
     
 

 
 

 
 

1 

        
      

        
      

       
       
       

    
        

  
     

       
      

 
 

 
      
        

      
      

    
    

         
     

       
       

     
    

       
      

         
      
    

      
      

         
     

          
      

  
 

      
        

     

        
      

     
      

        
      
     

        
    

       
    

     
        
        

        
        

         
  

       
     

      
   

     
      

     
       
      

   

       
        

      
      

     
     

      
        

 
  

      
       
      
       

      
 

 
 
 

Efficient and Secure Elliptic Curve Cryptography Implementation of Curve P-256 

Mehmet Adalier1
 

Antara Teknik, LLC
 

Abstract 

Public key cryptography has become the de facto 
standard for secure communications over the Internet 
and other communications media such as cellular and 
Wi-Fi. Elliptic curves offer both better performance 
and higher security than first generation public key 
techniques and are gaining acceptance as the 
foundation for future Internet security such as the 
security-enhanced Border Gateway Protocol 
(BGPSEC). In this paper, we present a performance 
optimized and side-channel-attack resistant 
implementation of the NIST Curve P-256 which 
provides 128-bits of security. We also discuss 
operation time vs. storage trade-offs for various 
approaches. 

Introduction 
The reliable functioning of critical infrastructure, 
such as the Internet, is imperative to the national and 
economic security of United States [1] especially as 
the frequency and complexity of cyber-security 
threats are increasing significantly. The currently 
deployed Border Gateway Protocol (BGP), which 
was last updated in 2006 [2,3], does not include 
provisions for security features and is vulnerable to 
malicious attacks targeting the control plane. These 
attacks can be perpetuated in a number of ways 
[4,5,6] and could cause significant failures and 
instability. Moreover, perpetuators can deny service, 
re-route traffic to malicious hosts, and expose 
network topologies. There have been significant 
efforts over the years to add robustness to BGP and 
to provide Best Common Practice (BCP) guidance 
for the same [7,8,9]. 

The Internet Engineering Taskforce (IETF) is 
currently developing BGPSEC (BGP with Security) 
[10], an extension to BGP with the intention to 
provide path security for BGP route advertisements. 

1 This material is based upon work supported by the 
National Institute of Standards and Technology 
(NIST) under cooperative agreement 
70NANB14H289. Any opinions, findings, 
conclusions or recommendations expressed in this 
publication are those of the author and do not 
necessarily reflect the views of NIST.

The extension is meant to provide resiliency against 
route hijacks and Autonomous System (AS) path 
modifications. Specifically, two mechanisms: i) 
route-origin validation [11]; and ii) path validation 
are being defined [10]. As described in RFC 6480 
[12] the Resource Public Key Infrastructure (RPKI) 
provides the initial step used to validate BGP routing 
data. First, holders of AS number and IP address 
resources are issued RPKI Resource Certificates, 
which establish a binding between them and 
cryptographic keys for digital signature verification. 
Furthermore, a Route Origination Authorization 
(ROA), which is a digitally signed object, allows 
holders of IP address resources to authorize specific 
ASes to originate routes. BGP speakers can use 
ROAs to ensure that the AS which originated the 
received route, was in fact authorized to originate that 
route. 

ECDSA P-256, a prime curve that has been used 
extensively in critical infrastructure projects, is being 
used as the Elliptical Curve Digital Signature 
Algorithm for AS-path signing and verification in the 
BGPSEC protocol [10]. The performance efficiency 
of ECDSA P-256 is imperative to meet strict Internet 
routing table convergence requirements [13]. Thus 
the viability of BGPSEC adoption is dependent on 
the availability of high performance implementations 
of ECDSA P-256. 

In this paper we discuss key implementation areas 
and optimization opportunities, and show that it is 
possible to implement ultra fast and secure ECDSA 
for the curve P-256, delivering full 128-bits of 
security, on low-cost and low-power commercially 
available hardware. Furthermore, our work can be 
extended to optimize other prime curves such as 
Curve P-521, which provides 256-bits of security. 

1.0 ECDSA Overview 

Elliptical Curve Cryptology has been extensively 
studied and documented [14,15]. This paper is 
focused on applied cryptography and implementation 
aspects rather than mathematical proofs of underlying 
theorems. This section provides a brief overview of 
the fundamentals. 



  

         
       
     

     
       

     
   

 
     

 
 

        
 

   

       

      

         
      
   

      

   

         
       

     
          

             
      

         
       

   
        

 
        
    
         

    
    

      
 

        
    

 
    

      
        

        
      

         
       

        
 

         
     

    
       

 
    

 
      

 
       
        

    
       

  
      
      

    
 

         
       

         
        

     
      
        

    
   

     
        

 
     

   

            
         

        
            

               

           

       

         
        

     
      

     
    

       
       

       
        
  

     
   

 

1.1 ECDSA Parameters 

For proper implementation of ECDSA the use of a 
specific set of elliptic curve domain parameters are 
required for digital signature generation and 
verification. These domain parameters may be used 
for extended time periods (i.e. over multiple 
sessions). Specifically the applicable ECDSA 
Domain Parameters are: 

q, the size of the underlying field 
a, elliptic curve parameter (equal to q-3 for 
P-256) 
b, elliptic curve parameter 
G = (xG, yG), a point on the curve, known as 
the base point, 
n, the order of the base point G. 

