

MinRank-Based Zero-Knowledge proofs and Signatures

August 2023

Cryptography Research Center

Motivation

Motivation

1. Quantum computers:

- Threat for public-key cryptography (e.g. RSA and EC)
- No **big-enough** computers yet, but
- Save now decrypt later approach.

2. New NIST standardization call:

- **Type** \rightarrow post-quantum signatures.
- **MinRank-based** → MiRitH and MIRA
- **MinRank attacks** → MEDS, SNOVA, etc.

Outline

1. The MinRank problem

2. Algorithms for MinRank

3. Modern ZK-proofs of MinRank solutions

4. MIRA and MiRitH performance

Cryptography Research Center

Input: An integer r, and k + 1 matrices $M_0, M_1, ..., M_k \in \mathbb{F}_q^{m \times n}$

Output: $\alpha_1, ..., \alpha_k \in \mathbb{F}_q$ such that $rank(M_0 + \sum_{i=1}^k \alpha_i M_i) \leq r$

Input: An integer r, and k + 1 matrices $M_0, M_1, ..., M_k \in \mathbb{F}_q^{m \times n}$

Output: $\alpha_1, ..., \alpha_k \in \mathbb{F}_q$ such that $rank(M_0 + \sum_{i=1}^k \alpha_i M_i) \leq r$

• MinRank is proven to be NP-complete!

Input: An integer r, and k + 1 matrices $M_0, M_1, ..., M_k \in \mathbb{F}_q^{m \times n}$

Output: $\alpha_1, ..., \alpha_k \in \mathbb{F}_q$ such that $rank(M_0 + \sum_{i=1}^k \alpha_i M_i) \leq r$

- MinRank is proven to be NP-complete!
- As decoding problem:

Given: - $C = \langle M_1, ..., M_k \rangle$ a linear code in the rank metric. - M_0 (a noisy codeword with error $\leq r$)

Ask: Decode M_0 .

Input: An integer r, and k + 1 matrices $M_0, M_1, ..., M_k \in \mathbb{F}_q^{m \times n}$

Output: $\alpha_1, ..., \alpha_k \in \mathbb{F}_q$ such that $rank(M_0 + \sum_{i=1}^k \alpha_i M_i) \leq r$

- MinRank is proven to be NP-complete!
- As decoding problem:

Given: - $C = \langle M_1, ..., M_k \rangle$ a linear code in the rank metric. - M_0 (a noisy codeword with error $\leq r$)

Ask: Decode M_0 .

• Type of instances we used :

Input: An integer r, and k + 1 matrices $M_0, M_1, ..., M_k \in \mathbb{F}_q^{m \times n}$

Output: $\alpha_1, ..., \alpha_k \in \mathbb{F}_q$ such that $rank(M_0 + \sum_{i=1}^k \alpha_i M_i) \leq r$

- MinRank is proven to be NP-complete!
- As decoding problem:

Given: - $C = \langle M_1, ..., M_k \rangle$ a linear code in the rank metric. - M_0 (a noisy codeword with error $\leq r$)

Ask: Decode M_0 .

- Type of instances we used :
- Random matrices
- Random secret
- Random E

•
$$k = O((n-r)^2).$$

The MinRank in Cryptanalysis

The MinRank in Cryptanalysis

- 1. (Kipnis-Shamir) 1999: Cryptanalysis of Hidden Field Equations (HFE).
- 2. NIST first call for post-quantum schemes:
 - Cryptanalysis of GeMSS
 - "Beaking Rainbow takes a weekend in a Laptop"
 - Cryptanalysis of Rollo
- 3. And many multivariate-
 - 2000 --> TTM
 - 2011 --> HFE, Multi-HFE.
 - 2017 --> ZHFE, HFEV-, HFE-, Rainbow.

The MinRank in Cryptanalysis

1. (Kipnis-Shamir) 1999: Cryptanalysis of Hidden Field Equations (HFE).

2. NIST first call for post-quantum schemes:

Features: $M_i \in \mathbb{F}_q^{m \times n}$ and $\alpha_i \in \mathbb{F}_{q^{\eta}}$ M_i are not random. Multiple solutions.

• #Matrices = k = O(n).

- ZUI7 --> ZHFE, HFEV-, HFE-, KAINDOW.

