
A Hitchhiker's Guide to
Cryptography Code Audit

Tommaso Gagliardoni
Marco Macchetti
Sylvain Pelissier

Presented at the NIST Crypto Reading Club, on 2024-02-24

Who are we?

Sylvain Pelissier

● Security researcher

● Applied Cryptography

● CTF player

● @ipolit@mastodon.social

●

2

Tommaso Gagliardoni

● PhD from TU Darmstadt

● Cryptography + Quantum

● CRYPTO,EC,CCS,PQCRYPTO…

● @tomgag@infosec.exchange

●

Marco Macchetti

● Hardware security design

● Applied cryptography and

cryptanalysis

● marco.macchetti@nagra.com

●

Introduction

3

Philosophy

4

What is a cryptographic code audit? What is different
from a traditional code audit?

Who can do a crypto code audit?

Who needs a crypto code audit?

What is expected? What if everything goes well? What if
something goes wrong?

What is the value of a crypto code audit?

5

What is the cost of a crypto code audit?

6

Factors to consider

7

● Is the client from North Korea or similar?
● Do they want to pay us in [random sh*tcoin]?
● Are we up to the task?

○ Do we have the right people?
○ Do we have enough time?
○ Do we have availability?

● How much work is it?
○ Number of LoC
○ Dependencies
○ Complexity
○ Documentation

● Is a code audit really feasible/necessary?

Code audit process

8

Engagement

9

● Client reaches out to us, typically via referral or
website, contact form, etc

● Pre-sales person is assigned to the case to acquire
info, sign NDA if necessary, etc

● Technical people (us) get onboard to scope the
engagement

● A proposal is prepared by the Sales dept. and sent to
the customer

● If accepted, a PM is assigned, a team is formed
(minimum 2 auditors), and a kickoff call is scheduled

That is, in theory…

Preparation

10

● During kickoff, questions are asked
○ Fine-tuned schedule constraints
○ Additional documentation
○ Point of contacts
○ Threat model

● Quick communication channel with devs

The Audit

11

● Download code, setup private repo
● Get familiar with specs and documentation
● Ramp-up if necessary
● As a preliminary step: compile, run tests, run

Automated tools if possible
● Examine line-by-line
● Make annotations, discuss internally and with client if

necessary
● Create draft report, send to client for review
● Wait for client fixes, feedback, tests, etc
● If found vuln with widespread impact, prepare

responsible disclosure etc
● Create final report

Aftermath

12

When everything is fixed or set-up:

● Publish the report if possible
● Report vulnerabilities with a CVE number
● Publish a blog post to detail the findings

What could possibly go wrong

13

● Documentation is in Chinese, client suggests using
Google Translate

● Client sends a list of single lines to audit
● “Hey, we found a big vuln” -> Client ghosts us
● Client takes forever to fix, asks to keep

confidentiality
● “Oh, we forgot to say, can we pay you in [random

sh*tcoin]?”
● “Great job, thanks! In the meantime we did a couple of

commits, can you start over again?”
● We miss something obvious
● We miss something important

The case of threshold crypto

14

Threshold signatures

15

MPC and threshold cryptography are quite popular targets
for implementation at production level

Blockchain / secure wallets (high market value)

Companies rush in developing libraries to implement
threshold signatures and more advanced schemes (e.g.
hierarchical threshold)

There are different known methods in the literature

● Lindell
● GG18/GG20/CMP/CGGMP
● DKLS19/DKLS23
● Frost
● BLS
● …

Threshold signatures

No established standard so far (pick your favorite)

NIST upcoming effort on standardization (full schemes and
sub-components)

Many customers choose GG18/GG20/CGGMP or FROST approaches

Resonance from crypto conferences and forum discussions

Let’s take it as example and trace for our discussion

● Paper/documentation
● Technical content
● Pain points

16

Papers VS Specs

Quite often, a paper is published in several versions (not

all peer reviewed)

● Authors can fix things

17

Papers VS Specs

A paper references previous and contemporary

attempts/constructions and may reuse concepts and

components without describing them in detail

It is perfectly fine

An academic paper is not a specification: its goal is to

present new techniques and compare them against existing

ones

18

Papers VS Specs

To build the chain

paper -> specification -> implementation

you have thus to follow all ramifications of a paper

A paper can be extended and merged with others

 GG18 GG20 CGGMP

 CMP

Authors automatically "outdate" previous papers, but for
deployed implementations and libraries it is much more complex

Projects can be abandoned, forked, loosely maintained

19

Papers VS Specs

What is the impact of a discovered weakness/flaw?