The equation of the curve is generally given as 

y2 = x3 + ax + b mod q 

For NIST Prime Curves which include P-256, a = q − 
3, and with this value of a, the equation is equivalent 
to the one given in FIPS 186-4 [16], namely: 

y2 = x3 − 3x + b mod q 

1.2 ECDSA Signature Generation 

The inputs to ECDSA signature generation are: i) a 
message, M; ii) the appropriate curve domain 
parameters; iii) the appropriate Hash function [17]; 
and iv) the private key d. The output of the process is 
a pair of integers (r, s), each in the interval [1, n − 1]. 
The process is defined as [18,19]: 

1.	 Generate (k, k−1), where k is the per 
message secret number and k−1 is its 
inverse modulo n 

2.	 Compute the elliptic curve point R = kG 
= (xR, yR) 

3.	 Compute r = xR mod n 
4.	 Compute H = Hash (M) 
5.	 Convert the bit string H to an integer e : 

e = ΣH 
(i=1) 2H−i * bi, where b1, b2, 

..., bH, is the bit string to be 
converted 

6.	 Compute s = (k−1 * (e + d * r)) mod n 
7.	 Return (r, s) 

1.3 ECDSA Signature Verification 

The inputs to ECDSA signature verification are: i) 
the received message M’; ii) (r’, s’): the received 
signature on M’; iii) the appropriate curve domain 
parameters; iv) the appropriate Hash function; and iv) 
the public key Q. The output of the process is an 
indication of whether the supplied signature is valid 
or not. The process is defined as [18,19]: 

1.	 If r’ and s’ are not both integers in the 
interval [1, n − 1], output INVALID 

2.	 Compute H’= Hash (M’) 
3.	 Convert the bit string H’ to an integer e’ 

by using: 
ΣH’e’ = (i=1) 2H’−i * bi, where b1, b2, 

..., bH’, is the bit string to be 
converted 

4.	 Compute w = (s’)-1 mod n 
5.	 Compute u1 = (e’ * w) mod n and 

u2 = (r’ * w) mod n 
6.	 Compute the elliptic curve point R = 

(xR, yR) = u1G+u2Q 
7.	 Compute v = xR mod n 
8.	 Compare v and r’. If v = r’, output 

VALID; otherwise, output INVALID. 

Note that domain parameters, k and d for P-256 are 
32-Bytes long each where as the points on the curve 
such as G and Q (public key) consist of 32-Byte x-
and 32-Byte y-values each. The total length of the 
signature generated is 64 bytes (r 32 bytes, s 32 
bytes). Given that most modern compute engine (e.g. 
CPUs) registers are either 32 or 64 bits, ECC 
arithmetic operations are performed by using multi-
precision arithmetic, which require significant 
compute cycles for basic mp-integer operations (i.e. 
field operations) such as multiply, invert, and mod. 

2.0 Elliptic Curve Point Representation and 
Group Level Operations 

Assume E to be an elliptic curve over a prime field Fp 
with the affine equation y2 = x3 − 3x + b. Defining 
two points on the curve as P1 = (x1, y1) and P2 = (x2, 
y2) with P1 ≠ -P2, then P3 = P1 + P2 = (x3, y3) is [20]: 

x3 = λ2 - x1 – x2, and y3 = λ(x1 – x3) –y1, and 

λ= (y2 – y1)/(x2 – x1) when P1 ≠ P2, and 

λ= (3x1 
2 - 3)/ (2y1) when P1 = P2 

Since general addition only works when P1 ≠ P2, 
addition for the case P1 = P2 is referred as point 
doubling. Prime field inversions are considerably 
more expensive in compute resource requirements 
than field multiplications. Thus representing points 
using projective coordinates may be beneficial. Using 
Jacobian projective coordinates [21], it can be shown 
that the projective point (X : Y : Z), where Z ≠ 0, 
corresponds to the affine point (X/Z2, Y/Z3), and to 
the point at infinity (i.e. the identity element) when 
Z = 0. 

