Optimizing ML MPC from

System & Theoretical
Perspective

Yonggin Wang

Ming Hsieh Department of Electrical and Computer Engineering

University of Southern California

Presented at NIST WPEC 2024 on September 26th

Talk overview

* Proprietary weights & sensitive data
* MPC can share weights and data securely

* MPC induces significant overheads
* Added computation
* Added communication

* This talk describes and calls for system & theoretical optimizations to
MPC ML

Outline

01 02 03 04

Secure MPC System Theory Summary of the talk

BaCkground e MPC-Pipe: an efficient e CompactTag: minimized tag

pipeline for n-party MPC computation for actively

¢ General terms o
secure

e Secret sharing
e Multiplication
* Online/offline phase

Secure MPC: General terms

\
¢ O ‘o

09@6

Multi-Party Computing is a secure protocol to address privacy issue in the cloud.

Secure MPC: General terms

e MPC protocols allows secure computations among n parties
e No assumptions about underlying hardware

e Adversaries can corrupt up to n-1 parties

MPC Server #1 MPC Server #2 MPC Server #3

Privacy can still be guaranteed even if a subset of parties is corrupted.

Secure MPC: General terms

Compute

Step 2
MPC Server ‘
Local

e Secure cloud computing protocol

e n servers to compute to perform computations ;
e Step #1: Distribute shares R e o
MPC S #1 MPC S #2
* Step #2: MPC servers compute ‘t i ewerf
e Step #3: Retrieve Results Wi . X Retriove Wl [X;]
5|6 -5 Results 4 | 4 9
2|7 4 1131 2
w
Step 1 1 2 % 4 = ? Step 1
Distri Distrib
Secret [2 | * ° S ™ e
Shares Shares
é MPC Client

MPC allows secure cloud computation

Secure MPC: Secret Sharing

* Additive Secrete Sharing
* Additions: adding local shares Additive_Share(x, 2)
* Beaver Triple Multiplications X1l =x—7[x] =7
* MPC server Communication is required
* Binary Secrete Sharing
° Bit extractions
* Bitwise manipulations Binary_Share(x, 2)
« Usually implemented as Fixed point <x1> =X XORT,<x3> =7
° Inanumerical field

Additive is efficient for adding/multiplying, Binary is efficient for bitwise ops

Beaver Triple Assisted Multiplications

Algorithm 1 Beaver Triple Assisted MPC Multiplication
Input: [z;], [y:], [as], [b;] and [¢;] st. C=A-B
Computes [z;] — [a;] and [y;] — [b]

Broadcast local [z;] — [a;] and [y;] — [b;]

Wait until other [z;] — [a;] and [y;] — [b;] has been received
Computes X — A = Zfi*ll[a:i] — [a;]

Computes Y — B = 31 1 ' [u:] — [bi]

Party # 1 computes [z1] = [c1]+(X —A)[b1]+(Y —B)[a1]+

(X - A)Y - B)
Other parties compute [2;] = [¢;]+ (X —A)[b;] +(Y — B)|a]
Return: [z;]

A special algorithm to compute multiplications using additive shares.

Beaver Triple Assisted Multiplications

Party #1 Party #2
1] il [x2] [v2]
[a1] [b1] led] [a,] [b2] [c2]
Initial state

Beaver triple:c=a * b
a and b are completely random

Beaver Triple Assisted Multiplications

Party #1 Party #2
1] il [x2] [v2]
[a1] [b1] led] [a,] [b2] [c2]
IMEEAE 8] =[] - 0]
le1] = [y1] = [b4] Le2] = [y2] — [b2]

Compute local operands

Beaver Triple Assisted Multiplications

Party #1 Party #2
1] il [x2] [v2]
[a1] [b1] led] [a,] [b2] [c2]
IMEEAE 8] =[] - 0]
le1] = [y1] = [b4] Le2] = [y2] — [b2]

Broadcasting

Beaver Triple Assisted Multiplications

Party #1 Party #2

] [yl [x2] [y2]

[a1] [b1] led] [a,] [b2] [c2]

. A=x—-a . A=x—q
e=y—b ___e=y-=b

Compute global A and €
Note that A and € do not leak information about x and y and
appear from Uniform distribution

Beaver Triple Assisted Multiplications

Party #1 Party #2
[x1] V4] [x2] [y2]
[a1] [b1] led] [a,] [b2] [c2]
A
€ €
4] = [ex] + Alby] + €la,] + e | (22 = [ea] + Alba1 + elaz]

Compute the resulting shares.