3

Algorithms for MinRank

Cryptography Research Center

• $\forall i, j :$ $e_{i,j} = Linear_{i,j} (\alpha_1, ..., \alpha_k)$

- 1. Naive approaches \rightarrow Guess the α_i or the $e_{i,j}$
- 2. Kernel Search \rightarrow Guess enough L.I vectors in kernel(E).

$$\begin{bmatrix} E & = & M_0 & +\sum_{i=1}^k \alpha_i & M_i \end{bmatrix} \downarrow & \bullet & \forall i, j : \\ & \downarrow & & e_{i,j} = Linear_{i,j} (\alpha_1, \dots, \alpha_k) \\ & & \downarrow \\ \mathbf{0} = & M_0 \cdot \mathbf{v} + \sum_{i=1}^k \alpha_i (M_i \cdot \mathbf{v}) & \rightarrow m \text{ linear eqs in the } \alpha_i \end{bmatrix}$$

- 1. Naive approaches \rightarrow Guess the α_i or the $e_{i,j}$
- 2. Kernel Search \rightarrow Guess enough L.I vectors in kernel(E).

3. Hybrid approach
$$\rightarrow$$

(basic case) $E = M_0 + \sum_{i=1}^k \alpha_i M_i$

$$\begin{bmatrix} E & = & M_0 & +\sum_{i=1}^k \alpha_i & M_i \end{bmatrix} \downarrow & \bullet & \forall i, j : \\ & \downarrow & & e_{i,j} = Linear_{i,j} (\alpha_1, \dots, \alpha_k) \\ & & \downarrow \\ \mathbf{0} = & M_0 \cdot \mathbf{v} + \sum_{i=1}^k \alpha_i (M_i \cdot \mathbf{v}) & \rightarrow m \text{ linear eqs in the } \alpha_i \end{bmatrix}$$

- 1. Naive approaches \rightarrow Guess the α_i or the $e_{i,j}$
- 2. Kernel Search \rightarrow Guess enough L.I vectors in kernel(E).

$$\begin{bmatrix} E & = & M_0 & +\sum_{i=1}^k \alpha_i & M_i \end{bmatrix} \downarrow & \bullet & \forall i, j : \\ & \downarrow & & e_{i,j} = Linear_{i,j} (\alpha_1, \dots, \alpha_k) \\ & & \downarrow \\ \mathbf{0} = & M_0 \cdot \mathbf{v} + \sum_{i=1}^k \alpha_i (M_i \cdot \mathbf{v}) & \rightarrow m \text{ linear eqs in the } \alpha_i \end{bmatrix}$$

- 1. Naive approaches \rightarrow Guess the α_i or the $e_{i,j}$
- 2. Kernel Search \rightarrow Guess enough L.I vectors in kernel(E).

$$\begin{bmatrix} E & = & M_0 & + \sum_{i=1}^k \alpha_i & M_i \\ & & & \downarrow \\ & & & \\ & & & \\ & & & \\ &$$

- 1. Naive approaches \rightarrow Guess the α_i or the $e_{i,j}$
- 2. Kernel Search \rightarrow Guess enough L.I vectors in kernel(E).

MR problem with one **known** column of *E*'

• Hybrid \rightarrow Guess l_{ν} of the α_i 's, and α vectors in kernel(E).

 $MinRank (m \times n, k, r) = q^{l_v + ar} MinRank (m \times (n - a), k - am - l_v, r).$

• Hybrid \rightarrow Guess l_{ν} of the α_i 's, and α vectors in kernel(E).

 $MinRank (m \times n, k, r) = q^{l_v + ar} MinRank (m \times (n - a), k - am - l_v, r).$

• Hybrid \rightarrow Guess l_v of the α_i 's, and α vectors in kernel(E).

 $MinRank (m \times n, k, r) = q^{l_v + ar} MinRank (m \times (n - a), k - am - l_v, r).$

1. Minors
$$\rightarrow$$
 Minor_of_size_(r+1) $\left(M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell \right) = 0$

• Hybrid \rightarrow Guess l_v of the α_i 's, and α vectors in kernel(E).

 $MinRank (m \times n, k, r) = q^{l_v + ar} MinRank (m \times (n - a), k - am - l_v, r).$

1. Minors
$$\rightarrow$$
 Minor_of_size_(r+1) $\left(M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell \right) = 0 \implies \text{degree-(r+1) polys in } \alpha_i$

• Hybrid \rightarrow Guess l_v of the α_i 's, and α vectors in kernel(E).

