Variants of the Syndrome Decoding Problem and algebraic cryptanalysis

Pierre Briaud¹, joint work with Morten Øygarden²

Crypto Reading Club meeting, September 6, 2023

¹Inria Paris & Sorbonne Université ²Simula UiB Code-based crypto Secure Computation ("LPN")

$$\begin{split} \boldsymbol{G} & \hookleftarrow \mathcal{U}(\mathbb{F}_q^{k \times n}) \text{ full-rank, } \boldsymbol{m} & \hookleftarrow \mathcal{U}(\mathbb{F}_q^k) \\ \text{Error } \boldsymbol{e}, \ t \stackrel{def}{=} \text{HW}(\boldsymbol{e}) \text{ small} \end{split}$$

McEliece, BIKE, HQC, etc. Indistinguishability obfuscation

 $\mathsf{Parity-check} \ \boldsymbol{H} \hookleftarrow \mathcal{U}(\mathbb{F}_{q}^{(n-k) \times n}) \ \mathsf{full-rank}$ H^{T} \approx

What to change ?

- Public code: sparse, quasi-cyclic, ...
- Error distribution
- Metric: $\exists H M \rightarrow rank$ metric, Lee metric

Goal

Efficiency gain !

(at least)

On plain version

Information Set Decoding (ISD), Statistical Decoding \rightarrow combinatorial

More structure here !

- Improve generic solvers ?
- Other attack types ?

Algebraic cryptanalysis

- Reduction to polynomial system solving
- Applies to some variants

Regular Syndrome Decoding [BØ23] + Ongoing work

Advances in Cryptology – EUROCRYPT 2023.

B., Øygarden

[[]BØ23] Briaud and Øygarden. "A New Algebraic Approach to the Regular Syndrome Decoding Problem and Implications for PCG Constructions".

1) \times monomials:

(Homogeneous) Macaulay matrix M_d

2) Linear algebra:

RowEchelon(M_d) for $d \leq D$, solving degree

Regular Syndrome Decoding

Error distribution

Regular noise [AFS05]

Assume $n = N \times t$ for some $N \in \mathbb{N}$

- For $1 \leq i \leq t$, random $\boldsymbol{e}_i \in \mathbb{F}_q^N$, $\mathsf{HW}(\boldsymbol{e}_i) = 1$
- Error is $\boldsymbol{e} \stackrel{def}{=} (\boldsymbol{e}_1, \dots, \boldsymbol{e}_t) \in \mathbb{F}_q^n$

Secure Computation

Pseudorandom Correlation Generators (PCGs) [Boy+19]

[Boy+19] Boyle et al. Compressing Vector OLE.

B., Øygarden

[[]AFS05] Augot, Finiasz, and Sendrier. "A Family of Fast Syndrome Based Cryptographic Hash Functions". MYCRYPT 2005.

PCG for Vector OLE [Boy+19]

Want shares of long pseudorandom **u**

- 1. Function Secret Sharing (FSS) \rightarrow *t*-sparse vector *e*
- 2. Decoding Problem \rightarrow final u

2 ways !

Code rate $R \stackrel{def}{=} k/n$

Primal	Dual	
u = mG + e	$\boldsymbol{u} = \boldsymbol{e} \boldsymbol{H}^{T}$	
Very low R	Constant R	

Regular $\boldsymbol{e} ightarrow$ reduce FSS cost

Algebraic attack on Reg-SDP

- Tailored to noise distribution
- Can beat ISDs for low code rates (Primal)

Algebraic system for Reg-SDP

Modeling regular structure (q = 2)

Polynomial ring $R \stackrel{\text{def}}{=} \mathbb{F}_2[(e_{i,j})_{i,j}]$, *n* variables, block $e_i \stackrel{\text{def}}{=} (e_{i,1}, \ldots, e_{i,N}) \in \mathbb{F}_2^N$

Coordinates $\in \mathbb{F}_2$ (field equations)

$$\forall i, \forall j, e_{i,j}^2 - e_{i,j} = 0$$

One \neq 0 coordinate per block

$$\forall i, \ \forall j_1 \neq j_2, \ e_{i,j_1}e_{i,j_2} = 0 \tag{2}$$

Over \mathbb{F}_2 , this coordinate is 1

$$\forall i, \ \sum_{j=1}^{N} e_{i,j} = 1 \tag{3}$$

We consider
$$\mathcal{Q} \stackrel{def}{=} (1) \cup (2) \cup (3)$$

B., Øygarden

SDP variants and algebraic cryptanalysis

(1)

Linear equations $(\mathbf{h}_i i \text{-th row in } \mathbf{H})$

Parity-checks

$$\mathcal{P} \stackrel{def}{=} \{ \forall i \in \{1..n-k\}, \langle \boldsymbol{h}_i, \boldsymbol{e} \rangle - \boldsymbol{s}_i \}$$

More when *R* small:

$$\#\mathcal{P}=n-k=n(1-R)$$

Final system
$$\mathcal{S} \stackrel{def}{=} \mathcal{P} \cup \mathcal{Q}$$

Estimating solving degree

Hilbert series (HS)

Homogeneous ideal I,
$$R_d \stackrel{\text{def}}{=} \operatorname{span}\{\mu, \operatorname{deg}(\mu) = d\}, I_d \stackrel{\text{def}}{=} I \cap R_d$$

$$\mathcal{H}_{R/I}(z) \stackrel{def}{=} \sum_{d \in \mathbb{N}} \dim (R_d/I_d) z^d = \sum_{d \in \mathbb{N}} \dim (R_d) z^d - \sum_{d \in \mathbb{N}} \operatorname{Rank}(M_d) z^d$$

