A Hitchhiker's Guide to
Cryptography Code Audit

Tommaso Gagliardoni
Marco Macchetti
Sylvain Pelissier

Presented at the NIST Crypto Reading Club, on 2024-02-24 KUDEI'SKI Q

SECURITY

Who are we?

Tommaso Gagliardoni

PhD from TU Darmstadt
Cryptography + Quantum
CRYPTO,EC,CCS,PQCRYPTO..
@tomgag@infosec.exchange

Marco Macchetti

Hardware security design
Applied cryptography and
cryptanalysis
marco.macchetti@nagra.com

KUDELSKI
SECURITY Q

Sylvain Pelissier

Security researcher
Applied Cryptography
CTF player
@ipolit@mastodon.social

Introduction

Philosophy

What is a cryptographic code audit? What is different
from a traditional code audit?

Who can do a crypto code audit?
Who needs a crypto code audit?

What is expected? What if everything goes well? What if
something goes wrong?

What is the value of a crypto code audit?

FINTECH BANKING CAPITAL MARKETS DIGITAL ASSETS SUSTAINABILITY ESG PRESS RELEASES

io.finnet and Kudelski Security Uncover Four
Critical Vulnerabilities In Popular Digital . .
Signature Protocols For MPC Wallets Security Audit

Press Release March 21,2023

nA full review of this library was carried out by Kudelski Security and thei
2019. A copy of this report audit-binance-tss-1ib-final-20191018.pdf

this repository.

(3)BINANCE

« Moving complicated zero-knowledge protocols from theory to practice is hard.
« Suddenly it really really matters that the security proof is correct.

« As a community we are still learning the best practices for how to ensure this.

Standards

EasyCrypt Audits St

Independent
Peer Review Waiting a While ndependen
Proofs

What is the of a crypto code audit?

Factors to consider

Is the client from North Korea or similar?
Do they want to pay us in [random sh*tcoin]?
Are we up to the task?

o Do we have the right people?

o Do we have enough time?

o Do we have availability?

How much work is it?

© Number of LoC

o Dependencies

o Complexity

o Documentation

Is a code audit really feasible/necessary?

Code audit process

Engagement

e C(lient reaches out to us, typically via referral or
website, contact form, etc

® Pre-sales person is assigned to the case to acquire
info, sign NDA if necessary, etc

e Technical people (us) get onboard to scope the
engagement

e A proposal is prepared by the Sales dept. and sent to
the customer

e If accepted, a PM is assigned, a team is formed
(minimum 2 auditors), and a kickoff call is scheduled

Preparation

e During kickoff, questions are asked
o Fine-tuned schedule constraints
o Additional documentation
o Point of contacts
o Threat model
® Quick communication channel with devs

From: Tommaso Gagliardoni <tommaso.gagliardoni@kudelskisecurity.com>
Sent: Monday 15 January, 2024 11:46

T0: M £rom: Mathias Spazzercurt <matt

Subje' gent: Thursday, 18 January, 2024

To: T¢From: Johnas Buzzers» vorth <jol

’ <johnsent: Monday, 22 January, 2024 11:48

20529 SubjETo Tommaen Gasliardnni <tamr oliar, mlndslckicarniritvy ram> Mathiac Qnazzarcurt
From: Neo <neo@su p.io>

Hello

<matl

Cheer Hello, subje 1. Sent: Tuesday, 30 Febru 2024 11:48
Tomm Comp To: Tommaso Gaghardo ommaso.gagliardoni
Hello <math (
All thebe m¢ Subjec
Mathi
Thank My answers inline below.
Johna

Hey, do you use the variable FOOBAR
anywhere else in code?

Cool, thanks

10

The Audit

Download code, setup private repo

Get familiar with specs and documentation
Ramp-up if necessary

As a preliminary step: compile, run tests, run
Automated tools if possible

Make annotations, discuss internally and with client if
necessary

Create draft report, send to client for review

Wait for client fixes, feedback, tests, etc

If found vuln with widespread impact, prepare
responsible disclosure etc

Create final report

11

Aftermath

When everything is fixed or set-up:

e Publish the report if possible
Report vulnerabilities with a CVE number
e Publish a blog post to detail the findings

12

What could possibly go wrong

Documentation is in Chinese, client suggests using
Google Translate

Client sends a list of single lines to audit

“Hey, we found a big vuln” -> Client ghosts us
Client takes forever to fix, asks to keep
confidentiality

“Oh, we forgot to say, can we pay you in [random
sh*tcoin]?”

