DANE: TLS Domain Name Authentication using the DNS Itself

Richard Barnes
BBN
<rlb@ipv.sx>
Security == Domain Names == PKI

• Basically all major security protocols rely on authenticating host names with certificates
 – TLS, IPsec
 – HTTPS, SIPS, SMTP/IMAPS, etc.

• EV certificates provide additional assurances, especially when user interaction is possible

• 95% of CA-issued certificates are DV
 – 35,661 EV vs. 603,481 DV [NetCraft, Jan 2011]
Scoping and Authority

• Current CA system is fundamentally unsuited for authenticating domain names
 – Anyone can vouch for anything
 – DigiNotar can vouch for Google
 – Nobody is authoritative for anything

• Patch on patch on patch
 – Pinning, CAA, Transparency, ...

PKIX

Verisign Class 3 Primary Public Certification Authority
(key: AF 24 08 08 ...)

Verisign Class 3 Extended Validation SSL SGC CA
(key: BD 56 88 BA ...)

www.nist.gov
(key: C9 83 13 87...)

Constraining the PKI

• Hierarchy with name constraints
 – CA == domain holder
• Why hasn’t this happened yet?
 – Support for name constraints
 – Economic reasons
 – Political reasons
The hierarchy you’re looking for

- **Name constraints are central to DNSSEC**
 - Keys are always scoped
- **Econ/Politics might be easier**
 - Root signed since 2010
 - Many TLD ops deploying
 - Some hosting providers
- **What goes at the end of the chain?**
- **Interaction with PKI?**
TLSA Records

• **RFC 6698**: TLS association records (TLSA)
 – TLS connects to a name
 – TLSA associates certificates to a name

• Types of association:
 – Type 0: CA constraint
 – Type 1: Certificate constraint
 – Type 2: TA assertion
 – Type 3: Certificate assertion
Type 0/1: Constraints

TLSA Type 0: CA Constraint

- . DNSKEY (key: ...)
- gov. DNSKEY (key: ...)
- nist.gov. DNSKEY (key: ...)
- www.nist.gov. DNSKEY (key: ...)

PKIX

- Verisign Class 3 Primary Public Certification Authority (key: AF 24 08 08 ...)
- Verisign Class 3 Extended Validation SSL SGC CA (key: BD 56 88 BA ...)

TLSA Type 1: Cert Constraint

- . DNSKEY (key: ...)
- gov. DNSKEY (key: ...)
- nist.gov. DNSKEY (key: ...)
- www.nist.gov. DNSKEY (key: ...)

_rrsig_443._tcp.www.nist.gov. TLSA
Only trust the CA with key BD 56 88 BA ...

_rrsig_443._tcp.www.nist.gov. TLSA
Only trust the cert with key C9 83 13 87 ...
Type 2/3: Assertions

TLSA Type 2: TA Assertion
- .DNSKEY (key: ...)
- gov. DNSKEY (key: ...)
- nist.gov. DNSKEY (key: ...)
- www.nist.gov. DNSKEY (key: ...)

NIST CA (key: 62 65 D0 1B ...)

PKIX

Verisign Class 3 Primary Public Certification Authority (key: AF 24 08 08 ...)

Verisign Class 3 Extended Validation SSL SGC CA (key: BD 56 88 BA ...)

NIST CA (key: 62 65 D0 1B ...)

TLSA Type 3: Cert Assertion
- .DNSKEY (key: ...)
- gov. DNSKEY (key: ...)
- nist.gov. DNSKEY (key: ...)
- www.nist.gov. DNSKEY (key: ...)

NIST CA (key: 62 65 D0 1B ...)

NIST CA (key: C9 83 13 87 ...)

Hypertext:
- Only **Trust** the CA with key 62 65 D0 1B ...
- Only **Trust** the cert with key C9 83 13 87 ...
Truth in Advertising

DANE DOES
- Provide scoping of authority
- Make CAs untrusted for domain name validation
 - Secondary check, in addition to X.509 verification
 - Mitigates misissue

DANE DOES NOT
- Attest to other identity than domain name
- Remove authority risk completely
 - CAs → DNS operators

HOWEVER
- Type 0/1 with EV
- DNS operator could probably get a cert anyway
Deployment

• Before you get DANE, you need DNSSEC
 – Parent issues
 – Resolver issues
 – Client support issues

• **Browser extensions** with DNSSEC libraries

• **DNSSEC “stapling”**: Provide all necessary DNS records in TLS handshake
Future Work

• SRV / MX: How to deal with delegation
 – My mail domain is ipv.sx
 – ipv.sx IN MX mail01.l.google.com
 – Where do I look for TLSA records?
 – What if the delegation is not secure?

• S/MIME: How to find certs for email address
 – alice@example.com
 – alice._at.example.com IN TLSA?
Summary

• Authenticating domain names is important
• X.509 is not great for domain names
 – Especially as currently deployed
• DANE uses security in the DNS to secure domain names in applications
 – Constraints + assertions
• Deployment bound on DNSSEC, but starting...
Thanks!

Richard Barnes
BBN
<rlb@ipv.sx>