

1

Efficient and Secure Elliptic Curve Cryptography Implementation of Curve P-256

Mehmet Adalier1

Antara Teknik, LLC

Abstract

Public key cryptography has become the de facto
standard for secure communications over the Internet
and other communications media such as cellular and
Wi-Fi. Elliptic curves offer both better performance
and higher security than first generation public key
techniques and are gaining acceptance as the
foundation for future Internet security such as the
security-enhanced Border Gateway Protocol
(BGPSEC). In this paper, we present a performance
optimized and side-channel-attack resistant
implementation of the NIST Curve P-256 which
provides 128-bits of security. We also discuss
operation time vs. storage trade-offs for various
approaches.

Introduction
The reliable functioning of critical infrastructure,
such as the Internet, is imperative to the national and
economic security of United States [1] especially as
the frequency and complexity of cyber-security
threats are increasing significantly. The currently
deployed Border Gateway Protocol (BGP), which
was last updated in 2006 [2,3], does not include
provisions for security features and is vulnerable to
malicious attacks targeting the control plane. These
attacks can be perpetuated in a number of ways
[4,5,6] and could cause significant failures and
instability. Moreover, perpetuators can deny service,
re-route traffic to malicious hosts, and expose
network topologies. There have been significant
efforts over the years to add robustness to BGP and
to provide Best Common Practice (BCP) guidance
for the same [7,8,9].

The Internet Engineering Taskforce (IETF) is
currently developing BGPSEC (BGP with Security)
[10], an extension to BGP with the intention to
provide path security for BGP route advertisements.

1 This material is based upon work supported by the
National Institute of Standards and Technology
(NIST) under cooperative agreement
70NANB14H289. Any opinions, findings,
conclusions or recommendations expressed in this
publication are those of the author and do not
necessarily reflect the views of NIST.

The extension is meant to provide resiliency against
route hijacks and Autonomous System (AS) path
modifications. Specifically, two mechanisms: i)
route-origin validation [11]; and ii) path validation
are being defined [10]. As described in RFC 6480
[12] the Resource Public Key Infrastructure (RPKI)
provides the initial step used to validate BGP routing
data. First, holders of AS number and IP address
resources are issued RPKI Resource Certificates,
which establish a binding between them and
cryptographic keys for digital signature verification.
Furthermore, a Route Origination Authorization
(ROA), which is a digitally signed object, allows
holders of IP address resources to authorize specific
ASes to originate routes. BGP speakers can use
ROAs to ensure that the AS which originated the
received route, was in fact authorized to originate that
route.

ECDSA P-256, a prime curve that has been used
extensively in critical infrastructure projects, is being
used as the Elliptical Curve Digital Signature
Algorithm for AS-path signing and verification in the
BGPSEC protocol [10]. The performance efficiency
of ECDSA P-256 is imperative to meet strict Internet
routing table convergence requirements [13]. Thus
the viability of BGPSEC adoption is dependent on
the availability of high performance implementations
of ECDSA P-256.

In this paper we discuss key implementation areas
and optimization opportunities, and show that it is
possible to implement ultra fast and secure ECDSA
for the curve P-256, delivering full 128-bits of
security, on low-cost and low-power commercially
available hardware. Furthermore, our work can be
extended to optimize other prime curves such as
Curve P-521, which provides 256-bits of security.

1.0 ECDSA Overview

Elliptical Curve Cryptology has been extensively
studied and documented [14,15]. This paper is
focused on applied cryptography and implementation
aspects rather than mathematical proofs of underlying
theorems. This section provides a brief overview of
the fundamentals.

1.1 ECDSA Parameters

For proper implementation of ECDSA the use of a
specific set of elliptic curve domain parameters are
required for digital signature generation and
verification. These domain parameters may be used
for extended time periods (i.e. over multiple
sessions). Specifically the applicable ECDSA
Domain Parameters are:

q, the size of the underlying field
a, elliptic curve parameter (equal to q-3 for
P-256)
b, elliptic curve parameter
G = (xG, yG), a point on the curve, known as
the base point,
n, the order of the base point G.

The equation of the curve is generally given as

y2 = x3 + ax + b mod q

For NIST Prime Curves which include P-256, a = q −
3, and with this value of a, the equation is equivalent
to the one given in FIPS 186-4 [16], namely:

y2 = x3 − 3x + b mod q

1.2 ECDSA Signature Generation

The inputs to ECDSA signature generation are: i) a
message, M; ii) the appropriate curve domain
parameters; iii) the appropriate Hash function [17];
and iv) the private key d. The output of the process is
a pair of integers (r, s), each in the interval [1, n − 1].
The process is defined as [18,19]:

1.	 Generate (k, k−1), where k is the per
message secret number and k−1 is its
inverse modulo n

2.	 Compute the elliptic curve point R = kG
= (xR, yR)

3.	 Compute r = xR mod n
4.	 Compute H = Hash (M)
5.	 Convert the bit string H to an integer e :

e = ΣH
(i=1) 2H−i * bi, where b1, b2,

..., bH, is the bit string to be
converted

6.	 Compute s = (k−1 * (e + d * r)) mod n
7.	 Return (r, s)

1.3 ECDSA Signature Verification

The inputs to ECDSA signature verification are: i)
the received message M’; ii) (r’, s’): the received
signature on M’; iii) the appropriate curve domain
parameters; iv) the appropriate Hash function; and iv)
the public key Q. The output of the process is an
indication of whether the supplied signature is valid
or not. The process is defined as [18,19]:

1.	 If r’ and s’ are not both integers in the
interval [1, n − 1], output INVALID

2.	 Compute H’= Hash (M’)
3.	 Convert the bit string H’ to an integer e’

by using:
ΣH’e’ = (i=1) 2H’−i * bi, where b1, b2,

..., bH’, is the bit string to be
converted

4.	 Compute w = (s’)-1 mod n
5.	 Compute u1 = (e’ * w) mod n and

u2 = (r’ * w) mod n
6.	 Compute the elliptic curve point R =

(xR, yR) = u1G+u2Q
7.	 Compute v = xR mod n
8.	 Compare v and r’. If v = r’, output

VALID; otherwise, output INVALID.

