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Abstract 

In this paper we introduce two new generic side-
channel attacks on scalar blinding of elliptic 
curves where the order of the base point is close 
to a power of 2. These attacks are in particu­
lar relevant for elliptic curves over special prime 
fields where the prime is ’almost’ a power of 2. 
As in the papers [9, 10] we assume that some 
side-channel attack has allowed the determina­
tion of the bits of the blinded scalars with some 
uncertainty, which is quantified by the error rate 
Eb. Our new attacks are tailored to the special 
structure of these elliptic curves. They are far 
more efficient than the attacks for general ellip­
tic curves [9, 10]. As a consequence such special 
elliptic curves need significantly longer blinding 
factors than general elliptic curves. Both attacks 
apply to ECC applications, which use a long-
term key for the scalar multiplication. 

1 Introduction 

Papers [9, 10] address generic power attacks on 
RSA implementations and on ECC implementa­
tions where exponent blinding, relatedly scalar 
blinding, have been applied as algorithmic coun­
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termeasures against side-channel attacks. There 
it is assumed that an adversary has guessed the 
blinded exponent bits / blinded scalar bits on the 
basis of an SPA attack or a single-trace template 
attack on the particular device. Each bit guess 
is assumed to be false with probability Eb > 0. It 
may be the case, alternatively, that the bits can 
be guessed through the use of other side chan­
nel attacks such as by exploiting electromagnetic 
radiation or via a microarchitectural attack on a 
PC that is processing cryptographic software. 

In the case of ECC it is assumed that the scalar 
multiplication uses a long-term key. This is the 
case, for example, with static ECDH and with 
the decryption process of the elliptic curve inte­
grated encryption scheme (ECIES) [5]. A pro­
posal has been made by H. Krawczyk that de­
fines an authentication process for TLS 1.3 that 
does not rely on a signature. Within this con­
text, static ECDH may take on additional impor­
tance [6]. Another important application are de­
terministic signatures [8] with static ephemeral 
keys. 

In contrast to papers [9, 10] we do not con­
sider general curves. Instead, we focus on ellip­
tic curves where the order of the base point is 
close to 2k for some k. This situation is rele­
vant for elliptic curves over a prime fields when 
the prime is ’almost’ a power of 2. Well-known 
representatives of this class include the following 
curves: Curve25519, M-511, ED448-Goldilocks, 
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Curve41417 and NIST P-384. 
Section 2 introduces the definitions and no­

tations from papers [9, 10] that are relevant for 
this investigation. In section 3, the elliptic curves 
with the special structure are introduced. In ad­
dition to this, the basic idea of our attacks are 
outlined. In sections 4 and 5, the details of our 
new attacks which exploit the order of the special 
base point property are presented. Both attacks 
are far more efficient than the attacks on gen­
eral elliptic curves in [9, 10]. As a consequence 
these special curves require significantly longer 
blinding factors than general elliptic curves. 

2 Definitions and Notation 

For the purposes of this investigation, we agree 
with the starting assumptions in papers [9, 10] 
and assume that the target device (for example, 
a smart card, a microcontroller, an FPGA, a PC 
etc.) executes scalar multiplications on the el­
liptic curve where scalar blinding shall thwart 
power attacks. 
The papers [9, 10] consider RSA implementa­

tions in addition to elliptic curve implementa­
tions. To cover both cases, the term ’blinded 
exponents’ is used to avoid clumsy formulations. 
In this paper, we consequently speak of blinded 
scalars. The blinded scalars are of the form 

vj := d + rj y for j = 1, 2, . . . , N. (1) 

The letter y denotes the order of the base point 
of the elliptic curve, and d < y equals the (ran­
domly selected) long term key. The blinding fac­
tor rj for the scalar multiplication j is drawn 
uniformly from the set {0, 1, . . . , 2R − 1}. 
The binary representation of vj is 

(vj;k+R−1, . . . , vj;0)2 where leading zero digits 
are allowed. For example, on the basis of an 
SPA attack or a single-trace template attack on 
the power traces j (or by any other side-channel 
attack), the attacker guesses the blinded scalars 
and obtains the guess vvj = (vvj;k+R−1, . . . , vvj;0)2. 
The attacker may commit two types of guess­

ing errors: Although vj;i = 0 he might guess 
vvj;i = 1, or despite of vj;i = 1 he might guess 

vvj;i = 0. We assume that both errors occur with 
identical probability Eb. We further assume that 
the individual bit guesses are independent, which 
should be justified if the double-and-always algo­
rithm or the Montgomery ladder are applied (see 
[10], subsection 3.8). Our attacks certainly tol­
erate some deviation from both assumptions. 

3 Special Curves 

In this paper we assume that the order y of the 
base point is ’slightly’ smaller or larger than 2k 

for some k. Due to the Hasse-Weil Theorem, this 
assumption is fulfilled for an elliptic curve over 
a prime field if the characteristic of the field is 
’almost‘ a power of 2 and if in addition the co­
factor is 1 or a small power of 2. Moreover, we 
may assume that y is odd. 

If y is larger than 2k the binary representation 
of y is of the form: 

tt 
y = 2k + y0 = 2k + aj 2

j with at = 1 (2) 
j=0 

and t < k. Then clearly: 

2k + 2t < y < 2k + 2t+1 and rj y0 < 2R+t+1 . (3) 

In the following we assume that the number of 
zeroes between the two most significant non-zero 
coefficients in the binary representation of y, or 
the ’gap’ g between these coefficients, 

g := k − t − 1 is large. (4) 

It is well-known that if k − 1 > t + R roughly 
k − (R + t + 1) bits of the long-term key d re­
main unblinded, which simplifies the discrete log 
problem to some extent [4]. In this paper we will 
show that the situation is even more dramatic. 
Analogously, for y < 2k there is a unique t < k 
with: 

tt 
y = 2k − y0 = 2k − aj 2

j with at = 1 . (5) 
j=0 

Consequently, 

2k −2t > y > 2k −2t+1 and rj y0 < 2R+t+1 . (6) 



Table 1 provides parameter sets (k, t, g) for some 
well-known curves. 

curve k t g 
Curve25519 252 124 127 
M-511 508 252 255 
ED448-Goldilocks 446 223 222 
Curve41417 411 204 206 
NIST P-384 384 189 194 

Table 1: Exemplary curves: For Curve25519 and 
curve M-511 we have y > 2k while y < 2k 

for the other curves. 

3.1 A basic Observation 

Assume for the moment that y > 2k and that k− 
t−R−1 = g−R is significantly larger than 0 (let’s 
say ≥ 7). Then it is unlikely that for the blinded 
scalar vj = d + rj y a carry occurs at position 
k − 1 so that vj;k+i = rj;i for i = 0, . . . , R − 1. 
The side-channel attack then directly provides 
bit guesses vvj;k+i for the binary representation of 
the blinding factor rj , each of which is false with 
probability Eb. In our attacks, we apply these 
values as first stage estimates for rj;0, . . . , rj;R−1. 
There is no equivalent for general curves. 
While for y > 2k a carry at bit position k − 1 

occurs if d+rj y0 > 2k for y < 2k a carry occurs if 
d < rj y0. Since |y − 2k|/2k ≈ 0 in both cases, for 
simplicity we may assume that Prob(d = x) = 
2−k for all x ∈ Z2k . Hence, the probability for a 
carry at bit position k − 1 is nearly the same in 
both cases. 