 $MinRank (m \times n, k, r) = q^{l_v + ar} MinRank (m \times (n - a), k - am - l_v, r).$

1. Minors
$$\rightarrow$$
 Minor_of_size_(r+1) $\left(M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell \right) = 0 \implies \text{degree-(r+1) polys in } \alpha_i$
2. Kipnis-Shamir $\rightarrow \left(M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell \right) \cdot {\binom{l_{n-r}}{K}} = 0$

• Hybrid \rightarrow Guess l_v of the $\alpha_i's$, and α vectors in kernel(E).

 $MinRank (m \times n, k, r) = q^{l_v + ar} MinRank (m \times (n - a), k - am - l_v, r).$

• Algebraic:

1. Minors \rightarrow Minor_of_size_(r+1) $\left(M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell \right) = 0 \implies \text{degree-(r+1) polys in } \alpha_i$ 2. Kipnis-Shamir $\rightarrow \left(M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell \right) \cdot {\binom{I_{n-r}}{K}} = 0 \implies \text{bilinear in } \alpha_i \text{ and entries of } K.$

• Hybrid \rightarrow Guess l_v of the α_i 's, and α vectors in kernel(E).

 $MinRank (m \times n, k, r) = q^{l_v + ar} MinRank (m \times (n - a), k - am - l_v, r).$

• Algebraic:

1. Minors
$$\rightarrow$$
 Minor_of_size_(r+1) $\left(M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell \right) = 0 \implies \text{degree-(r+1) polys in } \alpha_i$
2. Kipnis-Shamir $\rightarrow \left(M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell \right) \cdot {\binom{I_{n-r}}{K}} = 0 \implies \text{bilinear in } \alpha_i \text{ and entries of } K$

3. Support-Minors \rightarrow

• Hybrid \rightarrow Guess l_v of the α_i 's, and α vectors in kernel(E).

 $MinRank (m \times n, k, r) = q^{l_v + ar} MinRank (m \times (n - a), k - am - l_v, r).$

• Algebraic:

1. Minors
$$\rightarrow$$
 Minor_of_size_(r+1) $\left(M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell \right) = 0 \implies \text{degree-(r+1) polys in } \alpha_i$
2. Kipnis-Shamir $\rightarrow \left(M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell \right) \cdot {\binom{l_n - r}{K}} = 0 \implies \text{bilinear in } \alpha_i \text{ and entries of } K$.

3. Support-Minors \rightarrow

$$\forall i \text{ Minors} \left(\begin{array}{c} i \text{-th row of } M \\ C = \text{Gen of row space } E \end{array} \right)$$
Hybrid approach and Algebraic

• Hybrid \rightarrow Guess l_v of the α_i 's, and α vectors in kernel(E).

 $MinRank (m \times n, k, r) = q^{l_v + ar} MinRank (m \times (n - a), k - am - l_v, r).$

• Algebraic:

1. Minors
$$\rightarrow$$
 Minor_of_size_(r+1) $\left(M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell \right) = 0 \implies \text{degree-(r+1) polys in } \alpha_i$
2. Kipnis-Shamir $\rightarrow \left(M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell \right) \cdot {\binom{l_n - r}{K}} = 0 \implies \text{bilinear in } \alpha_i \text{ and entries of } K$.

3. Support-Minors \rightarrow

$$\forall i \text{ Minors} \left(\begin{array}{c} \frac{i \text{-th row of } M}{C = \text{Gen of row space } E} \end{array} \right) = 0$$

Hybrid approach and Algebraic

• Hybrid \rightarrow Guess l_{ν} of the α_i 's, and α vectors in kernel(E).

 $MinRank (m \times n, k, r) = q^{l_v + ar} MinRank (m \times (n - a), k - am - l_v, r).$

Algebraic:

1. Minors
$$\rightarrow$$
 Minor_of_size_(r+1) $\left(M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell \right) = 0 \implies \text{degree-(r+1) polys in } \alpha_i$
2. Kipnis-Shamir $\rightarrow \left(M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell \right) \cdot {l_n - r \choose K} = 0 \implies \text{bilinear in } \alpha_i \text{ and entries of } K$.
3. Support-Minors $\rightarrow M$
 $\forall i \text{ Minors} \left(\underbrace{ \frac{i - \text{th row of } M}{C} = \text{ Gen of row space } E} \right) = 0 \implies \text{bilinear in } \alpha_i \text{ and minors of } C.$

