
Efficient Side-Channel Attacks

on Scalar Blinding on Elliptic Curves

with Special Structure

Werner Schindler∗ Andreas Wiemers†

Abstract

In this paper we introduce two new generic side-
channel attacks on scalar blinding of elliptic
curves where the order of the base point is close
to a power of 2. These attacks are in particu­
lar relevant for elliptic curves over special prime
fields where the prime is ’almost’ a power of 2.
As in the papers [9, 10] we assume that some
side-channel attack has allowed the determina­
tion of the bits of the blinded scalars with some
uncertainty, which is quantified by the error rate
Eb. Our new attacks are tailored to the special
structure of these elliptic curves. They are far
more efficient than the attacks for general ellip­
tic curves [9, 10]. As a consequence such special
elliptic curves need significantly longer blinding
factors than general elliptic curves. Both attacks
apply to ECC applications, which use a long-
term key for the scalar multiplication.

1 Introduction

Papers [9, 10] address generic power attacks on
RSA implementations and on ECC implementa­
tions where exponent blinding, relatedly scalar
blinding, have been applied as algorithmic coun­

∗	 Bundesamt für Sicherheit in der Informationstechnik,
Germany; Werner.Schindler@bsi.bund.de

†	 Bundesamt für Sicherheit in der Informationstechnik,
Germany; Andreas.Wiemers@bsi.bund.de

termeasures against side-channel attacks. There
it is assumed that an adversary has guessed the
blinded exponent bits / blinded scalar bits on the
basis of an SPA attack or a single-trace template
attack on the particular device. Each bit guess
is assumed to be false with probability Eb > 0. It
may be the case, alternatively, that the bits can
be guessed through the use of other side chan­
nel attacks such as by exploiting electromagnetic
radiation or via a microarchitectural attack on a
PC that is processing cryptographic software.

In the case of ECC it is assumed that the scalar
multiplication uses a long-term key. This is the
case, for example, with static ECDH and with
the decryption process of the elliptic curve inte­
grated encryption scheme (ECIES) [5]. A pro­
posal has been made by H. Krawczyk that de­
fines an authentication process for TLS 1.3 that
does not rely on a signature. Within this con­
text, static ECDH may take on additional impor­
tance [6]. Another important application are de­
terministic signatures [8] with static ephemeral
keys.

In contrast to papers [9, 10] we do not con­
sider general curves. Instead, we focus on ellip­
tic curves where the order of the base point is
close to 2k for some k. This situation is rele­
vant for elliptic curves over a prime fields when
the prime is ’almost’ a power of 2. Well-known
representatives of this class include the following
curves: Curve25519, M-511, ED448-Goldilocks,

mailto:Andreas.Wiemers@bsi.bund.de
mailto:Werner.Schindler@bsi.bund.de

Curve41417 and NIST P-384.
Section 2 introduces the definitions and no­

tations from papers [9, 10] that are relevant for
this investigation. In section 3, the elliptic curves
with the special structure are introduced. In ad­
dition to this, the basic idea of our attacks are
outlined. In sections 4 and 5, the details of our
new attacks which exploit the order of the special
base point property are presented. Both attacks
are far more efficient than the attacks on gen­
eral elliptic curves in [9, 10]. As a consequence
these special curves require significantly longer
blinding factors than general elliptic curves.

2 Definitions and Notation

For the purposes of this investigation, we agree
with the starting assumptions in papers [9, 10]
and assume that the target device (for example,
a smart card, a microcontroller, an FPGA, a PC
etc.) executes scalar multiplications on the el­
liptic curve where scalar blinding shall thwart
power attacks.
The papers [9, 10] consider RSA implementa­

tions in addition to elliptic curve implementa­
tions. To cover both cases, the term ’blinded
exponents’ is used to avoid clumsy formulations.
In this paper, we consequently speak of blinded
scalars. The blinded scalars are of the form

vj := d + rj y for j = 1, 2, . . . , N. (1)

The letter y denotes the order of the base point
of the elliptic curve, and d < y equals the (ran­
domly selected) long term key. The blinding fac­
tor rj for the scalar multiplication j is drawn
uniformly from the set {0, 1, . . . , 2R − 1}.
The binary representation of vj is

(vj;k+R−1, . . . , vj;0)2 where leading zero digits
are allowed. For example, on the basis of an
SPA attack or a single-trace template attack on
the power traces j (or by any other side-channel
attack), the attacker guesses the blinded scalars
and obtains the guess vvj = (vvj;k+R−1, . . . , vvj;0)2.
The attacker may commit two types of guess­

ing errors: Although vj;i = 0 he might guess
vvj;i = 1, or despite of vj;i = 1 he might guess

vvj;i = 0. We assume that both errors occur with
identical probability Eb. We further assume that
the individual bit guesses are independent, which
should be justified if the double-and-always algo­
rithm or the Montgomery ladder are applied (see
[10], subsection 3.8). Our attacks certainly tol­
erate some deviation from both assumptions.

3 Special Curves

In this paper we assume that the order y of the
base point is ’slightly’ smaller or larger than 2k

for some k. Due to the Hasse-Weil Theorem, this
assumption is fulfilled for an elliptic curve over
a prime field if the characteristic of the field is
’almost‘ a power of 2 and if in addition the co­
factor is 1 or a small power of 2. Moreover, we
may assume that y is odd.

If y is larger than 2k the binary representation
of y is of the form:

tt
y = 2k + y0 = 2k + aj 2

j with at = 1 (2)
j=0

and t < k. Then clearly:

2k + 2t < y < 2k + 2t+1 and rj y0 < 2R+t+1 . (3)

In the following we assume that the number of
zeroes between the two most significant non-zero
coefficients in the binary representation of y, or
the ’gap’ g between these coefficients,

g := k − t − 1 is large. (4)

It is well-known that if k − 1 > t + R roughly
k − (R + t + 1) bits of the long-term key d re­
main unblinded, which simplifies the discrete log
problem to some extent [4]. In this paper we will
show that the situation is even more dramatic.
Analogously, for y < 2k there is a unique t < k
with:

tt
y = 2k − y0 = 2k − aj 2

j with at = 1 . (5)
j=0

Consequently,

2k −2t > y > 2k −2t+1 and rj y0 < 2R+t+1 . (6)

Table 1 provides parameter sets (k, t, g) for some
well-known curves.

curve k t g
Curve25519 252 124 127
M-511 508 252 255
ED448-Goldilocks 446 223 222
Curve41417 411 204 206
NIST P-384 384 189 194

Table 1: Exemplary curves: For Curve25519 and
curve M-511 we have y > 2k while y < 2k

for the other curves.