Beaver Triple Assisted Multiplications

e Verify the results

N-1 N-1
Yzl =) _{la]+ (@ —a)b] + (v — b)[ai]} + (z — a)(y — b)
i=0 i=0
=c+xb—ab+ya—ba+ xry — xb—ya + ab
=ct+zb—cH+ya—c+zry—xb—ya—+c
=c—ct+c—c+axb—zb+ya—ya+ zy
:-Ty

n—-1

zZ = z[zi] = Xy

i=0

Hence, the result is correct.

Challenges for ML Workloads

* |Induced more computation

* [z] = [c] + A[b] + €[a] + A€ instead of just xy
* Induced communications between parties

* Broadcasting of Aand €

Address those challenges require optimization from joint systematic & theoretical efforts.

Outline

01

Secure MPC

Background

e General terms
e Secret sharing
e Multiplication
* Online/offline phase

02

System

e MPC-Pipe: an efficient
pipeline for n-party MPC

03

Theory

e CompactTag: minimized tag
computation for actively
secure MPC

04

Summary of the talk

MPC-Pipe: an efficient pipeline for ML
Better resource utilization & throughput

Key observation

E'GPU ocpenss g ﬂﬂ'cpu oeperts g

| === | ===
Compute Communicate Compute Communicate
Time

v

an MPC server workflow

Computation and communication are blocking in MPC
Resulting in poor resource utilization -> poor throughput

Key observation

)8 % = 2@ %

Compute Communicate Compute Communicate

Time

v

an MPC-Pipe server workflow

MPC-Pipe breaks data dependencies & overlaps computation and communication

Key observation

E'GPU g ﬂﬂ'cpu g

) Gty | ==p====)
Compute Communicate Compute Communicate
Time

v

an MPC-Pipe server workflow

MPC-Pipe breaks data dependencies & overlaps computation and communication

Key observation

E'GPU E:EPU
Compute’\ ‘ Compute -
o o

Communicate Communicate

Time

v

an MPC-Pipe server workflow

MPC-Pipe breaks data dependencies & overlaps computation and communication

MPC-Pipe Pipeline Schemes

* Inter-linear pipeline
* Optimizations with linear layers
e Conv2d
* Fully connected layers
* Inner-layer pipeline
* Inter-batch pipeline

Three pipeline schemes for n-party MPC

MPC-Pipe: inter-linear pipeline

* Two metadata to transmit
e A=x—a
- e=y—b>
* What are x and y for linear layers
* Forward pass: x is the input, y is the weight
* Backward pass: x is output gradients, y is weight or activation feature

* Both weight and activations are available right before forward & backward pass.
Linear #0 Linear #1 Linear #2

Inter-linear pipeline hides all communication with computation

1%
- [

v

oo |
MPC-Pipe: inter-linear pipeline

* Epsilon can be available before the other input arrives
* Why in the critical path?
Linear #0 Linear #1 Linear #2

Linear #1

Linear #2

Time

v

Inter-linear pipeline hides all communication with computation

MPC-Pipe: inter-linear pipeline

[zi] = [c;] + Alb] +ie[a]

Linear #2

Time

Transmission of delta can also be overlapped with Conv2d(epsilon, a)

MPC-Pipe: inter-linear pipeline

Linear #0 Linear #1 Linear #2

- [

Time

Transmission of delta can also be overlapped with Conv2d(epsilon, a)

v

MPC-Pipe: inter-linear pipeline

Linear #0 Linear #1 Linear #2

Time

Transmission of delta can also be overlapped with Conv2d(epsilon, a)

v

MPC-Pipe Pipeline Schemes

* Inter-linear pipeline
* Inner-layer pipeline
* Optimizes within non-linear layers
* RelLU, Maxpooling, Softmax (comparisons)
* Inter-batch pipeline
* Overlap computation and communication across different batches