Zero-Knowledge proofs

Cryptography Research Center

- Executed by **Prover**(*s*, *w*) and **Verifier**(*s*)
- **Goal**: Proof (s, w) satisfy a relation R.
- **Requires:**

-

- **ZK**: No info of *w* is leaked to **Verifier.**
- Soundness:

Someone without w cheats with Prob \leq Soundness Error

- Executed by **Prover**(*s*, *w*) and **Verifier**(*s*)
- **Goal**: Proof (s, w) satisfy a relation R.
- **Requires:**
- **ZK**: No info of *w* is leaked to **Verifier.**
- Soundness:

Someone without w cheats with Prob \leq Soundness Error

ZK proofs for MinRank

$$s = (M_0, ..., M_k), w = (\alpha_1, ..., \alpha_k)$$
$$R \to Rank(M_0 + \sum_{i=1}^k \alpha_i M_i) \le r$$

- Executed by **Prover**(*s*, *w*) and **Verifier**(*s*)
- **Goal**: Proof (s, w) satisfy a relation R.

Requires:

- **ZK**: No info of *w* is leaked to **Verifier.**
- Soundness:

Someone without w cheats with Prob \leq Soundness Error

ZK proofs for MinRank

$$s=(M_0,\ldots,M_k),\ w=(\alpha_1,\ldots,\alpha_k)$$

$$R \rightarrow Rank(M_0 + \sum_{i=1}^k \alpha_i M_i) \leq r$$

Previous MinRank ZK proofs

Authors	Туре	Year	S. error
Courtois	3-pass	2001	2/3
Bellini-Esser- Sanna-Verbel	3-pass + Helper	2022	1/2
Adj-Rivera- Verbel	MPCitH	2022	O(1/N)
Feneuil	MPCitH	2022	O(1/N)

N- Party MPC protocol

N- Party MPC protocol

Given: function f and value zGoal: Verify if f(x) = z, with $x = \sum x_i$ Output: accept : P'_i 's think they **do** share x. <u>reject</u> : P'_i 's think they **don't** share x

N- Party MPC protocol

Given: function f and value zGoal: Verify if f(x) = z, with $x = \sum x_i$ Output: accept : P'_i 's think they **do** share x. reject : P'_i 's think they **don't** share x

N- Party MPC protocol

Given: function f and value zGoal: Verify if f(x) = z, with $x = \sum x_i$ Output: $accept : P'_i$'s think they **do** share x. $reject : P'_i$'s think they **don't** share x

False-Positive-Rate = $\Pr[\text{accept} | f(x) \neq z]$

No information on x_i leaked to P_j for $j \neq i$

Given: MPC protocol

<u>Goal:</u> zero-knowledge proof solution

(Prover *P* wants to identify to verifier *V*)

Given: MPC protocol

<u>Goal:</u> zero-knowledge proof solution

(Prover *P* wants to identify to verifier *V*)

<u>Prover</u>

prepare MPC inputs x_i and commit

Simulate MPC protocol based on R and commit

Reveal all views of Parties P_i , $i \neq i^*$

Given: MPC protocol

<u>Goal:</u> zero-knowledge proof solution

(Prover *P* wants to identify to verifier *V*)

<u>Prover</u>

prepare MPC inputs x_i and commit

Simulate MPC protocol based on R and commit

Reveal all views of Parties P_i , $i \neq i^*$

<u>Verifier</u>

Sample first challenge R

Sample second challenge i^*

Given: MPC protocol

<u>Goal:</u> zero-knowledge proof solution

(Prover *P* wants to identify to verifier *V*)

Given: MPC protocol

<u>Goal:</u> zero-knowledge proof solution

(Prover *P* wants to identify to verifier *V*)

Models MinRank as a bilinear system

Models MinRank as a bilinear system

$$\left(M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell\right) \cdot \binom{I_{n-r}}{K} = 0$$

Models MinRank as a bilinear system

$$\left(M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell\right) \cdot \binom{I_{n-r}}{K} = 0$$

Solving system \Rightarrow Solving MinRank!

Models MinRank as a bilinear system

$$\left(M_{0} + \sum_{\ell=1}^{k} \alpha_{\ell} M_{\ell} \right) \cdot {\binom{I_{n-r}}{K}} = 0 \qquad \text{Solving}$$

$$M_{\vec{\alpha}} \cdot {\binom{I_{n-r}}{K}} = 0 \iff M_{\vec{\alpha}}^{L} = -M_{\vec{\alpha}}^{R} \cdot K$$

Solving system \Rightarrow Solving MinRank!