3.1 A basic Observation

Assume for the moment that y > 2k and that k−
t−R−1 = g−R is significantly larger than 0 (let’s
say ≥ 7). Then it is unlikely that for the blinded
scalar vj = d + rj y a carry occurs at position
k − 1 so that vj;k+i = rj;i for i = 0, . . . , R − 1.
The side-channel attack then directly provides
bit guesses vvj;k+i for the binary representation of
the blinding factor rj , each of which is false with
probability Eb. In our attacks, we apply these
values as first stage estimates for rj;0, . . . , rj;R−1.
There is no equivalent for general curves.
While for y > 2k a carry at bit position k − 1

occurs if d+rj y0 > 2k for y < 2k a carry occurs if
d < rj y0. Since |y − 2k|/2k ≈ 0 in both cases, for
simplicity we may assume that Prob(d = x) =
2−k for all x ∈ Z2k . Hence, the probability for a
carry at bit position k − 1 is nearly the same in
both cases.

4 The Wide Window Attack

In this section, we introduce and discuss the wide
window attack. We begin with a definition.

Definition 1 Let Zm := {0, 1, . . . , m − 1}. For
an integer x we denote by x(mod m) the unique
element x' in Zm with x' ≡ x mod m.

We restrict the description of the “wide window
attack” to the case y = 2k + y0. In this case we

have

vj = rj 2
k + (d + rj y0) for j = 1, 2, (7)

We assume in the following that

d + rj y0 < 2k for j = 1, 2, (8)

with very high probability. This is certainly the
case, for instance, for

R ≤ g − 7 .

Under this assumption, the pair (lvvj /2
kJ, vvj (mod2k)) is just the pair (rj , d + rj y0) but

with guessing errors. The latter pair allows:

•	 to solve for d,

•	 to determine the value rj if d is known.

The main idea of the ‘wide window attack’ is to
find iteratively d(mod 2w) where w runs from 0

'to k in fixed steps of length w . In each iteration
1

µ we start with a d(mod 2w−w) and candidates
1

rj (mod 2w−w). In each iteration,

1.	 we find d(mod 2w) by using the candidates
1

rj (mod 2w−w).

2.	 we find new candidates rj (mod2w) with
the help of d(mod 2w) when w ≤ R.

Note that the case y = 2k − y0 is very similar. In
this case we analogously require d−rj y0 ≥ 0, and
the pair (lvvj /2

kJ, vvj (mod 2k)) is just the pair

(rj , d − rj y0)

with guessing errors.

4.1 Solve for d if w ≤ R

In this subsection we formulate the algorithm,
that solves for d if w ≤ R. For the moment we

'fix integers w , m0.

Algorithm 1 The Wide Window Attack;
here: ALGO ‘d-solve’ in iteration µ

1. From	 the previous iteration step we have
Aµ pairs of the form (vvj , rvj (mod2w−w 1

))
where rvj (mod2w−w 1

) is assumed to equal
rj (mod2w−w 1

). Further, we have deter-vmined exactly one candidate d(mod 2w−w 1
)

for d(mod2w−w 1
). The algorithm starts

' with w = w and A0 = N .

a) Generate all pairs (αj , bj) that differ
' jointly in at most m0 bits within the w

most significant bits of lvvj /2
kJ(mod

2w) and vvj (mod 2w).

b) Since we know the value d + y0rj (mod
1

2w−w) (provided that the respective
guesses from the previous iteration
steps are correct), we can compute for
each bj a candidate for d + y0rj (mod
2w). We use αj and rj (mod2w−w 1

)
to compute a candidate for rj (mod
2w). In the end, each pair results in
a candidate for d(mod 2w).

c) Collect all candidates for d(mod2w)
in a list. v2. Select	 the candidate d(mod2w), which oc­

curs most frequently.

The probability that at most m0 bit guess­
' ing errors occur jointly in the w most signifi­

cant bits of both components lvvj /2
kJ(mod 2w)

and vvj (mod 2w) equals: t ' 2w
pm0 = Em(1 − Eb)

2w 1−m .b m
m≤m0

We set	 t ' 2w
Mm0 = .

m
m≤m0

Let Gµ denote the number of correct candi­
dates for rj (mod2w−w 1

) in iteration µ. We can
assume that the number of correct candidates
for d(mod 2w) generated with this algorithm, is
roughly:

pm0 Gµ ≥ t . (9)

We want to choose t such that the correct value is
expected to be among the top-ranked candidates

of the algorithm. For a moderately large t, we
require (as in paper [10])

1

≤ (t!)1/t2w (t−1)/tAµMm0	 . (10)

We give concrete values for both terms in sub­
section 4.3. Note, that we may choose different
parameters m0 in each iteration. Neglecting the
exact workload of sorting, the running time of
the algorithm is roughly O(AµMm0).

4.2 Solve for d if w > R

We adapt the algorithm from subsection 4.1 to
w > R. Since rj is assumed to be known, we
only generate values bj in step 1a) that differ

' in at most s0 bits from (vvj (mod 2w)) in the w
most significant bits.

4.3 Finding candidates for rj
In this section we present the algorithm that
finds candidates for rj . For the moment, we fix
integers n0, t0.

Algorithm 2 The Wide Window Attack;
here: ALGO ‘rj -find’ in iteration µ

1. From the previous iteration step and by Al­
gorithm 1 we have Aµ pairs (vvj , rvj (mod
2w−w 1

)), where rvj (mod2w−w 1
) is assumed

1
2w−wto equal rj (mod). Further, we vhave exactly one candidate d(mod2w) for

d(mod 2w). The algorithm starts with w =
' w	 and A0 = N .

a) Generate all values αj that differ in at
most n0 bits from lvvj /2

kJ(mod 2w) in
' the w most significant bits.

b) Since we know rj (mod 2w−w 1
) for

each αj we can compute a candidate
' for rj (mod 2w).

' c) For each rj (mod2w) we compute the
' Hamming weight of the w most signif­

icant bits of:

' ((dv+ y0rj)(mod 2w)) ⊕ vvj (mod 2w) (11)

' 2. Collect the candidates for r (mod 2w), forj
which the value computed in (11) is below
some threshold t0.

' We set for fixed w t '
' w 1 −m p = Em(1 − Eb)

w
n0 b m

m≤n0

and t ' w' Nn0
= .

m
m≤n0

We can assume that the number of correct can­
didates is roughly:

' ' Gµ+1 ≈ p p Gµ . (12)n0 t0

On the other hand, just by chance, we can expect
to have

1' ' 2−wAµN Nn0 t0

candidates that are collected by this algorithm.
We can expect

1' ' 2−wAµ+1 ≈ Gµ+1 + AµNn0
Nt0

. (13)

In a realistic attack scenario where N is bounded
like N ≤ 220 the algorithm can only be successful

' ' ' ' if p p is not too small (e.g p p ≈ 0.25).n0 t0 n0 t0

This may be achieved, for example, by choosing
the parameters:

n0 ≈ t0 ≈ w ' Eb . (14)

1' ' 2−wDue to (13) the term N N determines the n0 t0

expected number of candidates A0, A1, . . . in the
course of the attack. These numbers of candi­
dates should not shrink too much, nor should
they explode. We cannot control this second
condition concurrently with the first as it is a
property of the error rate Eb. The running time