“Great job, thanks! In the meantime we did a couple of
commits, can you start over again?”

We miss something obvious

We miss something important

13

The case of threshold crypto

Threshold signatures

MPC and threshold cryptography are quite popular targets
for implementation at production level

Blockchain / secure wallets (high market value)

Companies rush in developing libraries to implement
threshold signatures and more advanced schemes (e.gq.
hierarchical threshold)

There are different known methods in the literature

e Lindell

e GG18/GG20/CMP/CGGMP
e DKLS19/DKLS23

® Frost

15

Threshold signatures

No established standard so far (pick your favorite)

NIST upcoming effort on standardization (full schemes and
sub-components)

Many customers choose or approaches
Resonance from crypto conferences and forum discussions
Let’s take it as example and trace for our discussion

e Paper/documentation
® Technical content
e Pailn points

16

1.2

The previous version of the protocol uses the

The issue with the previous version

Pa

pers VS Specs

Quite often, a paper is published in several versions (not

all

protocol presented in

*We

poir

it

out that our

peer reviewed)

Authors can fix things

Cryptology ePrint Archive

Paper 2020/540
One Round Threshold ECDSA with Identifiable Abort

27]. As pointed out ir
o Gennaro and Stey

work is independent from these.

cond Revisions s issues with the multiplicative to additive share conversion protocol. First Revision
in the mal lentification pr I, and a typo in the evaluation graph, and a confusing

sentence in the introduction.

Note: This report is now obsolete and readers should refer to the joint paper [8]
which subsumes it. The paper below is a revised version of the previous eprint

version which fixes some crucial details in the protocol. The proof of the protocol
described in the previous version is not correct, though no attack has been shown
that exploits the bug in the proof. More details appear in the Introduction.

17

Papers VS Specs

A paper references previous and contemporary
attempts/constructions and may reuse concepts and
components without describing them in detail

An academic paper is not a specification: its goal is to
present new techniques and compare them against existing

ones

e Phase 3 Let N; = p;q; be the RSA modulus associated with E;. Each player P; proves in

ZK that he knows z; using Schnorr’s protocol [46], that N; is square-free using the proof of
Gennaro, Micciancio, and Rabin [32], and that h; hs generate the same group modulo N;.

18

Papers VS Specs

To build the chain

you have thus to follow all ramifications of a paper
A paper can be extended and merged with others
GG18 == (G20 === CGGMP

Authors automatically "outdate" previous papers, but for
deployed implementations and libraries it is much more complex

Projects can be abandoned, forked, loosely maintained

19

Papers VS Specs

What is the impact of a discovered weakness/flaw?

Is it impacting a single version of a protocol or also
previous/next versions? Paper version? Library version?

Customers ask for consulting, not simple collection of info

Sometimes a weakness is tagged as low importance by us,
because we can't immediately produce a path to a working
attack

But that doesn't mean it should not be patched
TSShock story -> Sylvain will speak about it later

20

Implementations

An implementation typically relies on existing libraries
(no one wants to reinvent the wheel)

The panorama is varied, as implementations can be 1in
several languages, e.g. Rust or Golang or C or

Each having its own ecosystem and peculiarities

Often we don't audit such dependencies, unless explicitly
requested

21

Implementations

A threshold signature scheme is not a simple primitive, but
rather a complex protocol composed by many pieces (e.q.
Groth-Shoup 23 is 99 pages long!)

To implement threshold ECDSA we have to implement:

Paillier encryption and RSA modulos -> safe primes
Good randomness sources to sample uniformly
Network protocols to connect parties

Zero knowledge proofs

Multiplicative to additive share conversion
Commitment algorithms

Verifiable secret sharing

Elliptic curve cryptography

22

What could go wrong? Randomness

Basic assumption for any scheme

e Phase 1. Each Player P; selects k;,v; €r Z,; computes [C;, D;] = Com(g”) and broadcast

i

Uniform sampling of random values in a given range
Bad 1ibs/PRNGs [MT, python’s random]
No checks on returned randomness [error code and length]

Modulo bias from using truncated values and/or simple
modulo reduction

Can lead to key compromise e.g. biased ECDSA nonces

23

What could go wrong? Randomness

Solution #1: rejection sampling

® Repeat sampling from wider range (typically the nearest
power of 2) and discard value if not in correct range

Solution #2: sampling from a wider range and reduce with
modulo

e If range is extended by 128 bits, reducing modulo q is
fine. Expected bias is 27-128, typically comparable
with the scheme’s claimed security level