Note that domain parameters, k and d for P-256 are
32-Bytes long each where as the points on the curve
such as G and Q (public key) consist of 32-Byte x-
and 32-Byte y-values each. The total length of the
signature generated is 64 bytes (r 32 bytes, s 32
bytes). Given that most modern compute engine (e.g.
CPUs) registers are either 32 or 64 bits, ECC
arithmetic operations are performed by using multi-
precision arithmetic, which require significant
compute cycles for basic mp-integer operations (i.e.
field operations) such as multiply, invert, and mod.

2.0 Elliptic Curve Point Representation and
Group Level Operations

Assume E to be an elliptic curve over a prime field Fp
with the affine equation y2 = x3 − 3x + b. Defining
two points on the curve as P1 = (x1, y1) and P2 = (x2,
y2) with P1 ≠ -P2, then P3 = P1 + P2 = (x3, y3) is [20]:

x3 = λ2 - x1 – x2, and y3 = λ(x1 – x3) –y1, and

λ= (y2 – y1)/(x2 – x1) when P1 ≠ P2, and

λ= (3x1
2 - 3)/ (2y1) when P1 = P2

Since general addition only works when P1 ≠ P2,
addition for the case P1 = P2 is referred as point
doubling. Prime field inversions are considerably
more expensive in compute resource requirements
than field multiplications. Thus representing points
using projective coordinates may be beneficial. Using
Jacobian projective coordinates [21], it can be shown
that the projective point (X : Y : Z), where Z ≠ 0,
corresponds to the affine point (X/Z2, Y/Z3), and to
the point at infinity (i.e. the identity element) when
Z = 0.

Formulas for addition in mixed Jacobian-Affine
coordinates are given as:

(X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : 1), where

A = X2 . Z1
2, B = Y2.Z1

3,

C = A – X1, D = B – Y1,

X3 = D2 – (C3 + 2X1.C2);

Y3= D. (X1.C2 – X3) – Y1.C3;

Z3 = Z1.C

Formulas for doubling in Jacobian coordinates are:

(X3 : Y3 : Z3) = 2(X1 : Y1 : Z1), where

A = 4X1.Y1
2, B = 8Y1

4,

C = 3(X1 – Z1
2) . (X1 + Z1

2), D = -2A + C2,

X3 = D;

Y3 = C. (A – D) – B;

Z3 = 2Y1 . Z1,

where the operations are performed using field
arithmetic with multi-precision positive integers.

As previously discussed, the ECDSA Sign Operation
requires the multiplication of the curve base point G
(xG, yG), with a scalar k, which is also referred as the
One Time Secret Number (OTSN). For example, for
curve P-256, k is a 256-bit Deterministic Random
Number with security strength of at least 128 bits.
The scalar multiplication is quite compute intensive
and dominates the execution time of elliptic curve
cryptographic operations. Considerable effort has
been spent on minimizing the scalar multiplication
time [22,23,24]. Assuming all computations are
actually carried out, as in the basic Right to Left
Binary Method shown as Algorithm 1, the expected
running time is approximately m/2 point additions
and m point doublings (denoted 0.5mA + mD), where
m is the length of the binary number k [expected
number of ones in binary k is about m/2]. For P-256
this equates to 0.5(256)A+256D= 128A + 256D
which requires a considerable amount of compute
time.

INPUT: k = (kt−1, . . ., k1, k0)2, P ∈ E(Fq)
OUTPUT: Q = kP

1. Q←∞
2. For i from 0 to t −1 do

2.1 If ki = 1 then Q←Q + P
2.2 P←2P

3. Return (Q)

Algorithm 1) Right to Left Binary Method for Point
Multiplication

3.0 Side-channel Attack Considerations

Side-channel attacks on implementations of
cryptosystems may include timing or power
consumption measurements in order to reveal secret
information such as the OTSN or the private key. In
elliptic curve cryptosystems, implementations of
point multiplication algorithms are the primary
targets for side-channel attacks [25,26,27].
Straightforward implementations of elliptic curve
point multiplications, such as Algorithm 1 are
exceptionally vulnerable to simple SCA since they
employ both point addition and point doubling.
Given the fact that point adding and doubling require
substantially different formulas, bits of the OTSN
could be extracted in a power consumption trace if
the double-and-add algorithm is used for point
multiplication. Differential power analysis is an
attack [28] that enables extraction of a secret key
stored in a cryptographic system where an adversary
monitors the power consumption of the cryptographic
system and then statistically analyzes the collected
power signal data in order to extract the secret key.

Data randomizing is a well-known DPA
countermeasure, by which the intermediate data may
be randomly transformed inside the cryptographic
system. The technique mitigates leakage that can be
used by a DPA since the intermediate data is no
longer predictable. Additionally, Liardet and Smart
[29] and Joye and Quisquater [30] have proposed
reducing information leakage by using special
representations of points.

There are several approaches to reducing the running
time of the scalar multiplication algorithm. One is
using alternative representations of k in order to
reduce the number of one-bits (and hence reduce
number of point additions) such as NAF [31] along
with pre-computation of point doublings (if the point
is known). While alternative representations of k can
introduce a performance benefit, the re-coding that is
often needed may be susceptible to Side Channel
Attacks because an adversary could use DPA to
reveal portions of the secret information [32].