' of the algorithm is O(AµN).n0

4.4 Experimental Results

Simulation experiments were performed using
Curve25519 and R = 120. Firstly, we searched

for parameter sets that fulfill all the conditions
(9), (10), (12), (13). A valid parameter set is

' Eb = 0.1, N ∈ {500, 1000}, w = 24,

n0 = t0 = s0 = 3, m0 = 2 . (15)

For this parameter set we have

' ' Mm0 = 1177, pm0 ≈ 0.12, p ≈ 0.79, N = 2325.n0 t0

Since n0 = t0 = 3 ≥ w ' Eb, Gµ should not de­
crease too much. On the other hand, since

1' ' 2−wN N ≈ 0.3n0 t0

we may expect that Aµ does not increase. For
N = 1000, Table 2 shows a typical experi­
mental result. In this experiment, for each
µ = 0, . . . , 4 we performed Algorithm 1 followed
by Algorithm 2. For each µ = 5, . . . , 9, we
only have to perform Algorithm 1. The column
’rank’ in Table 2 gives the rank of the correct
value d(mod 2w) within the candidates, which
were returned by Algorithm 1. ’rank 1’ means
that Algorithm 1 has found the correct value
d(mod 2w).

Alg µ rank Gµ Aµ Gµ+1 Aµ+1

1, 2 0 1 1000 1000 622 8640
1, 2 1 1 622 8640 386 7966
1, 2 2 1 386 7966 247 5711
1, 2 3 1 247 5711 152 3773
1, 2 4 1 152 3773 99 2277
1 5 1 99 2277
1 6 1 99 2277
1 7 1 99 2277
1 8 1 99 2277
1 9 1 99 2277

Table 2: Wide window attack: Example simulation
result for E = 0.10, N = 1, 000. In Step 0 to
Step 4 the lower parts of d and the blinding
factors were guessed. In Step 5 to Step 9
the upper part of d was guessed.

Notes 1 (i) In the steps 0 to 4 the number of
correct Gµ decreases roughly by a factor of 0.6.

' ' This fits very well to the factor of p p ≈ 0.6,n0 t0

which we expect by our choice of parameters.
(ii) As explained above we expected that
Aµ+1 ≈ Gµ+1 + 0.3 · Aµ, especially
A1 ≈ 600 + 300 = 900. In our simulation
we observed that the number of Aµ is much
larger than expected! We looked at a few exam­
ples and found that the errors typically occur
in the most significant bits of rj . The reason
for this effect seems to be the special structure
of rj y0 + d: Since the most significant bits of
rj y0 + d only depend on the most significant bits
of rj , it is difficult to correct errors in the most
significant bits of rj . However, it is very likely
that these errors will be corrected in the next
iteration step.

We performed 10 simulations for each N ∈
{250, 500, 1000} where we used the parameter set
(15). We counted an attack to be successful if,
in each step, the rank of the correct d was 1.
The results are given in Table 3. We repeated

curve R Eb N success rate
Curve25519
Curve25519
Curve25519

120
120
120

0.10
0.10
0.10

250
500

1, 000

2/10
7/10
9/10

Table 3: Wide window attack

the simulation for larger Eb. For instance, a valid
parameter set is:

' Eb = 0.14, N = 30, 000, w = 24,

n0 = t0 = s0 = 3, m0 = 2 . (16)

For this parameter set we obtain

' ' Mm0 = 1177, pm0 ≈ 0.028, p ≈ 0.56, N = 2325.n0 t0

As above, we have n0 = t0 = 3 ≈ w ' Eb and
1' ' 2−wN N ≈ 0.3. For N = 60, 000 Table 4 n0 t0

shows a typical experimental result.

Alg µ rank Gµ Aµ Gµ+1 Aµ+1

1, 2 0 1 60, 000 60, 000 18, 972 243, 546
1, 2 1 1 18, 972 243, 546 6, 022 143, 486
1, 2 2 1 6, 022 143, 486 1, 877 66, 236
1, 2 3 1 1, 877 66, 236 629 27, 942
1, 2 4 2 629 27, 949 185 11, 413
1 5 1 185 11, 413
1 6 1 185 11, 413
1 7 1 185 11, 413
1 8 1 185 11, 413
1 9 1 185 11, 413

Table 4: Wide window attack: Example simulation
result for E = 0.14, N = 60, 000.

Notes 2 (i) In the steps 0 to 4 the Gµ decrease
roughly by factor 0.3 per iteration, which again

' ' fits very wel l to p p ≈ 0.3.n0 t0

(ii) As for Eb = 0.10 the value Aµ is much larger
than predicted by (13).
(iii) In Step 4 d(mod2120) was only ranked 2.

A natural question is: What is the largest Eb, for
which the attack might work? To answer this
question, we searched for valid parameter sets
that fulfill the conditions (9), (10), (12), (13).

≤ 224under certain restrictions. We chose N
and limited the overall running time by ≤ 250

operations. Under these restrictions for R = 120
we did not find a admissible parameter set for
Eb ≥ 0.19.

5 The Narrow Window Attack

In this section we develop the so-called narrow
window attack. Like the wide window attack
it guesses the long-term key d and the blinding
factors r1, . . . , rN in portions. Similarities and
differences between both attacks will become ev­
ident in the following. Its name is motivated by

' the fact that the window size w is much smaller
' than for the wide window attack (w = 8 – 10

' vs. w ≈ 30)
As in section 4 we assume that for j = 1, 2, . . .

we have d + rj y0 < 2k if y > 2k or d − rj y0 > 0
if y < 2k with high probability. This is certainly
the case for R ≤ g − 7, for example. Subsub­
section 5.1.4 considers the case R > g − 7. The
narrow window attack falls into three phases.

Algorithm 3 Narrow Window Attack (Generic
description)

•	 Phase 1 Guess the R least significant bits of
the long-term key d and the blinding factors
r1, . . . , rN .

•	 Phase 2 Identify the guesses of the blinding
factors, which are correct. Remove the other
guesses.

•	 Phase 3 Guess the remaining bits of d from
the guesses rvj1 , rvj2 , . . . , rvju , which have sur­
vived Phase 2.

5.1 Phase 1

At the beginning of Phase 1 we set

rvj;i := vvj;k+i for j = 1, . . . , N, i = 0, . . . , R−1 .
(17)

By assumption a carry from bit k −1 occurs with
non-negligible probability and thus

Prob(rj;i = rvj;i) = 1−Eb for all pairs (j, i) . (18)

The goal of Phase 1 is to guess d(mod 2R) and
to correct the false bit guesses rvj;i for a (suf­
ficiently large) subset of the blinding factors,
which will allow us to finish the overall attack
successfully in Phase 3. Before formulating Al­
gorithm 4 we will examine its theoretical back­
ground.

Definition 2 The term HD(a, b) denotes the
Hamming distance between the binary represen­
tations of the integers a and b. The term (b >> i)
means that the binary representation of the inte­
ger b is shifted i positions to the right.

