Privacy Engineering

Examples of System Design Strategy

Prof. Travis Breaux
Privacy Engineering Workshop, NIST, Gaithersburg Campus
Wednesday, April 9, 2014
Engineering and Design

- Fundamental Design Concepts
 - Define the Operating Principles
 - Define the Normal Configuration

- Criteria and Specifications
 - Translate qualitative goals into quantitative processes

- Theoretical Tools
 - Adapt scientific theory to create tooling for design, construction and evaluation of systems

- Quantitative Data
Aesthetics and Design
Why engineer privacy?

Maximize Data Utility

- Collect everything, value is realized later
- Ensure open access; this drives innovation
- Disclose to leverage third-party value
- Retain as long as practically possible
- Avoid destruction
Balancing utility and risk

Maximize Data Utility
- Collect everything, value is realized later
- Ensure open access; this drives innovation
- Disclose to leverage third-party value
- Retain as long as practically possible
- Avoid destruction

Minimize Privacy Risk
- Limit collection based on stated needs
- Limit access, obtain consent for new uses
- Limit disclosure and third-party uses
- Destroy when no longer needed
- Embrace destruction
Anatomy of Engineering

- **Internal logic of problems**: conceptual models of things being controlled and any environmental constraints

- **Internal needs of design**: what quality criteria should be used to satisfy stakeholder needs?

- **Need for decreased uncertainty**: multiple hierarchies of problems that introduce uncertainty
 - Problems in developing tools to discover and apply the scientific theory that drives design
 - Problems in the designs themselves
 - Problems in the environment
Internal logic of problems

Social networks

- Person 1 knows person 2
- Person 2 knows person 3
- Does person 1 know person 3?
- What do we mean by “know”?
People you may know...

1. Employed at North Carolina State University
 - Sep 2004 to May 2009

2. Employed at IBM TJ Watson
 - May 2006 to Aug 2006

3. Employed at Carnegie Mellon University
 - Jun 2002 to Present

Change e-mail to ...
...@cmu.edu
Internal needs of design

Social networks

• Social networks “thrive” when users:
 • Engage – check up on each other
 • Interact – share information with each other
 • Connect – find new and old acquaintances

• How to maximize these qualities?
 • Close Triads
 • Homophily – love of same
 • Propinquity – closeness, kinship
 • Reciprocity – exchange for mutual benefit
Need for decreased uncertainty
Social Networks

- How do users behave in a fully connected network, and why?
- Lack of intimacy reduces quality of interaction
- Fewer interactions lead to fewer engagements

Congratulations, you know everyone!

Uncertainty–
- How to increase intimacy with opportunities to discover new connections?
Normal configuration

• Normal configuration is “the general shape and arrangement that is commonly agreed to best embody the operational principle” – Vincenti

• Examples of normal configurations:
 • Pop-up windows to confirm irreversible actions (Safety)
 • Progress bars (Awareness)
 • Default settings that restrict access (Security)
 • Virtual memory management (Performance)
§312.5 Parental Consent.

(a) General requirements. (1) An operator is required to obtain verifiable parental consent before any collection, use, and/or disclosure of personal information from children...

(b) Mechanisms for verifiable parental consent.

 (1) An operator must make reasonable efforts to obtain verifiable parental consent...

 (2) Methods to obtain verifiable parental consent that satisfy the requirements of this paragraph include: providing a consent form to be signed by the parent and returned to the operator by postal mail or facsimile; requiring a parent to use a credit card in connection with a transaction; having a parent call a toll-free telephone number staffed by trained personnel; using a digital certificate that uses public key technology; and using e-mail accompanied by a PIN or password obtained through one of the verification methods listed in this paragraph.
Implementing Verifiable Consent

1. Start
2. Collect user's name, age & e-mail address
3. Age < 13
 - yes: Parental consent?
 - yes: Collect parent's e-mail address
 - no: Collect user's profile information
 - no: Collect user's profile information
4. Parental consent?
 - yes: Obtain verifiable consent
 - no: Request Expired?
 - yes: Delete child's information
 - no: no
HIPAA De-Identification Safe Harbor

- Names
- All geographic subdivisions smaller than a state, except for first 3 digits of ZIP code*
- Dates directly related to an individual
- Telephone number
- Fax number
- Electronic mail address
- Social security number
- Medical record number
- Health plan beneficiary numbers
- Account numbers
- Certificate/license numbers
- Vehicle identifiers and serial numbers
- Device identifiers and serial numbers
- Universal Resource Locators
- Internet Protocol addresses
- Biometric identifiers
- Full face photographs
- Any other uniquely identifying number, characteristic or code**
“Normal” based on theory

• De-identification standards should be based on strong theoretical foundations*

 • k-anonymity – individual records cannot be distinguished from at least k-1 other individuals whose information also appears in the dataset [Sweeney, 2002]

 • ℓ-diversity – requires that each sensitive class has at least ℓ well-represented values for the class [Machanavajjhala et al. 2006]

 • t-closeness – the distance between the distribution of a sensitive attribute in a sensitive class and in the entire dataset is no more than t [Li et al., 2007]

*that explain when datasets are subject to re-identification attacks
“Normal” based on experience

- Payment Card Industry (PCI) Data Security Standard
 - **PCI-DSS 3.2**: Do not store sensitive authentication data after authorization (even if encrypted)

- NIST Special Pub. 800-53, Rev. 4, Appendix J
 - **AR-8**: Keeps an accurate accounting of disclosures held in each system under its control, including: date, nature and purpose of disclosure; name and address of receiving agency
Innovative solutions?

