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In the position paper [4], it is stated that “we have not observed any significant performance-
based reason to go moving the security goalposts in the next generation of curves”. This state­
ment is in response to the fact that several proposals use curves whose underlying prime 
fields have bitlengths that are different from the ma jority of prime field curves in previous 
standards. In this talk we will discuss ongoing work that aims to quantify how much perfor­
mance one can gain by using handpicked primes that are not rigidly generated and that do 
not have traditional sizes, e.g. primes that are not 64-bit aligned. Our goal is to quantify the 
performance gap between rigidly generated primes and handpicked primes, and our hope is 
that this will provide NIST with a meaningful analysis that will aid their selection of prime 
fields, should new curves be chosen. 

As the main case studies, we will consider the two NUMS curves targeting the 192 and 
256-bit security levels, namely numsp384t1 and numsp512t1 (see [3] for details), and the two 
curves below that were chosen by allowing flexibility in the bitlengths of the primes. For all 
the curves, we wanted the primes to be chosen consistently (with the same shape) across the 
security levels and to offer high performance on a wide range of platforms. 

2 2 2–	 Ted37919. This curve is defined by the equation E−1,d/Fp : −x + y = 1 + dx2y , 
where p = 2379 − 19 and d = 143305. The curve and its quadratic twist have cardinalities 
#E−1,d −1,d = 8r and #E' = 4r', where r and r' are 375- and 376-bit prime numbers, 
respectively. On average, Pollard’s rho algorithm [7] requires around 2188 group operations 
to solve the ECDLP on Ted37919. 

2 2–	 Ed48817. This curve is defined by the equation E1,d/Fp : x + y = 1 + dx2y2, where 
p = 2488 − 17. The curve and its quadratic twist have cardinalities #E1,d = 4r and 
#E' = 4r' (resp.), where r and r' are 486-bit prime numbers. On average, Pollard’s rho 1,d
 

algorithm requires around 2243 group operations to solve the ECDLP on Ed48817.
 

Curve generation and selection criteria. The curve parameters for Ted37919 and 
Ed48817 have been generated using the procedure in [4]. We use pseudo-Mersenne primes of 
the form 2α − γ to define the underlying fields. These primes achieve excellent performance 
that scales well with the bitlength (as the security level increases). Selecting primes (and then 
curves) of the same shape across security levels can give rise to multiple potential benefits such 
as code and algorithm sharing, and may in general ease the implementation and maintenance 
effort. 

Given the two s-bit security levels with s = 192 and 256, the primes were selected by 
searching for a prime p = 2α − γ using α = 2s, 2s − 1, 2s − 2, . . . for a given s until log2 γ ≤ 5 
bits. We discarded primes such that p ≡ 1 (mod 8) which are widely agreed to have unwieldy 
square root algorithms. The tight restriction on γ avoids that multiplications between limbs 
(in “non-canonical” form1) and γ spill over into an extra computer word. Doing a top-to­
bottom search allows us to stay right below the standard security levels so as not to waste 

1	 In this note, the term canonical refers to representations that use the minimum numbers of computer words 
required to represent field elements, and the term non-canonical refers to redundant representations that 
use extra words in order to reduce carry handling operations. Which type of representation is more efficient 
depends on the characteristics of a particular implementation, platform or application. 
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any bits in certain scenarios. For example, hardware implementations of Ed48817 can use 
multipliers with close-to-optimal size for targeting the 256-bit security level, which might 
introduce savings in area in contrast to fields defined over the extended prime 2521 − 1. 
In another example, a 32-bit non-vectorized implementation of Ted37919 requires 12 limbs 
whereas curves like Curve41417 [1] requires 13 limbs, which has an impact on performance. 

2489 − 21We note, however, that the search outlined above would output the prime p =
 
before the prime p = 2488 − 17. Our experiments indicate that the latter is favorable in most
 
scenarios.
 

Taking into account relevant compatibility considerations, the selection of Ted37919 and 
Ed48817 roughly match standard security levels. The reduction in bit-security represents a 
trade-off between efficiency and security. This is in contrast to the criteria used by NUMS 
curves which maximizes security instead of changing the size of primes to attain an efficiency 
gain. 