We assume that d and the blinding factors rj

are realizations of independent random variables
X and Zj (i.e., values taken on by these random

variables), which are uniformly distributed on
(for simplicity) Z2k or on Z2R respectively. For
i ≥ 1 then X(mod 2i), Zj (mod 2i) and (since y
is odd) thus also yZ(mod 2i) are uniformly dis­
tributed on Z2i . In particular, Zj and

Vj := (X(mod 2i) + y0Zj (mod 2i))(mod 2i)
(19)

are independent and uniformly distributed on
Z2i . More precisely,

For fixed i, the random variables

X(mod 2i), Zj (mod 2i) and Vj (mod 2i)

are uniformly distributed on Z2i .

Any two of them are independent. (20)

Assume that during Phase 1 (intermediate) i­vbit guesses d(sf), rvj;(sf), vvj;(sf) ∈ Z2i have been
derived (’sf’ stands for ’so far’). For the mo­
ment we assume that rvj;(sf) = rj (mod 2i) and vvj(sf) = vj (mod 2i), i.e., that both intermedi­
ate guesses are correct. Since d ≡ (vvj(sf) − vrvj(sf)y0)(mod 2i) the intermediate guess d(sf) is
correct, too. On basis of the next initial bit
guesses rvj;i+w1−1, . . . , rvj;i and vvj;i+w1−1, . . . , vvj;i
((17)), we want to compute the probability for

' the candidates for next w bits di+w1−1, . . . , di of
the long-term key. In terms of random variables,
we are interested in the conditional probability

' Prob((X >> i)(mod 2w 1

) = x | × (21)

× rvj;i+w1−1,. . .,rvj;i,vvj;i+w1−1,. . .,vvj;i,rvj;(sf),vvj;(sf))
' 1 .

probability (21) equals
for all x ∈ Z2w Due to (20) the conditional

t
'	 ' ∗ ∗ p(r , v | rvj , vvj) . (22)

1(r ,v1)∈M(x1)

'' '') ∈ Z2wHere M(x ') denotes all pairs (r , v 1 ×
Z2w1 , for which the binary representation of
'	 ' x ∈ Z2w1 equals the bits i + w − 1, . . . , i of

'' 2i '' 2ithe term ((v + vvj(sf))−(r + rvj(sf))y0)(mod

2w 1	 ∗). Further, rv := (rvj;i+w1−1, . . . , rvj;i)2j
∗and vv := 1 −1, . . . , vvj;i)2. The termj (vvj;i+w

'	 ' ∗ ∗ p(r , v | rvj , vv) denotes the conditional prob­j
'	 ' ability that r := (ri+w1−1, . . . , ri)2 and v :=

(vi+w1−1, . . . , vi)2 are correct if the binary rep­
∗ ∗ resentation of rv and vv are the initial guessesj j

(17). By (18)

' ' ∗ ∗ −h p(r , v | rvj , vvj) = Eb
h(1 − Eb)

2w 1

(23)
' ∗ ' ∗ with h = HD(r , rvj) + HD(v , vvj) .

∗The value x , for which (21) is maximal, pro­
vides the most probable candidate for the bits
di+w1−1, . . . , di (maximum-likelihood estimate).
Step 1 of Algorithm 4 shall find the position
where this maximum occurs. The array P [2w 1

]
stores the conditional probabilities (21). Step 1
of Algorithm 4 determines a candidate dv(i+w1) :=

x ∗2i + dv(sf) for d(mod 2i+w 1
).

Step 2 of Algorithm 4 guesses the bits rj;i and
vj;i for all j ≤ N . It may turn out that the initial
guesses rvj;i and / or vvj;i have to be flipped. For
m ∈ {0, 1} we define t

' ' ∗ ∗ pj;m := p(r , v | rvj , vvj) (24)
(r1,v1)∈M (x ∗):
r1(mod 2)=m

In Algorithm 4 we set rvj;i = 0 if pj;0 ≥ pj;1

and rvj;i = 1 otherwise. (This may reverse the vinitial guesses.) From d(i+w1) and the (possibly
modified) value rvj;i, we obtain vvj;i. Then

pj;m
qj;c := if pj;m ≥ pj;1−m (25)

pj;0 + pj;1

quantifies the probability that rvj;i and vvj;i are v(now) correct if d(i+w1) is correct. The double
array Q[N][R] contains the conditional proba­
bilities (25). For each i of the outer for-loop the vintermediate guesses d(sf), rvj;(sf) and vvj;(sf) are
updated and extended by one bit. We point out
that for the last bits, namely if i > R − w ' , in

' ' Step 1 we have (r ∈ Z2R−i , v ∈ Z2w1) instead
' ' of (r ∈ Z2w1 , v ∈ Z2w1). The sum (22) is calcu­

lated analogously as above.

Algorithm 4 Narrow Window Attack, Phase 1 vd(sf) := 0; rvj;(sf) := 0; vvj;(sf) := 0;
for i = 0 to R − 1 do {

1. for m = 0 to 2w 1 − 1 do P [m] := 0;

for j = 1 to N do {

calculate the cond. probabilities (22) for
' 1all x ∈ Z2w

add these values to the array P }
∗select x for which P [x ∗] is maximal. v ∗d(i+w1−1) := x ·2i +dv(sf) /*End of Step 1*/

2. for j = 1 to N do {
compute pj;0 and pj;1

if (pj;0 ≥ pj;1) then rvj;i := 0 else rvj;i := 1
Q[j][i] := qj;c
z := (dv(i+w1) + (rvj;i2i + rvj;(sf))y0) >> i vvj;i = z(mod 2)
rvj;(sf) := rvj;i2i + rvj;(sf) /* new guess */ vvj;(sf) := vvj;i2i + vvj;(sf) /* new guess */

} /* End of Step 2 */ vd(sf) := x ∗(mod 2) · 2i + dv(sf)/* new guess */
} /* End of the i-loop */

5.1.1 Rationale

' In Step 1 we guess w bits of the long-term key
d, and we use these bit guesses to determine
rvj;i and vvj;i. At the end of the outer for-loop,

' we then discard the upper w − 1 bit guesses v vdi+w1−1, . . . , di+1. This may be surprising at first
sight. The reason is the following: a guessing er­
ror in rvj;s does not only affect bit position s, but

' also many positions s > s. Since the ’horizon’
' of our window ends at position i + w − 1, the

guess rvj;i should usually be the most reliable one
within {rvj;i, . . . , rvj;i+w1−1}. The next windows
will give more precise information on the higher
bits.