24

What could go wrong? Networking (1)

Paper assume P2P and broadcast communication protocols,
without discussing their implementation

Communication between machines over a network is modeled by way of subroutine-machines that represent
the behavior of the actual communication network under consideration. In this work we assume for simplicity
that the parties are connected via an authenticated, synchronous broadcast channel. That is, the computation

proceeds in rounds, and each message sent by any of of the parties at some round is made available to all

Broadcast is especially tricky because we have to ensure
all parties receive the same messages

Can be easy if trusted dealer is present

Otherwise, implementations try to optimize by re-using P2P
connections to mock broadcast

25

What could go wrong? Networking (1)

Example is key refreshing; parties refresh their private
key shares after key generation

In case of P2P used in place of broadcast, they finally
send each other ACK/NOTACK with an additional round

But a malicious player can send ACK to half parties (which
will update share) and NOTACK to the other half (which will
discard new share)

Key is lost! Forget and forgive attack

26

What could go wrong? Networking (1)

A way to fix is to introduce one more round where parties
send each other the full lists of ACK/NOTACK answers from
the previous round

But a malicious party can again send a full ACK list to
some parties and different lists to others!

Leading to “improved-yet-another-ack” follow ups, etc..

Solution: use published solution such as
(Goldwasser Lindell 2002)

27

What could go wrong? Networking (2)

P2P connections must be encrypted and authenticated
key exchange === shared symmetric key

This is fine, but papers also include techniques to
identify dishonest parties (identifiable aborts)

In this case, shared keys cannot provide non-repudiability

Single phrase 1in paper identifiable aborts section:

First of all we assume that all messages transferred between players are signed, so that it is

possible to determine their origin.

28

What could go wrong? Networking (3)

Paper assume that single runs of the protocol are unique
and that values cannot be replayed from one execution to
the next

CGGMP introduces everywhere

— When obtaining output (X,Y,N,s,t) and (xi,yi, pi. qi), set ssid = (sid,rid, X,Y ,N,s,t)

— Sample p;,u; < {0,1}" and compute V; = H(ssid, i, X;, A;,Y;, B;, N;, si, t;, L:‘i. Pis Ui).
Broadcast (ssid, i, Vi).

but this is not stated explicitly in other papers allowing
replays of messages

29

What could go wrong? Commitments

Care has to be taken manipulating values in case of type
cast and/or concatenations, language specifics

Array of compressed ECC points entering an hash to compute
a commitment

c = H(r, P1, P2, .)
Points are cast to bytes from int to build the hash input
Golang int.Bytes()

if #bytes is not specified during conversion, 0x00 prefix
bytes are ripped off

30

What could go wrong? Commitments

A customer had such a function, that moreover inserted a
separator ‘S’ after each point

Consider the following two pairs of points A,B (ints):
[0x00 A1 .. A31] , [$’ B1 .. B31]
[A1 .. A31 ‘S’] , [0x00 B1 .. B31]

When Bytes is called and ‘S’ delimiters are put, in both
cases we get:

Al .. A31 ‘S’ ‘S’ Bl .. B31 ‘$’

Collision! -> Sylvain will talk more about this now!

31

Input malleability

Hash commitments

You commit to a value v but do not reveal i1t in advance:

H(e|v)

e is a blinding value used for randomization.

Revealing (e,v) later, allows everyone to verify the
commitment.

33

Hash commitment problems

There is a lack of separation between the blinding and the
committed values:

H (0x1337|0x1000) = H (0x133710]0x00)

We have the same commitment for two different values. The
scheme is not binding.

34

Commitment example

8 export namespace HashCommitment {
9
10 v export function createComwithBlind (message: BN, blindFactor: BN): BN {

11 const sha256 = cryptoJS.algo.SHA256.create()

12 sha256.update(Hex.toCryptoJSBytes(Hex.padEven(blindFactor.toString(16))))
13 sha256.update(Hex.toCryptoJSBytes(Hex.padEven(message.toString(16))))

14 const dig = sha256.finalize()

15 return new BN(cryptoJS.enc.Hex.stringify(dig), 16)

16 }

Commitment example

var msgl = new BN("1000", 16)

var blindl = new BN("1337", 16)

var coml = Cls.createComWithBlind(msgl, blindl)
console.log(coml.toString(16))

var msg2 = new BN("00", 16)

var blind2 = new BN("133710", 16)

var com2 = Cls.createComWithBlind(msg2, blind2)
console.log(com2.toString(16))

assert.strictEqual(coml.eq(com2), true)

36

Commitment example

Commitment
cde356c044a12a090c6148bdc8c90e5b945b8ecc081e3e414061601089F77105
cde356c044a12a090c6T48bdc8c90e5b945b8eccP81e3e414061601089177105

v It should collide!