- Normal configurations exist for problems that have been encountered before
Use cases, flows and exceptions

<table>
<thead>
<tr>
<th>Use Case Name</th>
<th>Commenting on Tagged Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actors</td>
<td>Tagged Friend, Poster</td>
</tr>
<tr>
<td>Pre-conditions</td>
<td>Friend was tagged in the Poster’s photo</td>
</tr>
<tr>
<td>Flow of events</td>
<td>1. Friend views the photo</td>
</tr>
<tr>
<td></td>
<td>2. Friend reads the description, including their tag</td>
</tr>
<tr>
<td></td>
<td>3. Friend accepts the tagged photo and writes a comment on the photo</td>
</tr>
<tr>
<td>Post-conditions</td>
<td>Comment is viewable with the photo</td>
</tr>
<tr>
<td>Alternate flows and exceptions</td>
<td>• Friend was incorrectly tagged in the photo</td>
</tr>
<tr>
<td></td>
<td>• Friend rejects photo and removes the tag</td>
</tr>
</tbody>
</table>
Goal modeling

- Goals are elicited from key stakeholders to obtain and refine high-level objectives into low-level requirements
Goal conflicts

- Conflicts arise between goals at different levels in the goal hierarchy
- Designers have multiple strategies for resolving goal conflicts

Diagram:
- Maintain SecretBallots
- Avoid VoterIDCapture
- Maximize TrustedElections
- Registered VoterVerified
- VoterID Captured
Strengthening goals for risks

• Unacceptable exposure to risk may require strengthening goals

• Ensuring that ballots are secret involves different risk levels
 • Avoid[VoterIDCapture] – minimal risk, because only the vote is recorded, and not the voter ID
 • Avoid[VoterIDLinking] – higher risk, because timestamps may be used to correlate votes and voter IDs
 • Avoid[VoterIDTransfer] – highest risk, because the votes and voter IDs are linked internally
Transfer conflicts outside system

- Maintain SecretBallots
- Avoid VoterIDCapture
- Registered VoterVerified
- VoterID Captured
- StationAttendant
- SecretBallots

©2014 T.D. Breaux
Example Service Integration

Facebook Connect
- Basic profile information
 - Email address
 - Age
 - List of friends
 - Photo

Waze
- Driving route
 - Location
 - Speed
 - Device IDs

Flurry.com
- Mobile Analytics
 - Advertising Services

Legend:
- Data flow

Scalable Storage Services
Tracing multi-party data flows

Waze

- COLLECT personal-information FROM waze-user FOR enhancing-service-experience
- TRANSFER unique-device-id TO ad-networks

Flurry

- COLLECT device-id, device-os, mac-address

Assume: unique device id is part of personal information
Assume: unique device id is a synonym for device id and mac address

Example from Waze and Flurry.com privacy policy
COLLECT information* FROM social-network

TRANSFER PII FROM social-network

COLLECT ad-requests FROM customer FOR sales-in-rtb-marketplace

TRANSFER location TO ad-companies

TRANSFER unique-device-id TO ad-networks

TRANSFER end-user-data TO advertising-partners

TRANSFER device-id, location TO applicable-publisher

COLLECT personal-information FROM waze-user FOR enhance-personal-experience

COLLECT location

Legend:

- User’s social network information, including name, age, gender
- User’s mobile device location
- User’s mobile device unique identifier
2D Still-Images in MBE Study

- Three law enforcement mugshots taken from the same person at different times

©2014 T.D. Breaux
Carnegie Mellon University

Good, Bad, Ugly Challenge (GBU)

Phillips et al., “An Introduction to the Good, the Bad, & the Ugly Face Recognition Challenge Problem,” NIST 2010
Labeled Faces in the Wild (LFW)

- Face photos curated by photo journalists prior to being posted on the web

Three photos of Janica Kostelic, a former World Cup alpine ski racer and for-time Olympic gold medalist
Point-and-Shoot Challenge (PaSC)

Variables…

• Locations
• Sensor
• Camera distance
• Pose
Facial recognition evaluation

- Verification rates reported for each evaluation; assumes 1/1000 False Accept Rate (FAR)

Faces of Facebook Study

• Researchers collected 261,262 images from 25,051 Facebook (FB) profiles
• Compared these to 3 webcam photos of participants
• Study Results:
 • Detected 114,745 “unique faces” in FB data
 • Verification rate: 31.18% with FAR 0.1

©2014 T.D. Breaux
Faces of Facebook Study #2 performing frontal matches had a verification rate of 31.18% with FAR 0.1
Presentation Summary

• Design is driven by operating principles

• Design aims to reduce uncertainty through:
 • Strong theoretical foundations
 • Experience drawn from failure

• Designers can use informal and formal specification to explore and capture design strategy

• Designers can use quantitative data to evaluate design alternatives