5.1.2 Removing False Guesses

During Phase 1 false bit guesses rvj;i will defi­
nitely occur. Although the maximum-likelihood
estimator dv(i+w1−1) is robust in the sense that it
tolerates a large fraction of false ’so far’ guesses
rvj1;(sf) of the blinding factors, the fraction of cor­
rect guesses clearly should not become too small.
The term qj;c quantifies the probability that the
decision for rvj;i (and thus also for vvj;i) is correct vassuming that d(i+w1 −1) itself is correct. Inter­
mediate guesses rvj;(sf), which are likely to be

false, should be removed. Two general strategies
exist: continuous withdrawal for each i ≤ R − 1
and withdrawal at distinguished bit positions i.
Applied as a pure strategy, the first option of

discarding (de-activating) all the power traces
for which qj;c is below some predefined criti­
cal threshold cb(Eb, ·) keeps the fraction of false,
intermediate guesses small. This, however, re­
quires a large sample size N since many correct
power traces are discarded as well.
On the other hand a bit guessing error rvj;s

' also affects many later bit positions s > s.
Hence a small product of conditional prob­si
abilities Q[j][s] is an indicator for a s=0
wrong bit guess in the past. Another (though
weaker) criterion is the number of bit flips in
rvj;0, . . . , rvj;i, vvj;0, . . . , vvj;i, again due to the prop­
agation of guessing errors. These criteria may be
applied every st bits to remove power traces.
In our experiments we followed a mixed strat­

egy. First of all, for each i ≤ R − 1 we removed
all power traces j, for which qj;c < cb(Eb, i).
This threshold cb(Eb, i) increased in Eb and i
and ranges in the interval [0.505, 0.53]. Ev­
ery st = 16 bits we ordered the power traces,
which were still active at that time (i.e., which
had not already been removed earlier) with re­si
gard to their products Q[j][s] in descend­s=0
ing order. To each power trace we assigned its
rank rkQ(j). Then we ordered the same power
traces with regard to the number of corrections
in rvj;0, . . . , rvj;i, vvj;0, . . . , vvj;i compared to the re­
spective initial guesses (17) in ascending order.
This yielded rkC (j). Since the second criterion
is weaker than the first, we computed the overall
rank of power trace j to:

rk(j) := rkQ(j) + 0.2rkC (j) . (26)

Finally, we ordered these power traces in ascend­
ing order with regard to their overall rank (26).
From N(i) active power traces, the lα(Eb, i)N(i)J
top-ranked survived, the remaining power traces
were discarded. The survival rate α(Eb, i) in­
creases in both Eb and i. For Eb = 0.10,
for instance, we used the values α(0.10, 15) =
0.94, α(0.10, 31) = 0.90, α(0.10, 47) = 0.85,

α(0.10, 63) = α(0.10, 79) = 0.75, α(0.10, 95) =
α(0.10, 111) = 0.72. For Eb = 0.13 we used 0.86,
0.80, 0.70, 0.53, 0.53, 0.43, and 0.43 at the cor­
responding bit positions.

5.1.3 Increasing the Efficieny of Algorithm 4

Step 1 requires the computation of 22w 1
probabil­

ities (23) per power trace while Step 2 only needs
2w 1

such probabilities. This means that Step 1
determines the workload of Algorithm 4. The
guessing procedure for the maximum in Step 1
is very robust and tolerates a large fraction of
false intermediate guesses rvj;(sf). To save com­
putation time in Step 1 we never used more
than n(Eb, i) power traces. The threshold n(Eb, i)
increased in Eb and in i since the fraction of
false intermediate guesses usually increases in
the course of the attack. For instance, we used
n(0.10, i) = 250 for i < 64 and n(0.10, i) = 450
for all remaining cases. For Eb > 0.10 we added
50 traces per 0.01 step. If more than n(Eb, i) were
still active for bit i then n(Eb, i) candidates were
drawn randomly from this set. In Step 2 all still
active power traces were used.

5.1.4 Extending R beyond g − 7

Up to that point we had assumed k − t − R ≥ 8,
which makes a carry bit from position k − 1 very
unlikely. In the following we consider the prob­
lem when R is larger than g − 7 = k − t − 8.
Assume y > 2k for the moment. Let ci denote
the carry bit (binary representation) in d + rj y,
which occurs in bit position i and is added to
di+1 + (rj y)i+1. As in Section 5 we assume the
long-term key d and the blinding factor rj are
realizations of random variables X and Zj . If
R + t < k − 1, i.e. if k − R − t > 1 then the (av­
erage) probability for a randomly selected long­

term key d that rvj;0 is affected by a carry equals

νk := Prob(ck−1 = 1) = Prob(X + y0Zj ≥ 2k) = t
2−R Prob(X ≥ 2k − zy0) =

z∈Z2R t 2R −1 zy0 zy0
2−R ≈ 2−R dz =

2k 2k
0 z∈Z2R 1 uy02

R y0
du = . (27)

2k 2k−R+1
0

Since ck−1+i = 1 iff ck−1 = 1, rk = . . . =
rk+i−1 = 1 we conclude

νk+i := Prob(ck−1+i = 1) = 2−iνk for i ≥ 0 .(28)

Since the probability for a carry bit decreases by
50% per bit position its impact on rvj;i needs to
be considered only for few bits. More precisely,
(18) changes to:

Prob(rj;i = rvj;i) = 1 − E ' withb;i

E ' b;i := (1 − Eb;i)νk+i + Eb;i(1 − νk+i) .(29)

If νk+i ≈ 0 both formulae match. For the lowest
bits the computation of the conditional proba­

' ' ∗ ∗bility p(r , v | rvj , vv) becomes a little bit morej
costly since individual probabilities have to be
multiplied.

Example 1 (Numerical example, Curve25519)
R = 125, Eb = 0.12: For i = 0, . . . , 5 we obtain
ν252+i = 0.082, 0.041, 0.020, 0.010, 0.005, and
0.025. Hence Prob(rj;i = rvj;i) = 1 − Eb;i with
1 − Eb;i = 0.818, 0.849, 0.865, 0.872, 0.876, and
0.878 while 1 − Eb = 0.88.

5.2 Phase 2

At the end of Phase 1 the situation is the fol­
lowing: some power traces j1, . . . , jM have sur­
vived. The lowest R bits of the long-term
key d, the complete blinding factors rj1 , . . . , rjM

and the R lowest bits of the blinded scalars
vj1 , . . . , vjM have been guessed. During Phase 1
heuristic criteria were applied to remove (pre­
sumably) false guesses. However, for large error

rates Eb, it may happen that although the in-vtermediate guess d(sf) is still correct, less than
10% of the remaining M blinding factor guesses
rvj1 , . . . , rvjM are (completely) correct. This phe­
nomenon can drastically be reduced by choosing
smaller thresholds cb and smaller survival rates
α(Eb, i). On the negative side this approach re­
quires considerably larger sample size N . Since
the guessing procedure for the missing bits of d is
robust, one might hope that Phase 3 will be suc­
cessful even in the presence of many false guesses
rvji . However, a very efficient algorithm exists,
which effectively filters out the correct blinding
factors. W.l.o.g. we may assume that ji = i for
all i ≤ M (relabelling).