Three pipeline schemes for n-party MPC

MPC-Pipe implementation

* CrypTen library from Meta Al
* No hardware modification
* Free of additional overheads

MPC-Pipe Results: Throughput

60%

50%

40%

30%

20%

10%

0%

40%
35%
30%
25%
20%
15%
10%

5%

0%

Throughput Improvement

Throughput Improvement

Throughput Improvement
T

: 60% 60% :
1 1
LAN 49 %i WAN LAN | WAN
! 50% 50% !
1 1
: e ‘
: 40% 40% :
i
i 30% 30%
: 20% 20%
i
1
i 10% 10%
SO N Ia ST S s O ST N S ST T § s % SV Y. & 4y a1 a3 a
ewe? oee? 9\92* Wi ipe® oiee® p\veﬁ e ewe? et p\ve* W %ee® ppe® 9\v°* o® e’ oee® 9\93* w%iee? gipe® \m!e* o
(a) VGG16 Inference (b) ResNet Inference (c) Transformer Inference
Throughput Improvement 40% Throughput Improvement 40% Throughput Improvement
T o T {s] T
LAN ! WAN LAN ! WAN LAN ! WAN
! 35% @ 35% !
1 @ I
; 30% ‘ 30% i
25.3% 2 1 25.:0% |
i 25% ! ° 1 25% |
| i Yol
: 20% ; 20% i
1 1 1
| 15% 1 158% | 1552% 15% i
11/8% ! 1176% ! i
i 10% - i 10% i
6.5% e " 6.8% 5.0% 16.9% 0 i
& i 4.1% 5% | ! 2.8% 5% !
1 1 1
1 1 1

9\92*19\"“*19\99*;‘“»\“%6\9°*‘9w°*1'9\9°*20«\6\“°6

(d) VGG16 Training

0% -

od
o et p\ve* W e et 9\99* o

(e) ResNet Training

0%

b“‘ea

Yy
9\92* 9\99”’ 9\‘3‘* oo 9\99* p\v°* pw"*

(f) Transformer Training

MPC-Pipe on other frameworks

* We incorporated MPC-Pipe on PIGEON
* The fastest 3PC/4PC MPC inference framework
 ~50% speedups due to the techniques in MPC-Pipe

Outline

01

Secure MPC

Background

e General terms
e Secret sharing
e Multiplication
* Online/offline phase

02

System

e MPC-Pipe: an efficient
pipeline for n-party MPC

03

Theory

e CompactTag: minimized
tag computation for
actively secure MPC

04

Summary of the talk

CompactTag: minimized tag computation for
actively secure MPC

CompactTag overview

e Some protocols computes a tag for integrity
* For Matmul, requiring cubic complexity

 CompactTag asymptotically reduces tag computation complexity
* Using characteristics of matrix multiplicaiton

When The Parties are
Malicious

Let Us Look Back: In Malicious Setting

Party #1 Party #2
21] = =a + i) 221 = [€ — a + eb,]
— b + e a4 —bte]
+(x —a)(y — b)

The broadcasted value is no longer correct because one of the party introduce
errors.

Check if the result is still correct

Zn:]+ (@ —Db+ey)la]+(x—a+el

=1 l=

={c+t(x—a)b+(y—bla+(x—a)ly—Db)}+e(y t+e)+e(x+e)

This result is no longer correct.

So What is the Solution?

Information theoretical MACs

* Each operand is attached with an IT MAC
* A global key k is secretly shared to MPC parties
* Each party will have [k;]

* For any operand x, there is a tag
T, =k-x
* k, x,and T, are secretly shared

Party #1

Party #1

Initial state

Party #2

Operands: [x,] [y2] [k:]
[a;] [b2] [c2]

IT MACs: [sz] [Tyz]
[Taz] [sz] [TCZ]