Models MinRank as a bilinear system

$$\left(\begin{pmatrix} M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell \end{pmatrix} \cdot \begin{pmatrix} I_{n-r} \\ K \end{pmatrix} = 0 \qquad \text{Solving sys} \\ M_{\overrightarrow{\alpha}} \cdot \begin{pmatrix} I_{n-r} \\ K \end{pmatrix} = 0 \iff M_{\overrightarrow{\alpha}}^L = -M_{\overrightarrow{\alpha}}^R \cdot K$$

Solving system \Rightarrow Solving MinRank!

Knowledge of MinRank solution $\vec{\alpha}$ \Leftrightarrow Knowledge of K such that $M_{\vec{\alpha}}^L = -M_{\vec{\alpha}}^R \cdot K$

 $\vec{\alpha}$ solution of MinRank problem M_0, M_1, \dots, M_k

 $\vec{\alpha} = \sum_{i=1}^{N} \vec{\alpha}_i$ and $K = \sum_{i=1}^{N} K_i$

 $\vec{\alpha}$ solution of MinRank problem M_0, M_1, \dots, M_k $\vec{\alpha} = \sum_{i=1}^N \vec{\alpha}_i$ and $K = \sum_{i=1}^N K_i$

$$\begin{array}{cccc}
P_1 & \longleftrightarrow & P_2 \\
(\vec{\alpha}_1, K_1) & & (\vec{\alpha}_2, K_2)
\end{array}$$

$$\begin{array}{cccc}
\uparrow & \swarrow & \uparrow \\
P_3 & & P_N \\
(\vec{\alpha}_3, K_3) & \longleftrightarrow & (\vec{\alpha}_N, K_N)
\end{array}$$

 $\vec{\alpha}$ solution of MinRank problem M_0, M_1, \dots, M_k $\vec{\alpha} = \sum_{i=1}^{N} \vec{\alpha}_i$ and $K = \sum_{i=1}^{N} K_i$ <u>Goal</u>: Verify parties share $(\vec{\alpha}, K)$ s.t. $M_{\overrightarrow{\alpha}}^L = -M_{\overrightarrow{\alpha}}^R \cdot K$ $\begin{array}{ccc} P_1 & \longleftrightarrow & P_2 \\ (\vec{\alpha}_1, K_1) & & (\vec{\alpha}_2, K_2) \end{array}$ Output: \mathbf{X} <u>accept</u> : P'_i 's think they **do** share $(\vec{\alpha}, K)$ $\begin{array}{ccc} P_3 & P_N \\ (\vec{\alpha}_3, K_3) & \longleftrightarrow & (\vec{\alpha}_N, K_N) \end{array}$ <u>reject</u> : P'_i s think they **don't** share $(\vec{\alpha}, K)$

 $\vec{\alpha}$ solution of MinRank problem M_0, M_1, \dots, M_k $\vec{\alpha} = \sum_{i=1}^{N} \vec{\alpha}_i$ and $K = \sum_{i=1}^{N} K_i$ <u>Goal</u>: Verify parties share $(\vec{\alpha}, K)$ s.t. $M_{\overrightarrow{\alpha}}^L = -M_{\overrightarrow{\alpha}}^R \cdot K$ $\begin{array}{ccc} P_1 & \longleftrightarrow & P_2 \\ (\vec{\alpha}_1, K_1) & & (\vec{\alpha}_2, K_2) \end{array}$ Output: \mathbf{X} <u>accept</u> : P'_i 's think they **do** share $(\vec{\alpha}, K)$ $\begin{array}{ccc} P_3 & P_N \\ (\vec{\alpha}_3, K_3) & \longleftrightarrow & (\vec{\alpha}_N, K_N) \end{array}$ <u>reject</u> : P'_i s think they **don't** share $(\vec{\alpha}, K)$