At the beginning we set rvj;i := vvj;i+k. During
Phase 1 some guesses rvj;i were flipped (hopefully
thereby corrected). We now use these corrections
in the opposite direction and set vvj;i+k := rvj;i for
i = 0, . . . , R − 1. The key observation of our fil­
tering algorithm below is that (vvj − rvj y) − (vvm −
rvmy) = ej − em if rvj = rj and rvm = rm. Here
ej := (vvj − rvj y)−d and em := (vvm −rvmy)−d de­
note the error vectors. In signed representation,
these error vectors have low Hamming weight. In
analogy to the enhanced attack [9, 10] it seems
to be reasonable to consider the NAF Hamming
weight of this difference as an indicator whether
rvj and rvm are correct. In fact, this is the key,
but this approach requires deeper analysis.

In our argumentation below we restrict our­
selves to the case y > 2k . We first note that due
to Algorithm 4 and the above mentioned correc­
tion procedure both the bits i < R and i ≥ k of
the difference vvj − rvj y = vvj − rvj · 2k ± rvj y0 are
zero. Since vj = d − rj y we conclude:

vvj − rvj y = d + (((rj − rvj)y0) >> R)2R +
' '' +e · 2R + e · 2t+R + zj · 2R
j j

' '' with ej ∈ Z2t , ej ∈ Z2k−t−R , zj ∈ {0, −1}.(30)

Elementary, but careful calculations yield:

(vvj − rvj y) − (vvm − rvmy) =
' ' ((Δj,my0) >> R)2R + (ej − e) · 2R +m

'' '' +(ej − em) · 2t+R + zj,m2k

with Δj,m := (rj − rvj) − (rm − rvm)

and zj,m ∈ {1, 0, −1, −2} . (31)

The cases Δj,m = 0 and Δj,m 0 differ in the=
bits R, . . . , t + R − 1 of (31). We define

Dj,m :=(((vvj − rvj y)−(vvm − rvmy)) >> R)(mod 2t)
(32)

If Δj,m = 0 the term Dj,m essentially is the dif­
ference of two error vectors of length t, and the
expectation and variance of

ham(NAF(Dj,m)) (33)

follow from Table 5 by multiplying the respective
values by the factor t/1000.

Eb 0.10 0.12 0.13
E(ham(NAF(·)))
Var(ham(NAF(·)))

160.82
10.10

184.43
10.46

195.40
10.44

Eb 0.14 0.15 0.20
E(ham(NAF(·)))
Var(ham(NAF(·)))

205.52
10.46

215.08
10.40

225.19
10.31

Table 5: Empirical values for the expectation and
variance of ham(NAF(xxj;1 − xxj;2)). The
numbers xxj;1 and xxj;2 are noisy guesses (er­
ror rate Eb) of a randomly selected 1000-bit
integer xj . Our figures were derived from
100,000 simulation experiments.

For Δj,m 0 the term ham(NAF(Dj,m)) be­=
haves statistically similar as ham(NAF(T)) for
a random variable T , which is uniformly dis­
tributed on Z2t . By [9], Lemma 1(iii)

E(ham(NAF(T))) ≈ 0.333t and (34)

Var(ham(NAF(T))) ≈ 0.075t . (35)

We define the threshold thNAF as the average of
the expectations of the term (33) for the two
cases Δj,m = 0 and Δj,m = 0.

Algorithm 5 Narrow Window Attack, Phase 2
for j = 1 to M do
for m = 1 to M do A[j][m] := 0;

for j = 1 to M do
for m = 1 to j − 1 do {
if (ham(NAF(Dj,m)) < thNAF then
A[j][m] := A[m][j] := 1}

for j = 1 to M do S[j]:=0
for j = 1 to M do
for m = 1 to M do S[j] := S[j] + A[j][m];

c := max{S[j] | 1 ≤ j ≤ M}
c2 := lc/2J + 1;
Remove all traces j with S[j] < c2

5.2.1 Rationale

If rvj and rvm are correct then Δj,m = 0. If ex­
actly one guess is wrong then Δj,m = 0. If both
rvj and v are wrong then usually Δj,m 0,rm =
but Δj,m = 0 is also possible. Assume that
s ≤ M guesses rvj are correct. For the cor­
rect guesses ideally S[j] = s − 1 and S[j] = 0
otherwise. Since for each pair of wrong guesses
(ham(NAF(Dj,m)) < thNAF is possible as well,
and due to statistical noise, we introduced the
lower bound c2 in Algorithm 5. Simulation ex­
periments showed that Algorithm 5 is very effec­
tive. When it failed usually s was very small,
typically s ≤ 5, and s « M . However, in vthese cases, usually a bit guessing error in d had
occurred before, so that the attack would not
have been successful anyway. NAF representa­
tions can be computed very efficiently ([7], The­
orem 10.24 with r = 2). Hence the execution
time of Algorithm 5 does not provide a signifi­
cant contribution to the overall attack.

5.3 Phase 3

After Phase 2, u ≥ 0 power traces, or more
precisely, their corresponding guesses rvj and vvvj (mod 2R) remain. If the r-bit guess d(sf) = vd(mod 2R) from Phase 1 is correct, we may ex­
pect that (at least essentially) all guesses rvj (and
thus also the guesses vvj (mod2R)) are correct.
After relabelling these, traces are numbered by

1, . . . , u. The goal of Phase 3 is to guess the bits
k − 1, . . . , R of the long-term key d. Since the
blinding factors rvj remain constant in Phase 3,
Algorithm 6 is very similar to Algorithm 4 but
less time-consuming. Moreover, the number of
power traces u is much smaller than in Phase 1,

'' which allows to use a larger window size w . vAlgorithm 6 begins with the guesses d(sf) and vvj;(sf) from the end of Phase 1 while rvj := rvj;(sf).
Analogously to (21) for i ≥ R we are interested

in the conditional probability

' Prob((X >> i)(mod 2w 11

) = x | ×(36)

× rvj , vvj;i+w11−1, . . . , vvj;i, vvj;(sf))
' for all x ∈ Z2w11 . Formula t

' ∗ p(v | vvj) (37)
v1 ∈M 1(x1)

is the equivalent to (22) but M ' (x ') denotes all
'' v 11∈ Z2w for which the binary representation

' ' 11of x ∈ Z2w equals the bits i + w − 1, . . . , i of
'' 2ithe term ((v + vvj(sf)) − rvj y0)(mod 2w 11

).
∗Further, vv := 11 −1, . . . , vvj;i)2. Thej (vvj;i+w

' ∗ term p(v | vv) denotes the conditional proba­j
' bility that v := (vi+w11−1, . . . , vi)2 if the binary

∗ representation of vv is given by the initial guessesj
(17). Analogously to (23)

11−hEh' ∗ p(v | vvj) = (1 − Eb)
w (38)b

' ∗ with h = HD(v , vvj) .

