 7 show the performance 
of the DTLS handshake between two powerful 
devices. In a real world Internet of Things 
scenario one of those devices will have much 
lower capabilities. However, HIMMO can be 
still implemented in a very efficient way as 
illustrated in Figure 2. 

There are other schemes that introduce post 
quantum secure key exchange. The post quan­
tum key exchange scheme [1] is based on the 
ring learning with errors (R-LWE) problem 
and its authors discuss using it with TLS in 
a similar setup as the one discussed in this 
paper. Their results show that this scheme is 
slower than ECDH, for both client operation 
(from 0.8 msec to 1.4 msec) and for server op­
eration (from 1.4 msec to 2.1 msec). Although 
these performance numbers are not directly 
comparable with ours since they are based 
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Figure 5. DTLS connection time. From top to 
bottom: (1) ECDH-ECDSA with mutual authen­
tication, (2) ECDH-ECDSA with server authen­
tication, (3) HIMMO with mutual verification of 
client’s and server’s credentials (B = 256, b = 
128, α = 50), (4) HIMMO with mutual verifica­
tion of client’s and server’s credentials (B = 
256, b = 128, α = 26), (5) HIMMO with mutual 
authentication (B = 128, b = 128, α = 26) and 
(6) PSK. 

on different CPUs and different software, it 
indicates that HIMMO should operate much 
faster than R-LWR since HIMMO is faster 
than ECC, and ECC is faster than the R-LWE 
scheme. PKC schemes based on NTRU have 
been investigated to secure Internet of Things 
scenarios [16]. NTRU is a fast scheme. How­
ever, the public-keys are long: a security level 
of 128-bits require 6743 bit long keys [14]. This 
also indicates that HIMMO and its identity-
based nature can improveon NTRU commu­
nication overhead, very important in Internet 
of Things applications, while providing high 
speed performance. 
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Figure 6. Total KB exchanged for 1 KB payload. 
From top to bottom: (1) ECDH-ECDSA with 
mutual authentication, (2) ECDH-ECDSA with 
server authentication, (3) HIMMO with mutual 
verification of client’s and server’s credentials, 
(4) HIMMO with verification of server’s creden­
tials, (5) HIMMO with mutual authentication and 
(6) PSK. 
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Figure 7. Ratio between total exchanged data 
and payload. From top to bottom: (1) ECDH­
ECDSA with mutual authentication, (2) ECDH­
ECDSA with server authentication, (3) HIMMO 
with mutual verification of client’s and server’s 
credentials, (4) HIMMO with verification of 
server’s credentials,(5) HIMMO with mutual au­
thentication and (6) PSK. 

8	 CO N C L U S I O N S 

The HIMMO scheme is the first Key Pre-
distribution scheme that is simultaneously ef­
ficient and secure (in terms of collusion re­
sistance). HIMMO is post-quantum secure as 
known attacks involve solving a close vector 
problem in a lattice for which currently no 
quantum algorithm exists that would speed 
up the approximate lattice methods, nor is it 
foreseen that the quantum speed-ups in the ex­
act lattice algorithms, which use enumeration 
techniques, are sufficient to crack HIMMO. 

Specific choices of the HIMMO parame­

ters enable very efficient implementations that 
combined with the implicit credential certi­
fication and verification improve the perfor­
mance of related public-key schemes one or­
der of magnitude. HIMMO can be embed­
ded in TLS and DTLS, the security protocols 
used to secure the Internet, without requir­
ing any changes in the standards, but of­
fering a significantly improved performance 
security trade-off while being quantum se­
cure. In fact, the DTLS-PSK mode can be ex­
tended with HIMMO to achieve functionality 
that today is only possible with public-key 
cryptography and a public-key infrastructure, 
but at the speed and memory requirements 
of a symmetric-key handshake. The DTLS­
HIMMO handshake offers mutual authentica­
tion of client and server, implicit verification of 
their credentials costing a single hash compu­
tation, client’s privacy-protection by sending 
its credentials in encrypted format, and sup­
port of multiple TTPs. 
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AP P E N D I X A 
PROOF O F C O R R E C T NES S O F O P T I ­
M I Z E D A L G OR I T H M 

Let b, B, α be positive integers and let N := 
2(α+1)B+b −1. For 0 ≤ i ≤ α, let 0 ≤ Gi ≤ N −1, 
and let 0 ≤ η ≤ 2B − 1. We are interested in 
obtaining the key K, defined as 

α 

K := (( Giη
i)N )2b . (4) 

i=0 

For 0 ≤ i ≤ α − 1, we write 

= γi2
(α−i−1)B+bGi	 + δi 

with 0 ≤ δi ≤ 2(α−i−1)B+b − 1. (5) 

We rewrite Algortihm 1, where we added in­
dices to the variables that will be useful in the 
analysis the algorithm: 

kα := (Gα)2b ; τα := l Gα J;
2b 

for j := α − 1 downto 0 do 
begin σj := τj+1 × η + γj ; 

σjkj := (kj+1 × η + (Gj )2b + l J)2b ;
2(j+2)B 

(σj 2(j+2)Bτj := l 
2B J 

end; 
key:= k0 

In this appendix we prove the following 
theorem. 