1 passing (9ms)

37

Same problem different places

Those kind of constructions are used a lot in practice:

® Merkle trees
® MPC especially threshold signatures scheme (TSS)
® Zero Knowledge proofs

38

Practical attack

oy
A0
|

()
LUy

Last year, Kudelski Security was hired by io.Finnet to audit their modified version of BNB-
Chain's tss-lib. Kudelski Security reported to io.Finnet the same hash collision issue again
due to concatenating input values with delimiter '$'. The issue this time got mitigated by
io.Finnet in a more elegant way and later publicly disclosed as CVE-2022-47931 on Mar 28,

2023.

5\{; &) & research.kudelskisecurity.com/2023/03/23/multiple-cves-in-threshold-cryptography-impl...

verichains - -
CVE-2022-47931: Collision of hash values

The functions SHA512_256 and SHA512_256i are used to hash bytes or big integer tuples,
respectively. They take as input a list of values and output a hash. According to the paper,
those hash functions should behave like a random oracle, and thus it should not be easy
to find collisions.

The issue we found arises when hashing multiple concatenated input values, for
example, a list of bytes [“a”, “b", “c”]. The two vulnerable functions concatenate the values
by adding a separator “$" between each value to obtain the string “abc”. Then this
string is passed to the hash function SHA-512/256 to obtain the hash result. However, the
character "$" may itself be part of the input values, so this construction is prone to
collisions. As an example, the two input byte array tuples ["as", "b") and ["a", "$b"] output

the same hash value.

Kudelski Security/io.Finnet's Security Advisory

In
is

TSShock details

a ECDSA TSS, a multiplicative to additive protocol (MtA)
used:

The attacker receives: 2z — gxhy mod N
x and y are unknown and secret

All other values are controlled by the attacker
Verifier needs a valid proof that the discrete
logarithm between h and g mod N exists.

If x is found then the private key of the other
participant can be recovered.

40

Proof of knowledge of discrete log

Public input: gandh = ¢* mod N

Private input: a number x € Z)
Prover Verifier

P EZom
a = gPmodN

c€{0,1}

T = p+cxmod N

41

Proof of knowledge

An adversary can cheat the previous protocol with
probability % thus we need to repeat the protocol 128 times
to achieve a security level of 128 bits.

42

Non interactive proof of knowledge

Public input: gandh = ¢*mod N

Private input: a number x € Z)

Prover Verifier

pi € Zon)
a; = ¢ mod N

co, ---,C127 = H(g, I, N, g, ..., a127)
Ti= p;i + CimedN

&o, .-, X127, T0, - T127

-

co, -.-,C127 = H(g, b, N, g, ...,a127)
¢ L a;h" Vie{0,127}

43

a-shuffle attack

since H(g,h,N,ag,...,a17) = H(g|h|N|ag|. .. |a127)

XY
We can compute [§ — jnt(@|@) and) = —

"
Then:

H(g,h,N,...,a,«,...)=H(g,h,N,....5,...)

44

a-shuffle attack

Then assign the values of a and B to have a correct proof:

C — JEZF(Sy, il, j\]; CX3 c ooy ¢37 (]f,. o ,/ég)

Then the prover gets:

- Ja if ¢; =0
I 5h:6%:a ifc;, =1

45

a-shuffle attack

With a forged proof we can send h = 1 and finally recover
X, by computing the discrete log modulo N.

The private key of the other participant is recovered.

46

Proof of concept

© @ ® W mploit —nods -

eth_blockNumber
eth_chainld

eth_chainld
eth_estimateGas
eth_getBlockByNumber
eth_feeHistory
eth_getTransactionCount
eth_chainld
eth_sendRawTransaction
eth_chainld
eth_getTransactionByHash
eth_chainld
eth_getTransactionReceipt
eth_chainld
eth_getTransactionReceipt