Is it impacting a single version of a protocol or also
previous/next versions? Paper version? Library version?

Customers ask for consulting, not simple collection of info

Sometimes a weakness is tagged as low importance by us,
because we can't immediately produce a path to a working
attack

But that doesn't mean it should not be patched

TSShock story -> Sylvain will speak about it later

20

Implementations

An implementation typically relies on existing libraries

(no one wants to reinvent the wheel)

The panorama is varied, as implementations can be in

several languages, e.g. Rust or Golang or C or Python

Each having its own ecosystem and peculiarities

Often we don't audit such dependencies, unless explicitly

requested

21

Implementations

A threshold signature scheme is not a simple primitive, but
rather a complex protocol composed by many pieces (e.g.
Groth-Shoup 23 is 99 pages long!)

To implement GG20 threshold ECDSA we have to implement:

● Paillier encryption and RSA modulos -> safe primes
● Good randomness sources to sample uniformly
● Network protocols to connect parties
● Zero knowledge proofs
● Multiplicative to additive share conversion
● Commitment algorithms
● Verifiable secret sharing
● Elliptic curve cryptography

22

What could go wrong? Randomness

Basic assumption for any scheme

Uniform sampling of random values in a given range

Bad libs/PRNGs [MT, python’s random]

No checks on returned randomness [error code and length]

Modulo bias from using truncated values and/or simple

modulo reduction

Can lead to key compromise e.g. biased ECDSA nonces

23

What could go wrong? Randomness

Solution #1: rejection sampling

● Repeat sampling from wider range (typically the nearest

power of 2) and discard value if not in correct range

Solution #2: sampling from a wider range and reduce with

modulo

● If range is extended by 128 bits, reducing modulo q is

fine. Expected bias is 2^-128, typically comparable

with the scheme’s claimed security level

24

What could go wrong? Networking (1)

Paper assume P2P and broadcast communication protocols,

without discussing their implementation

Broadcast is especially tricky because we have to ensure

all parties receive the same messages

Can be easy if trusted dealer is present

Otherwise, implementations try to optimize by re-using P2P

connections to mock broadcast
25

What could go wrong? Networking (1)

Example is key refreshing; parties refresh their private

key shares after key generation

In case of P2P used in place of broadcast, they finally

send each other ACK/NOTACK with an additional round

But a malicious player can send ACK to half parties (which

will update share) and NOTACK to the other half (which will

discard new share)

Key is lost! Forget and forgive attack

26

What could go wrong? Networking (1)

A way to fix is to introduce one more round where parties

send each other the full lists of ACK/NOTACK answers from

the previous round

But a malicious party can again send a full ACK list to

some parties and different lists to others!

Leading to “improved-yet-another-ack” follow ups, etc…

Solution: use published solution such as echo broadcast

(Goldwasser Lindell 2002)

27

What could go wrong? Networking (2)

P2P connections must be encrypted and authenticated

 key exchange shared symmetric key

This is fine, but papers also include techniques to

identify dishonest parties (identifiable aborts)

In this case, shared keys cannot provide non-repudiability

Single phrase in GG20 paper identifiable aborts section:

28

What could go wrong? Networking (3)

Paper assume that single runs of the protocol are unique

and that values cannot be replayed from one execution to

the next

CGGMP introduces ssid everywhere

but this is not stated explicitly in other papers allowing

replays of messages

29

What could go wrong? Commitments

Care has to be taken manipulating values in case of type
cast and/or concatenations, language specifics

