
1

DTLS-HIMMO: Efficiently Securing a

Post-Quantum World with a

Fully-Collusion Resistant KPS

Oscar Garcia-Morchon, Ronald Rietman, Sahil Sharma, Ludo Tolhuizen and Jose Luis

Torre-Arce, Philips Group Innovation, Research, Eindhoven, The Netherlands

+

Abstract—The future development of quantum-computers plications, e.g., e-banking, e-commerce, or e-
could turn many key agreement algorithms used in the health, that depend on its security protocols
Internet today fully insecure, endangering many applica- TLS and IPSec. At the same time, the Internet
tions such as online banking, e-commerce, e-health, etc. of Things (IoT) is connecting billions of smart
At the same time, the Internet is further evolving to enable

devices deployed in critical applications like the Internet of Things (IoT) in which billions of devices
deployed in critical applications like healthcare, smart cities healthcare, distributed control systems, smart
and smart energy are being connected to the Internet. The cities and smart energy. The not only IoT needs
IoT not only requires strong and quantum-secure security, strong and post-quantum secure solutions, as
as current Internet applications, but also efficient oper­ today’s Internet, but also efficient approaches
ation. The recently introduced HIMMO scheme enables to secure the data between smart devices, and
lightweight identity-based key sharing and verification of

between smart devices and the Internet. credentials in a non-interactive way. The collusion resis-
Several schemes have been proposed in the tance properties of HIMMO enable direct secure commu­

nication between any pair of Internet-connected devices. last years and are believed to be quantum
The facts that attacking HIMMO requires lattice techniques secure since they rely on methods for which
and that it is extremely lightweight make HIMMO an ideal quantum computers do not provide any signif­
lightweight approach for key agreement and information icant advantage. Example of these schemes are
verification in a post-quantum world. NTRU, public-key systems based on the Learn-

Building on the HIMMO scheme, this paper firstly
ing With Errors problem. The limitation of shows how HIMMO can be efficiently implemented even

in resource-constrained devices enabling combined key these schemes is that they very frequently in-
agreement and credential verification one order of magni- volve higher computational costs, longer keys
tude more efficiently than using ECDH-ECDSA. while being or both. NTRU has excellent performance, but
quantum secure. We further explain how HIMMO helps requires rather long keys [14]. Schemes based
to secure the Internet and IoT by introducing the DTLS- on the LWE problem, e.g. [1], perform worse
HIMMO operation mode. DTLS, the datagram version of

than existing public-key solutions. TLS, is becoming the standard security protocol in the IoT,
however, it is very frequently discussed that it does not The Transport Layer Security (TLS)[2] and
offer the right performance for IoT scenarios. Our design, its Datagram version (DTLS) are two of the
implementation, and evaluation show that DTLS-HIMMO most important protocols used to secure the
operation mode achieves the security properties of DTLS- Internet. DTLS is becoming the security stan-
Certificate security suite while being quantum secure and dard to secure the IoT since it is required
exhibiting the overhead of symmetric-key primitives.

by many Machine to Machine standards such
as OneM2M, OMA LWM2M, etc. However,
with the advent of quantum computers most 1 IN T RO D U C T I O N of the cipher suites of (D)TLS will become

The advent of quantum computers can mean insecure. Furthermore, already today, it is very
that most of the algorithms used for key frequently discussed that DTLS and its cipher
agreement or information verification are not suites are too heavy for many IoT use cases.
secure any more. This would have severe Thus, there is a need for a (D)TLS cipher suite
consequences for the Internet and all the ap- that is post-quantum secure, efficient, scalable,

and simple to use.
It is estimated that currently 70 % of the

IoT devices have security risks and are often
poorly managed 1. Having such a (D)TLS ci­
pher suite would help to address these issues
in an efficient post-quantum secure way. In
some cases, IoT scenarios are not secure due
to the resource limitations (e.g., memory or
energy) of end devices that may not be able
to support the standard algorithms. In other
cases, the large number of devices and lack
of user interface make the managing of large
amounts of credentials for all those devices
extremely complex. In some situations, band­
width consumption plays a role since the de­
vices are managed over a cellular connection
and each extra byte costs money. The availabil­
ity of quantum computers would make the sit­
uation even worse since most existing cipher-
suites would be broken and most quantum
resistant alternatives are relatively expensive
resource-wise.

The HIMMO scheme [6], [7] is a fully-
collusion resistant key pre-distribution scheme
that enables lightweight identity-based key
sharing and verification of credentials between
devices in a single message,which is ideal for
real time IoT interactions. With HIMMO, a
device can directly generate a common key
with another device based on its identity in a
very efficient way. We believe that HIMMO is a
good candidate in a post-quantum world since
existing attacks require lattice techniques that
are not known to be efficiently implementable
in quantum computers. Finally and very im­
portantly, HIMMO is extremely efficient so
that it can enable secure communication links
even in IoT scenarios.

This paper builds on the HIMMO scheme
by showing how HIMMO can be efficiently
implemented leading to an operation that is
around one order of magnitude faster than
public-key based solutions based on ECDH
and ECDSA. We further put HIMMO in the
context of the IoT and describe the design,
implementation, and evaluation of the (D)TLS­
HIMMO operation mode as a lightweight
quantum-secure alternative to existing public-
key based solutions. This new operation mode
for (D)TLS allows us to achieve security prop­
erties of a (D)TLS-certificate exchange – key

1. HP report. Internet of Things Research Study,
www.fortifyprotect.com HP IoT Research Study.pdf,
retrieved on August 21 2014.

agreement, mutual authentication of client and
server, and verification of credentials – with
the resource needs of symmetric-key primi­
tives while being post-quantum secure.

The rest of this paper is organized as fol­
lows. Section 2 describes the features of IoT
scenarios, security needs, and reviews im­
portant IoT security standards. Section 3 re­
views the HIMMO scheme and extensions.
Section 4 discusses why HIMMO is a good
candidate in a post-quantum world. Section 5
presents an efficient algorithm for key agree­
ment and performance results. Section 6 intro­
duces the (D)TLS-HIMMO operation mode. In
Section 7, we compare DTLS-HIMMO with ex­
isting (D)TLS alternatives. Section 8 concludes
this paper and discusses future work.

2 SE C U R I T Y STA N DA R D S I N T H E IN­
T E R N E T (O F TH I N G S)

The Internet is protected by two main stan­
dard protocols, the Internet Protocol Security
(IPSec) and the Transport Layer Security (TLS).
IPSec offers security at network layer while
TLS protects exchange of information between
applications at transport layer. Both IPSec and
TLS have an initial phase enabling authentica­
tion of peers, agreement on a session key, ne­
gotiation on the cipher-suite, etc. Afterwards,
the data flow can be secured in the sense
of confidentiality, authenticity, integrity and
freshness by making use of the agreed session
keys.

