
© Copyright 2000 Dallas Semiconductor Corporation.
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

1-Wire and Cryptographic iButton are trademarks of Dallas Semiconductor Corporation.
 For important information regarding patents and other intellectual property rights,

 please refer to Dallas Semiconductor data books.

DS1955 Java™-Powered
Cryptographic iButton™

FIPS 140-1 Non-Proprietary
Cryptographic Module Security Policy

Level 3 Validation

January 2000

2

Table of Contents

1 Introduction .. 3

1.1 Purpose .. 3
1.2 For more information... 3
1.3 Terminology .. 3
1.4 Document Organization... 4

2 The DS1955 Java™-Powered Cryptographic iButton™.. 5

2.1 The iButton Cryptographic Module... 5
2.1.1 Module Interfaces ... 6
2.1.2 Module Components ... 6

2.2 Physical Security.. 6
2.2.1 The Strength of Steel ... 7
2.2.2 Goes Down in a Blaze of Zeroization ... 7
2.2.3 Neither snow nor rain nor heat… ... 7
2.2.4 Fortresses large and microscopic… ... 8

2.3 DS1955 Firmware Capabilities ... 8
2.4 Roles & Services ... 8

2.4.1 Authentication ... 9
2.4.2 Crypto Officer Services... 9
2.4.3 User Services .. 10
2.4.4 Status Functions.. 10

2.5 Key Management... 11

3 Java™ iButton™ FIPS Mode.. 12

3.1 FIPS Restrictions ... 12
3.2 FIPS Configuration.. 12
3.3 Operation in FIPS mode .. 13
3.4 Factory Configuration Reference... 14

3

1 Introduction

1.1 Purpose
This is a non-proprietary Cryptographic Module Security Policy for the Dallas
Semiconductor DS1955 Java™-Powered Cryptographic iButton™ (Java iButton). This
security policy was prepared as part of FIPS 140-1 certification of the Java iButton. FIPS
140-1 (Federal Information Processing Standards Publication 140-1 -- Security
Requirements for Cryptographic Modules) gives U.S. Government requirements for
cryptographic modules, and defines the Security Policy as:

“A precise specification of the security rules under which the cryptographic module must operate,
including rules derived from the security requirements of this standard, and the additional security
rules imposed by the manufacturer.”

The Java iButton provides extraordinary security, meeting all FIPS 140-1 level 3
requirements, and some level 4 requirements. This security policy describes how the Java
iButton meets these requirements, and how it can be operated in a secure fashion.

1.2 For more information
This document describes the operations and capabilities of the DS1955 Java™-Powered
Cryptographic iButton™ in the technical terms of a FIPS 140-1 cryptographic module
security policy.

For more detailed information about the Java iButton, please visit the iButton web
site at http://www.ibutton.com. The web site contains non-technical descriptions
of Dallas iButton products, technical specifications, product offerings, iButton
functionality, iButton developer information, and much more.

Fore more information about the FIPS 140-1 standard and validation program
please visit the NIST web site at http://csrc.nist.gov/cryptval/.

For answers to technical or sales related questions please refer to the contacts
listed on the iButton web site at http://www.ibutton.com, or the Dallas
Semiconductor web site at http://www.dalsemi.com.

1.3 Terminology
In this document the Dallas Semiconductor DS1955 Java™-Powered Cryptographic
iButton™ is referred to as the DS1955, Java iButton (JiB), cryptographic module, Java-
Powered Crypto iButton, or module. The JiB is also referred to as simply “iButton”,
although this term also applies collectively to many other iButtons such as the DS1990,
DS1994, or DS1920.

4

1.4 Document Organization
The Security Policy document is part of the complete FIPS 140-1 Submission Package. In
addition to this document, the complete Submission Package contains:

♦ Vendor Evidence document
♦ Finite State Machine
♦ Module Software Listing
♦ A list of referenced Supporting Documents

This document provides an overview of the Java iButton and explains the secure
configuration and operation of the module. This introduction section is followed by
Section 2, which details the general features and functionality of the Java iButton.
Section 3 specifically addresses the required configuration for the FIPS-mode of
operation.

This Security Policy and other Certification Submission Documentation was produced by
Corsec Security, Inc. under contract to Dallas Semiconductor. With the exception of this
Non-Proprietary Security Policy, the FIPS 140-1 Certification Submission
Documentation is Dallas-proprietary and is releasable only under appropriate non-
disclosure agreements. For access to these documents, please contact Dallas
Semiconductor.

5

2 The DS1955 Java™-Powered Cryptographic iButton™

The Java™-Powered Cryptographic iButton provides hardware cryptographic services
such as a high-speed math accelerator for 1024-bit public key cryptography, and secure
message digest (hashing). In FIPS 140-1 terminology, the Crypto iButton is a “multi-chip
standalone cryptographic module”; however, the Java iButton actually provides all its
services using a single silicon chip packaged in a 16mm stainless steel case. Thus, the
iButton can be worn by a person or attached to an object for up-to-date information at the
point of use. The steel button is rugged enough to withstand harsh outdoor environments,
and is durable enough for a person to wear everyday on a digital accessory like a ring, key
fob, wallet, or badge.

Figure 1 – The DS1955 Java™-Powered Cryptographic iButton™ is laser–engraved in steel and
silicon

2.1 The iButton Cryptographic Module
The cryptographic boundary for the iButton is the surrounding steel shell. This
surrounding shell is factory-lasered with the module's unique 64-bit registration number
as shown in Figure 2. The figure shows a button with registration number "1A1D2516"16,
which is engraved on the encased silicon chip.