Array of compressed ECC points entering an hash to compute
a commitment

c = H(r, P1, P2, …)

Points are cast to bytes from int to build the hash input

Golang int.Bytes()

if #bytes is not specified during conversion, 0x00 prefix
bytes are ripped off

30

What could go wrong? Commitments

A customer had such a function, that moreover inserted a
separator ‘$’ after each point

Consider the following two pairs of points A,B (ints):

[0x00 A1 … A31] , [‘$’ B1 … B31]

[A1 … A31 ‘$’] , [0x00 B1 … B31]

When Bytes is called and ‘$’ delimiters are put, in both
cases we get:

A1 … A31 ‘$’ ‘$’ B1 … B31 ‘$’

Collision! -> Sylvain will talk more about this now!

31

Input malleability

32

Hash commitments

33

You commit to a value v but do not reveal it in advance:

e is a blinding value used for randomization.

Revealing (e,v) later, allows everyone to verify the
commitment.

Hash commitment problems

34

There is a lack of separation between the blinding and the
committed values:

We have the same commitment for two different values. The
scheme is not binding.

Commitment example

35

Commitment example

36

Commitment example

37

Same problem different places

38

Those kind of constructions are used a lot in practice:

● Merkle trees
● MPC especially threshold signatures scheme (TSS)
● Zero Knowledge proofs

Practical attack

39

TSShock details

40

In a ECDSA TSS, a multiplicative to additive protocol (MtA)
is used:

● The attacker receives:
● x and y are unknown and secret
● All other values are controlled by the attacker
● Verifier needs a valid proof that the discrete

logarithm between h and g mod N exists.
● If x is found then the private key of the other

participant can be recovered.

Proof of knowledge of discrete log

41

Proof of knowledge

42

An adversary can cheat the previous protocol with
probability ½ thus we need to repeat the protocol 128 times
to achieve a security level of 128 bits.

Non interactive proof of knowledge

43

α-shuffle attack

44

Since

We can compute and

Then:

α-shuffle attack

45

Then assign the values of α and β to have a correct proof:

Then the prover gets:

α-shuffle attack

46

With a forged proof we can send h = 1 and finally recover
x, by computing the discrete log modulo N.

The private key of the other participant is recovered.

Proof of concept

47

Train yourself

48

Training platforms

49

● CryptoHacks: online platform

● Hackropole: past challenges of the France

Cybersecurity Challenge

● Donjon CTF by Ledger (replaced by the SSTIC

challenge in 2023)

● ZK Hack IV: From 16th January to 6th February

2024. (Past challenge solutions are available)

● Eurocrypt 2024 workshop

Eurocrypt 2024 workshop

50

Workshop on Crypto Code Audit + Capture the Flag:

One day workshop, morning presentations and afternoon

dedicated to a small capture the flag competition.

Conclusion

51

● Crypto code audits are important
● They cost but add lot of value
● They never offer 100% guarantee
● Require a skill mix of both theoretical crypto and

implementation
● Human factors can influence the outcome
● Come to learn more at Eurocrypt 2024 in Zurich !

52

Thank you!

Links

● GG20 paper: https://eprint.iacr.org/2020/540
● Attacking threshold wallets: https://eprint.iacr.org/2020/1052.pdf
● TSShock: https://www.verichains.io/tsshock/
● Cryptohack: https://cryptohack.org/
● Hackropole: https://hackropole.fr/en/
● Donjon CTF: https://ctftime.org/ctf/547/
● ZK Hack: https://zkhack.dev
● Eurocrypt workshop: https://eurocrypt.iacr.org/2024/affiliated.php

53

https://eprint.iacr.org/2020/540
https://eprint.iacr.org/2020/1052.pdf
https://www.verichains.io/tsshock/
https://cryptohack.org/
https://hackropole.fr/en/
https://ctftime.org/ctf/547/
https://zkhack.dev
https://eurocrypt.iacr.org/2024/affiliated.php