Transaction: ©x753d34b3.
Gas usage: 57612

Block number: 173873
Block time: Tue Jul 11

eth_chainld
eth_getTransactionCount
eth_chainld
eth_getTransactionByHash
eth_call

eth_call

eth_blockNumber
eth_chainld

eth_chainld

ﬁth_getTransacﬂ OHRP

(R

> exploit@l 0.0 1nvoke
> hardhat run scripts/inv

TeaM _Terminal ANDROID o6,

2bfb8e0618d20b37432877ce865707525f8b4aaab1c69145040e09b14

2023 17:17:44 GMT+0700 (Indochina Time)

rivate key of BTC w.

ces " exploit o 1 nain. e 10132
2023-07-11T17:17:50.163+8700 keep-tbtc state/async_machine.go: 182 [member:1,sta/®
te:*signing. tssRoundTwoState] transitioned to new state ("wallet": "0x@4bbSbde604a3c3eefc39c7468cf5d7
a3476ef7141b0234dd85670a78e04876098c9d1824523062317049cea072c5001878763638¢1d3859157392eb0946da7es",
“"signedMessage": "Ox5047d203261fd7e21760a31551de25d396e51ccaled71fdc3449ddb79f1fcfIlc”, “signingStart
Block": 173876, "signingTimeoutBlock": 174081, “"attemptNumber®: 1, "attemptStartBlock": 173882, "atte
mptTimeoutBlock": 173912)
2023-07-11T17:17:52.629+8700 keep-tbtc state/async_machine.go: 151 [member:1,sta
te:*signing. tssRoundThreeState] transitioning to a new state {"wallet": "@x04bbS5bde604a3c3eefc39c7
468cf5d733476ef7141002a4dd85670a78e04876098¢ f9d18e453ad62317043¢ead72c5b0187876a638c1d3859157392eb894
6da7eS5", "signedMessage": "Ox5047d20a261fd7e21760a1551de25d396e51¢ccale071fdc3449ddb79f1fcfIlc", "sign
ingStartBlock": 173876, “signingTimeoutBlock": 1740881, “"attemptNumber": 1, "attemptStartBlock": 17388
2, "attemptTimeoutBlock": 173912)
2023-07-11T17:17:52.629+0700 keep-tbtc state/async_machine.go: 182 [member:1,sta
te:*signing. tssRoundThreeState] transitioned to new state {"wallet": "Ox@4bbSbde6d4a3c3eefc39c7
468cf5d733476e1714100234dd35670a78204876098cf9d18e453ad62317049cea3d72c5b01878763638c1d3859157392eb034
€da7eS", "signedMessage": "0x5047d203261fd7e21760a1551de25d396e51ccale®71fdc3449ddb79f1fcfIlc™, "sign
ingStartBlock": 173876, “signingTimeoutBlock": 174081, “attemptNumber": 1, "attemptStartBlock": 17383
2, “attemptTimeoutBlock": 173912)
HRERFREFRRBHUHBRIG

Secret Recover: {"private_key": "0xf3d6513d5f7bde9641ba@bB4591625b85ccaba27b3967bf52f40b769cE0a12e3")

HUBRBEHGRRERRERRY

2023-07-11T17:17:53,985+0700 keep-tbtc state/async_machine,.go: 151 [member:1,sta
te:*signing. tssRoundFourState] transitioning to a new state {"wallet": "0x04bbS5bde60433c3eefc39c7
468c15d733476e17141002a40d85670a78e04876098¢ f2d18e45aad62317049cead72c5b0187876a6a8c1d3859157392eb094
6da7e5", "signedMessage": "0x5647d2023261fd7e21760al1551de25d396e51ccale®71fdc3449ddb79f1fcfolc”, "sign |
ingStartBlock": 173876, "signingTimeoutBlock": 174881, "attemptNumber": 1, "attemptStartBlock": 17388
2, “attemptTimeoutBlock": 173912)

2023-07-11T17:17:53.985+8700 keep-tbtc state/async_machine.go: 182 [member:1,sta
te:*signing. tssRoundFourState] transftioned to new state {"wallet": "Ox@4bbSbde6@4a3c3eefc39c7
468cf5d733476ef7141002a4dd85670a78e64876098C f9d18e45aad62317049¢ead72c5b0187876a6a8c1d3859157392eb094

6dam@’ . "signaedgessage” . "OxP47d282261fd7e21760a1551de25d396e51ccaled7l fdc344migh79f1fcfalc”, "sign
allet has'been recovered! "