No information on $(\vec{\alpha}_i, K_i)$ leaked

 $\vec{\alpha} = \sum_{i=1}^{N} \vec{\alpha}_i$ and $K = \sum_{i=1}^{N} K_i$

 $\vec{\alpha}$ solution of MinRank problem M_0, M_1, \dots, M_k

 $\begin{array}{cccc}
P_1 & \longleftrightarrow & P_2 \\
(\vec{\alpha}_1, K_1) & & (\vec{\alpha}_2, K_2)
\end{array}$ $\begin{array}{cccc}
\uparrow & \swarrow & \uparrow \\
P_3 & & P_N \\
(\vec{\alpha}_3, K_3) & \longleftrightarrow & (\vec{\alpha}_N, K_N)
\end{array}$

Goal: Verify parties share $(\vec{\alpha}, K)$ s.t. $M_{\vec{\alpha}}^L = -M_{\vec{\alpha}}^R \cdot K$ Output: <u>accept</u> : P'_i s think they **do** share $(\vec{\alpha}, K)$ <u>reject</u> : P'_i s think they **don't** share $(\vec{\alpha}, K)$

No information on $(\vec{\alpha}_i, K_i)$ leaked

Matrix-Product MPC verifies (X, Y, Z) satisfies $X \cdot Y = Z$

Verifying Matrix-Product

Verifying Matrix-Product

Given : Party *i* holds matrices
$$Z_i, X_i, Y_i, C_i$$
 and A_i

<u>Goal</u> : Verify that $Z = X \cdot Y$

MPC-Protocol (Similar to [KZ22] over \mathbb{F}_q)

Verifying Matrix-Product

MPC-Protocol (Similar to [KZ22] over \mathbb{F}_{q})

- 1. Select a random $R \in \mathbb{F}_q^{t \times n}$
- 2. $S_i = R \cdot X_i + A_i$

Given

Goal

- 3. Broadcast S_i to obtain S
- 4. $V_i = S \cdot Y_i R \cdot Z_i C_i$
- 5. Broadcast V_i to obtain V
- 5. accept if V = 0, otherwise, reject

<u>Correctness</u> : If $Z = X \cdot Y$ and $C = A \cdot Y$, then parties **accept** <u>False-Positive rate</u>: If not, the Parties **accept** with prob. q^{-t}

Linearized Polynomials

Linearized Polynomials

- **Definition** $L: \mathbb{F}_{q^m} \to \mathbb{F}_{q^m}$ of the form $L(X) = X^{q^r} + \beta_1 X^{q^{r-1}} + ... + \beta_r X$
- Fact 1: Roots of *L* form a *r*-dimensional \mathbb{F}_{q} subspace of \mathbb{F}_{q^m} .
 - 0 is a solution
 - If x , y $\in \mathbb{F}_{q^m}$ are solutions then ax + by solution with a, b $\in \mathbb{F}_{q}$
- Fact 2: $\mathbb{F}_q^m \cong \mathbb{F}_{q^m}$

• Fact 3:

Linearized Polynomials

- **Definition** $L: \mathbb{F}_{q^m} \to \mathbb{F}_{q^m}$ of the form $L(X) = X^{q^r} + \beta_1 X^{q^{r-1}} + ... + \beta_r X$
- Fact 1: Roots of *L* form a *r*-dimensional \mathbb{F}_{q} subspace of \mathbb{F}_{q^m} .
 - 0 is a solution
 - If x, $y \in \mathbb{F}_{q^m}$ are solutions then ax + by solution with a, $b \in \mathbb{F}_{q^m}$
- Fact 2: $\mathbb{F}_q^m \cong \mathbb{F}_{q^m}$
- Fact 3: $E = M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell$ and represent E as $(e_1, \dots, e_n) \in \mathbb{F}_{q^m}^n$

$$Rank(\mathbf{E}) \le r \Leftrightarrow \mathbf{L}(e_1) = \dots = \mathbf{L}(e_n) = 0$$

- $\vec{\alpha} = \sum_{i=1}^{N} \vec{\alpha}_i$
- $L = \sum_{i=1}^{N} L_i$, where L_i linearized poly.

 $\vec{\alpha} = \sum_{i=1}^{N} \vec{\alpha}_i$

 $L = \sum_{i=1}^{N} L_i$, where L_i linearized poly.

 $\vec{\alpha} = \sum_{i=1}^{N} \vec{\alpha}_i$

 $L = \sum_{i=1}^{N} L_i$, where L_i linearized poly.

<u>Goal:</u> Verify parties share $(\vec{\alpha}, L)$ s.t. $L(e_i) = 0 \forall i,$ $e_1, \dots, e_n \in \mathbb{F}_{q^m}$ representing the cols of $E = M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell.$

 $\vec{\alpha} = \sum_{i=1}^{N} \vec{\alpha}_i$

 $L = \sum_{i=1}^{N} L_i$, where L_i linearized poly.