Implementation aspects. A point in favor of the two chosen finite fields is that they 
support efficient implementations using either canonical or non-canonical representations. 
This was carefully considered in the selection of these curves as preferring one style of repre­
sentation over the other is strongly tied to the particular characteristics of a given platform or 
application. Below, we briefly detail relatively simple yet efficient alternatives for computing 
the field arithmetic. 

–	 In the case of canonical representations, given two integers x and y such that 0 ≤ x, y < 
2α − γ, one can compute x · y mod (2α − γ) by first computing the product and writing 
this in a radix-2α system as x · y = zh · 2α + zc. A first reduction step, based on the shape 
of the modulus, is zh · 2α + zc ≡ zc + zh · γ (mod 2α − γ) = z, where 0 ≤ z < (γ + 1)2α. If 
this step is repeated, the result is such that 0 ≤ z < 2α + γ2, which can finally be brought 
into the desired range by applying an additional correction modulo p using subtractions. 
Performance can be enhanced further by using incomplete reduction: instead of reducing z 
to the range [0, 2α − γ) after every multiplication, one can more efficiently let z stay in an 
extended range [0, 2β), where α < β < 2s (at a target security level of s bits), enabling the 
use of additions without modular corrections. When using the canonical representations, 
Ted37919 requires 48, 12 and 6 limbs for 8-, 32- and 64-bit platforms. Similarly, Ed48817 
requires 61, 16 and 8 limbs for 8-, 32- and 64-bit platforms. 

–	 In the case of non-canonical representations, one can represent field elements as {54|54|54|
54|54|54|55}-bit limbs on 64-bit machines. Similarly, Ed48817 can make use of a repre­
sentation with {54|54|54|54|54|54|54|55|55}-bit limbs. Both cases produce little overhead 
in carry handling and perform efficiently. On 32-bit platforms such as ARM with NEON, 
Ted37919 can use a representation with {27|27|27|27|27|27|27|27|27|27|27|27|27|28}-bit 
limbs and Ed48817 can use {27|27|27|27|27|27|27|28|27|27|27|27|27|27|27|28}-bit limbs. In­
terestingly, note that the latter representation is symmetric; this favors the use of 2-way 
Karatsuba. These representations for Ted37919 and Ed48817 require 7 and 9 limbs (resp.) 
for 64-bit platforms and 14 and 16 limbs (resp.) for 32-bit platforms. 

Performance results: We use MSR ECCLib [6] to obtain performance results for the 
NUMS curves numsp384t1 and numsp512t1. We have implemented Ted37919 and Ed48817 
on a 64-bit architecture using the non-canonical representation with {54|54|54|54|54|54|55}­
bit limbs. Table 1 displays the results for variable-base scalar multiplication for Intel Sandy 
Bridge, Intel Haswell and AMD Steamroller processors in comparison with other relevant 
curves in the literature [5] (performance results for Ed448-Goldilocks were obtained by running 
eBACS’ Supercop on the targeted platforms [2]). 

As we can see, the curves chosen by allowing some “wiggle room” in the generation 
are somewhat more efficient. However, the performance of the NUMS curves is still very 
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Table 1. Clock cycles to compute scalar multiplication on 64-bit Intel processors. 

curve 
Est. bit 
security 

Intel Sandy 
Bridge 

Intel 
Haswell 

AMD 
Steamroller 

Ted37919 
numsp384t1 

Ed448-Goldilocks 
Ed48817 

numsp512t1 

188 
191 
223 
243 
255 

491,000 
611,000 
667,000 
1,091,000 
1,320,000 

407,000 
504,000 
532,000 
916,000 
1,136,000 

675,000 
717,000 
990,000 
1,319,000 
1,523,000 

good, especially if one takes into account the additional security, rigidity and compatibility 
properties that are gained in return. Also, it should be taken into account that the benchmark 
comparison above is somewhat unfair against the NUMS curves because MSR ECCLib is a 
portable and generic library. Whenever suitable, it could be possible to improve NUMS’ results 
by writing platform-specific implementations. The results in Table 1 also reveal that, for the 
studied platforms, there is no strong argument (from a performance perspective) to deviate 
from the widely-used standard security levels, namely 192 and 256-bit security levels. 
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