The TLS protocol runs on top of TCP and
is used to secure our HTTP Internet connec­
tions when we access the bank online, to
do the tax computation, or when we access
some healthcare services. The Internet is fur­
ther evolving to connect many smart objects
creating the Internet of Things (IoT) compris­
ing smart meters, healthcare devices, etc. In a
typical use case, devices communicate end-to­
end with a back-end server, reporting infor­
mation such as energy consumption, mainte­
nance data, etc by means of protocols such
as OneM2M or LWM2M that are protected
by Datagram Transport Layer Security (DTLS),
the equivalent of TLS running on UDP. Note
that DTLS builds on TLS, and therefore both
protocols are very similar, the only differences
are a few extensions ensuring that protocol can
run on UDP.

http:www.fortifyprotect.com

There are more than 200 known cipher-
suites for TLS2 . OpenSSL is one of the most
common and used libraries implementing TLS
and most of its different cipher-suites. For
the Internet of Things, other libraries such
as CyaSSL are also popular due to their
smaller footprint and simple API 3 supporting
more that 70 cipher-suites including different
modes for the key agreement such as ECDH,
ECDHE, ECDSA, ECDSA, RSA, PSK, several
hash functions used in the generation of a
message authentication code, e.g., SHA, MD5,
SHA256, SHA384 as well as several encryption
algorithms, e.g., RC4, 3DES, AES128, AES256,
Camellia128, Camellia256 that can be configured
in several block cipher modes such as CCM,
GCM.

If quantum computers were introduced to­
day, all the cipher suites available for key
agreement based on ECC and RSA would
become insecure since Shor ’s algorithm [17]
(or modification of it) allow for efficient inte­
ger factorization on a quantum computer [12].
ECC algorithms would be potentially easier to
attack than RSA since computers with a lower
number of qubits are required in practice. For
instance, ”A 160 bit elliptic curve cryptographic
key could be broken on a quantum computer using
around 1000 qubits while factoring the security-
wise equivalent 1024 bit RSA modulus would
require about 2000 qubits.” [12]. On the other
hand, it is also likely that once a quantum
computer of 1000 qubits is available, it is only
a matter of a few months until the number of
available qubits doubles.

The advent of the Internet of Things puts
further pressure on available schemes since
these smart devices that rely on DTLS to com­
municate with each other and with back-end
systems have limited resources from a point
of view of CPU, energy and bandwidth. This
requires efficient cryptographic schemes due
to several reasons. First, resource-constrained
devices have a relatively constrained CPU and
have to run on batteries for many years: the
usage of computationally hungry solutions re­
quire more powerful devices and decrease the
device lifetime. Second, back-end systems will
have to manage millions of devices: the usage
of expensive cryptographic solutions means
that back-end systems will require many more

resources. Third, communication often hap­
pens over resource-constrained networks such
as IEEE 802.15.4/6LoWPAN that are lossy,
have a low-data rate (250 kbits/sec) and have
a limited message size (127 B): long keys or
certificates are not recommended since they
need to be fragmented leading to a consid­
erable decrease in performance. Fourth, data
communication often happens over cellular
connections that are not free of charge: if long
keys or certificates are involved, then the cost
of exchanging a few bytes of information can
easily increase several times due to this addi­
tional overhead.

2.1 DTLS-PSK
The Pre Shared Key (PSK) is an authentication
and key exchange algorithm used in cipher
suites, both in TLS [2] and DTLS. Although
not in common use on the Internet, (D)TLS­
PSK is widely employed by devices that are
part of the Internet of Things since it has
very low resource needs. We will also use
this mode to enable DTLS-HIMMO. The ci­
phersuite TLS PSK WITH AES 128 CCM

8 [10], for instance, uses PSK as the authenti­
cation and key exchange algorithm.

DDDDDDD
Client Server

ClientHello

HelloVerifyRequest
DDDDD(withDcookie)

ClientHelloD
(withDcookie)

ServerHello
ServerKeyExchange*

ServerHelloDone

ClientKeyExchange
ChangeCipherSpec

Finished

ChangeCipherSpec
Finished

ApplicationDData

Figure 1. A DTLS PSK exchange (with cookies)

Figure 1 illustrates PSK based authentica­
tion [3], as applied to the DTLS handshake.
Since both clients and servers may have pre-
shared keys with different parties, the client

2. For instance, see https://www.thesprawl.org/research/tls­
and-ssl-cipher-suites/ indicates which key to use with the PSK­

3. http://www.yassl.com/yaSSL/Products-cyassl.html identity in the ClientKeyExchange message. The

http://www.yassl.com/yaSSL/Products-cyassl.html
https://www.thesprawl.org/research/tls

server may help the client in selecting the iden­
tity to use with the PSK-identity-hint in the
ServerKeyExchange message. For IoT devices,
the PSK identity can be based on the domain
name of the server and, thus, the PSK-identity­
hint need not be sent by the server [18], so the
ServerKeyExchange is optional (marked with *).
The credentials (the pre shared keys them­
selves) are stored as part of hardware mod­
ules, such as SIM cards, and sometimes, on
the firmware of resource-constrained devices
themselves. The session keys for the DTLS
record session are derived from the PSK using
the TLS Pseudo Random Function (PRF) as
defined in [2]. The cookie exchange is used
to prevent denial of service attacks on the
server. The Constrained Application Protocol
(CoAP) [15] mandates the use of TLS PSK

WITH AES 128 CCM 8 for the use with
shared secrets [18].

3 HIMMO A N D HIMMO EX T EN ­
S I O N S

The concept of Key Pre-Distribution Schemes
(KPS) was introduced by Matsumoto and Imai
in 1987 [9]. However, there was no known
KPS that is both efficient and not prone to
efficient attacks of multiple colluding (or com­
promised) nodes. The HIMMO scheme solves
this problem. This section reviews the opera­
tion of the HIMMO scheme that enables any
pair of devices in a system to directly agree on
a common symmetric-key based on their iden­
tifiers and a secret key generating polynomial.
Furthermore, we describe two protocol exten­
sions of the HIMMO scheme as introduced in
[6], [7]. The underlying security principles on
which HIMMO relies have been analyzed in
[4] and [5].

We use the following notation: for each in­
teger x and positive integer M , we denote by
(x)M the unique integer y ∈ {0, 1, . . . , M −
1} such that x ≡ y mod M .

3.1 HIMMO operation
Like any KPS, HIMMO requires a trusted third
party (TTP), and three phases can be distin­
guished in its operation [9].

In the setup phase, the TTP selects positive
integers B, b, m and α, where m ≥ 2. The num­
ber B is the bit length of the identifiers that
will be used in the system, while b denotes the
bit length of the keys that will be generated.

