Challenges and new Features for Anonymous Credentials: Revocation and Decentralization

Foteini Baldimtsi
Anonymous Authentication

Credential

Name: Alice Liddell
Date of Birth: 11/26/1865
Address: Rabbit Hole
Country: Wonderland
ID Number: 12345678

Predicate: Age > 21

Unlinkable!

Proof

Predicate: Age > 21

Unlinkable!

Proof’

Predicate: Age > 21

Unlinkable!
Anonymous Authentication

Name: Alice Liddell
Date of Birth: 11/26/1865
Address: Rabbit Hole
Country: Wonderland
ID Number: 12345678

Predicate:
Age > 21

Generic construction
• Issuance: digital signatures
• Credential showing: ZK proofs

Unlinkable!

Efficiency?

"Anonymous Credentials"

* zk-creds: a recent work suggesting anonymous credentials from SNARKs [RWGM’22]
Anonymous Credentials

Multi Use
Anonymous Credentials
based on signatures
and ZK proofs

Single Use
Anonymous Credentials
based on blind signatures
(+ optional ZK proofs)

Chaum'81, Chaum'82, Brands'93, CFY'98, CL'01, CL'02, CL'04, CHL'05, CG'08, BCKL'09, FDV'09, IB'12, CNR'12, …
BL’13b, RHBP’13, BCHKL’13, RBHP’15, BCDLRSY’17 …]
Anonymous Credentials

Multi Use
Anonymous Credentials
based on signatures and ZK proofs

Single Use
Anonymous Credentials
based on blind signatures (+ optional ZK proofs)

- Subscription Services
- Digital IDs

- Single-use coupons
- E-cash
- E-voting

✅ More efficient*

*If only to be used a small number of times single use credentials are preferable
Multi-use Anonymous Credentials

Introduced by [CL01,CL04,...]

Core Primitive: CL signatures (Signatures on committed values that allow for efficient proofs of signature ownership)

CL signatures are based on RSA

[BBS’04, ASM’06]: BBS+ signatures based on bilinear pairings

Standardization?
Anonymous Credentials

Multi Use
Anonymous Credentials
based on signatures and ZK proofs

Single Use
Anonymous Credentials
based on blind signatures (+ optional ZK proofs)

- Subscription Services
- Digital IDs

- Single-use coupons
- E-cash
- E-voting
- More efficient*

*If only to be used a small number of times single use credentials are preferable
Single-Use Credential + Attributes

[BL’13b] “Anonymous Credentials Light”

Efficiency: EC based, 3-rounds
- **Issuance:** 13 exponentiations for User + 7 exponentiations of Signer
- **Verification:** 8 exponentiations

Security: Unlikability/Blindness under DDH in RO
- Unforgeability under DL in RO in the **sequential setting**

[BLLOR’21]: most efficient DL blind signatures (including [BL’13b]) are **not secure** under parallel issuance
Single-Use Credential + Attributes

A valid blind signature is a credential/token!

Avoid double-use?
Single-Use Credential + Attributes

Registration Phase

Open account for (Alice, C)

C, ZK π

Alice

C = commit (user attributes)

Issuance Phase

Alice

Blind Sign

Alice, C

Accounts: (Alice, C)

- If you double show your credential, (parts of) C will be disclosed!

- Challenge: embed C in the credential while maintain unlinkability

- A valid blind signature is a credential/token!

- no concurrently secure efficient schemes
(Anonymous) Digital Credentials in the Age of Decentralization
Decentralized Credentials

Decentralizing Issuance Of Anonymous Credentials
[Coconut’17]

DID: Decentralized Identities (anonymity)
[GGM’13,CanID’21]
Decentralizing Issuance - Threshold Blind Signs

Use threshold (blind) signatures for the credential issuance [Coconut’17, NYM]

Image: from [Coconut] authors slides
Decentralizing Issuance - Threshold Blind Signs

Use threshold (blind) signatures for the credential issuance [Coconut, NYM]

- User Requests for a credential
- Authorities Issue (at least t honest authorities)
- User collects, aggregates and randomizes
- User presents credential

Building blocks: PS’16 randomizable signatures, El Gamal Encryption, DL based ZK proofs

Multi Use
Anonymous Credentials based on signatures and ZK proofs
Use threshold (blind) signatures for the credential issuance [Coconut,NYM]

- Signer privacy, blindness/unlinkability

- Interactive, non-flexible threshold key generation phase

- Smart contract relatively expensive (on-chain verification 4.2M ETH gas - $90 USD Aug’22)

- No support for revocation + auditability

[Zebra’22]: reduces gas costs x10 (uses SNARKs), adds revocation + auditability features
Decentralizing Issuance – Multi-Blind Signs [BKKL’23]

Use multi (blind) signatures [new approach]
- Signer accountability
- More flexible signing process
- Controlled set anonymity

Constructions for both multi-use and single-user credentials (so much cheaper to verify! no zk proofs!)

Based on BLS signatures
Decentralized Identities – Self created

[GGM]: decentralized non general credentials, “self assertion of credential”

- Addresses bootstrapping (using oracles like DECO)
- Accountability (sanction lists)
- Weak privacy (if collusions happen)
- Not efficient revocation (not privately)
Anonymous Credentials

Multi Use
Anonymous Credentials
based on signatures and ZK proofs

Single Use
Anonymous Credentials
based on blind signatures (+ optional ZK proofs)

What about revocation?
Credential Revocation

Revocation of credentials is a **hard** problem.