4 The Wide Window Attack 

In this section, we introduce and discuss the wide 
window attack. We begin with a definition. 

Definition 1 Let Zm := {0, 1, . . . , m − 1}. For 
an integer x we denote by x(mod m) the unique 
element x' in Zm with x' ≡ x mod m. 

We restrict the description of the “wide window 
attack” to the case y = 2k + y0. In this case we 

have 

vj = rj 2
k + (d + rj y0) for j = 1, 2, . . . . (7) 

We assume in the following that 

d + rj y0 < 2k for j = 1, 2, . . . . (8) 

with very high probability. This is certainly the 
case, for instance, for 

R ≤ g − 7 . 

Under this assumption, the pair (lvvj /2
kJ, vvj (mod2k)) is just the pair (rj , d + rj y0) but 

with guessing errors. The latter pair allows: 

•	 to solve for d, 

•	 to determine the value rj if d is known. 

The main idea of the ‘wide window attack’ is to 
find iteratively d(mod 2w) where w runs from 0 

'to k in fixed steps of length w . In each iteration 
1

µ we start with a d(mod 2w−w ) and candidates 
1

rj (mod 2w−w ). In each iteration, 

1.	 we find d(mod 2w) by using the candidates 
1

rj (mod 2w−w ). 

2.	 we find new candidates rj (mod2w) with 
the help of d(mod 2w) when w ≤ R. 

Note that the case y = 2k − y0 is very similar. In 
this case we analogously require d−rj y0 ≥ 0, and 
the pair (lvvj /2

kJ, vvj (mod 2k)) is just the pair 

(rj , d − rj y0) 

with guessing errors. 

4.1 Solve for d if w ≤ R 

In this subsection we formulate the algorithm, 
that solves for d if w ≤ R. For the moment we 

'fix integers w , m0. 

Algorithm 1 The Wide Window Attack; 
here: ALGO ‘d-solve’ in iteration µ 



1. From	 the previous iteration step we have 
Aµ pairs of the form (vvj , rvj (mod2w−w 1 

)) 
where rvj (mod2w−w 1 

) is assumed to equal 
rj (mod2w−w 1 

). Further, we have deter-vmined exactly one candidate d(mod 2w−w 1 
) 

for d(mod2w−w 1 
). The algorithm starts 

' with w = w and A0 = N . 

a) Generate all pairs (αj , bj ) that differ 
' jointly in at most m0 bits within the w 

most significant bits of lvvj /2
kJ(mod 

2w) and vvj (mod 2w). 

b) Since we know the value d + y0rj (mod 
1 

2w−w ) (provided that the respective 
guesses from the previous iteration 
steps are correct), we can compute for 
each bj a candidate for d + y0rj (mod 
2w). We use αj and rj (mod2w−w 1 

) 
to compute a candidate for rj (mod 
2w). In the end, each pair results in 
a candidate for d(mod 2w). 

c) Collect all candidates for d(mod2w) 
in a list. v2. Select	 the candidate d(mod2w), which oc­

curs most frequently. 

The probability that at most m0 bit guess­
' ing errors occur jointly in the w most signifi­

cant bits of both components lvvj /2
kJ(mod 2w) 

and vvj (mod 2w) equals:   t ' 2w 
pm0 = Em(1 − Eb)

2w 1−m .b m
m≤m0

We set	   t ' 2w 
Mm0 = . 

m
m≤m0

Let Gµ denote the number of correct candi­
dates for rj (mod2w−w 1 

) in iteration µ. We can 
assume that the number of correct candidates 
for d(mod 2w) generated with this algorithm, is 
roughly: 

pm0 Gµ ≥ t . (9) 

We want to choose t such that the correct value is 
expected to be among the top-ranked candidates 

of the algorithm. For a moderately large t, we 
require (as in paper [10]) 

1 

≤ (t!)1/t2w (t−1)/tAµMm0	 . (10) 

We give concrete values for both terms in sub­
section 4.3. Note, that we may choose different 
parameters m0 in each iteration. Neglecting the 
exact workload of sorting, the running time of 
the algorithm is roughly O(AµMm0 ). 

4.2 Solve for d if w > R 

We adapt the algorithm from subsection 4.1 to 
w > R. Since rj is assumed to be known, we 
only generate values bj in step 1a) that differ 

' in at most s0 bits from (vvj (mod 2w)) in the w 
most significant bits. 

4.3 Finding candidates for rj 
In this section we present the algorithm that 
finds candidates for rj . For the moment, we fix 
integers n0, t0. 

Algorithm 2 The Wide Window Attack; 
here: ALGO ‘rj -find’ in iteration µ 

1. From the previous iteration step and by Al­
gorithm 1 we have Aµ pairs (vvj , rvj (mod 
2w−w 1 

)), where rvj (mod2w−w 1 
) is assumed 

1 
2w−wto equal rj (mod ). Further, we vhave exactly one candidate d(mod2w) for 

d(mod 2w). The algorithm starts with w = 
' w	 and A0 = N . 

a) Generate all values αj that differ in at 
most n0 bits from lvvj /2

kJ(mod 2w) in 
' the w most significant bits. 

b) Since we know rj (mod 2w−w 1 
) for 

each αj we can compute a candidate 
' for rj (mod 2w). 

' c) For each rj (mod2w) we compute the 
' Hamming weight of the w most signif­

icant bits of: 

' ((dv+ y0rj )(mod 2w)) ⊕ vvj (mod 2w) (11) 



  

  

' 2. Collect the candidates for r (mod 2w), forj 
which the value computed in (11) is below 
some threshold t0. 