Formulas for addition in mixed Jacobian-Affine 
coordinates are given as: 



(X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : 1), where 

A = X2 . Z1
2,    B = Y2.Z1

3,   

C = A – X1,     D = B – Y1,  

X3 = D2 – (C3 + 2X1.C2);   

Y3= D. (X1.C2 – X3) – Y1.C3;   

Z3 = Z1.C 

Formulas for doubling in Jacobian coordinates are: 

(X3 : Y3 : Z3) = 2(X1 : Y1 : Z1), where  

A = 4X1.Y1
2,   B = 8Y1

4,    

C = 3(X1 – Z1
2) . (X1 + Z1

2),  D = -2A + C2, 

X3 = D;    

Y3 = C. (A – D) – B;     

Z3 = 2Y1 . Z1, 

where the operations are performed using field 
arithmetic with multi-precision positive integers.  

As previously discussed, the ECDSA Sign Operation 
requires the multiplication of the curve base point G 
(xG, yG), with a scalar k, which is also referred as the 
One Time Secret Number (OTSN). For example, for 
curve P-256, k is a 256-bit Deterministic Random 
Number with security strength of at least 128 bits. 
The scalar multiplication is quite compute intensive 
and dominates the execution time of elliptic curve 
cryptographic operations. Considerable effort has 
been spent on minimizing the scalar multiplication 
time [22,23,24]. Assuming all computations are 
actually carried out, as in the basic Right to Left 
Binary Method shown as Algorithm 1, the expected 
running time is approximately m/2 point additions 
and m point doublings (denoted 0.5mA + mD), where 
m is the length of the binary number k [expected 
number of ones in binary k is about m/2]. For P-256 
this equates to 0.5(256)A+256D= 128A + 256D 
which requires a considerable amount of compute 
time. 

 

INPUT: k = (kt−1, . . ., k1, k0)2, P ∈ E(Fq ) 
OUTPUT: Q = kP 

1. Q←∞ 
2. For i from 0 to t −1 do 

2.1 If ki = 1 then Q←Q + P 
2.2 P←2P 

3. Return (Q) 

Algorithm 1) Right to Left Binary Method for Point 
Multiplication 
 
 

3.0 Side-channel Attack Considerations 

Side-channel attacks on implementations of 
cryptosystems may include timing or power 
consumption measurements in order to reveal secret 
information such as the OTSN or the private key. In 
elliptic curve cryptosystems, implementations of 
point multiplication algorithms are the primary 
targets for side-channel attacks [25,26,27]. 
Straightforward implementations of elliptic curve 
point multiplications, such as Algorithm 1 are 
exceptionally vulnerable to simple SCA since they 
employ both point addition and point doubling. 
Given the fact that point adding and doubling require 
substantially different formulas, bits of the OTSN 
could be extracted in a power consumption trace if 
the double-and-add algorithm is used for point 
multiplication. Differential power analysis is an 
attack [28] that enables extraction of a secret key 
stored in a cryptographic system where an adversary 
monitors the power consumption of the cryptographic 
system and then statistically analyzes the collected 
power signal data in order to extract the secret key. 

Data randomizing is a well-known DPA 
countermeasure, by which the intermediate data may 
be randomly transformed inside the cryptographic 
system. The technique mitigates leakage that can be 
used by a DPA since the intermediate data is no 
longer predictable. Additionally, Liardet and Smart 
[29] and Joye and Quisquater  [30] have proposed 
reducing information leakage by using special 
representations of points.  

There are several approaches to reducing the running 
time of the scalar multiplication algorithm. One is 
using alternative representations of k in order to 
reduce the number of one-bits (and hence reduce 
number of point additions) such as NAF [31] along 
with pre-computation of point doublings (if the point 
is known). While alternative representations of k can 
introduce a performance benefit, the re-coding that is 
often needed may be susceptible to Side Channel 
Attacks because an adversary could use DPA to 
reveal portions of the secret information [32].  
 
4.0 Optimization Methodology 

There has been considerable research conducted to 
increase the security and the performance of ECC 
algorithms. Side-channel-attack resilience needs to be 
inherently built into core functions where applicable 
in an optimized fashion, rather than included as an 
after-thought. Performance can be increased via 
algorithmic or mathematical methods as well as with 
the facilitation of target platform features with low-
level implementation techniques. While CPU core 
frequencies have stabilized in the range of 3 to 4HGz 



with minimal potential for substantial increases, new 
instructions and platform features can often improve 
the performance of algorithms or methods which 
were thought to be too slow even only a few years 
ago. For example, the latest Intel® Architecture 
processors support large Last Level Caches, fast 
memory access, and new 64-bit integer arithmetic 
instructions. Furthermore, even the low-power 
embedded CPUs provide multiple 64-bit cores, with 
the flagship CPUs providing up to 18 cores.  In this 
paper, we concentrate our discussion on single core 
serial code optimizations to produce minimal latency 
functions, however, our functions are inherently built 
to be thread safe and will scale well on multiple 
cores.  We provide a comprehensive approach, which 
includes feasible algorithmic level optimizations, 
group level optimizations, and field element 
optimizations along with a discussion of potential 
resource use vs. speed tradeoffs as applicable. 
 