4.0 Optimization Methodology

There has been considerable research conducted to
increase the security and the performance of ECC
algorithms. Side-channel-attack resilience needs to be
inherently built into core functions where applicable
in an optimized fashion, rather than included as an
after-thought. Performance can be increased via
algorithmic or mathematical methods as well as with
the facilitation of target platform features with low-
level implementation techniques. While CPU core
frequencies have stabilized in the range of 3 to 4HGz

with minimal potential for substantial increases, new
instructions and platform features can often improve
the performance of algorithms or methods which
were thought to be too slow even only a few years
ago. For example, the latest Intel® Architecture
processors support large Last Level Caches, fast
memory access, and new 64-bit integer arithmetic
instructions. Furthermore, even the low-power
embedded CPUs provide multiple 64-bit cores, with
the flagship CPUs providing up to 18 cores. In this
paper, we concentrate our discussion on single core
serial code optimizations to produce minimal latency
functions, however, our functions are inherently built
to be thread safe and will scale well on multiple
cores. We provide a comprehensive approach, which
includes feasible algorithmic level optimizations,
group level optimizations, and field element
optimizations along with a discussion of potential
resource use vs. speed tradeoffs as applicable.

4.1 Algorithmic Level Optimizations

As previously discussed, ECDSA sign algorithm
requires the generation of (k, k−1), a per message one
time secret number and its inverse modulo n. To
properly generate (k, k−1) could take around 20,000
cycles or higher in a typical implementation.
However, this part of the process does not depend on
the contents of the message to be signed. In use-cases
where it is important to reduce the latency of signing
a message (i.e. cycles or time taken to return a
signature after a request to sign a message is issued),
(k, k−1) can be pre-computed, per FIPS-186-4 Section
6.3, using a number of secure methods. How and
where the (k, k−1) are pre-computed and safely
managed are implementation dependent. In systems
with potential idle time, they can be calculated on the
same core at a lower priority and managed as opaque
objects or in implementation specific formats. For
systems that process a large number of sign
operations in bulk, they can be processed in their own
assigned core and managed appropriately.
Implementers must be cognizant of side-attack
techniques and must have secure access methods for
stored values of (k, k−1).

For the verification algorithm, if the use case calls for
verifying signatures for multiple messages under the
same or different Public Keys a process called Batch
Verification can be used. Especially in cases where
the client program cares only whether the whole
batch of signatures is valid or invalid under the same
algorithm, rather than which individual signatures are
valid or invalid, Batch Verification can provide a
substantial performance boost [33, 34].

4.2 Group Level Optimizations

The scalar multiplication consumes the bulk of the
evaluation time, and must be implemented carefully
to ensure that it does not inadvertently leak
information about the secret scalar. For ECDSA sign
operation of prime curves, the point used in the
multiplication phase is always the base point G,
which is a known value and can be pre-calculated.
Thus, to reduce the latency of the point
multiplication, Algorithm 2 can be used, which
employs a fixed-base NAF windowing method [31].

INPUT: Window width w, pos integer k, P ∈ E(Fq)
OUTPUT: A = kP

1. Pre-computation: Compute Pi = 2wi P,
0 ≤ i ≤ ⎡((t +1)/w)⎤

2. Compute NAF(k) = 𝑘𝑖2!!!!
!!!

3. d ← ⎡(l/w)⎤
4. (kl−1, . . ., k1, k0) = Kd−1 ∥ ⋯ ∥ K1 ∥ K0
each Ki is a {0, ±1}-string of length w
5. If w is even then I ←(2w+1−2)/3;

else I ←(2w+1−1)/3
6. Evaluation: A←∞, B←∞
7. For j from I down to 1 do

7.1 For each i, if Ki = j do: B←B + Pi
7.2 For each i, if Ki =−j do: B←B − Pi
7.3 A←A+ B

8. Return (A)

Algorithm 2) Fixed-base NAF Windowing Method
for Point Multiplication

The running time of this algorithm is approximately
(2w+1/3+d-2)A, which effectively eliminates all the
doublings during the evaluation phase. Taking P-256
curve as an example and using a window size w=4,
where d = ⎡(l/w)⎤ = 64, the running time of the scalar
multiplication is reduced to about 73 Point Addition
operations (Note that d does not necessarily have to
be 64, due the fact that recoding could generate an l
which is not equal to m). This algorithm requires the
pre-computation of 64 EC Points at a storage
requirement of ~4K Bytes (64 Bytes*64). As the
window size grows, the evaluation cycles decrease,
but the pre-compute cycle requirements and storage
size increase. There is no general rule indicating the
optimal window size, and usually the best choice
depends on the use-case. For P-256, window sizes of
4 and 5 facilitate a well-balanced implementation
where storage is available for pre-computed points.

To be SPA resistant, it is desirable that either the
scalar multiplication operation itself is regular (i.e.
use a constant flow of point operations) or the
underlying field operations are regular. Algorithm 2
improves both the performance and the regularity

compared to Algorithm 1, since it only uses Point
Additions, rather than both Point Double and Point
Add operations, which could be detected by SPA
methods. Brickell, Gordon, McCurley and Wilson
[35] discuss models to simplify the pre-
computation in order to reduce the number of
points to be stored. Taking (Kd−1, . . ., K1, K0)2

w
 as

the base 2w representation of k, where d = ⎡ (m/w) ⎤,
then

kP = Σd-1
(i=0) Ki(2wi P)

For each i from 0 to d-1, we then pre-calculate j
number of points (where j = (2w+1−2)/3 if w is even;
and j = (2w+1−1)/3 if w is odd) and store the pre-
calculated Affine coordinate points (X, Y) in a two
dimensional table, such as PTable[i][j]. The negative
of the Y coordinate can also be stored in the table or
computed on the fly depending on available storage.

Comparative evaluation of various Point Addition
operations indicate that mixed coordinate addition
such as Chudnovsky+Affine, which provide the result
in Chudnovsky coordinates is the preferred addition
method. The C + A -> C addition only requires 8
Field Multiplications and 3 Field Square operations.