' We set for fixed w t ' 
' w 1 −m p = Em(1 − Eb)

w 
n0 b m 

m≤n0 

and t ' w' Nn0 
= . 

m 
m≤n0 

We can assume that the number of correct can­
didates is roughly: 

' ' Gµ+1 ≈ p p Gµ . (12)n0 t0 

On the other hand, just by chance, we can expect 
to have 

1' ' 2−wAµN Nn0 t0 

candidates that are collected by this algorithm. 
We can expect 

1' ' 2−wAµ+1 ≈ Gµ+1 + AµNn0 
Nt0 

. (13) 

In a realistic attack scenario where N is bounded 
like N ≤ 220 the algorithm can only be successful 

' ' ' ' if p p is not too small (e.g p p ≈ 0.25).n0 t0 n0 t0 

This may be achieved, for example, by choosing 
the parameters: 

n0 ≈ t0 ≈ w ' Eb . (14) 

1' ' 2−wDue to (13) the term N N determines the n0 t0 

expected number of candidates A0, A1, . . . in the 
course of the attack. These numbers of candi­
dates should not shrink too much, nor should 
they explode. We cannot control this second 
condition concurrently with the first as it is a 
property of the error rate Eb. The running time 

' of the algorithm is O(AµN ).n0 

4.4 Experimental Results 

Simulation experiments were performed using 
Curve25519 and R = 120. Firstly, we searched 

for parameter sets that fulfill all the conditions 
(9), (10), (12), (13). A valid parameter set is 

' Eb = 0.1, N ∈ {500, 1000}, w = 24, 

n0 = t0 = s0 = 3, m0 = 2 . (15) 

For this parameter set we have 

' ' Mm0 = 1177, pm0 ≈ 0.12, p ≈ 0.79, N = 2325.n0 t0 

Since n0 = t0 = 3 ≥ w ' Eb, Gµ should not de­
crease too much. On the other hand, since 

1' ' 2−wN N ≈ 0.3n0 t0 

we may expect that Aµ does not increase. For 
N = 1000, Table 2 shows a typical experi­
mental result. In this experiment, for each 
µ = 0, . . . , 4 we performed Algorithm 1 followed 
by Algorithm 2. For each µ = 5, . . . , 9, we 
only have to perform Algorithm 1. The column 
’rank’ in Table 2 gives the rank of the correct 
value d(mod 2w) within the candidates, which 
were returned by Algorithm 1. ’rank 1’ means 
that Algorithm 1 has found the correct value 
d( mod 2w). 

Alg µ rank Gµ Aµ Gµ+1 Aµ+1 

1, 2 0 1 1000 1000 622 8640 
1, 2 1 1 622 8640 386 7966 
1, 2 2 1 386 7966 247 5711 
1, 2 3 1 247 5711 152 3773 
1, 2 4 1 152 3773 99 2277 
1 5 1 99 2277 
1 6 1 99 2277 
1 7 1 99 2277 
1 8 1 99 2277 
1 9 1 99 2277 

Table 2: Wide window attack: Example simulation 
result for E = 0.10, N = 1, 000. In Step 0 to 
Step 4 the lower parts of d and the blinding 
factors were guessed. In Step 5 to Step 9 
the upper part of d was guessed. 



Notes 1 (i) In the steps 0 to 4 the number of 
correct Gµ decreases roughly by a factor of 0.6. 

' ' This fits very well to the factor of p p ≈ 0.6,n0 t0 

which we expect by our choice of parameters. 
(ii) As explained above we expected that 
Aµ+1 ≈ Gµ+1 + 0.3 · Aµ, especially 
A1 ≈ 600 + 300 = 900. In our simulation 
we observed that the number of Aµ is much 
larger than expected! We looked at a few exam­
ples and found that the errors typically occur 
in the most significant bits of rj . The reason 
for this effect seems to be the special structure 
of rj y0 + d: Since the most significant bits of 
rj y0 + d only depend on the most significant bits 
of rj , it is difficult to correct errors in the most 
significant bits of rj . However, it is very likely 
that these errors will be corrected in the next 
iteration step. 

We performed 10 simulations for each N ∈ 
{250, 500, 1000} where we used the parameter set 
(15). We counted an attack to be successful if, 
in each step, the rank of the correct d was 1. 
The results are given in Table 3. We repeated 

curve R Eb N success rate 
Curve25519 
Curve25519 
Curve25519 

120 
120 
120 

0.10 
0.10 
0.10 

250 
500 

1, 000 

2/10 
7/10 
9/10 

Table 3: Wide window attack 

the simulation for larger Eb. For instance, a valid 
parameter set is: 

' Eb = 0.14, N = 30, 000, w = 24, 

n0 = t0 = s0 = 3, m0 = 2 . (16) 

For this parameter set we obtain 

' ' Mm0 = 1177, pm0 ≈ 0.028, p ≈ 0.56, N = 2325.n0 t0 

As above, we have n0 = t0 = 3 ≈ w ' Eb and 
1' ' 2−wN N ≈ 0.3. For N = 60, 000 Table 4 n0 t0 

shows a typical experimental result. 

Alg µ rank Gµ Aµ Gµ+1 Aµ+1 

1, 2 0 1 60, 000 60, 000 18, 972 243, 546 
1, 2 1 1 18, 972 243, 546 6, 022 143, 486 
1, 2 2 1 6, 022 143, 486 1, 877 66, 236 
1, 2 3 1 1, 877 66, 236 629 27, 942 
1, 2 4 2 629 27, 949 185 11, 413 
1 5 1 185 11, 413 
1 6 1 185 11, 413 
1 7 1 185 11, 413 
1 8 1 185 11, 413 
1 9 1 185 11, 413 

Table 4: Wide window attack: Example simulation 
result for E = 0.14, N = 60, 000. 

Notes 2 (i) In the steps 0 to 4 the Gµ decrease 
roughly by factor 0.3 per iteration, which again 

' ' fits very wel l to p p ≈ 0.3.n0 t0 

(ii) As for Eb = 0.10 the value Aµ is much larger 
than predicted by (13). 
(iii) In Step 4 d( mod2120) was only ranked 2. 

A natural question is: What is the largest Eb, for 
which the attack might work? To answer this 
question, we searched for valid parameter sets 
that fulfill the conditions (9), (10), (12), (13). 

≤ 224under certain restrictions. We chose N 
and limited the overall running time by ≤ 250 

operations. Under these restrictions for R = 120 
we did not find a admissible parameter set for 
Eb ≥ 0.19. 

5 The Narrow Window Attack 

In this section we develop the so-called narrow 
window attack. Like the wide window attack 
it guesses the long-term key d and the blinding 
factors r1, . . . , rN in portions. Similarities and 
differences between both attacks will become ev­
ident in the following. Its name is motivated by 

' the fact that the window size w is much smaller 
' than for the wide window attack (w = 8 – 10 

' vs. w ≈ 30) 
As in section 4 we assume that for j = 1, 2, . . . 



we have d + rj y0 < 2k if y > 2k or d − rj y0 > 0 
if y < 2k with high probability. This is certainly 
the case for R ≤ g − 7, for example. Subsub­
section 5.1.4 considers the case R > g − 7. The 
narrow window attack falls into three phases. 

Algorithm 3 Narrow Window Attack (Generic 
description) 

•	 Phase 1 Guess the R least significant bits of 
the long-term key d and the blinding factors 
r1, . . . , rN . 

•	 Phase 2 Identify the guesses of the blinding 
factors, which are correct. Remove the other 
guesses. 

•	 Phase 3 Guess the remaining bits of d from 
the guesses rvj1 , rvj2 , . . . , rvju , which have sur­
vived Phase 2. 