4.1 Algorithmic Level Optimizations 

As previously discussed, ECDSA sign algorithm 
requires the generation of  (k, k−1), a per message one 
time secret number and its inverse modulo n. To 
properly generate (k, k−1) could take around 20,000 
cycles or higher in a typical implementation. 
However, this part of the process does not depend on 
the contents of the message to be signed. In use-cases 
where it is important to reduce the latency of signing 
a message (i.e. cycles or time taken to return a 
signature after a request to sign a message is issued), 
(k, k−1) can be pre-computed, per FIPS-186-4 Section 
6.3, using a number of secure methods.  How and 
where the (k, k−1) are pre-computed and safely 
managed are implementation dependent.  In systems 
with potential idle time, they can be calculated on the 
same core at a lower priority and managed as opaque 
objects or in implementation specific formats. For 
systems that process a large number of sign 
operations in bulk, they can be processed in their own 
assigned core and managed appropriately. 
Implementers must be cognizant of side-attack 
techniques and must have secure access methods for 
stored values of (k, k−1).  

For the verification algorithm, if the use case calls for 
verifying signatures for multiple messages under the 
same or different Public Keys a process called Batch 
Verification can be used. Especially in cases where 
the client program cares only whether the whole 
batch of signatures is valid or invalid under the same 
algorithm, rather than which individual signatures are 
valid or invalid, Batch Verification can provide a 
substantial performance boost [33, 34]. 
 
 

4.2 Group Level Optimizations 

The scalar multiplication consumes the bulk of the 
evaluation time, and must be implemented carefully 
to ensure that it does not inadvertently leak 
information about the secret scalar. For ECDSA sign 
operation of prime curves, the point used in the 
multiplication phase is always the base point G, 
which is a known value and can be pre-calculated. 
Thus, to reduce the latency of the point 
multiplication, Algorithm 2 can be used, which 
employs a fixed-base NAF windowing method [31].  

INPUT: Window width w, pos integer k, P ∈ E(Fq ) 
OUTPUT: A = kP 

1. Pre-computation: Compute Pi = 2wi P,  
0 ≤ i ≤  ⎡((t +1)/w)⎤ 

2. Compute NAF(k) = 𝑘𝑖2!!!!
!!!  

3. d ← ⎡(l/w)⎤ 
4. (kl−1, . . ., k1, k0) = Kd−1 ∥   ⋯ ∥ K1  ∥  K0 
each Ki is a {0, ±1}-string of length w 
5. If w is even then I ←(2w+1−2)/3;  

else I ←(2w+1−1)/3 
6. Evaluation: A←∞, B←∞ 
7. For j from I down to 1 do 

7.1 For each i, if Ki =  j do: B←B + Pi  
7.2 For each i, if Ki =−j do: B←B − Pi  
7.3 A←A+ B 

8. Return (A) 

Algorithm 2) Fixed-base NAF Windowing Method 
for Point Multiplication 

The running time of this algorithm is approximately 
(2w+1/3+d-2)A, which effectively eliminates all the 
doublings during the evaluation phase. Taking P-256 
curve as an example and using a window size w=4, 
where d = ⎡(l/w)⎤ = 64, the running time of the scalar 
multiplication is reduced to about 73 Point Addition 
operations (Note that d does not necessarily have to 
be 64, due the fact that recoding could generate an l 
which is not equal to m). This algorithm requires the 
pre-computation of 64 EC Points at a storage 
requirement of ~4K Bytes (64 Bytes*64).  As the 
window size grows, the evaluation cycles decrease, 
but the pre-compute cycle requirements and storage 
size increase. There is no general rule indicating the 
optimal window size, and usually the best choice 
depends on the use-case. For P-256, window sizes of 
4 and 5 facilitate a well-balanced implementation 
where storage is available for pre-computed points. 

To be SPA resistant, it is desirable that either the 
scalar multiplication operation itself is regular (i.e. 
use a constant flow of point operations) or the 
underlying field operations are regular. Algorithm 2 
improves both the performance and the regularity 



compared to Algorithm 1, since it only uses Point 
Additions, rather than both Point Double and Point 
Add operations, which could be detected by SPA 
methods.  Brickell, Gordon, McCurley and Wilson 
[35] discuss models to simplify the pre-
computation in order to reduce the number of 
points to be stored.  Taking (Kd−1, . . ., K1, K0)2

w
 as 

the base 2w representation of k, where d = ⎡ (m/w) ⎤, 
then 

kP = Σd-1
(i=0) Ki(2wi  P)  

For each i from 0 to d-1, we then pre-calculate j 
number of points (where j = (2w+1−2)/3 if w is even; 
and j = (2w+1−1)/3 if w is odd) and store the pre-
calculated Affine coordinate points (X, Y) in a two 
dimensional table, such as PTable[i][j]. The negative 
of the Y coordinate can also be stored in the table or 
computed on the fly depending on available storage.  