Thus, we can re-write Algorithm 2 as shown in
Algorithm 3 with the running time of (d)A,
approximately 64 Point Additions for the Curve P-
256. Our table includes the negative value of Y,
therefore we only use a regular and constant-time
Point Add operation in our inner loop. SafeSelect is
an implementation specific function to select the
appropriate table entry without leaking information
about the secret scalar. Emilia Kasper [36] and Shay
Gueron [37] provide well-written examples of
performing the SafeSelect function and their code is
available as Open Source within the OpenSSL code
base [38].

INPUT: NAF(k), d, pT (Pointer to pre-computed data
table)
OUTPUT: A = kP

1. Evaluation: A←∞
2. For i from 0 to d-1 do

2.1 SafeSelect (Pi), use Ki=j to
choose the appropriate P[i][j]
from PTable (handle –j)

2.2 A←A + Pi
3. Return(A)

Algorithm 3) SCA Resistant Fast Fixed-base NAF
Windowing Method for Point Multiplication

Algorithm 3 can be extended for use with multiple
known points. In use cases where there is storage
available for pre-calculated points for all the known
points Algorithm 4 provides a very fast option. It

should be noted that for ECDSA Verification there is
no secret information that can be leaked, so if
desired, faster, non-constant time versions of the
underlying functions can be used.

INPUT: NAF(u1), NAF(u2), d1, d2, pT1, pT2
(Pointers to pre-computed data tables)
OUTPUT: A = u1P1+u2P2

1. Evaluation: A←∞
2. dmax = max[d1, d2]; shorter NAF

padded with 0s
3. For i from 0 to dmax-1 do

3.1 Select (P1i), use Ki=j from
[NAF(u1)] to choose the
appropriate P1[i][j] from pT1

3.2 A←A + P1i
3.3 Select (P2i), use Ki=j from

[NAF(u2)] to choose the
appropriate P2[i][j] from pT2

3.4 A←A + P2i
4. Return (A)

Algorithm 4) Fast NAF Windowing Method for 2-
Scalar Point Multiplication (both points known)

4.3 Field Level Optimizations

For ECC, performance depends directly on the
implementation of the multiple precision arithmetic
functions required to support the group level
algorithms. All field operations are performed
modulo an associated prime number; therefore
support for signed integers is not necessary, which
substantially simplifies the implementation of the
field functions. At a minimum, multi-precision
functions are needed for comparison, addition,
subtraction, squaring, multiplication, modular
reduction, and modular inversion.

In our P-256 implementation, we use a structure of
four field elements (i.e. type tfep256), each an
unsigned integer of 64-bit (i.e. type tUint64) so that
they will natively fit into 64-bit registers with 64-bit
CPUs. Squaring and multiplying two 4-field element
entities can result in an 8-field element result (i.e.
type tfelp256), and Barrett Reduction, described
below, may extend to 9-field elements. Any potential
overflow beyond the 4 or 8 field elements (depending
on the function) can be treated as a carry bit.
Constant time functions can easily be written for
compare, addition modulo associated prime, and
subtraction modulo associated prime. Writing these
functions in native or intrinsic assembly provides the
most efficient handling of any carries and reduction.
Implementers should note that most underlying field
arithmetic functions are called a substantial number
of times by the group operations; therefore they
should be as optimal as possible for the underlying

architecture without affecting SCA resiliency [39].

With new 64-bit instructions available on recent
processors, ultra fast multi-precision square and
multiply operations can be implemented [40, 41].
Performance analysis indicates that the reduction
functions for square and multiply significantly affect
overall system performance. In order to reduce the
latency of either the Sign or Verify operations,
reductions must be optimized for the target platform.
For P-256, there are three performance-oriented
methods for reducing with modulo p256 (i.e. q):
1) Fast Reduction Modulo p256, by Solinas [42];
2) Barrett Reduction [43];
3) Word-by-word Montgomery Multiplication and
Reduction [44].

p256, which is a Generalized Mersenne Prime is given
below: (as 32-bit double words, and 64-bit quad
words to fit into four field elements).

p256 = 0xffffffff 0x00000001 0x00000000
 0x00000000 0x00000000 0xffffffff

0xffffffff 0xffffffff

p256 = 0xffffffff00000001 0x0000000000000000
 0x00000000ffffffff 0xffffffffffffffff

The special form of this prime allows several
simplifications to be made that substantially increase
performance. Fast Reduction Modulo, Algorithm 5,
while relatively straightforward to implement,
involves concatenation of 32-bit values of the 8-field
element input, which require additional processing
for 64-bit implementations. However, it can be
implemented with simple shift, mask, and
add/subtract instructions. At Steps 11 and 12, if d1
and d2 are larger than p256, they need to be subtracted
from 2p256, otherwise from p256. At Step 15, the
implementer must ensure that if the addition at any
point produces a value larger than p256, that value is
properly reduced.