- In TLS millions of certificates are revoked per year
- Simultaneous/fast (i.e. due to critical security issues like Heartbleed) revocation is very hard
- More challenges in restricted settings, i.e. web browsers, IoT devices etc

Revocation of *anonymous* credentials is an even **harder** problem.
Credential Revocation

- **additions/deletions** (under central management)
- **Size of Accept List O(n)**
- **User privacy**
Credential Revocation

Merkle Trees

- Digest: $O(1)$
- Proof-of-membership: $O(\log n)$

Cryptographic Accumulators

- Digest: $O(1)$
- Proof-of-membership: $O(1)$
- ++ more properties
 (efficient non-membership proofs/updates/deletions)
Credential Revocation - Accumulators

Accept List

- additions/deletions (under central management)
- Constant size
- User privacy

RSA Accumulator
Setup:
- Choose N=pq where p, q are secret primes
- (initial state)

Add()
-

Del()
Credential Revocation - Accumulators

- **Additions/deletions**
 - (under central management)
- **Constant size**
- **User privacy**

RSA Accumulator – How to prove membership

Add x
- \(A_{t+1} = A_t^x \)
- Witness \(w = A_t \)

Prove membership
- “x is in \(A_{t+1} \), here is a witness w”
- Verify check: \(A_{t+1} = w^x \)

But what if more updates happen in between Add - Prove?
- Users need to update their witness for every single addition/deletion!

State after set S added:

\[u = \]
Credential Revocation - Modular Accumulators

[BCDLRSY’17,BK’21]

Accept List

\[A_t = g^u \]

✔ additions/deletions
(under central management)

✔ Constant size

✗ User privacy

Modular Accumulators

Basic Idea
• Start with a full accumulator \(A_0 \) (includes all domain \(S \))
• Manager (holding trapdoor) can issue membership witnesses
• No need to update witnesses after additions – \(A \) does not change
• Only changes after deletions!

\(O(d) \) updates

Reduced security (non-adaptive adversaries)

Accumulator \(A \) for additions and \(A' \) for Deletions. Users need to show membership in 1st and non-membership in 2nd
Credential Revocation - Modular Accumulators

Accept List

\[A_t = g^u \]

- ✔ additions/deletions (under central management)
- ✔ Constant size
- ✗ User privacy

Join-Revoke unlinkability!

<table>
<thead>
<tr>
<th></th>
<th>Add</th>
<th>Del</th>
<th>Updates</th>
<th>soundness</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA</td>
<td>✓</td>
<td>✓</td>
<td>(O(a + d))</td>
<td>adaptive</td>
</tr>
<tr>
<td>Basic Idea</td>
<td>✓</td>
<td>✓</td>
<td>(O(d))</td>
<td>non-adaptive</td>
</tr>
<tr>
<td>Modular</td>
<td>✓</td>
<td>✓</td>
<td>(O(d))</td>
<td>adaptive</td>
</tr>
</tbody>
</table>
Credential Revocation - Modular Accumulators

- **Validations**
 - **Additions/deletions**
 - ✓ Constant size
 - ❌ User privacy
 - **Additions/deletions** (under central management)

- **Credential**
 - Name: Alice Liddell
 - Date of Birth: 11/26/1865

- **Join-Revoke unlinkability!**

- **Comparison Table**

<table>
<thead>
<tr>
<th></th>
<th>Add</th>
<th>Del</th>
<th>Updates</th>
<th>soundness</th>
<th>Join-Revoke Unlinkability</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA</td>
<td>✓</td>
<td>✓</td>
<td>O(a + d)</td>
<td>adaptive</td>
<td>✗</td>
</tr>
<tr>
<td>Basic Idea</td>
<td>✓</td>
<td>✓</td>
<td>O(d)</td>
<td>non-adaptive</td>
<td>✗</td>
</tr>
<tr>
<td>Modular</td>
<td>✓</td>
<td>✓</td>
<td>O(d)</td>
<td>adaptive</td>
<td>✓</td>
</tr>
</tbody>
</table>

- **Signatures**
 - RSA ✓
 - Basic Idea ✓
 - Modular ✓
 - O(a + d) adaptive
 - O(d) non-adaptive
 - O(d) adaptive
Credential Revocation - Modular Accumulators

- additions/deletions
 - (under central management)
- Constant size
- User privacy

Prove membership
- “x is in A_{t+1}, here is a witness w”
- Verify check: $A_{t+1} = w^x$
- To hide x you need to use ZK proofs which compose efficiently with the accumulator.
Multiple extensions and challenges: batching + aggregation, need for setup, efficiency in trapdoorless scenario....
Final Thoughts

Technology via generic solutions exists

- Efficiency challenges (time-sensitive applications, lightweight devices, gas/storage costs if on blockchain,...)
- Bootstrapping problem
- Accountability without trusted third parties – auto-executed policies
- Back-up, identity restore
- Revocation of identities/credentials
- Efficient Post-quantum secure solutions are basically non-existent