Comparative evaluation of various Point Addition 
operations indicate that mixed coordinate addition 
such as Chudnovsky+Affine, which provide the result 
in Chudnovsky coordinates is the preferred addition 
method. The C + A -> C addition only requires 8 
Field Multiplications and 3 Field Square operations. 

Thus, we can re-write Algorithm 2 as shown in 
Algorithm 3 with the running time of  (d)A, 
approximately 64 Point Additions for the Curve P-
256. Our table includes the negative value of Y, 
therefore we only use a regular and constant-time 
Point Add operation in our inner loop. SafeSelect is 
an implementation specific function to select the 
appropriate table entry without leaking information 
about the secret scalar.  Emilia Kasper [36] and Shay 
Gueron [37] provide well-written examples of 
performing the SafeSelect function and their code is 
available as Open Source within the OpenSSL code 
base [38]. 

INPUT: NAF(k), d, pT (Pointer to pre-computed data 
table) 
OUTPUT: A = kP 

1. Evaluation: A←∞ 
2. For i from 0 to d-1 do 

2.1 SafeSelect (Pi), use Ki=j to 
choose the appropriate P[i][j] 
from PTable (handle –j) 

2.2 A←A + Pi 
3. Return(A) 

Algorithm 3) SCA Resistant Fast Fixed-base NAF 
Windowing Method for Point Multiplication 

Algorithm 3 can be extended for use with multiple 
known points. In use cases where there is storage 
available for pre-calculated points for all the known 
points Algorithm 4 provides a very fast option. It 

should be noted that for ECDSA Verification there is 
no secret information that can be leaked, so if 
desired, faster, non-constant time versions of the 
underlying functions can be used.  

INPUT: NAF(u1), NAF(u2), d1, d2, pT1, pT2 
(Pointers to pre-computed data tables) 
OUTPUT: A = u1P1+u2P2 

1. Evaluation: A←∞ 
2. dmax = max[d1, d2]; shorter NAF 

padded with 0s 
3. For i from 0 to dmax-1 do 

3.1 Select (P1i), use Ki=j from 
[NAF(u1)] to choose the 
appropriate P1[i][j] from pT1 

3.2 A←A + P1i 
3.3 Select (P2i), use Ki=j from 

[NAF(u2)] to choose the 
appropriate P2[i][j] from pT2 

3.4 A←A + P2i 
4. Return (A) 

Algorithm 4) Fast NAF Windowing Method for 2-
Scalar Point Multiplication (both points known) 
 
4.3 Field Level Optimizations 

For ECC, performance depends directly on the 
implementation of the multiple precision arithmetic 
functions required to support the group level 
algorithms.  All field operations are performed 
modulo an associated prime number; therefore 
support for signed integers is not necessary, which 
substantially simplifies the implementation of the 
field functions.  At a minimum, multi-precision 
functions are needed for comparison, addition, 
subtraction, squaring, multiplication, modular 
reduction, and modular inversion.  

In our P-256 implementation, we use a structure of 
four field elements (i.e. type tfep256), each an 
unsigned integer of 64-bit (i.e. type tUint64) so that 
they will natively fit into 64-bit registers with 64-bit 
CPUs.  Squaring and multiplying two 4-field element 
entities can result in an 8-field element result (i.e. 
type tfelp256), and Barrett Reduction, described 
below, may extend to 9-field elements. Any potential 
overflow beyond the 4 or 8 field elements (depending 
on the function) can be treated as a carry bit. 
Constant time functions can easily be written for 
compare, addition modulo associated prime, and 
subtraction modulo associated prime.  Writing these 
functions in native or intrinsic assembly provides the 
most efficient handling of any carries and reduction.  
Implementers should note that most underlying field 
arithmetic functions are called a substantial number 
of times by the group operations; therefore they 
should be as optimal as possible for the underlying 



architecture without affecting SCA resiliency [39]. 

With new 64-bit instructions available on recent 
processors, ultra fast multi-precision square and 
multiply operations can be implemented [40, 41]. 
Performance analysis indicates that the reduction 
functions for square and multiply significantly affect 
overall system performance.  In order to reduce the 
latency of either the Sign or Verify operations, 
reductions must be optimized for the target platform. 
For P-256, there are three performance-oriented 
methods for reducing with modulo p256 (i.e. q):  
1) Fast Reduction Modulo p256, by Solinas [42];  
2) Barrett Reduction [43];  
3) Word-by-word Montgomery Multiplication and 
Reduction [44].  

p256, which is a Generalized Mersenne Prime is given 
below: (as 32-bit double words, and 64-bit quad 
words to fit into four field elements). 

p256 =     0xffffffff       0x00000001 0x00000000  
 0x00000000 0x00000000  0xffffffff  

0xffffffff       0xffffffff 

p256 =     0xffffffff00000001 0x0000000000000000 
  0x00000000ffffffff 0xffffffffffffffff 

The special form of this prime allows several 
simplifications to be made that substantially increase 
performance.  Fast Reduction Modulo, Algorithm 5, 
while relatively straightforward to implement, 
involves concatenation of 32-bit values of the 8-field 
element input, which require additional processing 
for 64-bit implementations. However, it can be 
implemented with simple shift, mask, and 
add/subtract instructions. At Steps 11 and 12, if d1 
and d2 are larger than p256, they need to be subtracted 
from 2p256, otherwise from p256. At Step 15, the 
implementer must ensure that if the addition at any 
point produces a value larger than p256, that value is 
properly reduced.  