INPUT: a, p256
OUTPUT: r = a (mod p256)
1. < ai are 32–bit >
2. t ←(a07 ⎜⎜ a06 ⎜⎜ a05 ⎜⎜ a04 ⎜⎜ a03 ⎜⎜ a02 ⎜⎜ a01 ⎜⎜ a0)
3. s1 ←(a15 ⎜⎜ a14 ⎜⎜ a13 ⎜⎜ a12 ⎜⎜ a11 ⎜⎜ 0 ⎜⎜ 0 ⎜⎜ 0)
4. s2 ←(0 ⎜⎜ a15 ⎜⎜ a14 ⎜⎜ a13 ⎜⎜ a12 ⎜⎜ 0 ⎜⎜ 0 ⎜⎜ 0)
5. s3 ←(a15 ⎜⎜ a14 ⎜⎜ 0 ⎜⎜ 0 ⎜⎜ 0 ⎜⎜ a10 ⎜⎜ a09 ⎜⎜ a08)
6. s4 ←(a08 ⎜⎜ a13 ⎜⎜a15 ⎜⎜ a14 ⎜⎜ a13 ⎜⎜ a11 ⎜⎜ a10 ⎜⎜ a09)
7. d1 ←(a10 ⎜⎜ a08 ⎜⎜ 0 ⎜⎜ 0 ⎜⎜ 0 ⎜⎜ a13 ⎜⎜ a12 ⎜⎜ a11)
8. d2 ←(a11 ⎜⎜ a09 ⎜⎜ 0 ⎜⎜ 0 ⎜⎜ a15 ⎜⎜ a14 ⎜⎜ a13 ⎜⎜ a12)
9. d3 ←(a12 ⎜⎜ 0 ⎜⎜ a10 ⎜⎜ a09 ⎜⎜ a08 ⎜⎜ a15 ⎜⎜ a14 ⎜⎜ a13)
10. d4 ←(a13 ⎜⎜ 0 ⎜⎜ a11 ⎜⎜ a10 ⎜⎜ a09 ⎜⎜ 0 ⎜⎜ a15 ⎜⎜ a14)
11. d1 ←2p256 − d1
12. d2 ←2p256 − d2
13. d3 ←p256 − d3
14. d4 ←p256 − d4

15. r ← t + 2 s1 + 2 s2 + s3 + s4 + d1 + d2 + d3 + d4
16. < Reduce r mod p256 by subtraction of up to ten
multiples of p256 >
17. Return (r)

Algorithm 5) Fast Reduction Modulo p256

Barrett Reduction does not depend on the special
form of p256, and can actually be used to calculate a
mod p for any two positive integers a and p, with the
requirement that for multi-precision numbers a is
twice the size of p. Thus, Barrett Reduction can be
used for reducing both with p and n. Even though the
algorithm itself does not exploit the special form of
any moduli, any multiplications with 0 value
elements of the modulus can be optimized to reduce
the running time. Furthermore, the divisions and the
mod operations can be done with quad word shifts.
To increase performance, µ = ⎣ b2k/p ⎦ can be pre-
calculated and stored as a constant if storage is
available. For Algorithm 6 Step 5, Barrett indicates
that the result will always be in the range of 0 to 3p-1
and 90% of the time no subtraction will be needed
[45].

INPUT: p, b ≥ 3, k = ⎣ logb p+1 ⎦, 0 ≤ a < b2k, and
µ = ⎣ b2k/p ⎦

OUTPUT: r = a mod p.
1. q ← ⎣ a / bk−1⎦ . µ
2. q’ ← ⎣ q / bk+1⎦
3. r ← (a mod bk+1) − (q’. p mod bk+1)
4. If r < 0 then r ←r + bk+1
5. While r ≥ p do: r ← r − p
6. Return (r)

Algorithm 6) Barrett Reduction modulo p

Montgomery Multiplication defined as MultMM (a,b)
= a.b.2-m mod p, replaces classical modular
multiplication a.b mod p. This extends to the case
when a=b, and can be used in place of the classical
modular square a.a mod p, such as SqrMM (a) =
a.a.2-m mod p. Using m=256, s=64 (size of
register/field element), implies k=4. p256 is an odd
modulus and satisfies the equation -1/p mod 2s = 1.
Thus using Algorithm 7, a word-by-word
multiplication for p256, we can reduce the required
overall number of 64-bit multiplications to 2k2 (32), a
substantial savings. Additionally, recall that one of
the field elements of p256 is equal to 0, so any
multiplications by this element can be ignored.

Furthermore, using the observation described by
Gueron, that t1.(0xffffffffffffffff) = t1.264-t1, any
multiplication by the first 64-bit quad word can be
replaced by a faster subtraction. However, using
MultMM and SqrMM require that the projective
coordinates are converted to Montgomery Domain

either by multiplying each coordinate by 2m mod p, or
MultMM with 22l mod p, which can be stored as a
constant. A MultMM by 1 converts the coordinates
back to the Residue Domain. These conversions
increase cycle usage so implementers must strive to
minimize them.

INPUT: p < 2l 0 ≤ a, b < p, l = s.k
OUTPUT: r = a.b.2-l mod p

1. t = a.b
2. for i 1 to k do

2.1 t1 = t mod 2s
2.2 t2 = t1 . p
2.3 t3 = (t + t1)
2.4 t = t3 / 2s

3. if t ≥ p then r = t – p
4. else r = t
5. Return (r)

Algorithm 7) Montgomery W-by-W Reduction

Table 1 and Chart 1 below show a comparison of the
three methods discussed. For this comparison a lower
number (i.e. low cycle count) is better.

Reduction with p256

Reduction
with n256

Mul

Solinas
Mul

Barrett
Mul
MM

Mul
Barrett

cycles 438
(1X)

322
(0.74X)

298
(0.68X) 325

Table 1) Multiplication + Reduction Cycles

0"

50"

100"

150"

200"

250"

300"

350"

400"

450"

500"

Mul"Solinas" Mul"Barre4" Mul"MM" Mul"Barre4"n"

Mul$plica$on+++Reduc$on+Cycles+

Chart 1) Multiplication + Reduction Cycles

For each operation, two random 4-field element
values are multiplied, the resulting 8-field mp-
number is reduced using a loop of 1000 iterations,
and the median cycles are captured. Barrett
Reduction can be used for both reducing with p and
n, and respective median cycles for reducing with

each modulus are provided in the chart. Depending
on the use-case and the platform further
optimizations could be performed, so implementers
should performance analyze and optimize routines
for their target platform.