Party #1 Party #2
Operands: ;] [yq] [k4] Operands: [x,] [y2] [k2]
B L o Y) I R [az] [b] leal
(AT =T —[ai] | [A,] = [x2] — [az]
e =0l =Mb] ¢+ le2] = [ya] = [ba]
IT MACs. [Txl] [Tyl] IT MACs. [sz] [Tyz]
i _[T_“_l_]_ _[_7_1121_]_ i [TC 1] . . [TQZ] _[_TIZ] _ [TCZ] _____
[TAl] = [Txl] - [Tal] i [TAz] - [sz] — [Taz]
[Tfl] ~ [Ty 1]_ . [T?;J } _: L [Tez] . TYZ] B _[_ij_z_]_ }

Compute local delta and epsilon
Compute local tags

Party #1 Party #2
operands: [x;] [y4] [k4] Operands: [x,] [y2] [k2]
el b el o [az] [ba] le2]
M EARICA R [A,] = [x2] — [az]
 lel=nl—-1[bh] je—ab— | le2] = [yo] = [ba]
IT MACs. [Txl] [Tyl] IT MACs. [sz] [Tyz]
[Ta,] [Tp,] [T¢,] [Ta,] [Tp,] [Tc,]
[TAl] - [Txl] - [Tal] [TAz] - [sz] — [Taz]
[Tel] = [TY1] - [Tbl] [sz] = T)’z] o [sz]

Broadcasting

Party #2

Party #1
Operands: [x1] [y1] [k4l
[a;] [b1] el
. A=x-a
e=y—>b |

[Tel] = [Tyl] — [Tp,]

Compute global A and €

No broadcasting of T, and T,
Note: T, and T are used to check correctness of the

broadcast

Party #1

Operands: [xl]

[yi] [k1] A €

__

__

Party #2

Operands: [x,] [y2] [k2]A €

__

__

IT MACs: [sz] [Tyz] [TAZ] [Téz]

Compute [z] and [T,]
Note : [T, | is computed entirely with “local tags” and the
globally computed A and €

Check what is [T, |

[T]1=) ITl+A-[Tpl +€-[Tol + [k]-A-€

l

=T, +A-Ty+e-Ta+k-A-€
=k-c+(x—a) - T,+(y—b) - T,+k-(x—a)-(y—0>)
=k-c+x—a)-(k-b)+(y—-b)-(k-a)+k-(x—a) -(y—>b)
=k-{c+(x—a)-b+(y—b)-a+x—a):-(y—b)}

=k-{x-y)
=k-z

After computing [z], [T,]

* We need to verify z, A, €

* [T2]

* [Tal

* [Te]

* There is a standard way to compute a single-element checksum
* To pass verification, the checksum needs to be zero

But This is Not Free Lunch

Added Computation Costs of Tagged MPC

* In ML [a], [b] and [c] are matrix

* A and [a] is MxN, size of intermediate value
* [b] and € is NxO, size of the weight

Party #1

Operands: [xl] [yl] [kl] A €

__

__

N 0
A L
|
M -~ N4
A [Ty]

Tag computation for matrices has cubic complexity O(M X N X 0).
Takes 10% to 30% of total runtime.

Compactlag

 CompactTag computes a small tag for matrix multiplication

* Reduce tag computation from cubic to
cOMXN+MXO0+NXxXO0)

e Asymptotic reduction

0] 1
A 1

CompactTag [T
[TZ] p g[Z]

CompactTag requires less computation has the same security level.

How [z]| and |T,] are used as matrices

* |z] becomes inputs to next layer

* [z] computes next layer's =r —z
* 7 is an random matrix size of M X O

* We need to verify correctness of 8 using [T,]

Party #1 Party #2

Operands: [kl] [rl] [Zl] Operands. [kZ] [TZ] [ZZ]

iwmacs: [T5.] [Tzl] mwacs: |Tr, | [TZz]

Now r, Zz are M X O matrices.

Party #1 Party #2
operancs: [k,] [11] [2,] operands: [Iez] [12] [2,]
e =Inl=z] (0] =[n]-[n] |
iwmacs: [T5.] [Tzl] immacs: [T5,] [TZz]
[T =[] -] [=[] - %]

Compute and reconstruct matrixé@

Party #1 Party #2

operancs: [k,] [11] [2,] operands: [Iez] [12] [2,]
o 0=r-z - 6=r-z |
IT MACs: [Trl] [Tzl][Tgl] IT MACs. [TTZ] [TZz] [Tez]

Compute and reconstruct matrix 4.
We use computed Ty to verify 6.