∗As in Phase 1 the value x , for which (36)
is maximal, provides the most probable can­
didate for the bits di+w11−1, . . . , di (maximum­
likelihood estimate). Step 1 of Algorithm 6 shall
find the position of this maximum. The array
P [2w 11

] stores the conditional probabilities (36).
Step 1 of Algorithm 6 determines a candidate v 11) := x ∗2i + v 11
d(i+w d(sf) for d(mod 2i+w)

Step 2 of Algorithm 6 guesses the bits vj;i for
all j ≤ u. initial guesses vvj;i may be flipped. For
m ∈ {0, 1} we define t

' ' ∗ p := p(v | vvj) . (39)j;m
v1∈M1(x ∗):

v1(mod 2)=m

' ' In Algorithm 6 we set = 0 if p ≥ pvvj;i j;0 j;1
and vvj;i = 0 otherwise. (This may reverse the
initial guesses.) We point out that for the last
bits, namely when i > k − w '' , in Step 1 we use
dk = dk+1 = · · · = 0. The term (37) is calculated
analogously.

Algorithm 6 Narrow Window Attack, Phase 3
for i = R to k − 1 do {

1. for m = 0 to 2w 11 − 1 do P [m] := 0;
for j = 1 to m do {
calculate the cond. probabilities (37) for

' 11all x ∈ Z2w

add these values to the array P }
∗select x for which P [x ∗] is maximal. v ∗ + vd(i+w11 −1) := x ·2i d(sf) /*End of Step 1*/

2. for j = 1 to u do {
' ' compute p and pj;0 j;1

' ' if (pj;0 ≥ pj;1) then vvj;i := 0 else vvj;i := 1 vvj;(sf) := vvj;i2i + vvj;(sf) /* new guess */
} /* End of Step 2 */

dv(sf) := x ∗(mod 2) · 2i + dv(sf)/* new guess */
} /* End of the i-loop */

Remark 1 In place of Algorithm 6 one may al­
ternatively apply Algorithm 1 in [10].

5.4 Error Correction

In Phase 1 a false bit guess dvi usually spoils many vforthcoming guesses di∗ for i∗ > i. This is be-vcause di = di implies many false bit guesses rvi;j ,
and relatedly, many false ’so far’ guesses rvj;(sf). vIn contrast, in Phase 3 a guessing error di = di
only has local impact. This motivates the fol­vlowing error correction strategy if d turns out
to be wrong: move a sliding window of length

''' ''' vw (let’s say w = 4) from dvR, . . . , dR+w111−1 to v vdk−w111 , . . . , dk−1 and exhaustively check all al­
ternatives within the current window. This pro­
cedure corrects one local error within Phase 3 at
negligible costs.

5.5 Experimental Results

We performed simulation experiments for all
curves from Table 1. We selected d and the blind­
ing factors r1, . . . , rN uniformly from {0, . . . , 2k −
1} and from {0, . . . , 2R − 1}, respectively. We
counted an attack as successful if it was possible
to fully recover d (i.e., if all bits were correct)
after the error correction process in Phase 3 (if
necessary). As usual, N denotes the sample size.

' In Phase 1 we used the window size w = 8 and
'' in Phase 3 w = 10.

Table 6 to Table 9 show simulation results for
different curves and blinding lengths. For iden­
tical error rates Eb, longer blinding factors re­
quire larger sample sizes N . This is due to guess­
ing errors and the thin-out process in Phase 1.
Our experiments verify that short blinding fac­
tors such as R = 32 tolerate even 20% bit errors
while R = 253, for instance, tolerates 12% bit
errors anyway. Table 7 and Table 8 show that
for identical sample size N , the success rates for
R = 125 (Curve25519) and R = 253 (curve M­
511) are to some degree smaller than for R = 120
and R = 250, respectively. Apart from the fact
that the blinding factors are a little bit longer
the main reason for this effect in both cases is
that g − R = 127 − 125 = 255 − 253 = 2 is very
small (see subsection 5.6). Our simulation ex­
periments support the assumption that R and Eb

determine the sample size N while the specific
properties of the particular curve is of subordi­
nate meaning. In our simulations the variance of
the number of traces u, which survived Phase 2
(and thus were available in Phase 3), was rather
large. Hence, for precise estimates of the partic­
ular success rates, a large number of trials would
be necessary.

5.6 Possible Improvements

If R ≤ g − 7, the bit vj;k is usually not affected
by a carry from position k − 1. Occasional car­
ries are not harmful and their effect might be
interpreted as a slightly increased error rate Eb

for bit rj;0 and its neighbours. However, if d is
extremely close to 2k , i.e. if, let’s say, g − R = 7

curve R Eb N success rate
Curve25519
Curve25519
Curve25519
Curve25519
Curve25519
Curve25519

32
32
32
32
32
32

0.10
0.10
0.12
0.15
0.17
0.20

40
70
130
400
1000
6, 000

7/10
10/10
10/10
27/30
9/10
12/25

Curve25519
Curve25519
Curve25519
Curve25519

64
64
64
64

0.10
0.12
0.14
0.15

150
400

3, 000
7, 500

9/10
9/10
9/10
8/10

Table 6: Narrow window attack (small blinding fac­
tors): g = 127

curve R Eb N success rate
Curve25519
Curve25519
Curve25519
Curve25519
Curve25519

120
120
120
120
120

0.10
0.12
0.13
0.14
0.15

700
5, 000
15, 000
60, 000

400, 000

19/20
19/20
23/30
18/30
5/10

Curve25519
Curve25519
Curve25519
Curve25519

125
125
125
125

0.10
0.12
0.13
0.14

1000
6, 000
17, 000
60, 000

10/10
16/20
8/10
14/30

Table 7: Narrow window attack: g = 127

and dk−1 = . . . = dk−12 = 1, then nearly every
blinding factor rj results a carry to rj;0 and with
probabilities ≈ 0.5, 0.25, . . . to its neighbours,
see (28). Then vvj;k−1 is 0 in about (1 − Eb)N
traces; the same effect as for dk−1 = 0 where es­
sentially no carries occur. In the first case the
attack might already fail at the very first bit.
However, this event is very rare and thus does
not significantly affect the success probability of
the attack. For R > g − 7, this event becomes
more likely. The considerations from Subsubsec­
tion 5.1.4 reduce this phenomenon to some de­
gree. The experimental results emphasize that
even for R = g − 2 the narrow window attack is

curve R Eb N success rate
M-511
M-511
M-511

250
250
253

0.07
0.10
0.10

500
30, 000
40, 000

10/10
9/10
8/10

ED448
ED448
ED448

220
220
220

0.10
0.11
0.12

30, 000
120, 000
700, 000

10/10
9/10
9/10

Table 8: Narrow window attack: g = 255 (M-511)
or g = 222 (ED448)

curve R Eb N success rate
Curve41417
Curve41417

200
200

0.07
0.10

400
7, 000

10/10
8/10

NIST P-384
NIST P-384

190
190

0.10
0.12

4, 000
70, 000

10/10
9/10

Table 9: Narrow window attack: g = 206
(Curve41417) or g = 194 (NIST P-384)

successful with high probability.
In subsection 5.4 we introduced an error cor­

rection strategy which detects local guessing er­
rors in Phase 3. One might similarly try to iden­
tify the position of the first guessing error if it al­
ready has occurred in Phase 1. An option would
be to restart the attack at a bit position where
the maximum likelihood decision in Step 1 of Al­
gorithm 4 was ’close’ and to decide for the second
likely alternative. Finally, a more sophisticated
choice of the parameters (cb, st, α(Eb, i)) might
also improve the efficiency of the narrow window
attack.