The TTP generates the public modulus N , an
odd number of length exactly (α + 1)B + b
bits (so 2(α+1)B+b−1 < N < 2(α+1)B+b). It also
randomly generates m distinct secret moduli
q1, . . . , qm of the form qi = N − 2bβi, where
0 ≤ βi < 2B and at least one of β1, . . . , βm is
odd. Finally, the TTP generates the secret root
keying material, that consists of the coefficients
of m bi-variate symmetric polynomials of de­
gree at most α in each variable. For 1 ≤ i ≤ m,
the i-th root keying polynomial R(i)(x, y) is
written as

α α
(i) j kR(i)(x, y) = R yj,k x

j=0 k=0

(i) (i)with 0 ≤ R = R ≤ qi − 1.j,k k,j

In the keying material extraction phase,
the TTP provides each node ξ in the system,
with 0 ≤ ξ < 2B , the coefficients of the key
generating polynomial Gξ:

α
kGξ(y) = Gξ,k y (1)

k=0

where m α
Gξ,k = (R

(i)
ξj)qi . (2)j,k N

i=1 j=0

In the key generation phase, a node ξ
wishing to communicate with node η with
0 ≤ η < 2B , computes:

Kξ,η = (Gξ(η))N (3)
2b

It can be shown that Kξ,η and Kη,ξ need not be
equal. However, as shown in Theorem 1 in [6],
for all identifiers ξ and η with 0 ≤ ξ, η ≤ 2B ,

Kξ,η ∈ {(Kη,ξ + jN)2b | 0 ≤ |j| ≤ 2m}

In order to perform key reconciliation , i.e. to
make sure that ξ and η use the same key to
protect their future communications, the ini­
tiator of the key generation (say node ξ) sends
to the other node, simultaneously with an
encrypted message, information on Kξ,η that
enables node η to select Kξ,η from the candi­
date set C = {(Kη,ξ +j N)2b | 0 ≤ |j| ≤ 2m}. No
additional communication thus is required for
key reconciliation. The key Kξ,η will be used
for securing future communication between ξ
and η. As an example of information used for
key reconciliation, node ξ sends to node η the
number r = (Kξ,η)2s , where s = plog2(4m+1)l.
Node η can efficiently obtain the integer j such

that |j| ≤ 2m and Kξ,η ≡ Kη,ξ + jN mod 2b by
using that j N ≡ Kξ,η −Kη,ξ ≡ r −Kη,ξ mod 2s .
As N is odd, the latter equation allows for de­
termination of j. As r reveals the s least signif­
icant bits of Kξ,η , only the b−s most significant
bits Kξ,η , that is, the number l2−sKξ,η J, should
be used as key.

3.2 Implicit certification and verification of
credentials

Implicit certification and verification of cre­
dentials is further enabled on top of the basic
HIMMO scheme. A node that wants to register
with the system provides the TTP with its
credentials, e.g., device type, manufacturing
date, etc. The TTP, which can also add further
information to the node’s credentials such as a
unique node identifier or the issue date of the
keying material and its expiration date, obtains
the node’s identity as ξ = H(credentials),
where H is a public hash function. When a first
node with identity ξ wants to securely send a
message M to a second node with identity η,
the following steps are taken.

•	 Step 1: Node ξ computes a common key
Kξ,η with node η, and uses Kξ,η to en­
crypt and authenticate its credentials and
message M , say e = EKξ,η (credentials|M).

•	 Step 2: Node ξ sends (ξ, e) to node η.
'•	 Step 3: Node η receives (ξ , e'). It com­

'putes its common key Kη,ξe with ξ to
decrypt e' obtaining the message M and
verifying the authenticity of the received
message. Furthermore, it checks whether

'the credentials’ in e' correspond with ξ ,
'that is, it validates if ξ = H(credentials’).

This method not only allows not for direct
secure communication of message M , but also
for implicit certification and verification of ξ’s
credentials because the key generating poly­
nomial assigned to a node is linked to its
credentials by means of H . If the output size
of H is long enough, e.g., 256 bits, the input
(i.e., the credentials) contains a unique node
identifier, andif H is a secure one-way hash
function, then it is infeasible for an attacker
to find any other set of credentials leading to
the same identity ξ. The fact that credential
verification might be prone to birthday attacks
motivates the choice for the relation between
identifier and key sizes, namely, B = 2b. In
this way, the scheme provides an equivalent
security level for credential verification and

key generation. The capability for credential
verification enables e.g. the verification of the
expiration date of the credentials (and the
keying material) of a node, or verification of
the access roles of the sender node ξ.

3.3 Enhancing privacy by using multiple
TTPs

Using multiple TTPs was introduced by Mat­
sumoto and Imai [9] for KPS and can also be
elegantly supported by HIMMO [6]. In this
scheme, a number of TTPs provide a node with
keying materials linked to the node’s identifier
during the keying material extraction phase.
Upon reception, the device combines the dif­
ferent keying materials by adding the coeffi­
cients of the key generating polynomials mod­
ulo N . Key generation is performed as usual.
This scheme enjoys two interesting properties
without increasing the resource requirements
of the nodes. First, privacy is enhanced since
a single TTP cannot eavesdrop the communi­
cation links. In fact, all TTPs should collude
to monitor the communication links. Secondly,
compromising a sub-set of TTPs does not
break the overall system.

4 HIMMO I N A P OS T-QUA N T U M
WO R L D

In a collusion attack on the HIMMO scheme,
multiple nodes collaborate in emulating the
key generation process (3) of a node under
attack, using their own pairwise keys with the
node under attack as input. In [6], it is shown
that this attack amounts to solving a close
vector problem in a certain lattice, and that
the minimum required number of nodes, and
thus the lattice dimension, is (α + 1)(α + 2)/2.
If α is large enough, α > 20, an approximate
solution of this close vector problem, using the
default LLL [11] implementation of Sage [13],
and Babai’s nearest plane algorithm, fails to
give a good result, while the lattice dimension
becomes too large for exact methods, for which
the running time and memory requirements
grow exponentially in the lattice dimension.
While it is quite likely that more elaborate
approximate classical algorithms would give
better results, thus increasing the minimum
required value of α somewhat, currently no
quantum algorithm exists that would speed
up the approximate lattice methods, nor is it

foreseen that the quantum speed-ups in the ex­
act lattice algorithms, which use enumeration
techniques, are sufficient to crack HIMMO for
these values of α.

5 IM P L E M E N TAT I O N A N D P ER F OR ­
M A NC E

HIMMO has been designed keeping in mind
that we want to achieve very good perfor­
mance. In this section, we explain how the
key generation algorithm in Equation 3 can be
implemented in a very efficient way.

As we see in Equation 3, the key genera­
tion consists of the evaluation of a polynomial
module N and taking the b LSBs. A good

2B(α+1)+bchoice for N is − 1 because this
simplifies the implementation of modular re­
ductions on the devices. In Algorithm 1 we
show the key generation algorithm whose un­
derlying method is the well-known Horner ’s
Rule. Each intermediate value is computed as
follows

(tempj)N = (tempj+1 × η + Gξ,j)N

for j = α − 1, . . . , 0. To perform the modular
reduction we take advantage of N ’s specific

2B(α+1)+bform, − 1 and the small size of
× 2(α+1)B+bη. Thus, (tempj)N = (tempH +j

tempL
j)N ≈ tempH + tempL where tempH

j j j

and tempL
j are b and (α + 1)B + b bits long,

respectively. That this is an approximation is
because there might be a carry in the addition
of tempH

j and tempL
j , requiring a second re­

duction. However, as shown in the appendix,
this second reduction is needed at most once
during the calculation, and ignoring it leads
to a difference of one (mod 2b) between the
wanted key and the value returned by the
algorithm, so that

α

((Gξ,j η
j)N)2b ∈ {key , (key + 1)2b }.

j=0

The modular reduction happens when the
value of key is updated with the contribution
of the MSB stored in temp after being shifted
(j + 2)B bits and added to key (Line 8).

