NIST Workshop: Improving Trust in the Online Marketplace

Revocation Process
Reasons for Revocation

• Security
 – Key Compromise
 – Malicious or fraudulent usage

• Business
 – Existing certificate replaced with a newer one
 – Subscriber no longer needs the certificate
 – Failure to uphold some portion of the Subscriber Agreement
Distribution of Certificate Status

• Certificate Revocation List (CRL)
 – RFC 5280
 – Digitally signed list of serial numbers of revoked certificates
 – Can contain reason for revocation and a revocation date for each serial number
 – URI in the CDP extension in certificates
 – Serial number listed = Revoked
 – Serial number NOT listed = Valid
Distribution of Certificate Status

• Online Certificate Status Protocol (OCSP)
 – RFCs 2560, 5019
 – Client requests status of one or more specific serial numbers
 – Server response is a digitally signed message stating ‘good’, ‘revoked’, or ‘unknown’, OR an unsigned error code.
 – URI to OCSP service in AIA extension
SCVP

• Server-Based Certificate Validation
 – RFC 5055
 – Client outsources path construction and/or validation to a trusted server
 – Not commonly used on the Internet
Revocation and Validation

CRL: http://example.com/ca.crl
OCSP: http://ocsp.example.com/
CRL Pros / Cons

• Con
 – Grow over time
 • 2007: 158KB
 • 2013: 41MB
 – Single list of “problematic” customers
 – No positive confirmation
• Pro
 – Potentially more efficient for CAs that issue very few certs that are unlikely to be revoked.
OCSP Pros / Cons

• Pro
 – Small, constant size
 – Can provide real-time status
 – Can provide positive confirmation
 • CA/Browser Forum Baseline Requirements: 8/1/2013

• Con
 – Requires a request/response cycle for each certificate encountered by a client
 • Adds latency to TLS handshake
 • Significant load on OCSP service
Criticisms

• Performance impact
 – https://revocation-report.x509labs.com/

• Privacy

• Client not always able to obtain status
 – Captive portals
 – Egress filtering
 – Random network failures

• “It only works when you don’t need it.”
OCSP Stapling

- RFC 6066 (Certificate Status extension)
- Server retrieves and caches OCSP response for its certificate
- Server provides OCSP response to client in TLS handshake
OCSP Stapling

OCSP: http://ocsp.example.com/

Certificate Authority
- CRLs (Web Server)
- OCSP

SSL Customer
- Web Server

User
- Mozilla Firefox
- Internet Explorer
OCSP Stapling

• Performance Impact
 – No separate connection to OCSP service
 – However, potentially adds additional round trips

• Privacy
 – CA only receives requests from its customers

• Client not always able to obtain Status
 – Client receives OCSP response from the web server

• “It only works when you don’t need it”
 – Attacker has to block web server from getting updated OCSP response
OCSP Stapling: Issues

• Performance
 – Overflow initial congestion window

• Limited to single OCSP response

• Server support
 – IIS 7, Apache httpd 2.4+, nginx 1.3.7+

• Client support
 – Varies based on platform/library/toolkit
No-Fail vs. Soft-Fail vs. Hard-Fail

• No-Fail: Don’t even check for revocation
• Soft-Fail: Client allows TLS handshake to proceed if unable to determine certificate status
• Hard-Fail: Client allows TLS handshake to proceed IFF it can determine the certificate is still valid
Why not Hard-Fail?

• Client priorities and competition
 – Performance
 – “Show the page”

• Potentially creates new DoS vector

• Transition to OCSP Stapling
 – “Must-Staple” extension
Varied Levels of Support

• Clients have differing behaviors
 – Different versions of the same client
 – Same client running on different platforms

• Behavior may depend on version of underlying library/toolkit

• Some clients have implemented their own solutions

• Many non-browser clients do no revocation checking at all
Recommendations

• OCSP Stapling (multiple certificate status)
• CAs should avoid delegated OCSP signing
• Libraries/Toolkits should provide high-level APIs for applications
• Better education/awareness