5.1 Phase 1 

At the beginning of Phase 1 we set 

rvj;i := vvj;k+i for j = 1, . . . , N, i = 0, . . . , R−1 . 
(17) 

By assumption a carry from bit k −1 occurs with 
non-negligible probability and thus 

Prob(rj;i = rvj;i) = 1−Eb for all pairs (j, i) . (18) 

The goal of Phase 1 is to guess d(mod 2R) and 
to correct the false bit guesses rvj;i for a (suf­
ficiently large) subset of the blinding factors, 
which will allow us to finish the overall attack 
successfully in Phase 3. Before formulating Al­
gorithm 4 we will examine its theoretical back­
ground. 

Definition 2 The term HD(a, b) denotes the 
Hamming distance between the binary represen­
tations of the integers a and b. The term (b >> i) 
means that the binary representation of the inte­
ger b is shifted i positions to the right. 

We assume that d and the blinding factors rj 

are realizations of independent random variables 
X and Zj (i.e., values taken on by these random 

variables), which are uniformly distributed on 
(for simplicity) Z2k or on Z2R respectively. For 
i ≥ 1 then X(mod 2i), Zj (mod 2i) and (since y 
is odd) thus also yZ(mod 2i) are uniformly dis­
tributed on Z2i . In particular, Zj and 

Vj := (X(mod 2i) + y0Zj (mod 2i))(mod 2i) 
(19) 

are independent and uniformly distributed on 
Z2i . More precisely, 

For fixed i, the random variables 

X(mod 2i), Zj (mod 2i) and Vj (mod 2i) 

are uniformly distributed on Z2i . 

Any two of them are independent. (20) 

Assume that during Phase 1 (intermediate) i­vbit guesses d(sf ), rvj;(sf), vvj;(sf) ∈ Z2i have been 
derived (’sf’ stands for ’so far’). For the mo­
ment we assume that rvj;(sf) = rj (mod 2i) and vvj(sf ) = vj (mod 2i), i.e., that both intermedi­
ate guesses are correct. Since d ≡ (vvj(sf ) − vrvj(sf )y0)(mod 2i) the intermediate guess d(sf) is 
correct, too. On basis of the next initial bit 
guesses rvj;i+w1−1, . . . , rvj;i and vvj;i+w1−1, . . . , vvj;i 
((17)), we want to compute the probability for 

' the candidates for next w bits di+w1−1, . . . , di of 
the long-term key. In terms of random variables, 
we are interested in the conditional probability 

' Prob((X >> i)(mod 2w 1 

) = x | × (21) 

× rvj;i+w1−1,. . .,rvj;i,vvj;i+w1−1,. . .,vvj;i,rvj;(sf ),vvj;(sf)) 
' 1 . 

probability (21) equals 
for all x ∈ Z2w Due to (20) the conditional 

t 
'	 ' ∗ ∗ p(r , v | rvj , vvj ) . (22) 

1(r ,v1)∈M(x1) 

'' '' ) ∈ Z2wHere M(x ' ) denotes all pairs (r , v 1 × 
Z2w1 , for which the binary representation of 
'	 ' x ∈ Z2w1 equals the bits i + w − 1, . . . , i of 

'' 2i '' 2ithe term ((v + vvj(sf ))−(r + rvj(sf ))y0)( mod 

2w 1	 ∗). Further, rv := (rvj;i+w1−1, . . . , rvj;i)2j
∗and vv := 1 −1, . . . , vvj;i)2. The termj (vvj;i+w

'	 ' ∗ ∗ p(r , v | rvj , vv ) denotes the conditional prob­j
'	 ' ability that r := (ri+w1−1, . . . , ri)2 and v := 



(vi+w1−1, . . . , vi)2 are correct if the binary rep­
∗ ∗ resentation of rv and vv are the initial guessesj j 

(17). By (18) 

' ' ∗ ∗ −h p(r , v | rvj , vvj ) = Eb 
h(1 − Eb)

2w 1 

(23) 
' ∗ ' ∗ with h = HD(r , rvj ) + HD(v , vvj ) . 

∗The value x , for which (21) is maximal, pro­
vides the most probable candidate for the bits 
di+w1−1, . . . , di (maximum-likelihood estimate). 
Step 1 of Algorithm 4 shall find the position 
where this maximum occurs. The array P [2w 1 

] 
stores the conditional probabilities (21). Step 1 
of Algorithm 4 determines a candidate dv(i+w1) := 

x ∗2i + dv(sf ) for d(mod 2i+w 1 
). 

Step 2 of Algorithm 4 guesses the bits rj;i and 
vj;i for all j ≤ N . It may turn out that the initial 
guesses rvj;i and / or vvj;i have to be flipped. For 
m ∈ {0, 1} we define t 

' ' ∗ ∗ pj;m := p(r , v | rvj , vvj ) (24) 
(r1,v1)∈M (x ∗): 
r1( mod 2)=m 

In Algorithm 4 we set rvj;i = 0 if pj;0 ≥ pj;1 

and rvj;i = 1 otherwise. (This may reverse the vinitial guesses.) From d(i+w1 ) and the (possibly 
modified) value rvj;i, we obtain vvj;i. Then 

pj;m 
qj;c := if pj;m ≥ pj;1−m (25) 

pj;0 + pj;1 

quantifies the probability that rvj;i and vvj;i are v(now) correct if d(i+w1) is correct. The double 
array Q[N ][R] contains the conditional proba­
bilities (25). For each i of the outer for-loop the vintermediate guesses d(sf ), rvj;(sf) and vvj;(sf) are 
updated and extended by one bit. We point out 
that for the last bits, namely if i > R − w ' , in 

' ' Step 1 we have (r ∈ Z2R−i , v ∈ Z2w1 ) instead 
' ' of (r ∈ Z2w1 , v ∈ Z2w1 ). The sum (22) is calcu­

lated analogously as above. 

Algorithm 4 Narrow Window Attack, Phase 1 vd(sf) := 0; rvj;(sf) := 0; vvj;(sf ) := 0; 
for i = 0 to R − 1 do { 

1. for m = 0 to 2w 1 − 1 do P [m] := 0;
 
for j = 1 to N do {
 

calculate the cond. probabilities (22) for 
' 1all x ∈ Z2w

add these values to the array P }
∗select x for which P [x ∗] is maximal. v ∗d(i+w1−1) := x ·2i +dv(sf) /*End of Step 1*/ 

2. for j = 1 to N do {
compute pj;0 and pj;1 

if (pj;0 ≥ pj;1) then rvj;i := 0 else rvj;i := 1 
Q[j][i] := qj;c 
z := (dv(i+w1) + (rvj;i2i + rvj;(sf))y0) >> i vvj;i = z(mod 2) 
rvj;(sf ) := rvj;i2i + rvj;(sf) /* new guess */ vvj;(sf ) := vvj;i2i + vvj;(sf ) /* new guess */ 

} /* End of Step 2 */ vd(sf ) := x ∗(mod 2) · 2i + dv(sf )/* new guess */ 
} /* End of the i-loop */ 

5.1.1 Rationale 

' In Step 1 we guess w bits of the long-term key 
d, and we use these bit guesses to determine 
rvj;i and vvj;i. At the end of the outer for-loop, 

' we then discard the upper w − 1 bit guesses v vdi+w1−1, . . . , di+1. This may be surprising at first 
sight. The reason is the following: a guessing er­
ror in rvj;s does not only affect bit position s, but 

' also many positions s > s. Since the ’horizon’ 
' of our window ends at position i + w − 1, the 

guess rvj;i should usually be the most reliable one 
within {rvj;i, . . . , rvj;i+w1−1}. The next windows 
will give more precise information on the higher 
bits. 