From Algorithm 1 it is also clear that part
of the coefficients Gξ,j with j ∈ {0, . . . , α} are
not used in the key generation process. This
is because of the smaller size of the HIMMO
identifiers (B bits) compared with the rela­
tively long coefficients ((α + 1)B bits). This
allows for a further optimization in which only

Algorithm 1 Optimized key generation
1: INPUT: B, b, α, η, Gξ,j with j ∈ {0, . . . , α}
2: OUTPUT: key
3:	 key ← (Gξ,α)2b

Gξ,α
 4: temp ← l
2b J

5: for j = α − 1 to 0 do
Gξ,j 6: temp ← temp × η + l

2(α−1−j)B+b J
7:	 key ← (key × η)2b + (Gξ,j)2b

temp
8: key ← (key + l J)2b2(j+2)B

(temp�
2(j+2)B9: temp ← l

2B J
10: end for
11: return key

the required parts of the coefficients are stored,
namely the b least significant bits and the j B
most significant bits of each coefficient Gξ,j .

Figure 2 provides a brief summary of the
performance of the HIMMO scheme on the 8­
bit CPU ATMEGA128L. The first graph shows
the key generation time for α = 26 as a
function of b = B. In the next two figures, we
see – as a function of α and for b = B = 128
– the key generation time and the size of the
key generating function.

We further include a comparison table (Ta­
ble 1) to illustrate the performance advan­
tages of HIMMO compared with ECDH and
ECDSA when implementing a simple interac­
tion between two nodes: a first node ξ wants
to send in a secure way information to η,
and η wants to securely receive the message
from ξ and verify its credentials. The first two
protocols involve communicating before node
ξ can send an encrypted message, whereas
HIMMO allows node ξ to directly compute
the key with η based on its identifier and
send the encrypted message. Also, notice that
ECDH only provides key agreement, to get
key agreement and verification of credentials,
it is needed to use also ECDSA, increasing the
resource requirements. The results are based
on an implementation on the ATMEGA128L
running at 8 MHz and illustrate the perfor­
mance when this protocol is implemented with
ECDH only, ECDH and ECDSA for a security
level of 80 bits and HIMMO using security
parameters α = 26 and 2b = B = 160. In
Table 1, CPU refers to the overall computing
needs, the memory refers to the amount of
information that needs to be stored in flash,
RAM is the RAM memory needs, exchanged
data refers to the amount of data exchanged
between ξ and η, round trips are the number

0

100

200

300

400

500

600

700

64 96 128 160 192 224 256

msec

b=B
0

100

200

300

400

500

600

18 22 26 30 34 38 42

msec

α 0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

18 22 26 30 34 38 42

Bytes

α

Figure 2. HIMMO Performance: on the left, performance for α = 26 as a function of b = B; in the
middle and right, performance for b = B = 128 as a function of α.

of interactions between both nodes, and finally,
the security properties illustrate the features of
the security protocols.

6 (D)TLS-HIMMO
TLS and DTLS are two of the protocols to pro­
tect the Internet today, while DTLS is becom­
ing the standard for the IoT. Existing (D)TLS
operational modes have pros and cons. PSK is
efficient and quantum secure, but it does not
scale. Raw-public key scales well but does not
offer authentication, is prone to man-in-the­
middle attacks, and most of existing schemes
would be broken with quantum computers.
Certificate-based schemes are too expensive in
some scenarios, in particular Internet of Things
related, and most of those schemes would also
be broken with quantum computers.

This motivates our research in a new (D)TLS
cipher suite based on HIMMO that:

•	 is resilient to quantum computers,
•	 has the low operational cost of DTLS-PSK,
•	 enables mutual authentication and cre­

dential verification as with certificate-
based schemes,

•	 and is scalable like solutions based on
public-key cryptography and infrastruc­
ture.

that it can work with HIMMO. The main dif­
ference from the usual PSK profile lies in using
identities to generate a pairwise symmetric
key and, then, deriving the session keys from
the pairwise symmetric key. A TTP provisions
keying material to client nodes and the server
as shown in Equation 1 during an initial setup
(eg. manufacture stage). HIMMO can be di­
rectly used in (D)TLS-PSK mode by exchang­
ing HIMMO’s identifiers in the ClientKeyEx­
change and ServerKeyExchange messages.4

6.1 DTLS-HIMMO Configurations

The existing PSK profile, such as the one
used in TLS PSK WITH AES 128 CCM

8, involves the exchange of two fields, the
PSK identity and PSK identity hint, in the Clien­
tKeyExchange and ServerKeyExchange messages
respectively. Instead of sending a PSK iden­
tifier, we use these fields, which can be up
to 128 bytes long [18], to exchange HIMMO
information.

Table 2 illustrates these fields of information
with exemplary lengths. First, we find an iden­
tifier/flag indicating the use of DTLS-HIMMO.
Next, we find a DTLS-HIMMO message type
to indicate which properties are enabled by
HIMMO. The third and fourth field refer to

To this end, we take the DTLS-PSK mode
4. Creation of a new profile to indicate DTLS-HIMMO that is based on identities, and we extend – (eg. TLS DTLS-HIMMO WITH AES 128 CCM 8) can

without need of changing the standard – so also be considered, but requires standardization.

Table 1

HIMMO performance and comparison with ECDH and ECDH+ECDSA.

CPU time Key material
+ code

RAM Exchanged
data

Security properties

ECDH [8] 3.97 s 16018 B 1774 B 480 B Key agreement
ECDH
+ECDSA [8]

11.9 s 35326 B 3284 B 704 B Key agreement and
credential verification

HIMMO 0.290 s 7560 B 1220 B 448 B Key agreement and
credential verification

the number of TTPs as well as their iden­
tifiers. These are the TTPs associated with
generating and distributing the key material
of the client and server. These two fields are
followed by an identifier. Next, we optionally
find the HIMMO credentials length as well as
the credentials themselves. Finally, a field that
contains the key reconciliation data is present.

This message format is used in the PSK­
identity-hint and PSK-identity fields of the
ServerKeyExchange and ClientKeyExchange mes­
sages. With these fields we can enable differ­
ent ways of using HIMMO with DTLS-PSK.
If only the HIMMO identifier is exchanged
in the identifier field, then only mutual au­
thentication is achieved between client and
server. Alternatively, the client, or server, or
both of them might exchange their creden­
tials. The credentials could be any informa­
tion that today is exchanged in regular digital
certificates and, for IoT scenarios, information
such as manufacturer, device type, date of
manufacturing, etc. In this case, the exchange
enables unilateral or mutual implicit credential
verification of the parties. We note that in
this case, the identifier field does not contain
the HIMMO identifier but a unique random
value that concatenated with the information
in the HIMMO credentials length and HIMMO
credentials is hashed to obtain the HIMMO
identifier. The reason for this construction was
explained in Section 3.2. Finally, we note that
the reconciliation data is only exchanged in
the ClientKeyExchange message since it is the
server the one performing this operation.