During message signing, modular inverse operation is
performed twice. The first modular inverse is
required to obtain the inverse of k, k-1, as discussed
previously, where n is used as the modulus. The
second one, where p256 is used as the modulus, is
needed to convert from Projective coordinates to
Affine coordinates at the end of the scalar
multiplication operation. During verification, two
modular inversions are required. First, to calculate
the modular inverse of the s component of the
signature (with modulus n); and, second, to convert
from Projective coordinates to Affine coordinates at
the end of the multi-scalar multiplication (with
modulus p256). While well understood, modular
inverse is a costly operation and needs to be
optimized to the modulus used, if possible.
Implementers have several options, which include
extended gcd algorithms and Fermat’s Little
Theorem. For verification, there is no secret
information so the fastest possible algorithms without
constant-time run limitations are beneficial. For sign,
implementers need to ensure that no secret
information is leaked with the modular inverse
operation.

Results

Our solution can be run on any processor that
supports x86-64 or AMD64 instructions and can be
ported to other 64-bit architectures. To obtain
qualitative results, performance analysis and
evaluation of the proposed optimizations have been
performed on a platform with Intel® Xeon® E3
1275v3 (4 core, 3.5GHz, 8M Last Level Cache) using
GCC 4.9.2, with Intel Enterprise SSDs. All tests are
run on a single core with both HyperThreading and
Turbo turned off. Additionally, in our
implementation, we use constant time functions only
where they are absolutely needed to protect any
secret information. Sign and Verify performance is
given as operations per second (ops/sec), and higher
numbers are better.

Recently, there have been substantial updates to
OpenSSL P-256 implementations [38]. NISTZ256 is
a fast ECDSA P-256 implementation included with
the later versions of OpenSSL. Thus, for a reference,
we compiled OpenSSL version 1.0.2 with GCC 4.9.2
on our target platform described above and obtained
performance numbers using the standard “openssl
speed.” The reported number of ECDSA sign ops/sec

for curve P-256 using OpenSSL 1.0.2 NISTZ256
implementation is 29,938 ops/sec, and verify ops/sec
is 11,842. To our knowledge, this has been the
highest performance, publicly available
implementation of ECDSA P-256.

For a direct comparison we locally integrated our
sign and verify functions into the “openssl speed”
test using the same measurement and calling
conventions [Note that our implementation is not
submitted to OpenSSL]. With our agile algorithm
both the Curve Generator Point (G) and Public Key
(Q) can be treated as known points, a technique that
is applicable to BGPSEC Protocol implementations.
This testing mechanism shows 45,300 sign operations
per sec and 31,805 verify operations per second for
our implementation, tarap256. Signatures created
with our implementation (tarap256) can be verified
with any P-256 compliant implementation, such as
OpenSSL, and signatures created with any P-256
compliant implementation can be verified by our
implementation. Table 2 and Chart 2 summarize our
results.

	 	 ECDSA P-256

	 	

 NISTZ256
measured

with
openssl
speed

tarap256
measured

with
openssl
speed

sign (ops/sec) 29,938
(1X)

45,300
(1.51X)

verify(ops/sec) 11,842
(1X)

31,805
(2.69X)

Table 2) ECDSA – NISTZ256 vs. tarap256
Measured with OpenSSL speed

Chart 2) ECDSA – NISTZ256 vs. tarap256
Measured with OpenSSL speed

ecdonalp256 is a well-known P-256 implementation
included in the eBACS results [46]. eBACS results
include median cycles for signing and verifying 59-
byte messages. Our results discussed above use the
same CPU type reported on eBACS (amd64;
HW+AES (306c3); 2013 Intel Xeon E3-1275 V3; 4 x
3500MHz; titan0). eBACS lists results in cycles
taken. Using CPU speed as 3500MHz, we convert the
latest posted eBACS cycles to operations per second
which are for sign: 9,170 ops/sec and for verify:
3,830 ops/sec. We include these eBACS derived
results for ecdonaldp256 in Table 3.

There have been discussions about alternative public
key algorithms and curves, such as ed25519 and
potential performance implications [47]. The
signature and verify algorithms for prime curves such
as P-256 and ed25519 are substantially different.
Additionally, P-256 and ed25519 signatures, even
tough the same size, are not compatible with each
other. However, for completeness we include
performance numbers for ed25519 in Table 3
(ed25519 on eBACS – amd64; HW+AES (306c3);
2013 Intel Xeon E3-1275 V3; 4 x 3500MHz; titan0)
[42]. Since eBACS lists results in cycles taken, using
CPU speed as 3500MHz, we convert the eBACS
cycles for ed25519 to operations per second which
are for sign: 56,473 ops/sec and for verify: 18,920
ops/sec.

The ed25519 algorithm does not use a per message
one time random number, while P-256 requires one
to be computed. However, per FIPS-186-4 [16] the
per-message random number for ECDSA can be pre-
calculated without affecting the security of the
operation. For a direct comparison, we implemented
a version of our algorithm (tarap256f), which uses
pre-calculated and re-coded one time random
numbers and corresponding inverses. We tested this
instance of our sign algorithm, tarap256f, using an
interface similar to ecdonalp256. In this case, we use
a message size of 64 Bytes, and a fresh message is
supplied to each iteration on our Intel® Xeon® E3
3500MHz 1275v3 based platform. We compute the
sign and verify ops per second using median cycles
of a large number of iterations (i.e. 1,000 iterations).
In this mode, with tarap256f, we report over 63,807
sign operations per second on a single core. The
verify algorithm does not use a one time random
number so this optimization is only applicable to the
sign operation. These results are shown in Table 3
and Chart 3 (higher numbers better).