5.1.2 Removing False Guesses 

During Phase 1 false bit guesses rvj;i will defi­
nitely occur. Although the maximum-likelihood 
estimator dv(i+w1−1) is robust in the sense that it 
tolerates a large fraction of false ’so far’ guesses 
rvj1;(sf) of the blinding factors, the fraction of cor­
rect guesses clearly should not become too small. 
The term qj;c quantifies the probability that the 
decision for rvj;i (and thus also for vvj;i) is correct vassuming that d(i+w1 −1) itself is correct. Inter­
mediate guesses rvj;(sf), which are likely to be 



false, should be removed. Two general strategies 
exist: continuous withdrawal for each i ≤ R − 1 
and withdrawal at distinguished bit positions i. 
Applied as a pure strategy, the first option of 

discarding (de-activating) all the power traces 
for which qj;c is below some predefined criti­
cal threshold cb(Eb, ·) keeps the fraction of false, 
intermediate guesses small. This, however, re­
quires a large sample size N since many correct 
power traces are discarded as well. 
On the other hand a bit guessing error rvj;s 

' also affects many later bit positions s > s. 
Hence a small product of conditional prob­si
abilities Q[j][s] is an indicator for a s=0 
wrong bit guess in the past. Another (though 
weaker) criterion is the number of bit flips in 
rvj;0, . . . , rvj;i, vvj;0, . . . , vvj;i, again due to the prop­
agation of guessing errors. These criteria may be 
applied every st bits to remove power traces. 
In our experiments we followed a mixed strat­

egy. First of all, for each i ≤ R − 1 we removed 
all power traces j, for which qj;c < cb(Eb, i). 
This threshold cb(Eb, i) increased in Eb and i 
and ranges in the interval [0.505, 0.53]. Ev­
ery st = 16 bits we ordered the power traces, 
which were still active at that time (i.e., which 
had not already been removed earlier) with re­si
gard to their products Q[j][s] in descend­s=0 
ing order. To each power trace we assigned its 
rank rkQ(j). Then we ordered the same power 
traces with regard to the number of corrections 
in rvj;0, . . . , rvj;i, vvj;0, . . . , vvj;i compared to the re­
spective initial guesses (17) in ascending order. 
This yielded rkC (j). Since the second criterion 
is weaker than the first, we computed the overall 
rank of power trace j to: 

rk(j) := rkQ(j) + 0.2rkC (j) . (26) 

Finally, we ordered these power traces in ascend­
ing order with regard to their overall rank (26). 
From N(i) active power traces, the lα(Eb, i)N(i)J 
top-ranked survived, the remaining power traces 
were discarded. The survival rate α(Eb, i) in­
creases in both Eb and i. For Eb = 0.10, 
for instance, we used the values α(0.10, 15) = 
0.94, α(0.10, 31) = 0.90, α(0.10, 47) = 0.85, 

α(0.10, 63) = α(0.10, 79) = 0.75, α(0.10, 95) = 
α(0.10, 111) = 0.72. For Eb = 0.13 we used 0.86, 
0.80, 0.70, 0.53, 0.53, 0.43, and 0.43 at the cor­
responding bit positions. 

5.1.3 Increasing the Efficieny of Algorithm 4 

Step 1 requires the computation of 22w 1 
probabil­

ities (23) per power trace while Step 2 only needs 
2w 1 

such probabilities. This means that Step 1 
determines the workload of Algorithm 4. The 
guessing procedure for the maximum in Step 1 
is very robust and tolerates a large fraction of 
false intermediate guesses rvj;(sf ). To save com­
putation time in Step 1 we never used more 
than n(Eb, i) power traces. The threshold n(Eb, i) 
increased in Eb and in i since the fraction of 
false intermediate guesses usually increases in 
the course of the attack. For instance, we used 
n(0.10, i) = 250 for i < 64 and n(0.10, i) = 450 
for all remaining cases. For Eb > 0.10 we added 
50 traces per 0.01 step. If more than n(Eb, i) were 
still active for bit i then n(Eb, i) candidates were 
drawn randomly from this set. In Step 2 all still 
active power traces were used. 

5.1.4 Extending R beyond g − 7 

Up to that point we had assumed k − t − R ≥ 8, 
which makes a carry bit from position k − 1 very 
unlikely. In the following we consider the prob­
lem when R is larger than g − 7 = k − t − 8. 
Assume y > 2k for the moment. Let ci denote 
the carry bit (binary representation) in d + rj y, 
which occurs in bit position i and is added to 
di+1 + (rj y)i+1. As in Section 5 we assume the 
long-term key d and the blinding factor rj are 
realizations of random variables X and Zj . If 
R + t < k − 1, i.e. if k − R − t > 1 then the (av­
erage) probability for a randomly selected long­



term key d that rvj;0 is affected by a carry equals 

νk := Prob(ck−1 = 1) = Prob(X + y0Zj ≥ 2k) = t 
2−R Prob(X ≥ 2k − zy0) = 

z∈Z2R t  2R −1 zy0 zy0
2−R ≈ 2−R dz =

2k 2k 
0 z∈Z2R  1 uy02

R y0
du = . (27)

2k 2k−R+1 
0 

Since ck−1+i = 1 iff ck−1 = 1, rk = . . . = 
rk+i−1 = 1 we conclude 

νk+i := Prob(ck−1+i = 1) = 2−iνk for i ≥ 0 .(28) 

Since the probability for a carry bit decreases by 
50% per bit position its impact on rvj;i needs to 
be considered only for few bits. More precisely, 
(18) changes to: 

Prob(rj;i = rvj;i) = 1 − E ' withb;i 

E ' b;i := (1 − Eb;i)νk+i + Eb;i(1 − νk+i) .(29) 

If νk+i ≈ 0 both formulae match. For the lowest 
bits the computation of the conditional proba­

' ' ∗ ∗bility p(r , v | rvj , vv ) becomes a little bit morej 
costly since individual probabilities have to be 
multiplied. 

Example 1 (Numerical example, Curve25519) 
R = 125, Eb = 0.12: For i = 0, . . . , 5 we obtain 
ν252+i = 0.082, 0.041, 0.020, 0.010, 0.005, and 
0.025. Hence Prob(rj;i = rvj;i) = 1 − Eb;i with 
1 − Eb;i = 0.818, 0.849, 0.865, 0.872, 0.876, and 
0.878 while 1 − Eb = 0.88. 