These two different options gives rise to four
(two each for client and server) different com­
binations. These combinations, required com­
putations and properties are shown in Table 3.

6.2 (D)TLS-HIMMO Handshake
The HIMMO enabled PSK message exchanges
are shown in Figure 6.2, with the respective

steps explained below:

•	 Step 1: The client sends a ClientHello mes­
sage to the server indicating use of the
PSK mode, such as the TLS PSK WITH

AES 128 CCM 8.
•	 Step 2: The usual HelloVerifyRequest mes­

sage, with a cookie, is sent from the server
to the client.

•	 Step 3: The client replies back with Clien­
tHello along with the cookie.

•	 Step 4: The server replies with ServerHello,
ServerKeyExchange and ServerHelloDone.
The PSK-identity-hint of the ServerKeyEx­
change contains the DTLS-HIMMO fields
as in the exemplary format shown in Table
2.

•	 Step 5: The client sends the ClientKeyEx­
change with the PSK-identity field contain­
ing the DTLS-HIMMO fields as shown in
Table 2. It also sends the usual Change-
CipherSpec and Finished messages to the
server.

•	 Step 6: The Server would send back the
usual ChangeCipherSpec and Finished mes­
sages to the client.

The client computes the symmetric pairwise
key as follows:

•	 Step 1: If the server sent its credentials,
as indicated in the DTLS-HIMMO fields,
compute

ID-Server =H(Server Identifier||
Server HIMMO Credentials Length||
Server HIMMO-credentials)

In case the server sent the HIMMO
identifier then set ID-Server =
Server HIMMO-Identifier.

• Step 2: If the client is also using creden­

Table 2

Exemplary format of the PSK-identity-hint and PSK-identity fields enabling DTLS-HIMMO

HIMMO
flag

Message
Type

Number
of

TTPs

TTP
ID

Identifier HIMMO
Credentials

length

HIMMO
Credentials

Reconci­
lliation

data
Length(Bytes) 2 1 1 1/ # TTP B 1 0 . . . (122 − B) 1
Mandatory (M)/
Optional (O)

M M M M M O O O

Table 3

Modes of operation of DTLS-HIMMO profile

Client sends HIMMO’s ID Client sends HIMMO’s credentials

Server sends HIMMO’s ID
Messages exchanged

ClientKeyExchange: Client ID
and Reconciliation data
ServerKeyExchange: Server ID

ClientKeyExchange: Clients credentials
and Reconciliation data
ServerKeyExchange: Server ID

Computations
Two HIMMO evaluations in total Two HIMMO evaluations in total

One hash evaluation
Properties

Mutual authentication Mutual authentication
Verification of client’s credentials

Server sends HIMMO’s credentials
Messages exchanged

ClientKeyExchange: Client ID
and Reconciliation data
ServerKeyExchange: Servers credentials

ClientKeyExchange: Clients credentials
and Reconciliation data
ServerKeyExchange: Servers credentials

Computations
Two HIMMO evaluations in total
One hash evaluation

Two HIMMO evaluations in total
Two hash evaluations

Properties
Mutual authentication
Verification of server ’s credentials

Mutual authentication
Verification of the credentials of client
and server

tials, compute

ID-Client = H(Client Identifier||
Client HIMMO Credentials Length||

Client HIMMO-credentials)

Otherwise, set ID-Client =
Client HIMMO-Identifier.

•	 Step 3: Compute the pairwise key
KID-Client, ID-Server as shown in Equation 3.

Similarly, the server, upon receipt of the
ClientKeyExchange message computes the pair-
wise key as:

•	 Step 1: Depending upon whether the
client sent its credentials or its HIMMO
identifier, compute ID-Client as shown in
the steps followed by the client before.
In the same manner, depending upon
whether the server uses credentials or its’
HIMMO identifier, compute ID-Server.

• Step 2: Compute the pairwise
key KID-Server, ID-Client using the key
reconciliation data sent by the client to
arrive at the symmetric pairwise key.

Note that the respective key generating poly­
nomials (Gξ,k in Equation 1) in the devices
would be configured with either the HIMMO
identifier or the hash of the concatenation of
the identifier, the length of the credentials and
the credentials for its identity ξ, depending
upon which mode of operation is used (see
Table 3). Once the client and server compute
the pairwise key, it can be part of the input to
the standard (D)TLS pseudo-random function
used to derive the session keys for the DTLS
session as is done with the PSK profile. The
DTLS Finished message authenticates the hand­
shake, and thus, authenticates both parties as
having the correct keying material. If the com­
municating peer is using HIMMO credentials
for the key exchange, then the successful com­

pletion of the Finished message implies that the
credentials it provided are correct and, thus,
authenticates the credentials of the peer.

4444444
Client Server

ClientHello

HelloVerifyRequest4
44444(with4cookie)

ClientHello4
(with4cookie)

ServerHello
ServerKeyExchange4(Step44)4

ServerHelloDone

ClientKeyExchange4(Step45)
ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

Application4Data

Computes4keys

Computes4keys

Figure 3. A DTLS-HIMMO exchange

6.3 Privacy protection
Protecting the privacy of the communication
links is fundamental. HIMMO and its exten­
sions can be used to ensure the privacy of the
involved communication parties.

A first aspect to consider refers to the pro­
tection of the exchanged credentials that might
contain some private information that is not
wished to be exposed to the other party, if
not authenticated before, or to any passive
eavesdropper. The fact that HIMMO allows
for identity-based key agreement allows for
a simple extension of the DTLS-handshake.
The credentials can be encrypted with the
pairwise key shared with the other party. For
instance, in the DTLS-HIMMO exchange, the
client can protect its credentials by encrypting
them with the HIMMO key shared with the
server and that is computed after the reception
of the ServerKeyExchange message. Thus, the
ClientKeyExchange could contain the Client’s
HIMMO identifier and the encrypted client’s
HIMMO credentials. The server can use the
HIMMO identifier to obtain the common pair-
wise key, and decrypt the client’s credentials.

Neither a fake server nor an attacker eaves­
dropping the communication will be able to
learn the client’s credentials.

The usage of raw-public keys with out-of­
band verification or of digital certificates re­
quires some type of public-key infrastructure
that allows validating the authenticity of the
involved public-keys or installing the digital
certificates in a secure way. A certification au­
thority (CA), or a hierarchy of CAs, plays this
role in today’s public-key infrastructure (PKI)
HIMMO relies on a TTP whose role is similar
to the one of a CA. Like a CA, the TTP is in
charge of validating the identity of a joining
node and securely distributing its key gener­
ating function. The difference is that a single
TTP could be misused and the TTP (or anyone
having access to the TTP) could eavesdrop or
alter the ongoing data exchanges between any
pair of nodes in a passive way. As explained in
Section 3.3, the usage of multiple TTPs avoids
this situation, since each device then registers
with several TTPs and combines the received
key generating polynomials from each TTP.
In this way, the generated keys between any
pair of entities of the system depend on the
information shared by all the involved TTPs.