Goal: Verify parties share
$$(\vec{\alpha}, L)$$
 s.t.
 $L(e_i) = 0 \forall i,$
 $e_1, \dots, e_n \in \mathbb{F}_{q^m}$ representing the cols
of $E = M_0 + \sum_{\ell=1}^k \alpha_\ell M_\ell.$

$$\begin{array}{cccc}
P_1 & \leftrightarrow & P_2 \\
(\vec{\alpha}_1, L_1) & & (\vec{\alpha}_2, L_2)
\end{array}$$

$$\begin{array}{cccc}
\uparrow & \swarrow & \uparrow \\
P_3 & & P_N \\
(\vec{\alpha}_3, L_3) & \leftrightarrow & (\vec{\alpha}_N, L_N)
\end{array}$$

1. Select a random $\gamma_1, ..., \gamma_n \in \mathbb{F}_{q^m}$.

2. Run an MPC to verify that $\sum_{j=1}^{n} \gamma_j \mathbf{L}(\mathbf{e}_j) = 0$

• Set
$$\vec{\beta}_i \in \mathbb{F}_{q^m}^r$$
 as the coef. L_i

• Parties locally use $\vec{\alpha}_i$ to compute

 $z_i \in \mathbb{F}_{q^m}$ and $\overrightarrow{w}_i \in \mathbb{F}_{q^m}^r$

• Run Matrix-Product MPC to check

$$z = \overrightarrow{\beta} \cdot \overrightarrow{w}$$

Performance

Category I: SPHINS+ vs MinRank-based

Category I: SPHINS+ vs MinRank-based

Scheme	Variant	<i>sig</i> (bytes)	 p <i>k</i> (bytes)	Signing (million-cycles)	Verify (million-cycles)
SPHINCS+	fast	17.1 K		33.6	2.1
	short	7.9 K	0.03 K	644.7	0.8
MIRA	fast	7.4 K	0.08 K	43.7	43.1
	short	5.6 K	0.08 K	51.8	49.4
MiRitH	fast	7.9 K	0.13 K	5.2	4.7
	short	5.7 K	0.13 K	31.9	31.5

Comparitsion: Some MPCitH/ZK candidates (cat I)

Comparitsion: Some MPCitH/ZK candidates (cat I)

Scheme	Variant	<i>sig</i> (bytes)	 p <i>k</i> (bytes)	Sign time (million-cycles)	Verify time (million-cycles)	Security Assumption
MQOM	short	6.3 K	0.05K	32.8	29.5	MQ
RYDE	short	6.0 K	0.1 K	23.4	20.1	Rank-SD
LESS	large-pk	5.4 K	95.9 K	206	213	Linear Code Equiv.
CROSS	short	7.6 K	0.04 K	11.0	7.8	Restricted-SD
SDitH	short	8.2 K	0.12 K	13.4	12.5	d-split-SD
FEAST	short	4.5 K	0.03 K	53 ms	53 ms	AES
PERK	short	6.1 K	0.24 K	36.0	25.0	Permuted Kernel
MiRitH	short	5.7 K	0.13 K	31.9	31.5	MinRank
MIRA	short	5.6 K	0.08 K	51.8	49.4	MinRank

Comparitsion: Some MPCitH/ZK candidates (cat I)

Scheme	Variant	<i>sig</i> (bytes)	 p <i>k</i> (bytes)	Sign time (million-cycles)	Verify time (million-cycles)	Security Assumption
MQOM	short	6.3 K	0.05K	32.8	29.5	MQ
RYDE	short	6.0 K	0.1 K	23.4	20.1	Rank-SD
LESS	large-pk	5.4 K	95.9 K	206	213	Linear Code Equiv.
CROSS	short	7.6 K	0.04 K	11.0	7.8	Restricted-SD
SDitH	short	8.2 K	0.12 K	13.4	12.5	d-split-SD
FEAST	short	4.5 K	0.03 K	53 ms	53 ms	AES
PERK	short	6.1 K	0.24 K	36.0	25.0	Permuted Kernel
MiRitH	short	5.7 K	0.13 K	31.9	31.5	MinRank
MIRA	short	5.6 K	0.08 K	51.8	49.4	MinRank

