Community Contribution
Series

OSCAL-Pydantic: A python library for OSCAL

Credentive Security

Background

Oscal-Pydantic

0 https://github.com/RS-Credentive/oscal-pydantic/
GitHub

* An API for creating and manipulating OSCAL data models in Python
* Provides high-fidelity schemas of all OSCAL data elements
* Strives to be the reference implementation of OSCAL in Python

pip install oscal-pydantic

Building blocks

* Python (https://python.org)
* Popular scripting/programming language
* #2 behind Javascript on Github

* Applications include
* Web programming (server side)
* Scientific Computing (Big Data/Al)
* Strict, Dynamically typed language

* Pydantic (https://docs.pydantic.dev/latest/)

* Most widely used data validation library for Python
* Leverages type hints to provide strict, static typing
» Supports serialization to/from JSON

OSCAL Schema

https://pages.nist.gov/OSCAL-Reference/models/

* Built on top of NIST Metaschema
* https://pages.nist.gov/imetaschema/

* a common, format-agnostic modeling framework supporting schema,
code, and documentation generation

Oscal-Pydantic v1

OSCAL-Pydantic vl

* Inspired by Compliance Trestle
* https://github.com/IBM/compliance-trestle

* Dynamically generated from JSON Schema
* OSCAL JSON Schema - Datamodel-code-generator - Pydantic Models
* Hand tweaked to eliminate some issues with JSON Schema translation

e JSON “format” vs Regex
* Unicode Regex — e.g. “(\p{L}[_)(\p{L} \p{N} [.\-_])*"

* OQutcome

* Lightweight library to support generation and validation of OSCAL Data and
import JSON objects

Example OSCAL data element

hash string m The value may be locally defined, or one of the following:

Hash o SHA-224: The SHA-224 algorithm as defined by NIST FIPS 180-4.
A representation of a cryptographic digest generated over a resource using a specified hash " ISHA-256;ThelStA250algodthmiasidelined by NISTFIRS.160-4.
algorithm. o SHA-384: The SHA-384 algorithm as defined by NIST FIPS 180-4.
value| >

e SHA-512: The SHA-512 algorithm as defined by NIST FIPS 180-4.
o SHA3-224: The SHA3-224 algorithm as defined by NIST FIPS 202.
o SHA3-256: The SHA3-256 algorithm as defined by NIST FIPS 202

» Constraints (4)
¥ Properties (2)

i string @ or|1] .
algonthm w o SHA3-384: The SHA3-384 algorithm as defined by NIST FIPS 202.
Hash algorithm « SHA3-512: The SHA3-512 algorithm as defined by NIST FIPS 202.

The digest method by which a hash is derived. ¥ Constraints (4)
¥ Remarks IN(e1EY for . [@algorithm=("'SHA-224", 'SHA3-224")][atarget (value) must match the

regular expression 'A[0-9a-fA-F]{28}$"
IN(e313] for . [@algorithm=("'SHA-256", 'SHA3-256")]: a target (value) must match the

» regular expression 'A[0-9a-fA-F]{32}$"
IN(e3]3] for . [@algorithm=("'SHA-384', 'SHA3-384")]|: atarget (value) must match the

regular expression 'A[0-9a-fA-F]{48}$"

value string (8 or 1] I for . [@algorithm=('SHA-512", 'SHA3-512")] |: a target (value) must match the
regular expression 'A[0-9a-fA-F]{64}$".
Hash Value

This property provides the (nominal) value for this object as a whole.

Any other value used MUST be a value defined in the W3C XML $ecurity Algorithm Cross-Reference @
Digest Methods (W3C, April 2013) or REC 6931 Section 2.1.5 @ New SHA Functions.