TTP 1

TTP 2

TTP t

Server 1 Server 2 Server s

Client 1 Client 2 Client c

Figure 4. TTP infrastructure for privacy-
protection in DTLS-HIMMO

6.4 TTP Infrastructure

The introduction of an infrastructure of TTPs
(see Figure 4) for the DTLS-HIMMO profile
would mean the creation of an alternative to
today’s PKI. As outlined above, each entity
in the system would register with a num­
ber of TTPs receive the corresponding key
generating polynomials, each linked to the
same or related credentials. Each entity would

store these information either combined, as
explained in Section 3.3, or independently. In
this case, the TTP identifiers can be exchanged
between client and server during a DTLS­
HIMMO handshake as indicated in Figure 2.
In a first step, the server provides in the
ServerKeyExchange message the TTP identifiers
from which it received its key generating poly­
nomials. In a second step, the client answers
with common or chosen TTPs in the Clien­
tKeyExchange messages.

Such an infrastructure brings new chal­
lenges but also advantages. Today, if a CA is
compromised, then it is not possible to easily
recover. Certificates are often not signed by
more of a CA, and if they are, this rapidly
increases the bandwidth and computational
requirements. The usage of such a TTP In­
frastructure as described above overcomes the
problem of a TTP being compromised (and
therefore the whole system being insecure)
without almost any effect on bandwidth or
computational resources.

7 DTLS-HIMMO A N D C O M PA R I S O N
W I T H E X I S T I N G (D)TLS A LT E R N AT I V E S

We have implemented the DTLS-HIMMO op­
eration mode in the CyaSSL library (version
3.0.0) such that the client and server run on
a Intel Core i5-3437U @ 1.90 GHz with Win­
dows 7 Enterprise. The DTLS-HIMMO ex­
tension is carried out by using DTLSv1.2 in
PSK mode as starting point as explained in
Section 6. The HIMMO-based DTLS operation
modes include: (i) HIMMO enabling mutual
authentication, (ii) HIMMO enabling mutual
authentication and server verification, and (iii)
HIMMO enabling mutual authentication and
client and server verification. We compare
DTLS-HIMMO with (iv) DTLS in PSK mode,
(v) DTLS certificates enabling sever verifica­
tion only and (vi) DTLS certificates with both
server and client verification. Both modes are
implemented using the ECDHE and ECDSA
on NIST secp256r1 curve. All of the analyzed
DTLS operation modes rely on a 128-bit AES
in CCM operation mode to secure the DTLS
record layer.

Table 4 provides the reader with a quali­
tative comparison of the above DTLS modes
of operation against their performance and
security properties. Performance-wise we dis­
cuss the resource requirements on the client
and server and the communication overhead.

Security-wise we consider the capability of the
handshakes for key agreement, authentication,
information verification, and scalability.

It is worth noting that the verification of the
client or server credentials only costs an addi­
tional hash computation due to the identity-
based nature of HIMMO. This is also the rea­
son why the communication overhead can be
kept at a very low level compared with certifi­
cates. At the same time, we also observe that
the realization of the key agreement and ver­
ification of information requires several scalar
ECC point multiplications while in the case
of HIMMO only a polynomial evaluation is
involved.

This qualitative comparison is supported by
the experimental results in which we have
measured (i) the elapsed time, (ii) the amount
of data exchanged, and (iii) the ratio between
data exchanged and payload in three different
scenarios for different DTLS modes of opera­
tion:

•	 the DTLS connection is established and 1
KB of data are exchanged,

•	 the DTLS connection is established and 10
KB of data are exchanged, and

•	 the DTLS connection is established and
100 KB of data are exchanged.

Figure 5 shows the required time to establish a
secure connection and send the data for differ­
ent cipher suites. We observe that DTLS-PSK
is the fastest followed by DTLS-HIMMO with­
out credential verification capabilities. DTLS­
HIMMO with credential verification capabili­
ties becomes slightly more expensive since B
needs to be 2b in this case. We also observe that
the usage of a small or high security parameter
α does not heavily impact the performance of
the scheme remaining around a factor 8 faster
than the ECC alternative. A value of α of 26
and 50 implies than an attacker has to deal
with lattices of dimensions 405 and 1377 for
the HI problem [5]. It is also worth noting
that in all cases the cryptographic operations
involved in the transfer of data are negligible
compared with the DTLS handshake. Figure 6
depicts the total amount of exchanged data
for all the cipher suites. This includes the
headers of the underlying protocols (UDP, IP,
etc) as well as the transfer of 1 KB of data.
Figure 7 shows the ratio between the required
bandwidth and the exchanged payload mak­
ing clear that the usage of schemes relying on
long keys might not be the best solution for

Table 4

Qualitative comparison of the HIMMO based PSK profile with other algorithms

DTLS Client CPU Server CPU Handshake Certificate Key Authentication Information Scalability
mode Needs Needs size size Agreement verification

DTLS-HIMMO 1 HIMMO key generation 1 HIMMO key generation Low Low Yes Mutual No Gξ (x)
(b=B) (b=B) installation

Key reconciliation
DTLS-HIMMO(SA) 1 SHA-256 1 HIMMO key generation Server Gξ (x)

(Server 1 HIMMO key generation Key reconciliation Low Low Yes Mutual authentication installation
authentication) (2b = B) (2b = B)
DTLS-HIMMO 1 SHA-256 1 SHA-256 Server Gξ (x)

(Mutual 1 HIMMO key generation 1 HIMMO key generation Low Low Yes Mutual and installation
authentication) (2b = B) (2b = B) Client

Key reconciliation
PSK - - Low Low Yes Mutual No Installation of PSKs

ECDHE + ECDSA Three ECC point One ECC point High High Yes Unilateral Server Root Certificate
(Server authentication) multiplications multiplication verification installation

ECDHE + ECDSA Three ECC point Three ECC point Higher Higher Yes Mutual Server and client Root Certificate
(Mutual authentication) multiplications multiplication verification installation

use cases in which little payload needs to be
exchanged.

These figures together with Figure 1 show
several advantages of HIMMO compared with
other alternatives. The first one is that Inter­
net of Things applications that involve the
exchange of little data, frequently under 10
KB, can profit from HIMMO since it offers a
better ratio between the amount of transmitted
payload and the overall amount of transmitted
data. This is due to HIMMO’s identity based
nature that does not require the exchange of
public-keys or long certificates. As a result, the
underlying constrained networks are less over­
loaded, thus enabling IoT applications with
less costs to network operators. The second
one is that same back-end can handle many
more clients with the same resources. This
prevents potential DoS attacks and decreases
again the price to enable those applications.
Finally, Figures 5 and 7 show the performance
of the DTLS handshake between two powerful
devices. In a real world Internet of Things
scenario one of those devices will have much
lower capabilities. However, HIMMO can be
still implemented in a very efficient way as
illustrated in Figure 2.