Typical case in crypto: / zero-dimensional

Consequence

HS polynomial of degree D-1

- Recover solving degree from HS !
- HS unknown in general :(

B., Øygarden

SDP variants and algebraic cryptanalysis

\rightarrow need to estimate it

Crypto Reading Club meeting 12 / 21

Easy to handle

$$\mathcal{Q}^{(h)} = \underbrace{\{\forall i \in \{1..t\}, \forall j \in \{1..N\}, e_{i,j}^2\}}_{(1)} \cup \underbrace{\{\forall i, \forall j_1 \neq j_2, e_{i,j_1}e_{i,j_2}\}}_{(2)} \cup \underbrace{\{\forall i, \sum_{j=1}^N e_{i,j}\}}_{(3)}$$

HS 1

Combinatorics:

$$\dim(R_d/\langle \mathcal{Q}^{(h)}\rangle_d) = \binom{t}{d}(N-1)^d$$

$$\mathcal{H}_{R/\langle \mathcal{Q}^{(h)} \rangle}(z) = (1 + (N-1)z)^t$$

Parity-checks \mathcal{P}

Require assumption. Hope: HS known for random systems

Assumption (\approx semi-regularity)

 $\mathcal{P}^{(h)}$ behaves randomly in quotient $R/\langle \mathcal{Q}^{(h)}
angle$

We have $\langle S^{(h)} \rangle = \langle \mathcal{P}^{(h)} \rangle + \langle \mathcal{Q}^{(h)} \rangle$. Under Assumption, we get

$$\mathcal{H}_{R/\langle \mathcal{S}^{(h)}
angle}(z) = \left[rac{\mathcal{H}_{R/\langle \mathcal{Q}^{(h)}
angle}(z)}{(1+z)^{n-k}}
ight]_+,$$

 $[.]_+$: truncation after first < 0 coef

HS 2 (under Assumption + using HS 1)

$$\mathcal{H}_{R/\langle \mathcal{S}^{(h)} \rangle}(z) = \left[rac{(1+(N-1)z)^t}{(1+z)^{n-k}}
ight]_+$$

Solving degree DWe had $D = \deg(\mathcal{H}_{R/\langle S^{(h)} \rangle}) + 1$ \rightarrow First < 0 coef in $\frac{(1 + (N - 1)z)^t}{(1 + z)^{n-k}}$

• Linear algebra on Macaulay matrix \pmb{M}_D , $2 \leq \omega < 3$

$$\mathcal{T}_{\mathsf{solve}}(\mathcal{S}) = \mathcal{O}(\#\mathsf{cols}(\pmb{M}_D)^\omega) = \mathcal{O}\left({t \choose D}^\omega (N-1)^{\omega D}
ight)$$

• Hybrid approach

 \rightarrow fix variables (here, in a structured way)

• XL-Wiedemann

 \rightarrow exploit sparse Macaulay matrix

Parameters from Boyle et al. [Boy+19], updated analysis by Liu et al. [Liu+22]

п	k	t	$\mathbb{F}_2 \; [Liu{+}22]$	This work \mathbb{F}_2	$\mathbb{F}_{2^{128}} \text{ [Liu+22]}$	This work $\mathbb{F}_{2^{128}}$
2 ²²	64770	4788	147	104	156	111
2 ²⁰	32771	2467	143	126	155	131
2 ¹⁸	15336	1312	139	123	153	133
2^{16}	7391	667	135	141	151	151
2 ¹⁴	3482	338	132	140	150	152
2 ¹²	1589	172	131	136	155	152
2 ¹⁰	652	106	176	146	194	180

[Liu+22] Liu et al. The Hardness of LPN over Any Integer Ring and Field for PCG Applications.

B., Øygarden

Other SDP variants

CROSS signature scheme [Bal+23]

Constrained coefs

• Full Hamming weight

$$\mathsf{HW}(\boldsymbol{e}) = n$$

• Coefs $e_i \in \mathbb{F}_q^{\times}$ restricted to subgroup

$$E=\langle g
angle,\;g\in \mathbb{F}_q^ imes$$
 of order z

Level 1 parameters q = 127, n = 127, k = 76, z = 7

SDP variants and algebraic cryptanalysis

 \rightarrow new NIST call

[[]Bal+23] Baldi et al. Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem.

Permuted Kernel Problem (PKP)

Introduced by Shamir in 1989

- PKP-DSS [Beu+18]
- PERK

Formulation

Parity-check $\boldsymbol{H} \in \mathbb{F}_q^{(n-k) \times n}$, public vector $\boldsymbol{y} \in \mathbb{F}_q^n$. Find secret $\boldsymbol{\sigma} \in \mathfrak{S}_n$ s.t.

$$oldsymbol{y}_{\sigma}oldsymbol{H}^{\mathsf{T}}=0, ext{ where } oldsymbol{y}_{\sigma}=(y_{\sigma(1)},\ldots,y_{\sigma(n)})$$

Level 1 PKP-DSS q = 251, n = 69, n - k = 41

B., Øygarden

 \rightarrow Chinese PQC competition \rightarrow new NIST call

 $⁽n! \approx q^{n-k})$

[[]Beu+18] Beullens et al. PKP-Based Signature Scheme.

Same approach for Hilbert series ?

- Seems fine for R-SDP
- Much more complicated for PKP