CompactTlag
a small tag for matrix products

CompactTlag: 3 steps

1. Sample random numbers y;
2. Compact operands
3. Compute the small tag

Party #1

Party #2

Operands: [x;] [y1] [k1] A €
la;] [b1] [c4]
[z1] =[] +A-[b] +€-[a1] +A-€

Operands: [x,] [y2] [k2]A €
[a;] [b2] [c]

[z2] = [c2] +A-[by] + € [a;]

TMACs: [T,] [Ty,] [TAl] [TE1]
[Ta,] [Tp,] [T¢,]

IT MACs: [sz] [Tyz] [TAZ] [Téz]
[Taz] [sz] [TCZ]

Skip T, for now.

A remainder*
[T,] =Tl +A-[Tp] +€- [T, +[k] - A-€

Party #1 Party #2
operancs: [k,] [11] [2,] operands: [Iez] [12] [2,]
A€ Ae
T O=r—z ; . f=r—z |
IT MACs: [Trl] [Tal] [Tbl] [Tcl] IT MAGs. [Trz] [Taz] [sz] [Tcz]

Compute a Compact T, after broadcasting r — z.
This is a key requirement for security

A remainder*

[Tl = [Tl + A [Tp] + € [To] +[k]-A-€

Party #1

overans: [Jey] [3] [,] | X
A €

0 =r—z

immacs: [T] [Tal][Tbl] [Tcl]

X1
X2

0 Xo-1

Xo

X

Party #2

oerancs: [ky] [15] [2,] |
A €

0 =r—z

immacs: [T5,] [Taz][sz] [Tcz]

1. Sample another public matrix y, whose dimensionis O X 1

A remainder*
[T,] =Tl +A-[Tp] +€- [T, +[k] - A-€

Party #1 Party #2
Operands: [kl] [T‘l] [Zl] X Operands. [kZ] [TZ] [ZZ] X
A€ A €
0=r—=z 0=r—z
e [[T]| Ta |7] [T,] muacs: T[T, T,] [T,
T =17] x| 7] =17c,] - x
n]=Im]x [75.] = 7] 2
e=ex | e=€ex

2. Compress operands using y

A remainder*

[Tl = [Tl + A [Tp] + € [To] +[k]-A-€

Party #1

Operands. [kl] [Tl] [Zl] X
A€

0 =r—z

IT MAGs: [Trl]IZal]_[Tbl] [Tcl]

[Tél] = [Tcl] "X

[Téll =Ty,] - x
€ =€) |

[Tp]

2. Compress operands using y

matmul

X1

X2

Xo-1

Xo

A remainder*

[Tl = [Tl + A [Tp] + € [To] +[k]-A-€

Party #1

Operands. [kl] [Tl] [Zl] X
A€

0 =r—z

X1

X2

Xo—2Xo-1 Xo

IT MAGs: [Trl]IZal]_[Tbl] [Tcl]

[Tél] = [Tcl] "X

[Téll =Ty,] - x
€ =€) |

[Tp]

Equivalent to linearly combine all columns using y.

matmul

X1

X2

Xo-1

Xo

A remainder*
[T,] =Tl +A-[Tp] +€- [T, +[k] - A-€

Party #1 .
operands: [Ie;] [1y] [7] X —
A E
0=r—z
N =

T MACS,:_ _['_Tfl] _[T_aL]_[lel] [TC 1]

i [TC"1] = [TC1] "X i

nl=m] ol

e=€ex i

Equivalent to linearly combine all columns using y.