There are other schemes that introduce post
quantum secure key exchange. The post quan­
tum key exchange scheme [1] is based on the
ring learning with errors (R-LWE) problem
and its authors discuss using it with TLS in
a similar setup as the one discussed in this
paper. Their results show that this scheme is
slower than ECDH, for both client operation
(from 0.8 msec to 1.4 msec) and for server op­
eration (from 1.4 msec to 2.1 msec). Although
these performance numbers are not directly
comparable with ours since they are based

0 50 100 150 200

(6)

(5)

(4)

(3)

(2)

(1)

ms

Handshake 1 KB

9 KB 90KB

Figure 5. DTLS connection time. From top to
bottom: (1) ECDH-ECDSA with mutual authen­
tication, (2) ECDH-ECDSA with server authen­
tication, (3) HIMMO with mutual verification of
client’s and server’s credentials (B = 256, b =
128, α = 50), (4) HIMMO with mutual verifica­
tion of client’s and server’s credentials (B =
256, b = 128, α = 26), (5) HIMMO with mutual
authentication (B = 128, b = 128, α = 26) and
(6) PSK.

on different CPUs and different software, it
indicates that HIMMO should operate much
faster than R-LWR since HIMMO is faster
than ECC, and ECC is faster than the R-LWE
scheme. PKC schemes based on NTRU have
been investigated to secure Internet of Things
scenarios [16]. NTRU is a fast scheme. How­
ever, the public-keys are long: a security level
of 128-bits require 6743 bit long keys [14]. This
also indicates that HIMMO and its identity-
based nature can improveon NTRU commu­
nication overhead, very important in Internet
of Things applications, while providing high
speed performance.

0 1000 2000 3000 4000 5000

(6)

(5)

(4)

(3)

(2)

(1)

Payload

Overhead

Figure 6. Total KB exchanged for 1 KB payload.
From top to bottom: (1) ECDH-ECDSA with
mutual authentication, (2) ECDH-ECDSA with
server authentication, (3) HIMMO with mutual
verification of client’s and server’s credentials,
(4) HIMMO with verification of server’s creden­
tials, (5) HIMMO with mutual authentication and
(6) PSK.

1

1,5

2

2,5

3

3,5

4

4,5

1 10 100

(5)
(4)

(3)

(2)

(1)

(6)

Figure 7. Ratio between total exchanged data
and payload. From top to bottom: (1) ECDH­
ECDSA with mutual authentication, (2) ECDH­
ECDSA with server authentication, (3) HIMMO
with mutual verification of client’s and server’s
credentials, (4) HIMMO with verification of
server’s credentials,(5) HIMMO with mutual au­
thentication and (6) PSK.

8	 CO N C L U S I O N S

The HIMMO scheme is the first Key Pre-
distribution scheme that is simultaneously ef­
ficient and secure (in terms of collusion re­
sistance). HIMMO is post-quantum secure as
known attacks involve solving a close vector
problem in a lattice for which currently no
quantum algorithm exists that would speed
up the approximate lattice methods, nor is it
foreseen that the quantum speed-ups in the ex­
act lattice algorithms, which use enumeration
techniques, are sufficient to crack HIMMO.

Specific choices of the HIMMO parame­

ters enable very efficient implementations that
combined with the implicit credential certi­
fication and verification improve the perfor­
mance of related public-key schemes one or­
der of magnitude. HIMMO can be embed­
ded in TLS and DTLS, the security protocols
used to secure the Internet, without requir­
ing any changes in the standards, but of­
fering a significantly improved performance
security trade-off while being quantum se­
cure. In fact, the DTLS-PSK mode can be ex­
tended with HIMMO to achieve functionality
that today is only possible with public-key
cryptography and a public-key infrastructure,
but at the speed and memory requirements
of a symmetric-key handshake. The DTLS­
HIMMO handshake offers mutual authentica­
tion of client and server, implicit verification of
their credentials costing a single hash compu­
tation, client’s privacy-protection by sending
its credentials in encrypted format, and sup­
port of multiple TTPs.

RE F E R E N C E S

[1]	 J.W. Bos, C. Costello, M. Naehrig, and D. Stebila.
Post-quantum key exchange for the TLS protocol
from the ring learning with errors problem. Cryp­
tology ePrint Archive, Report 2014/599, 2014. http:
//eprint.iacr.org/.

[2]	 T. Dierks and E. Rescorla. The Transport Layer Secu­
rity (TLS) Protocol Version 1.2. RFC 5246 (Proposed
Standard), August 2008. Updated by RFCs 5746,
5878, 6176.

[3]	 P. Eronen and H. Tschofenig. Pre-Shared Key Cipher-
suites for Transport Layer Security (TLS). RFC 4279
(Proposed Standard), December 2005.

[4]	 O. Garcı́a-Morch ́on, D. G ́omez-P ́erez, J. Guti ́errez,
R. Rietman, and L. Tolhuizen. The MMO problem.
In Proc. ISSAC’14, pages 186–193. ACM, 2014.

[5]	 O. Garcı́a-Morchon, R. Rietman, I.E. Shparlinski, and
L. Tolhuizen. Interpolation and approximation of
polynomials in finite fields over a short interval from
noisy values. Experimental mathematics, 23:241–260,
2014.

[6]	 O. Garcı́a-Morch ́on, R. Rietman, L. Tolhuizen,
D. G ́omez-P ́erez, and J. Guti ́errez. HIMMO
- A Lightweight, Fully Colluison Resistant Key-
Predistribution Scheme. Cryptology ePrint Archive,
Report 2014/698, 2014. http://eprint.iacr.org/.

[7]	 O. Garcia-Morchon, L. Tolhuizen, D. Gomez, and
J. Gutierrez. Towards full collusion resistant ID-based
establishment of pairwise keys. In Extended abstracts
of the third Workshop on Mathematical Cryptology (WMC
2012) and the third international conference on Symbolic
Computation and Cryptography (SCC 2012)., pages 30–
36, 2012.

[8]	 A. Liu and P. Ning. Tinyecc: A configurable library
for elliptic curve cryptography in wireless sensor
networks. In Proc. 7th Int. Conf. on Information Pro­
cessing in Sensor Networks, IPSN ’08, pages 245–256,
Washington, DC, USA, 2008. IEEE Computer Society.

http:http://eprint.iacr.org
http:eprint.iacr.org

�

[9]	 T. Matsumoto and H. Imai. On the key predistribu­
tion system: a practical solution to the key distribu­
tion problem. In C. Pomerance, editor, Advances in
Cryptology – CRYPTO’87, LNCS 293, pages 185–193.
Springer, 1988.

[10]	 D. McGrew and D. Bailey. AES-CCM Cipher Suites
for Transport Layer Security (TLS). RFC 6655 (Pro­
posed Standard), July 2012.