B ddb79r1tctoict, “signingStartBlock®: 173876, "signingTimeoutBlock®: 174681} |

oke.js

Request new wallet

(base) glaps-MacBook-Pro

> exploit@l 0.0 heartbeat
> hardhat run scripts/hea

exploit giap$ npm run heartbeat

rtbeat.js

Request new heartbeat and

extract private key

recover private ke

2023-07-11T17:17:54.844+0700 keep-tbtc tbtc/signing. go: 360 [member:5] generated s
ignature [R: ©x8832c54fbc032999e0df@5ebcb183fba29407ccf3b1053331575823e2dbe2238, S: Ox33Pelc7767bcdb76
07a32354221192ede39d2d36da52d27 fd86 f8ddeacS513b45, RecoveryID: 8] at block [173892) {"wallet": "Ox
04bbSbde€@4a3c3eefc39c7468cf5d733476e17141b02a4dd85670a78e04876098c fId18245a3ad62317049cea072c500187876
26a8c1d3859157392eb0946da7e5", "signedMessage”: "Ox5047d20a261fd7e21760al1551de25d396e51ccaled7]fdc3449
ddb79f1fcfolc”, "signingStartBlock": 173876, “signingTimeoutBlock": 174081}
2023-07-11T17:17:54,920+0700 keep-tbtc tbtc/signing. go: 360 [member:4] generated s
ignature [R: Ox8832c54fbc032999¢0df@5ebcb183fba29407ccf3b1053331575823e2dbe2238, S: Ox3alelc7767bcdb76
07a2354221192ede39d2d36das52d271d86 f8ddeac55f3b45, RecoverylD: @] at block [173892) ("wallet": "Ox
04bbSbde604a3c3eefc39c7468cf5d7a3476e7141b0234dd85670a78e04876098cF9d18e4533d62317049¢cead72c5b0187876
a638c1d3859157392eb0946da7eS", "signedMessage”: "Ox5047d202261fd7e21760a1551de25d396e51ccale@711dc3449
ddb79f1fcf9lc”, “signingStartBlock": 173876, “"signingTimeoutBlock": 174081}
2023-07-11T17:17: 54, 921+0700 keep-tbtc tbtc/signing. go: 360 [member:3] generated s
ignature [R: ©x8832c541bc032999e0d1@5ebcbl831ba29407ccf3b1053a31575823e2dbe2238, S: Ox3a0elc7767bcdb76
©73235422f192ede39d2d36d352d27fd86 f8ddeac55f3b45, RecoveryID: @] at block [173892) {"wallet": "Ox
B4abbSbde684a3c3eefc39c7468cf5d7a3476ef7141b0234dd85670a78e04876098cf9d18e453ad62317049cea®72c5b0187876
263Bc1d3859157392eb0346da7es", “signedMessage”: "Ox5047d20a261fd7e21760a1551de25d396e51ccaled71fdc3449
ddb79f1fcfolc”, "signingStartBlock": 173876, "signingTimeoutBlock": 174081}
2023-07-11T17:17:54.92140700 keep-tbtc tbtc/heartbeat.go: 85 generated signature [R
©x8832c541bc03299920df05ebcb183fba29407ccf3b1053a31575823e2dbe2238, S: Ox330elc7767bcdb760752a542211
92ed

47

Train yourself

48

Training platforms

e CryptoHacks: online platform

e Hackropole: past challenges of the France
Cybersecurity Challenge

e Donjon CTF by Ledger (replaced by the SSTIC
challenge in 2023)

e ZK Hack IV: From 16th January to 6th February
2024. (Past challenge solutions are available)

® Eurocrypt 2024 workshop

49

Eurocrypt 2024 workshop

Workshop on Crypto Code Audit + Capture the Flag:

One day workshop, morning presentations and afternoon
dedicated to a small capture the flag competition.

M:J/’AJ— f-f}"ﬂ'.
U "-‘\

un;fj: S g’and .
- 357

7

‘, A\

50

Conclusion

51

Crypto code audits are important

They cost but add lot of value

They never offer 100% guarantee

Require a skill mix of both theoretical crypto and
implementation

Human factors can influence the outcome

Come to learn more at Eurocrypt 2024 in Zurich !

Thank you!

KUDELSKI g%

Links

GG20 paper:

Attacking threshold wallets:
TSShock:

Cryptohack:

Hackropole:

Donjon CTF:

ZK Hack:

Eurocrypt workshop:

53

https://eprint.iacr.org/2020/540
https://eprint.iacr.org/2020/1052.pdf
https://www.verichains.io/tsshock/
https://cryptohack.org/
https://hackropole.fr/en/
https://ctftime.org/ctf/547/
https://zkhack.dev
https://eurocrypt.iacr.org/2024/affiliated.php