5.2 Phase 2 

At the end of Phase 1 the situation is the fol­
lowing: some power traces j1, . . . , jM have sur­
vived. The lowest R bits of the long-term 
key d, the complete blinding factors rj1 , . . . , rjM 

and the R lowest bits of the blinded scalars 
vj1 , . . . , vjM have been guessed. During Phase 1 
heuristic criteria were applied to remove (pre­
sumably) false guesses. However, for large error 

rates Eb, it may happen that although the in-vtermediate guess d(sf) is still correct, less than 
10% of the remaining M blinding factor guesses 
rvj1 , . . . , rvjM are (completely) correct. This phe­
nomenon can drastically be reduced by choosing 
smaller thresholds cb and smaller survival rates 
α(Eb, i). On the negative side this approach re­
quires considerably larger sample size N . Since 
the guessing procedure for the missing bits of d is 
robust, one might hope that Phase 3 will be suc­
cessful even in the presence of many false guesses 
rvji . However, a very efficient algorithm exists, 
which effectively filters out the correct blinding 
factors. W.l.o.g. we may assume that ji = i for 
all i ≤ M (relabelling). 

At the beginning we set rvj;i := vvj;i+k. During 
Phase 1 some guesses rvj;i were flipped (hopefully 
thereby corrected). We now use these corrections 
in the opposite direction and set vvj;i+k := rvj;i for 
i = 0, . . . , R − 1. The key observation of our fil­
tering algorithm below is that (vvj − rvj y) − (vvm − 
rvmy) = ej − em if rvj = rj and rvm = rm. Here 
ej := (vvj − rvj y)−d and em := (vvm −rvmy)−d de­
note the error vectors. In signed representation, 
these error vectors have low Hamming weight. In 
analogy to the enhanced attack [9, 10] it seems 
to be reasonable to consider the NAF Hamming 
weight of this difference as an indicator whether 
rvj and rvm are correct. In fact, this is the key, 
but this approach requires deeper analysis. 

In our argumentation below we restrict our­
selves to the case y > 2k . We first note that due 
to Algorithm 4 and the above mentioned correc­
tion procedure both the bits i < R and i ≥ k of 
the difference vvj − rvj y = vvj − rvj · 2k ± rvj y0 are 
zero. Since vj = d − rj y we conclude: 

vvj − rvj y = d + (((rj − rvj )y0) >> R)2R + 
' '' +e · 2R + e · 2t+R + zj · 2R 
j j 

' '' with ej ∈ Z2t , ej ∈ Z2k−t−R , zj ∈ {0, −1}.(30) 



Elementary, but careful calculations yield: 

(vvj − rvj y) − (vvm − rvmy) = 
' ' ((Δj,my0) >> R)2R + (ej − e ) · 2R +m 

'' '' +(ej − em) · 2t+R + zj,m2k 

with Δj,m := (rj − rvj ) − (rm − rvm) 

and zj,m ∈ {1, 0, −1, −2} . (31) 

The cases Δj,m = 0 and Δj,m  0 differ in the= 
bits R, . . . , t + R − 1 of (31). We define 

Dj,m :=(((vvj − rvj y)−(vvm − rvmy)) >> R)( mod 2t) 
(32) 

If Δj,m = 0 the term Dj,m essentially is the dif­
ference of two error vectors of length t, and the 
expectation and variance of 

ham(NAF(Dj,m)) (33) 

follow from Table 5 by multiplying the respective 
values by the factor t/1000. 

Eb 0.10 0.12 0.13 
E(ham(NAF(·))) 
Var(ham(NAF(·))) 

160.82 
10.10 

184.43 
10.46 

195.40 
10.44 

Eb 0.14 0.15 0.20 
E(ham(NAF(·))) 
Var(ham(NAF(·))) 

205.52 
10.46 

215.08 
10.40 

225.19 
10.31 

Table 5: Empirical values for the expectation and 
variance of ham(NAF(xxj;1 − xxj;2)). The 
numbers xxj;1 and xxj;2 are noisy guesses (er­
ror rate Eb) of a randomly selected 1000-bit 
integer xj . Our figures were derived from 
100,000 simulation experiments. 

For Δj,m  0 the term ham(NAF(Dj,m)) be­= 
haves statistically similar as ham(NAF(T )) for 
a random variable T , which is uniformly dis­
tributed on Z2t . By [9], Lemma 1(iii) 

E(ham(NAF(T ))) ≈ 0.333t and (34) 

Var(ham(NAF(T ))) ≈ 0.075t . (35) 

We define the threshold thNAF as the average of 
the expectations of the term (33) for the two 
cases Δj,m = 0 and Δj,m  = 0. 

Algorithm 5 Narrow Window Attack, Phase 2 
for j = 1 to M do 
for m = 1 to M do A[j][m] := 0; 

for j = 1 to M do 
for m = 1 to j − 1 do {
if (ham(NAF(Dj,m)) < thNAF then 
A[j][m] := A[m][j] := 1}

for j = 1 to M do S[j]:=0 
for j = 1 to M do 
for m = 1 to M do S[j] := S[j] + A[j][m]; 

c := max{S[j] | 1 ≤ j ≤ M}
c2 := lc/2J + 1; 
Remove all traces j with S[j] < c2 

5.2.1 Rationale 

If rvj and rvm are correct then Δj,m = 0. If ex­
actly one guess is wrong then Δj,m  = 0. If both 
rvj and v are wrong then usually Δj,m  0,rm = 
but Δj,m = 0 is also possible. Assume that 
s ≤ M guesses rvj are correct. For the cor­
rect guesses ideally S[j] = s − 1 and S[j] = 0 
otherwise. Since for each pair of wrong guesses 
(ham(NAF(Dj,m)) < thNAF is possible as well, 
and due to statistical noise, we introduced the 
lower bound c2 in Algorithm 5. Simulation ex­
periments showed that Algorithm 5 is very effec­
tive. When it failed usually s was very small, 
typically s ≤ 5, and s « M . However, in vthese cases, usually a bit guessing error in d had 
occurred before, so that the attack would not 
have been successful anyway. NAF representa­
tions can be computed very efficiently ([7], The­
orem 10.24 with r = 2). Hence the execution 
time of Algorithm 5 does not provide a signifi­
cant contribution to the overall attack. 