[11] Ph.Q. Nguyen and B. Vall ́ee, editors. The LLL Algo­
rithm - Survey and Applications. Springer, 2010.

[12]	 J. Proos and C. Zalka. Shor ’s discrete loga­
rithm quantum algorithm for elliptic curves. In
http://arxiv.org/abs/quantph/0301141, 2003.

[13] Sage. http://www.sagemath.org.
[14]	 J. Schanck, 2014. https://github.com/

NTRUOpenSourceProject/ntru-crypto/.
[15]	 Z. Shelby, K. Hartke, and C. Bormann. The Con­

strained Application Protocol (CoAP). RFC 7252
(Proposed Standard), June 2014.

[16]	 J.-R. Shih, Y. Hu, M.-C. Hsiao, M.-S. Chen, W.-C.
Shen, B.-Y. Yang, A.-Y.Y Wu, and C.-M. Cheng. Se­
curing m2m with post-quantum public-key cryptog­
raphy. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 3(1):106–116, March 2013.

[17]	 P.W. Shor. Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer. In SIAM Journal on Computing, volume 26,
pages 1484–1509, 1997.

[18]	 H. Tschofenig. A Datagram Transport Layer Security
(DTLS) 1.2 Profile for the Internet of Things, August
2014.

AP P E N D I X A
PROOF O F C O R R E C T NES S O F O P T I ­
M I Z E D A L G OR I T H M

Let b, B, α be positive integers and let N :=
2(α+1)B+b −1. For 0 ≤ i ≤ α, let 0 ≤ Gi ≤ N −1,
and let 0 ≤ η ≤ 2B − 1. We are interested in
obtaining the key K, defined as

α

K := ((Giη
i)N)2b . (4)

i=0

For 0 ≤ i ≤ α − 1, we write

= γi2
(α−i−1)B+bGi	 + δi

with 0 ≤ δi ≤ 2(α−i−1)B+b − 1. (5)

We rewrite Algortihm 1, where we added in­
dices to the variables that will be useful in the
analysis the algorithm:

kα := (Gα)2b ; τα := l Gα J;
2b

for j := α − 1 downto 0 do
begin σj := τj+1 × η + γj ;

σjkj := (kj+1 × η + (Gj)2b + l J)2b ;
2(j+2)B

(σj 2(j+2)Bτj := l
2B J

end;
key:= k0

In this appendix we prove the following
theorem.

Theorem A.1. If α < 2B , then either K = key
or K = (key + 1)2b .

For proving the above theorem, we define
Λα, Λα−1, . . . , Λ0 as

Λα := Gα

and for 0 ≤ j ≤ α − 1,

σj

Λj := ηΛj+1 + Gj − l JN.
2(j+2)B

By induction on j, it is easy to see that for
0 ≤ j ≤ α,

α

Λj ≡ Giη
i−j mod N.

i=j sαNote that Giη
i−j is the j-th iterate of i=j sαthe evaluation of Giη

i using Horner ’s i=0
algorithm.

We will show below (Proposition 2) that for

each j,

0 ≤ Λj − τj 2
(α−j)B+b ≤ (α − j + 1)2(α−j)B+b .

As a consequence, if α < 2B , then 0 ≤ Λ0 −
τ02

αB+b < N. The algorithm implies that 0 ≤
τ0 ≤ 2B − 1, and so 0 ≤ τ0 ≤ Λ0 < N + 2B − 1.sαAs j=0 Gj η

j ≡ Λ0 mod N , we conclude that sα(Gj η
j)N = (Λ0)N ∈ {Λ0, Λ0 −N}, and so j=0

K ∈ {(Λ0)2b , (Λ0 + 1)2b }. (6)

In Proposition 3, we show that Λj ≡ kj for 0 ≤
j ≤ α. Combining this result with (6) proves
the theorem.

For 0 ≤ j ≤ α, we define

rj := Λj − 2(α−j)B+bτj .

Proposition 1. For 0 ≤ j ≤ α − 1, we have that
σjrj = 2(α−j−1)B+b(σj)2B + ηrj+1 + δj + l J

2(j+2)B

Proof Let 0 ≤ j ≤ α − 1. From the definitions
of Λj , Λj+1, rj rj+1 and σj we readily find that

rj = 2(α−1−j)B+b(σj − 2B τj) + ηrj+1

σj

+ ηδj − l JN.
2(j+2)B

Writing σj = l σj J2(j+2)B +(σj)2(j+2)B , and
2(j+2)B

using that N = 2(α+1)B+b − 1, we obtain that

rj = 2(α−1−j)B+b((σj)2(j+2)B − 2B τj)

σj

+ l J + ηrj+1 + ηδj .
2(j+2)B

The proposition now follows from observing
that

(σj)2(j+2)B (σj)2(j+2)B = 2B l J + ((σj)2(j+2)B)2B
2B

= 2B τj + (σj)2B . D

http:https://github.com
http:http://www.sagemath.org
http://arxiv.org/abs/quantph/0301141

Proposition 2. For 0 ≤ j ≤ α we have that rj ≤
(α − j + 1)2(α−j)B+b − 1.

Proof By induction on j. As rα = (Gα)2b ≤
2b − 1, the proposition is true for j = α.
Now let 0 ≤ j ≤ α − 1. The algorithm

≤ 2(j+2)Bimmediately implies that τj+1 − 1
(make distinctions for j = α − 1 and j < α − 1
for showing this). Moreover,

Gj Gj
γj = l J ≤

2(α−j−1)B 2(α−j−1)B+b

N − 1 ≤ 2(j+2)B − 1.≤
2(α−j−1)B+b

We conclude that

σj = τj+1η + γj < 2(j+2)B (η + 1) < 2(j+3)B ,

and so
σjl J ≤ 2B − 1. (7)

2(j+2)B

According to (5), we have that δj ≤
2(α−1−j)B+b − 1, and we clearly have that
(σj)2B ≤ 2B − 1. Combining these inequalities
with (7) and Proposition 2, we infer that

rj ≤ 2(α−j−1)B+b(2B − 1) + (2(α−1−j)B+b − 1)

+ ηrj+1 + (2B − 1)

= 2(α−j)B+b + ηrj+1 + 2B − 2

< 2(α−j)B+b + 2B (rj+1 + 1).

According to the induction hypothesis, rj+1 ≤
(α − j)2(α−j−1)B+b − 1, and so

rj ≤ (α − j + 1)2(α−j)B+b − 1. D

Proposition 3. For 0 ≤ j ≤ α, we have that
kj = (Λj)2b .

Proof By induction on j. The proposition is
true for j = α.
Now let 0 ≤ j ≤ α − 1. The definition of Λj

implies that
σj J(2(α+1)B+b − 1)Λj = ηΛj+1 + Gj − l

2(j+2)B

≡ η(Λj+1)2b + (Gj)2b + l σj J (mod 2b).
2(j+2)B

As kj+1 ≡ Λj+1 (mod 2b), the definition of kj

implies the proposition. D