Theorem A.1. If α < 2B , then either K = key 
or K = (key + 1)2b . 

For proving the above theorem, we define 
Λα, Λα−1, . . . , Λ0 as 

Λα := Gα 

and for 0 ≤ j ≤ α − 1,
 
σj


Λj := ηΛj+1 + Gj − l JN. 
2(j+2)B 

By induction on j, it is easy to see that for 
0 ≤ j ≤ α, 

α 

Λj ≡ Giη
i−j mod N. 

i=j sαNote that Giη
i−j is the j-th iterate of i=j sαthe evaluation of Giη

i using Horner ’s i=0 
algorithm.
 
We will show below (Proposition 2) that for
 
each j,
 

0 ≤ Λj − τj 2
(α−j)B+b ≤ (α − j + 1)2(α−j)B+b . 

As a consequence, if α < 2B , then 0 ≤ Λ0 − 
τ02

αB+b < N. The algorithm implies that 0 ≤ 
τ0 ≤ 2B − 1, and so 0 ≤ τ0 ≤ Λ0 < N + 2B − 1.sαAs j=0 Gj η

j ≡ Λ0 mod N , we conclude that sα( Gj η
j )N = (Λ0)N ∈ {Λ0, Λ0 −N}, and so j=0 

K ∈ {(Λ0)2b , (Λ0 + 1)2b }. (6) 

In Proposition 3, we show that Λj ≡ kj for 0 ≤ 
j ≤ α. Combining this result with (6) proves 
the theorem. 

For 0 ≤ j ≤ α, we define 

rj := Λj − 2(α−j)B+bτj . 

Proposition 1. For 0 ≤ j ≤ α − 1, we have that 
σjrj = 2(α−j−1)B+b(σj )2B + ηrj+1 + δj + l J

2(j+2)B 

Proof Let 0 ≤ j ≤ α − 1. From the definitions 
of Λj , Λj+1, rj rj+1 and σj we readily find that 

rj = 2(α−1−j)B+b(σj − 2B τj ) + ηrj+1
 
σj


+ ηδj − l JN. 
2(j+2)B 

Writing σj = l σj J2(j+2)B +(σj )2(j+2)B , and 
2(j+2)B 

using that N = 2(α+1)B+b − 1, we obtain that 

rj = 2(α−1−j)B+b((σj )2(j+2)B − 2B τj )
 
σj


+ l J + ηrj+1 + ηδj . 
2(j+2)B 

The proposition now follows from observing 
that 

(σj )2(j+2)B (σj )2(j+2)B = 2B l J + ((σj )2(j+2)B )2B 
2B
 

= 2B τj + (σj )2B . D
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Proposition 2. For 0 ≤ j ≤ α we have that rj ≤ 
(α − j + 1)2(α−j)B+b − 1. 

Proof By induction on j. As rα = (Gα)2b ≤ 
2b − 1, the proposition is true for j = α. 
Now let 0 ≤ j ≤ α − 1. The algorithm 

≤ 2(j+2)Bimmediately implies that τj+1 − 1 
(make distinctions for j = α − 1 and j < α − 1 
for showing this). Moreover, 

Gj Gj
γj = l J ≤ 

2(α−j−1)B 2(α−j−1)B+b 

N − 1 ≤ 2(j+2)B − 1.≤ 
2(α−j−1)B+b 

We conclude that 

σj = τj+1η + γj < 2(j+2)B (η + 1) < 2(j+3)B , 

and so 
σjl J ≤ 2B − 1. (7)

2(j+2)B 

According to (5), we have that δj ≤ 
2(α−1−j)B+b − 1, and we clearly have that 
(σj )2B ≤ 2B − 1. Combining these inequalities 
with (7) and Proposition 2, we infer that 

rj ≤ 2(α−j−1)B+b(2B − 1) + (2(α−1−j)B+b − 1) 

+ ηrj+1 + (2B − 1) 

= 2(α−j)B+b + ηrj+1 + 2B − 2 

< 2(α−j)B+b + 2B (rj+1 + 1). 

According to the induction hypothesis, rj+1 ≤ 
(α − j)2(α−j−1)B+b − 1, and so 

rj ≤ (α − j + 1)2(α−j)B+b − 1. D 

Proposition 3. For 0 ≤ j ≤ α, we have that 
kj = (Λj )2b . 

Proof By induction on j. The proposition is 
true for j = α. 
Now let 0 ≤ j ≤ α − 1. The definition of Λj 

implies that 
σj J(2(α+1)B+b − 1)Λj = ηΛj+1 + Gj − l 

2(j+2)B 

≡ η(Λj+1)2b + (Gj )2b + l σj J (mod 2b). 
2(j+2)B 

As kj+1 ≡ Λj+1 (mod 2b), the definition of kj 

implies the proposition. D 