INPUT: a, p256 
OUTPUT: r = a (mod p256) 
1. < ai are 32–bit > 
2.   t   ←( a07 ⎜⎜ a06 ⎜⎜ a05 ⎜⎜ a04 ⎜⎜ a03  ⎜⎜ a02 ⎜⎜ a01 ⎜⎜ a0  ) 
3.   s1 ←( a15 ⎜⎜ a14 ⎜⎜ a13 ⎜⎜ a12 ⎜⎜ a11 ⎜⎜ 0     ⎜⎜ 0     ⎜⎜ 0    ) 
4.   s2 ←( 0     ⎜⎜ a15 ⎜⎜ a14 ⎜⎜ a13 ⎜⎜ a12 ⎜⎜ 0     ⎜⎜ 0     ⎜⎜ 0    ) 
5.   s3 ←( a15 ⎜⎜ a14 ⎜⎜ 0     ⎜⎜ 0     ⎜⎜ 0    ⎜⎜ a10  ⎜⎜ a09 ⎜⎜ a08 ) 
6.   s4 ←( a08 ⎜⎜ a13 ⎜⎜a15  ⎜⎜ a14 ⎜⎜ a13 ⎜⎜ a11  ⎜⎜ a10 ⎜⎜ a09 )  
7.   d1 ←( a10 ⎜⎜ a08 ⎜⎜ 0     ⎜⎜ 0    ⎜⎜ 0     ⎜⎜ a13  ⎜⎜ a12 ⎜⎜ a11 ) 
8.   d2 ←( a11 ⎜⎜ a09 ⎜⎜ 0     ⎜⎜ 0    ⎜⎜ a15 ⎜⎜ a14  ⎜⎜ a13 ⎜⎜ a12 ) 
9.   d3 ←( a12 ⎜⎜ 0    ⎜⎜ a10  ⎜⎜ a09 ⎜⎜ a08 ⎜⎜ a15 ⎜⎜ a14 ⎜⎜ a13 ) 
10. d4 ←( a13 ⎜⎜ 0    ⎜⎜ a11  ⎜⎜ a10 ⎜⎜ a09 ⎜⎜ 0     ⎜⎜ a15 ⎜⎜ a14 ) 
11. d1 ←2p256 − d1 
12. d2 ←2p256 − d2 
13. d3 ←p256 − d3 
14. d4 ←p256 − d4 

15. r   ← t + 2 s1 + 2 s2 + s3 + s4 + d1 + d2 + d3 + d4 
16. < Reduce r mod p256 by subtraction of up to ten 
multiples of p256 >  
17. Return (r) 

Algorithm 5) Fast Reduction Modulo p256 

Barrett Reduction does not depend on the special 
form of p256, and can actually be used to calculate a 
mod p for any two positive integers a and p, with the 
requirement that for multi-precision numbers a is 
twice the size of p.  Thus, Barrett Reduction can be 
used for reducing both with p and n.  Even though the 
algorithm itself does not exploit the special form of 
any moduli, any multiplications with 0 value 
elements of the modulus can be optimized to reduce 
the running time. Furthermore, the divisions and the 
mod operations can be done with quad word shifts.  
To increase performance, µ = ⎣ b2k/p ⎦ can be pre-
calculated and stored as a constant if storage is 
available. For Algorithm 6 Step 5, Barrett indicates 
that the result will always be in the range of 0 to 3p-1 
and 90% of the time no subtraction will be needed 
[45].  

INPUT: p, b ≥ 3,  k = ⎣ logb p+1 ⎦,  0 ≤ a < b2k, and  
µ = ⎣ b2k/p ⎦ 

OUTPUT: r = a mod p. 
1.  q  ← ⎣ a / bk−1⎦  . µ  
2.  q’ ← ⎣ q / bk+1⎦  
3. r ← (a mod bk+1) − (q’. p mod bk+1) 
4. If r  <  0 then r ←r + bk+1 
5. While r  ≥  p do: r ← r − p 
6. Return (r) 

Algorithm 6) Barrett Reduction modulo p 

Montgomery Multiplication defined as MultMM (a,b) 
= a.b.2-m mod p, replaces classical modular 
multiplication a.b mod p.  This extends to the case 
when a=b, and can be used in place of the classical 
modular square a.a mod p, such as SqrMM (a) = 
a.a.2-m mod p. Using m=256, s=64 (size of 
register/field element), implies k=4. p256 is an odd 
modulus and satisfies the equation -1/p mod 2s = 1. 
Thus using Algorithm 7, a word-by-word 
multiplication for p256, we can reduce the required 
overall number of 64-bit multiplications to 2k2 (32), a 
substantial savings. Additionally, recall that one of 
the field elements of p256 is equal to 0, so any 
multiplications by this element can be ignored. 