5.3 Phase 3 

After Phase 2, u ≥ 0 power traces, or more 
precisely, their corresponding guesses rvj and vvvj (mod 2R) remain. If the r-bit guess d(sf ) = vd(mod 2R) from Phase 1 is correct, we may ex­
pect that (at least essentially) all guesses rvj (and 
thus also the guesses vvj (mod2R)) are correct. 
After relabelling these, traces are numbered by 



 

 

1, . . . , u. The goal of Phase 3 is to guess the bits 
k − 1, . . . , R of the long-term key d. Since the 
blinding factors rvj remain constant in Phase 3, 
Algorithm 6 is very similar to Algorithm 4 but 
less time-consuming. Moreover, the number of 
power traces u is much smaller than in Phase 1, 

'' which allows to use a larger window size w . vAlgorithm 6 begins with the guesses d(sf) and vvj;(sf) from the end of Phase 1 while rvj := rvj;(sf). 
Analogously to (21) for i ≥ R we are interested 

in the conditional probability 

' Prob((X >> i)(mod 2w 11 

) = x | ×(36) 

× rvj , vvj;i+w11−1, . . . , vvj;i, vvj;(sf)) 
' for all x ∈ Z2w11 . Formula t 

' ∗ p(v | vvj ) (37) 
v1 ∈M 1(x1) 

is the equivalent to (22) but M ' (x ' ) denotes all 
'' v 11∈ Z2w for which the binary representation 

' ' 11of x ∈ Z2w equals the bits i + w − 1, . . . , i of 
'' 2ithe term ((v + vvj(sf )) − rvj y0)(mod 2w 11 

). 
∗Further, vv := 11 −1, . . . , vvj;i)2. Thej (vvj;i+w

' ∗ term p(v | vv ) denotes the conditional proba­j
' bility that v := (vi+w11−1, . . . , vi)2 if the binary 

∗ representation of vv is given by the initial guessesj 
(17). Analogously to (23) 

11−hEh' ∗ p(v | vvj ) = (1 − Eb)
w (38)b 

' ∗ with h = HD(v , vvj ) . 

∗As in Phase 1 the value x , for which (36) 
is maximal, provides the most probable can­
didate for the bits di+w11−1, . . . , di (maximum­
likelihood estimate). Step 1 of Algorithm 6 shall 
find the position of this maximum. The array 
P [2w 11 

] stores the conditional probabilities (36). 
Step 1 of Algorithm 6 determines a candidate v 11) := x ∗2i + v 11 
d(i+w d(sf) for d(mod 2i+w ) 

Step 2 of Algorithm 6 guesses the bits vj;i for 
all j ≤ u. initial guesses vvj;i may be flipped. For 
m ∈ {0, 1} we define t 

' ' ∗ p := p(v | vvj ) . (39)j;m 
v1∈M1(x ∗ ): 

v1( mod 2)=m 

' ' In Algorithm 6 we set = 0 if p ≥ pvvj;i j;0 j;1 
and vvj;i = 0 otherwise. (This may reverse the 
initial guesses.) We point out that for the last 
bits, namely when i > k − w '' , in Step 1 we use 
dk = dk+1 = · · · = 0. The term (37) is calculated 
analogously. 

Algorithm 6 Narrow Window Attack, Phase 3 
for i = R to k − 1 do { 

1. for m = 0 to 2w 11 − 1 do P [m] := 0; 
for j = 1 to m do {
calculate the cond. probabilities (37) for 

' 11all x ∈ Z2w

add these values to the array P }
∗select x for which P [x ∗] is maximal. v ∗ + vd(i+w11 −1) := x ·2i d(sf) /*End of Step 1*/ 

2. for j = 1 to u do {
' ' compute p and pj;0 j;1 

' ' if (pj;0 ≥ pj;1) then vvj;i := 0 else vvj;i := 1 vvj;(sf ) := vvj;i2i + vvj;(sf ) /* new guess */ 
} /* End of Step 2 */ 

dv(sf ) := x ∗(mod 2) · 2i + dv(sf )/* new guess */ 
} /* End of the i-loop */ 

Remark 1 In place of Algorithm 6 one may al­
ternatively apply Algorithm 1 in [10]. 

5.4 Error Correction 

In Phase 1 a false bit guess dvi usually spoils many vforthcoming guesses di∗ for i∗ > i. This is be-vcause di = di implies many false bit guesses rvi;j , 
and relatedly, many false ’so far’ guesses rvj;(sf ). vIn contrast, in Phase 3 a guessing error di = di 
only has local impact. This motivates the fol­vlowing error correction strategy if d turns out 
to be wrong: move a sliding window of length 

''' ''' vw (let’s say w = 4) from dvR, . . . , dR+w111−1 to v vdk−w111 , . . . , dk−1 and exhaustively check all al­
ternatives within the current window. This pro­
cedure corrects one local error within Phase 3 at 
negligible costs. 



5.5 Experimental Results 

We performed simulation experiments for all 
curves from Table 1. We selected d and the blind­
ing factors r1, . . . , rN uniformly from {0, . . . , 2k − 
1} and from {0, . . . , 2R − 1}, respectively. We 
counted an attack as successful if it was possible 
to fully recover d (i.e., if all bits were correct) 
after the error correction process in Phase 3 (if 
necessary). As usual, N denotes the sample size. 

' In Phase 1 we used the window size w = 8 and 
'' in Phase 3 w = 10. 

Table 6 to Table 9 show simulation results for 
different curves and blinding lengths. For iden­
tical error rates Eb, longer blinding factors re­
quire larger sample sizes N . This is due to guess­
ing errors and the thin-out process in Phase 1. 
Our experiments verify that short blinding fac­
tors such as R = 32 tolerate even 20% bit errors 
while R = 253, for instance, tolerates 12% bit 
errors anyway. Table 7 and Table 8 show that 
for identical sample size N , the success rates for 
R = 125 (Curve25519) and R = 253 (curve M­
511) are to some degree smaller than for R = 120 
and R = 250, respectively. Apart from the fact 
that the blinding factors are a little bit longer 
the main reason for this effect in both cases is 
that g − R = 127 − 125 = 255 − 253 = 2 is very 
small (see subsection 5.6). Our simulation ex­
periments support the assumption that R and Eb 

determine the sample size N while the specific 
properties of the particular curve is of subordi­
nate meaning. In our simulations the variance of 
the number of traces u, which survived Phase 2 
(and thus were available in Phase 3), was rather 
large. Hence, for precise estimates of the partic­
ular success rates, a large number of trials would 
be necessary. 

5.6 Possible Improvements 

If R ≤ g − 7, the bit vj;k is usually not affected 
by a carry from position k − 1. Occasional car­
ries are not harmful and their effect might be 
interpreted as a slightly increased error rate Eb 

for bit rj;0 and its neighbours. However, if d is 
extremely close to 2k , i.e. if, let’s say, g − R = 7 

curve R Eb N success rate 
Curve25519 
Curve25519 
Curve25519 
Curve25519 
Curve25519 
Curve25519 

32 
32 
32 
32 
32 
32 

0.10 
0.10 
0.12 
0.15 
0.17 
0.20 

40 
70 
130 
400 
1000 
6, 000 

7/10 
10/10 
10/10 
27/30 
9/10 
12/25 

Curve25519 
Curve25519 
Curve25519 
Curve25519 

64 
64 
64 
64 

0.10 
0.12 
0.14 
0.15 

150 
400 

3, 000 
7, 500 

9/10 
9/10 
9/10 
8/10 

Table 6: Narrow window attack (small blinding fac­
tors): g = 127 

curve R Eb N success rate 
Curve25519 
Curve25519 
Curve25519 
Curve25519 
Curve25519 