6 Relation Between Both
Attacks

The Wide Window Attack considers large win­
dows, which allow to catch the impact of error
propagation within a wide horizon, but it does
not exploit all information. In contrast, the Nar­

row Window Attack exploits every piece of in­
formation; but within a smaller horizon. Our
simulation experiments seem to indicate that the
efficiency of both attacks is comparable.
Phase 1 of the Narrow Window Attack dom­

inates the workload. Step 1 of Algorithm 4
' ' ∗ ∗ evaluates 22w 1

probabilities p(r , v | rvj , vvj) for
each i and each selected index j while Step 2
computes only 2w 1

such probabilities, but for
all j, which are still active. The probabilities

' ' ∗ ∗ p(r , v | rvj , vv) only depend on the Hammingj
' distance of two vectors of length 2w (23) (pos­

sibly apart from the very first bits; see subsub­
section 5.1.4), which allows to store these prob­

' abilities in an array of length 2w + 1. More­
over, within the loop it suffices to count the oc­
currences of the particular Hamming weights for

' 1 .
Step 1 of Algorithm 4 has to be carried

out for at most n(Eb, i) traces; regardless of
the sample size N . Thus the Narrow Win­
dow Attack scales rather well. In contrast, for
Step 2 all active traces are relevant. Averaged
over all i, this number should be smaller than
N/2. Altogether, Algorithm 4 essentially costs
O(Rn22w 1

) + O(RN2w 1 −1) operations (consist­
ing of several inexpensive basic operations, at

each candidate x ∈ Z2w

' ' ∗ ∗least when the probabilities p(r , v | rvj , vv) onlyj
depend on the Hamming distance; the values
' r y0(mod 2w 1

) may be stored). Unless the sam­
ple size N is extremely large, the first term
should dominate. For small (R, Eb), the average
of n(Eb, i) may roughly be estimated by N/2.

The parameter sets (R, Eb, w ' , N) ∈
{(64, 0.10, 8, 150), (120, 0.12, 8, 5000), (120, 0.14,
8, 60, 000), (220, 0.12, 8, 700, 000)}, for example,
require very roughly 228 , 232 , 232 or 234 opera­
tions, respectively. This is far better than the
attacks on general elliptic curves [9, 10].

7 Attacks on General Elliptic
Curves

In papers [9, 10] attacks on general elliptic curves
were considered. The basic attack is only prac­

tical for short blinding factors.
For ECC the enhanced attack requires about

2R+5 NAF calculations [10], Subsect. 3.5. At
cost of 269 NAF calculations R = 64 tolerates ≈
0.11 errors [10], Subsect. 3.7. Depending on the
error rate Eb the alternate attack ([10], Sect. 4)
may allow us even to attack blinding lengths R >
64 but at the cost of a large workload.

8 Countermeasures

Our results show that the blinding length must
exceed the gap g = k − t − 1, which is ≈ k/2
for curves over special primes. This feature at
least reduces the efficiency gain of such special
curves in comparison to general curves; the de­
gree to which depends on the concrete platform.
Efficiency considerations are beyond the scope of
this paper.
Within the context of signatures for

Curve25519 D. Bernstein proposes to use
512 bit nonces, i.e. blinding factors of length
R > 256 [1]. To our knowledge such long
blinding factors cannot successfully be attacked.

Remark 2 Side channel attacks and fault at­
tacks on ECDSA usually aim at the certain
know ledge of a few bits of several ephemeral keys,
which would allow to find the long-term key by
a lattice-based attack. Scalar blinding shall de­
valuate such knowledge since the attacker has to

∗reduce the blinded ephemeral keys v = vj + ry j
modulo y to obtain short lattice vectors. If y =
2k ± y0 and R < g the most significant bits

∗of vj coincide with the respective bits of v [3],j
sect. VIII 6.2, 113, which nul lifies the impact of
scalar blinding at these bit positions. Hence, for
ECDSA the parameter R should exceed g as well.

9 Conclusion

We have introduced two generic attacks on scalar
blinding. When a prime p is ’almost’ 2k+b ellip­
tic curves over GF(p) with cofactor 2b (b ≥ 0)
require much larger blinding factors than gen­
eral curves. This property at least reduces their

efficiency gain in comparison to general elliptic
curves.

References
[1]	 D. Bernstein: Re: Mishandling twist attacks.

December 1, 2014; http://www.ietf.org/mail­
archive/web/cfrg/current/msg05636.html

[2]	 Daniel J. Bernstein and Tanja Lange:

SafeCurves: Choosing Safe Curves for

Elliptic-Curve Cryptography.

http://safecurves.cr.yp.to, accessed at April

21, 2015.

[3]	 M. Ciet: Aspects of Fast and Secure
Arithmetics for Elliptic Curve Cryptography.
PhD thesis, Catholic University of Louvain,
Belgium, 2003.

[4]	 S.D. Galbraith, J.M. Pollard, R. Ruprai:
Computing Discrete Logarithms in an Interval.
Math. Comput. 82, 2013, 1191–1195.

´ [5]	 V.G. Mart́ınez, F.H. Alvarez, L.K. Encinas,

´
 C.S. Avila: A Comparison of the Standardized

Version of ECIES. Sixth International
Conference on Information Assurance and
Security, 2010.

[6]	 H. Krawczyk: [TLS] OPTLS: Signature-less

TLS 1.3. November 1, 2014;

https://www.ietf.org/mail­
archive/web/tls/current/msg14385.html

[7]	 J.H. van Lint: Introduction to Coding Theory.
2nd edition, Springer, Graduate Texts in
Mathematics, Berlin 1991.

[8]	 T. Pornin: RFC 6979: Deterministic Usage of
the Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm
(ECDSA). August 2013;
https://tools.ietf.org/html/rfc6979#section-3

[9]	 W. Schindler, K. Itoh: Exponent Blinding
Does not Always Lift (Partial) SPA Resistance
to Higher-Level Security. In: J. Lopez, G.
Tsudik (eds.): Applied Cryptography and
Network Security — ACNS 2011, Springer,
LNCS 6715, Berlin 2011, 73 – 90.

[10]	 W. Schindler, A. Wiemers: Power Attacks in
the Presence of Exponent Blinding. J Cryptogr
Eng 4 (2014), 213–236. online
http://dx.doi.org/10.1007/s13389-014-0081-y

http://dx.doi.org/10.1007/s13389-014-0081-y
https://tools.ietf.org/html/rfc6979#section-3
https://www.ietf.org/mail
http:http://safecurves.cr.yp.to
http://www.ietf.org/mail