Furthermore, using the observation described by 
Gueron, that t1.(0xffffffffffffffff) = t1.264-t1, any 
multiplication by the first 64-bit quad word can be 
replaced by a faster subtraction. However, using 
MultMM and SqrMM require that the projective 
coordinates are converted to Montgomery Domain 



either by multiplying each coordinate by 2m mod p, or 
MultMM with 22l mod p, which can be stored as a 
constant. A MultMM by 1 converts the coordinates 
back to the Residue Domain.  These conversions 
increase cycle usage so implementers must strive to 
minimize them. 

INPUT: p < 2l  0 ≤ a, b < p, l = s.k  
OUTPUT: r = a.b.2-l mod p  

1.   t = a.b  
2.   for i 1 to k do  

2.1 t1 = t mod 2s  
2.2 t2 = t1 . p  
2.3 t3 = (t + t1)  
2.4 t = t3 / 2s  

3.   if t ≥ p then r = t – p  
4.   else r = t  
5.   Return (r) 

Algorithm 7) Montgomery W-by-W Reduction 

Table 1 and Chart 1 below show a comparison of the 
three methods discussed. For this comparison a lower 
number (i.e. low cycle count) is better. 
 

  
Reduction with p256 

Reduction 
with n256 

  
Mul 

Solinas 
Mul 

Barrett 
Mul 
MM 

Mul 
Barrett 

cycles 438   
(1X) 

322    
(0.74X) 

298  
(0.68X) 325 

Table 1) Multiplication + Reduction Cycles 
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Chart 1) Multiplication + Reduction Cycles 

For each operation, two random 4-field element 
values are multiplied, the resulting 8-field mp-
number is reduced using a loop of 1000 iterations, 
and the median cycles are captured. Barrett 
Reduction can be used for both reducing with p and 
n, and respective median cycles for reducing with 

each modulus are provided in the chart. Depending 
on the use-case and the platform further 
optimizations could be performed, so implementers 
should performance analyze and optimize routines 
for their target platform. 

During message signing, modular inverse operation is 
performed twice. The first modular inverse is 
required to obtain the inverse of k, k-1, as discussed 
previously, where n is used as the modulus.  The 
second one, where p256 is used as the modulus, is 
needed to convert from Projective coordinates to 
Affine coordinates at the end of the scalar 
multiplication operation.  During verification, two 
modular inversions are required. First, to calculate 
the modular inverse of the s component of the 
signature (with modulus n); and, second, to convert 
from Projective coordinates to Affine coordinates at 
the end of the multi-scalar multiplication (with 
modulus p256). While well understood, modular 
inverse is a costly operation and needs to be 
optimized to the modulus used, if possible. 
Implementers have several options, which include 
extended gcd algorithms and Fermat’s Little 
Theorem. For verification, there is no secret 
information so the fastest possible algorithms without 
constant-time run limitations are beneficial. For sign, 
implementers need to ensure that no secret 
information is leaked with the modular inverse 
operation. 
 
Results 

Our solution can be run on any processor that 
supports x86-64 or AMD64 instructions and can be 
ported to other 64-bit architectures. To obtain 
qualitative results, performance analysis and 
evaluation of the proposed optimizations have been 
performed on a platform with Intel® Xeon® E3 
1275v3 (4 core, 3.5GHz, 8M Last Level Cache) using 
GCC 4.9.2, with Intel Enterprise SSDs. All tests are 
run on a single core with both HyperThreading and 
Turbo turned off. Additionally, in our 
implementation, we use constant time functions only 
where they are absolutely needed to protect any 
secret information.  Sign and Verify performance is 
given as operations per second (ops/sec), and higher 
numbers are better.  

Recently, there have been substantial updates to 
OpenSSL P-256 implementations [38]. NISTZ256 is 
a fast ECDSA P-256 implementation included with 
the later versions of OpenSSL. Thus, for a reference, 
we compiled OpenSSL version 1.0.2 with GCC 4.9.2 
on our target platform described above and obtained 
performance numbers using the standard “openssl 
speed.” The reported number of ECDSA sign ops/sec 



for curve P-256 using OpenSSL 1.0.2 NISTZ256 
implementation is 29,938 ops/sec, and verify ops/sec 
is 11,842. To our knowledge, this has been the 
highest performance, publicly available 
implementation of ECDSA P-256. 