A remainder*

[Tl = [Tl + A [Tp] + € [To] +[k]-A-€

Party #1

Operands: [, | [11] [2,] X
A€
0 =r—z

IT MAGCs: [Trl][Tal]lTl;l] [Tél]

Party #2

Operands: [, | [1,] [z,] X
A€
6 =r—2z

e o —

e e —— ———

3. Compute a CompactTag T,

A remainder*
[T,] =Tl +A-[Tp] +€- [T, +[k] - A-€

Party #1
arty N
|
Operands. [kl] [Tl] [Zl] X
A€
0=r—z
M =
IT MACs: [Trl][Tal]lTl;l] [Tél]
1] = 1)+ [Ty, | + [Tay] - e 0] - 8- A

Significant computation complexity reduction.
OMXN+MX0O+NXxO0)

Have the same security level as the state-of-the-art with a
modified checksum computation.

matmul

oM
X N)

N-

X1

X2

Xo-1

Xo

CompactTlag: 3 steps

Sample random numbers y;
Compact operands
Compute the small tag

B W

The same security level
1. modified checksum compuation

Results with CompactTag

* Significant tag computation reduction

e 3.44x for ResNet50
e 18.83x for xFormer
e 4.16x for VGG16

* Significant performance improvement on LAN/WAN

1.40x

1.15x 4

1.10x

1.05x T T T T
10Gbps 15Gbps 20Gbps 25Gbps

LAN

Outline

01

Secure MPC
Background

e General terms
e Secret sharing
e Multiplication
* Online/offline phase

02

System

e MPC-Pipe: an efficient
pipeline for n-party MPC

03

Theory

e CompactTag: minimized tag
computation for actively
secure MPC

04

Summary of the talk

Summary of the talk

* MPC for needs optimization from both system & theory

* System:
 MPC-Pipe: an efficient pipeline for n-party MPC
* Faster computation engine: PIGEON
e Faster communication links: quantum teleportation

* Theory:
* CompactTag: minimized tag computation for actively secure MPC

* Modified protocol to accommodate heterogenous networks
* Modified integrity check
* Modified 3PC/4PC algorithm

e More contributions needed

Thank you!

	Slide 1: Optimizing ML MPC from System & Theoretical Perspective
	Slide 2: Talk overview
	Slide 3: Outline
	Slide 4: Secure MPC: General terms
	Slide 5: Secure MPC: General terms
	Slide 6: Secure MPC: General terms
	Slide 7: Secure MPC: Secret Sharing
	Slide 9: Beaver Triple Assisted Multiplications
	Slide 10: Beaver Triple Assisted Multiplications
	Slide 11: Beaver Triple Assisted Multiplications
	Slide 12: Beaver Triple Assisted Multiplications
	Slide 13: Beaver Triple Assisted Multiplications
	Slide 14: Beaver Triple Assisted Multiplications
	Slide 15: Beaver Triple Assisted Multiplications
	Slide 25: Challenges for ML Workloads
	Slide 26: Outline
	Slide 27
	Slide 28: Key observation
	Slide 29: Key observation
	Slide 30: Key observation
	Slide 31: Key observation
	Slide 32: MPC-Pipe Pipeline Schemes
	Slide 33: MPC-Pipe: inter-linear pipeline
	Slide 34: MPC-Pipe: inter-linear pipeline
	Slide 35: MPC-Pipe: inter-linear pipeline
	Slide 36: MPC-Pipe: inter-linear pipeline
	Slide 37: MPC-Pipe: inter-linear pipeline
	Slide 43: MPC-Pipe Pipeline Schemes
	Slide 44: MPC-Pipe implementation
	Slide 45: MPC-Pipe Results: Throughput
	Slide 46: MPC-Pipe on other frameworks
	Slide 48: Outline
	Slide 49
	Slide 50: CompactTag overview
	Slide 51: When The Parties are Malicious
	Slide 52
	Slide 53
	Slide 55: So What is the Solution?
	Slide 56: Information theoretical MACs
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Check what is open bracket cap T sub z , close bracket
	Slide 63: After computing open bracket z close bracket ,, open bracket cap T sub z close bracket
	Slide 68: But This is Not Free Lunch
	Slide 69: Added Computation Costs of Tagged MPC
	Slide 70: CompactTag
	Slide 71: How open bracket z close bracket and open bracket cap T sub z close bracket are used as matrices
	Slide 72
	Slide 73
	Slide 74
	Slide 79: CompactTag a small tag for matrix products
	Slide 80: CompactTag: 3 steps
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91: CompactTag: 3 steps
	Slide 92: Results with CompactTag
	Slide 93: Outline
	Slide 94: Summary of the talk
	Slide 95