 ECDSA P-256 c-25519

ecdonaldp256 tarap256f ed25519

sign
(ops/s)

9,1670
(1X)

63,807
(6.96X)

56,473
(6.16X)

Table 3) ecdonaldp256 and ed25519 vs. tarap256f

0"

10,000"

20,000"

30,000"

40,000"

50,000"

60,000"

70,000"

ecdonaldp256, tarap256f, ed25519,

sign"(ops/s)"

Chart 3) ecdonaldp256 and ed25519 vs. tarap256f

Conclusion

Our performance results show that it is possible to
implement ultra fast and secure implementations of
ECDSA for the curve P-256, providing 128-bits of
security, on low-cost and low-power commercially
available hardware. Furthermore, our work can be
extended to other prime curves such as Curve P-521,
which provides 256-bits of security. Our current
implementation already includes versions of core
functions that use Broadwell instructions (Intel’s next
generation CPU), which will show additional
performance benefits when the new processors
become available. Furthermore, our libraries are
designed, developed, and tested to be thread-safe and
can be deployed on multiple cores in parallel for
additional scale and substantial performance gains.

Acknowledgements

The author would like to thank Kotikalapudi Sriram,
Oliver Borchert, and Doug Montgomery for
comments and suggestions during the course of this
work. Also, thanks are due to anonymous reviewers
for their feedback on an earlier draft of the paper.

References

1. NIST, “Framework for Improving Critical
Infrastructure Cybersecurity,” February
2014,
http://www.nist.gov/cyberframework/upload
/cybersecurity-framework-021214-final.pdf

2. K. Lougheed and Y. Rekhter, RFC 1105, “A
Border Gateway Protocol (BGP),” June
1989, http://www.ietf.org/rfc/rfc1105.txt

3. Y. Rekhter, T. Li, and S. Hares, “A Border
Gateway Protocol 4 (BGP-4),” RFC 4271,
https://www.ietf.org/rfc/rfc4271.txt

4. K. Sriram, D. Montgomery, O. Borchert, O.
Kim, and R. Kuhn, "Study of BGP Peering
Session Attacks and Their Impacts on
Routing Performance," IEEE Journal on
Selected Areas in Communications: Special
issue on High-Speed Network Security, Vol.
24, No. 10, October 2006, pp. 1901-1915

5. S. Murphy, “BGP Security Vulnerabilities
Analysis,” RFC 4272,
https://www.ietf.org/rfc/rfc4272.txt

6. Sriram, K., Montgomery, D., McPherson,
D., and E. Osterweil, "Problem Definition
and Classification of BGP Route Leaks",
draft-ietf-grow-route-leak-problem-1 (work
in progress), March 2015.

7. K. Butler, T. R. Farley, P. McDaniel, and J.
Rexford, “A Survey of BGP Security Issues
and Solutions,” Proceedings of IEEE Vol.
98, No. 1, January 2010

8. D.R. Kuhn, K. Sriram, and D. Montgomery,
"Border Gateway Protocol Security, " NIST
Special Publication 800-54 (BCP document
for the Telecom Industry and US
Government agencies), July 2007

9. K. Sriram, O. Borchert, O. Kim, and P.
Gleichmann, and D. Montgomery, "A
Comparative Analysis of BGP Anomaly
Detection and Robustness Algorithms,"
Proceedings of the Cybersecurity
Applications and Technology Conference
for Homeland Security (CATCH),
Washington D.C., March 3-4, 2009, pp. 25-
38.
http://www.nist.gov/itl/antd/upload/NIST_B
GP_Robustness-2.pdf

10. M. Lepinski, R. Austein, S. Bellovin, R.
Bush, S. Kent, W. Kumari, D. Montgomery,
K. Sriram, S. Weiler, draft-ietf-sidr-bgpsec-
protocol-11, “BGPSEC Protocol

Specification,” Jan 19, 2015,
https://datatracker.ietf.org/doc/draft-ietf-
sidr-bgpsec-protocol/

11. P. Mohapatra, J. Scudder, D.Ward, R. Bush,
and R. Austein, RFC 6811, “BGP Prefix
Origin Validation,” January 2013

12. M. Lepinski and S. Kent, RFC 6480, “An
Infrastructure to Support Secure Internet
Routing,” February 2012,
https://tools.ietf.org/html/rfc6480

13. K. Sriram, D. Montgomery, and R.
Bush, "RIB Size and CPU Workload
Estimation for BGPSEC,” Presentation
at the IETF 91 Joint IDR/SIDR WG
Meeting, November 2014.
http://www.ietf.org/proceedings/91/slides/sli
des-91-idr-17.pdf

14. D. Johnson, A. Menezes, S. Vanstone, “The
Elliptic Curve Digital Signature Algorithm
(ECDSA), Certicom White Paper, 2001,
http://cs.ucsb.edu/~koc/ccs130h/notes/ecdsa
-cert.pdf

15. Standards for Efficient Cryptography.
Elliptic Curve Cryptography, Version 1.5,
draft, 2005. http://www.secg.org.

16. NIST, Digital Security Standard (DSS),
FIPS PUB 186-4 July 2013,
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.186-4.pdf

17. NIST, Secure Hash Standard (SHS), FIPS
PUB 180-4 March 2012,
http://csrc.nist.gov/publications/fips/fips180-
4/fips-180-4.pdf

18. NIST: Mathematical routines for the NIST
prime elliptic curves. (April 2010),
http://www.nsa.gov/ia/_files/nist-
routines.pdf

19. D. McGrew, K. Igoe, M. Salter, RFC 6490,
“Fundamental Elliptic Curve Cryptography
Algorithms,” February 2011,
http://tools.ietf.org/html/rfc6090

20. Menezes, P. van Oorschot, S. Vanstone,
“Handbook of Applied Cryptography,” CRC
Press, 1997.

21. P. Longa, C. Gebotys, “Efficient Techniques
for High Speed Elliptic Curve
Cryptography,” Cryptographic hardware and
embedded systems, CHES 2010, p80-94,
2010

22. B. Moller, “Algorithms for multi-
exponentiation,” Selected Areas in

Cryptography, 8th Annual International
Work- shop, SAC 2001 Toronto, Ontario,
Canada, August 16-17, 2001, Revised
Papers, volume 2259 of Lecture Notes in
Computer Science, pages 165–180.
Springer, 2001.