120 
120 
120 
120 
120 

0.10 
0.12 
0.13 
0.14 
0.15 

700 
5, 000 
15, 000 
60, 000 

400, 000 

19/20 
19/20 
23/30 
18/30 
5/10 

Curve25519 
Curve25519 
Curve25519 
Curve25519 

125 
125 
125 
125 

0.10 
0.12 
0.13 
0.14 

1000 
6, 000 
17, 000 
60, 000 

10/10 
16/20 
8/10 
14/30 

Table 7: Narrow window attack: g = 127 

and dk−1 = . . . = dk−12 = 1, then nearly every 
blinding factor rj results a carry to rj;0 and with 
probabilities ≈ 0.5, 0.25, . . . to its neighbours, 
see (28). Then vvj;k−1 is 0 in about (1 − Eb)N 
traces; the same effect as for dk−1 = 0 where es­
sentially no carries occur. In the first case the 
attack might already fail at the very first bit. 
However, this event is very rare and thus does 
not significantly affect the success probability of 
the attack. For R > g − 7, this event becomes 
more likely. The considerations from Subsubsec­
tion 5.1.4 reduce this phenomenon to some de­
gree. The experimental results emphasize that 
even for R = g − 2 the narrow window attack is 



curve R Eb N success rate 
M-511 
M-511 
M-511 

250 
250 
253 

0.07 
0.10 
0.10 

500 
30, 000 
40, 000 

10/10 
9/10 
8/10 

ED448 
ED448 
ED448 

220 
220 
220 

0.10 
0.11 
0.12 

30, 000 
120, 000 
700, 000 

10/10 
9/10 
9/10 

Table 8: Narrow window attack: g = 255 (M-511) 
or g = 222 (ED448) 

curve R Eb N success rate 
Curve41417 
Curve41417 

200 
200 

0.07 
0.10 

400 
7, 000 

10/10 
8/10 

NIST P-384 
NIST P-384 

190 
190 

0.10 
0.12 

4, 000 
70, 000 

10/10 
9/10 

Table 9: Narrow window attack: g = 206 
(Curve41417) or g = 194 (NIST P-384) 

successful with high probability. 
In subsection 5.4 we introduced an error cor­

rection strategy which detects local guessing er­
rors in Phase 3. One might similarly try to iden­
tify the position of the first guessing error if it al­
ready has occurred in Phase 1. An option would 
be to restart the attack at a bit position where 
the maximum likelihood decision in Step 1 of Al­
gorithm 4 was ’close’ and to decide for the second 
likely alternative. Finally, a more sophisticated 
choice of the parameters (cb, st, α(Eb, i)) might 
also improve the efficiency of the narrow window 
attack. 

6 Relation Between Both 
Attacks 

The Wide Window Attack considers large win­
dows, which allow to catch the impact of error 
propagation within a wide horizon, but it does 
not exploit all information. In contrast, the Nar­

row Window Attack exploits every piece of in­
formation; but within a smaller horizon. Our 
simulation experiments seem to indicate that the 
efficiency of both attacks is comparable. 
Phase 1 of the Narrow Window Attack dom­

inates the workload. Step 1 of Algorithm 4 
' ' ∗ ∗ evaluates 22w 1 

probabilities p(r , v | rvj , vvj ) for 
each i and each selected index j while Step 2 
computes only 2w 1 

such probabilities, but for 
all j, which are still active. The probabilities 

' ' ∗ ∗ p(r , v | rvj , vv ) only depend on the Hammingj 
' distance of two vectors of length 2w (23) (pos­

sibly apart from the very first bits; see subsub­
section 5.1.4), which allows to store these prob­

' abilities in an array of length 2w + 1. More­
over, within the loop it suffices to count the oc­
currences of the particular Hamming weights for 

' 1 . 
Step 1 of Algorithm 4 has to be carried 

out for at most n(Eb, i) traces; regardless of 
the sample size N . Thus the Narrow Win­
dow Attack scales rather well. In contrast, for 
Step 2 all active traces are relevant. Averaged 
over all i, this number should be smaller than 
N/2. Altogether, Algorithm 4 essentially costs 
O(Rn22w 1 

) + O(RN2w 1 −1) operations (consist­
ing of several inexpensive basic operations, at 

each candidate x ∈ Z2w

' ' ∗ ∗least when the probabilities p(r , v | rvj , vv ) onlyj 
depend on the Hamming distance; the values 
' r y0(mod 2w 1 

) may be stored). Unless the sam­
ple size N is extremely large, the first term 
should dominate. For small (R, Eb), the average 
of n(Eb, i) may roughly be estimated by N/2. 

The parameter sets (R, Eb, w ' , N) ∈ 
{(64, 0.10, 8, 150), (120, 0.12, 8, 5000), (120, 0.14, 
8, 60, 000), (220, 0.12, 8, 700, 000)}, for example, 
require very roughly 228 , 232 , 232 or 234 opera­
tions, respectively. This is far better than the 
attacks on general elliptic curves [9, 10]. 

7 Attacks on General Elliptic 
Curves 

In papers [9, 10] attacks on general elliptic curves 
were considered. The basic attack is only prac­



tical for short blinding factors. 
For ECC the enhanced attack requires about 

2R+5 NAF calculations [10], Subsect. 3.5. At 
cost of 269 NAF calculations R = 64 tolerates ≈ 
0.11 errors [10], Subsect. 3.7. Depending on the 
error rate Eb the alternate attack ([10], Sect. 4) 
may allow us even to attack blinding lengths R > 
64 but at the cost of a large workload. 

8 Countermeasures 

Our results show that the blinding length must 
exceed the gap g = k − t − 1, which is ≈ k/2 
for curves over special primes. This feature at 
least reduces the efficiency gain of such special 
curves in comparison to general curves; the de­
gree to which depends on the concrete platform. 
Efficiency considerations are beyond the scope of 
this paper. 
Within the context of signatures for 

Curve25519 D. Bernstein proposes to use 
512 bit nonces, i.e. blinding factors of length 
R > 256 [1]. To our knowledge such long 
blinding factors cannot successfully be attacked. 

Remark 2 Side channel attacks and fault at­
tacks on ECDSA usually aim at the certain 
know ledge of a few bits of several ephemeral keys, 
which would allow to find the long-term key by 
a lattice-based attack. Scalar blinding shall de­
valuate such knowledge since the attacker has to 

∗reduce the blinded ephemeral keys v = vj + ry j 
modulo y to obtain short lattice vectors. If y = 
2k ± y0 and R < g the most significant bits 

∗of vj coincide with the respective bits of v [3],j 
sect. VIII 6.2, 113, which nul lifies the impact of 
scalar blinding at these bit positions. Hence, for 
ECDSA the parameter R should exceed g as well. 

9 Conclusion 

We have introduced two generic attacks on scalar 
blinding. When a prime p is ’almost’ 2k+b ellip­
tic curves over GF(p) with cofactor 2b (b ≥ 0) 
require much larger blinding factors than gen­
eral curves. This property at least reduces their 

efficiency gain in comparison to general elliptic 
curves. 
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