For a direct comparison we locally integrated our 
sign and verify functions into the “openssl speed” 
test using the same measurement and calling 
conventions [Note that our implementation is not 
submitted to OpenSSL]. With our agile algorithm 
both the Curve Generator Point (G) and Public Key 
(Q) can be treated as known points, a technique that 
is applicable to BGPSEC Protocol implementations.  
This testing mechanism shows 45,300 sign operations 
per sec and 31,805 verify operations per second for 
our implementation, tarap256. Signatures created 
with our implementation (tarap256) can be verified 
with any P-256 compliant implementation, such as 
OpenSSL, and signatures created with any P-256 
compliant implementation can be verified by our 
implementation. Table 2 and Chart 2 summarize our 
results. 

	
  	
   ECDSA P-256 

	
  	
  

 NISTZ256 
measured 

with  
openssl 
speed 

tarap256 
measured 

with  
openssl  
speed 

sign (ops/sec) 29,938     
(1X) 

45,300 
(1.51X) 

verify(ops/sec) 11,842    
(1X) 

31,805   
(2.69X) 

Table 2) ECDSA – NISTZ256 vs. tarap256 
Measured with OpenSSL speed 
 

 
Chart 2) ECDSA – NISTZ256 vs. tarap256 
Measured with OpenSSL speed 

ecdonalp256 is a well-known P-256 implementation 
included in the eBACS results [46]. eBACS results 
include median cycles for signing and verifying 59-
byte messages. Our results discussed above use the 
same CPU type reported on eBACS (amd64; 
HW+AES (306c3); 2013 Intel Xeon E3-1275 V3; 4 x 
3500MHz; titan0).  eBACS lists results in cycles 
taken. Using CPU speed as 3500MHz, we convert the 
latest posted eBACS cycles to operations per second 
which are for sign: 9,170 ops/sec and for verify: 
3,830 ops/sec. We include these eBACS derived 
results for ecdonaldp256 in Table 3. 

There have been discussions about alternative public 
key algorithms and curves, such as ed25519 and 
potential performance implications [47]. The 
signature and verify algorithms for prime curves such 
as P-256 and ed25519 are substantially different. 
Additionally, P-256 and ed25519 signatures, even 
tough the same size, are not compatible with each 
other. However, for completeness we include 
performance numbers for ed25519 in Table 3 
(ed25519 on eBACS – amd64; HW+AES (306c3); 
2013 Intel Xeon E3-1275 V3; 4 x 3500MHz; titan0) 
[42].  Since eBACS lists results in cycles taken, using 
CPU speed as 3500MHz, we convert the eBACS 
cycles for ed25519 to operations per second which 
are for sign: 56,473 ops/sec and for verify: 18,920 
ops/sec. 

The ed25519 algorithm does not use a per message 
one time random number, while P-256 requires one 
to be computed. However, per FIPS-186-4 [16] the 
per-message random number for ECDSA can be pre-
calculated without affecting the security of the 
operation. For a direct comparison, we implemented 
a version of our algorithm (tarap256f), which uses 
pre-calculated and re-coded one time random 
numbers and corresponding inverses. We tested this 
instance of our sign algorithm, tarap256f, using an 
interface similar to ecdonalp256. In this case, we use 
a message size of 64 Bytes, and a fresh message is 
supplied to each iteration on our Intel® Xeon® E3 
3500MHz 1275v3 based platform.  We compute the 
sign and verify ops per second using median cycles 
of a large number of iterations (i.e. 1,000 iterations). 
In this mode, with tarap256f, we report over 63,807 
sign operations per second on a single core. The 
verify algorithm does not use a one time random 
number so this optimization is only applicable to the 
sign operation. These results are shown in Table 3 
and Chart 3 (higher numbers better).   

 

 
 
 



  ECDSA P-256 c-25519 

  
ecdonaldp256 tarap256f ed25519 

sign 
(ops/s) 

9,1670      
(1X) 

63,807 
(6.96X) 

56,473  
(6.16X) 

Table 3) ecdonaldp256 and ed25519 vs. tarap256f 
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Chart 3) ecdonaldp256 and ed25519 vs. tarap256f 
 
Conclusion 

Our performance results show that it is possible to 
implement ultra fast and secure implementations of 
ECDSA for the curve P-256, providing 128-bits of 
security, on low-cost and low-power commercially 
available hardware. Furthermore, our work can be 
extended to other prime curves such as Curve P-521, 
which provides 256-bits of security.  Our current 
implementation already includes versions of core 
functions that use Broadwell instructions (Intel’s next 
generation CPU), which will show additional 
performance benefits when the new processors 
become available. Furthermore, our libraries are 
designed, developed, and tested to be thread-safe and 
can be deployed on multiple cores in parallel for 
additional scale and substantial performance gains.   
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