

The HomomorphicEncryption.org Community and the Applied Fully Homomorphic Encryption Standardization Efforts

Kurt Rohloff krohloff@dualitytech.com

Presentation for NIST STPPA6

07/25/2023

The Data Collaboration Challenge

What are we standardizing? Data Collaboration Tools **PETs: Enrich and Analyze Encrypted Data**

Analytics and Machine Learning Application

- Relies on Threshold FHE
- Aggregate encrypted data from multiple sources
- Machine learning while preserving privacy and trust

- Statistics & Inferences on encrypted data
- Privacy and confidentiality preserved
- Supported by regulators
- Compliant with privacy and industry regulations

Query Application

 Enabling secure collaboration on sensitive data while preserving privacy and trust

- Encrypt Queries and keep them private
- Privacy and confidentiality preserved
- Compliant with privacy and industry regulations

Public / Private Collaboration

BACKGROUND

- LEA and private sector partners need to share PII to detect and prevent financial crimes, and investigate networks
- Certain data cannot be shared until suspicion threshold is reached – which may never happen

SOLUTION

- Each participant deploys encrypted queries to hide subjects of investigation / customer info
- Insights can be shared without moving data

RESULTS

- Ability to share data even "pre suspicion"
- **Responses in minutes** rather than weeks
- Improved attribution and case building
- Ability to collaborate in compliance with GDPR

"If your organisation shares large volumes of data, particularly special category data, we recommend that... you start considering using PETs."

~John Edwards, UK Information Commissioner

Fully Homomorphic Encryption

Security and Trust – This REALLY Matters

Adoption of PETS and FHE is a three-legged stool

- Imperative to use general, certified techniques.
 - Avoid customizations and short-cuts that impact security.
- Use ONLY Known and Vetted FHE Schemes
 - BGV / BFV, CKKS and TFHE / FHEW All use same security properties
- Standard Open-Source Libraries
 - Need to be able to trace contributions
- Security Standards
 - For FHE homomorphicencryption.org
 - Standard provides scheme designs and security parameters.
 - Religiously follow ALL security standards

http://homomorphicencryption.org/wp-content/uploads/2018/11/HomomorphicEncryptionStandardv1.1.pdf

FHE Schemes

- Earliest: Craig Gentry Thesis (2009)
 - Early implementation by Shai Halevi and Gentry
 - Inefficient runtime, ½ hour for bitwise AND operation on encrypted data.
 - Innovation: Bootstrapping
- 2nd generation: BV/BGV schemes (2011), NTRU/LTV (2011), GSW
 - BV/BGV is one of the main practical schemes used now.
 - Innovation: "Leveling" to allow practical Somewhat Homomorphic Encryption (SHE) without bootstrapping. Enables depth-n computations, as long as n is less than 16 or so.
- 3rd generation : BFV, BFV_rns, CKKS, FHEW, TFHE
 - All of these schemes are currently widely used.
 - Different applications for different FHE protocols.

Lattice Encryption Intuition?

 Encryption, Decryption, etc... are primarily composed of linear transforms over large integer vectors.

Security, Correctness and Performance Tradeoffs

- Need to maximize performance while guaranteeing correctness and security.
- Security in FHE is captured by "bits of security".
 - Comes from "brute force attack estimates."
 - FHE resistant to quantum computing attacks.

Libraries

- OpenFHE / PALISADE
 - What we use at Duality. Came out of DARPA community.
- HELib
 - by IBM. The oldest active library supports BGV.
- SEAL
 - by Microsoft Research supports CKKS. Less actively developed now.
- LattiGo
 - implements major schemes in Go
- HEANN
 - Korean approximate scheme with CKKS.
- TFHE and Concrete
 - Implement the TFHE protocol.

Performance and Maturity Over Time

Duality

Hardware Acceleration

- This is a major emerging topic in the FHE community.
- We're tracking this closely to support interoperability between libraries and hardware.
- Duality, Intel, Cornami, Optalysys, ChainReaction, etc...

HomomorphicEncryption.org Standards

- Standards compliance provides crypto-agility, resilience and trust
 - Security standards defined by the HomomorphicEncryption.org consortium
- Consortium is organically led and includes leading government, private sector, and academic organizations:
 - Intel, IBM, Microsoft, Samsung, SAP, Google, Inuit, and many more...
 - NIH, NIST, CSE and many more...
 - MIT, NJIT, UCSD, and many more...
- Standard is in the process of being adopted by major international standards bodies, notably the UN-ITU and ISO

Proposed Drafts (1/2)

- Use Cases and Threat Models
 - Genome Wide Association Studies
 - VoIP Mixing
 - Health Risk Scores
 - ML Inference
 - ML Training

Thank you!

- Kurt Rohloff
 - krohloff@dualitytech.com