23. A. Venelli, F. Dassance, “Faster Side-
Channel Resistant Elliptic Curve Scalar
Multiplication,” Arithmetic, Geometry,
Cryptography and Coding Theory 2009,
volume 521 of Contemporary Mathematics,
pages 29–40. American Mathematical
Society, 2010.

24. M. Rivain, “Fast and Regular Algorithms for
Scalar Multiplication over Elliptic Curves”
IACR Cryptology ePrint Archive 2011,
p.338, 2011

25. P. C. Kocher, “ Timing Attacks on
Implementations of Diffie-Hellman, RSA,
DSS, and other Systems,” Advances in
Cryptology – CRYPTO ’96 vol. 1109 of
Lecture Notes in Computer Science, pp.
104–113, 1996

26. P. C. Kocher, J. Jaffe, B. Jun, “Differential
Power Analysis,” Advances in Cryptology –
CRYPTO ’99 vol. 1666 of Lecture Notes in
Computer Science, pp. 388–397, 1999

27. E. Brier, M. Joye, “Weierstraß Elliptic
Curves and Side-Channel Attacks,”,Public
Key Cryptography – PKC 2002, volume
2274 of Lecture Notes in Computer Science,
pages 335–345. Springer, 2002.

28. J. Coron, “Resistance against Differential
Power Analysis for Elliptic Curve
Cryptosystems,” CHES’99, LNCS 1717, pp.
292–302, Springer-Verlag, 1999.

29. P. Y. Liardet, N. P. Smart, “Preventing
SPA/DPA in ECC Systems Using the Jacobi
Form,” In Cryptographic Hardware and
Embedded Systems – CHES 2001, pp. 401–
411, 2001

30. M. Joye, J. Quisquater, “Hessian Elliptic
Curves and Side-channel Attacks,”
Cryptographic Hardware and Embedded
Systems – CHES 2001 pp. 412–420, 2001

31. K. Okeya, T. Takagi, “The Width-w NAF
Method Provides Small Memory and Fast
Elliptic Scalar Multiplications Secure
against Side Channel Attacks,” Topics in
Cryptology, The Cryptographers’ Track at
the RSA Conference – CT-RSA 2003,
volume 2612 of Lecture Notes in Computer

Science, pages 328–342. Springer, 2003.

32. M. Joye, M. Tunstall, “Exponent Recoding
and Regular Exponentiation Algorithms,”
Progress in Cryptology, Second
International Conference on Cryptology in
Africa –AFRICACRYPT 2009, volume
5580 of Lecture Notes in Computer Science,
pp 334–349. Springer, 2009.

33. S. Karati, A. Das, D. R. Chowdhury, B.
Bellur, D. Bhattacharya, A. Iyer, “New
algorithms for batch verification of standard
ECDSA signatures,” J. Cryptographic
Engineering 4(4): 237-258, 2014

34. S. Karati, A. Das, “Faster Batch Verification
of Standard ECDSA Signatures Using
Summation Polynomials,” ACNS 2014:
438-456, 2014

35. E. F Brickell, D. M. Gordon, K. S.
McCurley, and D. B. Wilson, “Fast
Exponentiation with Precomputation,”
Advances in Cryptology – Proceedings of
Eurocrypt ’92, Vol 658, pp 200-207, 1992

36. E. Käsper, “ Fast Elliptic Curve
Cryptography in OpenSSL,” Financial
Cryptography and Data Security. LNCS,
vol. 7126, pp. 27--39. Springer, Heidelberg,
2012.

37. S. Gueron, V. Krasnov, “Fast Prime Field
Elliptic Curve Cryptography with 256 Bit
Primes,” Journal of Cryptographic
Engineering, November 2014.
https://eprint.iacr.org/2013/816.pdf

38. S. Gueron, V. Krasnov, [PATCH] “Fast and
side channel protected implementation of
the NIST P-256 Elliptic Curve for x86-64
platforms,” OpenSSL patch, October 2013

39. P. Longa, A. Miri, “Fast and flexible elliptic
curve point arithmetic over prime fields,”
Computers, IEEE Transactions on 57 (3),
pp289-302, 2008

40. E. Ozturk, J. Guilford, V. Gopal, W.
Feghali, “New Instructions Supporting
Large Integer Arithmetic on Intel®
Architecture Processors,” Intel White Paper,
August 2012
http://www.intel.com/content/www/us/en/int
elligent-systems/intel-technology/ia-large-
integer-arithmetic-paper.html

41. E. Ozturk, J. Guilford, V. Gopal, “Large
Integer Squaring on Intel® Architecture
Processors, ” Intel White Paper, January
2013.

http://www.intel.com/content/www/us/en/int
elligent-systems/intel-technology/large-
integer-squaring-ia-
paper.html?wapkw=large+integer+squaring
+on+intel®+architecture+processors

42. 21. J. A. Solinas, “Generalized Mersenne
Numbers,” Technical Report, Center for
Applied Cryptographic Research. University
of Waterloo, 1999.

43. P. L. Montgomery, “Modular Multiplication
without Trial Division,” Mathematics of
Computation, vol. 44, pp. 519—521, 1985

44. J. F. Dhem, “Modified version of the Barrett
algorithm,” Technical report, 1994.

45. P. Barrett, “Implementing the Rivest Shamir
and Adleman Public Key Encryption
Algorithm on a Standard Digital Signal
Processor,” In Proc. CRYPTO’86, pages
311–323, 1986.

46. D. J. Bernstein and T. Lange (editors).
eBACS: ECRYPT Benchmarking of
Cryptographic Systems.
http://bench.cr.yp.to, accessed 15 March
2015

47. D.J. Bernstein, T. Lange, P. Schwabe, B-Y.
Yang, "High-Speed High-Security
Signatures", Journal of Cryptographic
Engineering, Vol. 2, September 26, 2011

