Ed448-Goldilocks

A new high-strength curve and implementation

Mike Hamburg Rambus Cryptography Research

Goal

- Design a modern high-strength curve
- Complete formulas, constant time
- Better performance than NIST P-384, P-521
- One curve no "overkill" and "more overkill" levels

Desiderata

- "Overkill": ~384+ bit field size
- Good tradeoff of size vs performance
- Simple implementation
- Implementation flexibility, good on multiple arch's
- Conservative: prime field, no endomorphisms
- Safecurves criteria

Prime choice: $2^{448} - 2^{224} - 1$

- Best performance for its size on many platforms
- Best Solinas prime shape
- Vectorizable: 448 = 16x28 = 8x56
- Fast Karatsuba multiplication
- Designed for 32- and 64-bit
 - On 64-bit, could use 2⁴⁸⁰ 2²⁴⁰ 1

Ed448-Goldilocks

$y^2 + x^2 = 1 - 39081x^2y^2$

- Minimum |d| with 4q curve and 4q' twist
- Order 4q, q just under 2446

Implementation

http://sourceforge.net/p/ed448goldilocks/code/ci/decaf/tree/

- x86-64, ARM32 scalar, ARM NEON, generic 32/64
- C and asm
- Constant-time (except verify)
- Control and indexing don't depend on secrets
- Complete formulas using extended coords

Implementation

http://sourceforge.net/p/ed448goldilocks/code/ci/decaf/tree/

- Example crypto: Schnorr, ECDH/3DH, MQV, PAKE
- Hash to curve, steg encoding with Elligator 2
- C library with C++ wrapper

"Decaf" point compression

- Remove cofactor of 4 with subgroup/quotient
- Transparently use isogenous curves
 - Remove points at infinity on twisted curve
 - Compatible with Montgomery ladder
- Performs the same as other point compression
- CRYPTO 2015

Performance – Intel

ECDH, Haswell cycles

Performance – ARM

30M -									
24M -							ø		
18M -							0	0 0 0	Goldilocks MSR ECCLib 1.2 (mod) OpenSSL 1.0.1
12M -					8				
6M -)	0	8			•←			
- UM 19)2		256	320	384	448	512	576	

ECDH, Cortex-A9 cycles

Performance – NEON

ECDH, Cortex-A8 cycles

Conclusion

- Goldilocks has conservative design
- Edwards replacement for NIST "overkill" curves
- Fast on many platforms
- Featureful implementation
- Selected by CFRG for TLS
- Good choice for NIST standardization

Questions?