» Constraint (1)

OSCAL-Pydantic vl Example

class Hash(BaseModel):
class Config:
extra = Extra.forbid

algorithm: Annotated]|
str,
Field(
description="Method by which a hash is derived",

regex=""\\ \\ ’
title="Hash algorithm",

)r
]

value: str

Issue: Machine code is not for humans

* Autogenerated schemas are tough to read and use
* Lots of Root Models
* A lot of repetition

 Difficult to extend/customize

Issue: Inherited JSON Schema limitations

* Constraints are limited to attribute values (regex) or “formats”

* No way to define relationships between attributes
* IF “algorithm” == “SHA-224"
 THEN "value” must be a 28 character string
* AND only comprised of the characters 0-9, a-f, or A-F

Oscal-Pydantic v2

Back to the drawing board

Oscal-Pydantic v2 Approach

* Leverage Pydantic v2
* 4x — 50x faster than Pydantic vl (~17x in general)

* Hand produced
* Less Repetition
* Designed for humans to extend and customize
e Closer alignment with underlying metaschema
* (In Progress) Support for all validation rules

OSCAL-Pydantic v2 Example

OscalString = Annotated[str, constr(pattern=r"\s.\S+")]

class Hash(base.OscalModel):
algorithm: datatypes.0OscalString | None = Field(
description="""
Method by which a hash is derived <..>

default=None,
pattern=“~SHA3?7-(224|256|384|512)%",
)
value: datatypes.OscalString | None = Field(
description="""
The value of the hash

default=None,

OSCAL-Pydantic v2 Example

@model_validator(mode="after")

def validate_hash_for_algorithm(self):
if self.algorithm is not None and self.value is None:
raise ValueError("Hash Algorithm specified without Value")

elif self.algorithm == "SHA-224" or self.algorithm == "SHA3-224":
if len(self.value) == 28 and|self.va1ue_is_hex()|:
return self def value_is_hex(self) -> bool:
else: # Quick trick to check if a string is only HEX
raise ValueError("Hash value length or contents do not match algorithm") # try to convert it to an int.
elif self.algorithm == "SHA-256" or self.algorithm == "SHA3-256": # If it doesn't work, there's a bad character in there.
<.> try:
))) int(self.value, 16)
elif self.algorithm == "SHA-384" or self.algorithm == "SHA3-384": return True
<> except ValueError:
elif self.algorithm == "SHA-512" or self.algorithm == "SHA3-512": return False
<..>
else:

return self

A tour of OSCAL-Pydantic v2

oscal-pydantic

models

core

Oscal-Pydantic core modules

» oscal_pydantic.core.datatypes
e core Metaschema datatypes

* oscal_pydantic.core.base.OscalModel
Subclass of pydantic.BaseModel
Common Field Alias Generator

* Json attributes (“-”) to snake_case (
e Can’t use “class” as a field (reserved word)
Override “model_dump_json” method

* Exclude null, always use alias, pretty print
Maybe common content validator code?

o H)

Oscal-Pydantic core modules

e oscal-pydantic.core.common
* Common OSCAL elements that appear in many parts of models

e oscal-pydantic.core.properties
* Implements documented OSCAL properties
* Implements full set of constraints
* User Extensible
* UNDER CONSTRUCTION

Oscal-Pydantic modules

* oscal_pydantic.catalog <- Now

» oscal_pydantic.system_security_plan
» oscal_pydantic.profile

* oscal_pydantic.component_definition
» oscal_pydantic.assessment_plan

e oscal_pydantic.assessment_results

* oscal_pydantic.plan_of_action_and_milestones

OSCAL Pydantic in Action

Help Wanted

Next Steps

* Fix Properties

* Finish Catalog
* Develop elements for Test Cases

Help Wanted: Properties

* Properties are very special parts of the OSCAL specification

* Complex validation rules
 Numerous different types of properties
* Designed to be extensible

e OSCAL Pydantic must also provide full validation for all the various
properties, and must support extension

* Currently working to identify the best way to enforce validation rules
in an easily extensible way.

Help Wanted: Test Cases

* Integration testing is critical to maintaining a high-quality
implementation
» Testing requires a library of valid and invalid artifacts

* Needed for every project implementing OSCAL regardless of
language or domain.

» Suggestion: Should test cases be a separate project maintained on
behalf of the community?