Figure 2 – Java™-Powered Crypto iButton Case and Module Boundary

6

The ground side of the iButton may optionally be branded with any logo facing.
Registration numbers are also lasered into unalterable ROM on the iButtons, which can
be read by any application communicating with an iButton. Strict factory controls ensure
that registration numbers are globally unique, guaranteeing that no two iButtons ever
share a registration number.

2.1.1 Module Interfaces

The button uses a single data contact on the front of the steel case to convey the module’s
five logical interfaces: data input, data output, control input, status output, and power.
These interfaces are logically separated using the 1-Wire™ protocol, which regulates
communications and separates reading, writing, and power applied to the module. The 1-
Wire protocol utilizes a scratchpad buffer and features atomic, packetized transfers which
assures error-free transmission, even with an intermittent connection, in addition to
complete separation of input, processing, and output phases. Control commands and data
must be input in error checked packets, and data and status are returned only after
successful completion of processing.

2.1.2 Module Components

The active components of the iButton are shown below, and consist of a lithium cell (for
backup power), an energy reservoir (to provide parasitic capacitance power), a quartz
timing crystal (for a True Time Clock), and the single DS83C960 cryptographic chip.

Figure 3 – Components of the Crypto iButton™

2.2 Physical Security

The Java™-Powered Crypto iButton boasts an incredible array of physical security
safeguards packed into a small coin-sized device. Because the silicon chip is encased in
stainless steel, the iButton will stand up to the harsh conditions of daily wear, including

7

dropping it, stepping on it, and inadvertently passing it through the washing machine and
dryer.

Figure 3 – The Crypto iButton Mounted as a Signet Jewel of a Ring.
The Java iButton an be Attached to any Personal Accessory.

2.2.1 The Strength of Steel

The tough stainless steel case of the iButton defines a contiguous perimeter and provides
clear visual evidence of tampering. The module does not contain any holes or vents that
could permit probing. Tamper-signs include mangling and scratching of the data and
ground plates and the smooth grommet separation. It is this outer case which satisfies
FIPS 140-1 tamper evidence requirements for physical security. In addition, the case
meets the FIPS 140-1 level 3 tamper response and level 4 Environmental Failure
Protection (EFP) requirements.

2.2.2 Goes Down in a Blaze of Zeroization

If an iButton is pried open, a microswitch triggers an active zeroization of the chip’s
contents, destroying private keys and other sensitive information. The iButton constantly
monitors the switch’s contacts, and any separation of the cryptographic chip from the
lithium cell switches the device to on-chip capacitor power to perform a complete
zeroization as its last powered action.

2.2.3 Neither snow nor rain nor heat…1

Orchestrated attacks to uncover iButton secrets by subjecting the iButton to extreme
temperature or voltage conditions will generate a tamper response that results in
zeroization. Deliberately exposure to temperatures outside the iButton’s operational
range of -20oC to +70oC (-4oF to +158oF) cause temperature monitors to trigger a cold-

1 “Neither snow nor rain nor heat nor gloom of night stays these couriers from the swift
completion of their appointed rounds.” -- an inscription on the General Post Office, New
York City. (see http://www.usps.gov/history/his8.htm)

8

temp switch or high-temp effects that quickly zeroize to erase the contents of the
memory. Voltages above or below maximum operating tolerances are clamped, and if
excessive voltage is encountered, the I/O pin is designed to fuse and render the chip
inoperable.

2.2.4 Fortresses large and microscopic…

In addition to these operation controls, the cryptographic chip is additionally protected by
a substrate barricade. A substrate barricade is metallurgically- and glass epoxy-bonded to
the active face of the chip. Attempts to remove the barrier to get to the chip cause a
tamper response that results in zeroization. If a sophisticated attacker attempts to micro-
probe the chip, they will encounter a shield of sub-micron pitch metal layers fabricated
into a serpentine pattern directly on the chip. The chip will detect any break in this shield
and immediately zeroize the chip.

2.3 DS1955 Firmware Capabilities

The Java iButton firmware, which includes a Java virtual machine, runs on a single, state-
of-the-art silicon chip. The Java iButton contains:

♦ an 8051-compatible microcontroller,
♦ a protected real-time clock,
♦ a high-speed modular exponentiation accelerator for large integers up to 1024

bits in length,
♦ 64 Kbytes of ROM memory with preprogrammed firmware,
♦ 6 Kbytes of non-volatile RAM (NVRAM) for storage of critical data,
♦ input and output buffers with the standard iButton 1-Wire “front-end” for

sending and receiving data, and control circuitry that enables the
microcontroller to be powered up to interpret and act on the data placed in an
input buffer, drawing its operating power from the 1-Wire line.

The microcontroller, clock, memory, buffers, 1-Wire front-end, modular exponentiation
accelerator, and control circuitry are integrated on a single silicon chip and packaged in a
stainless steel case using packaging techniques which make it virtually impossible to
probe the data in the NVRAM without destroying the data. Most of the NVRAM is
available for use to support cryptographic applications such as those mentioned above.

The Java iButton firmware supports the Secure Hashing Algorithm (SHA-1) and
conforms to Federal Information Processing Standard Publication (FIPS PUB) 180-1,
Secure Hash Standard (SHS).

2.4 Roles & Services
There are two separate roles in the operation of Java iButtons: Crypto Officer, and User.
The Java™-Powered Crypto iButton is intended to be activated by the factory (Crypto

9

Officer). Registered customers (Users) operate the devices as end-users under a license
agreement. The Crypto Officer loads the Java™-Powered Crypto iButton with data to
enable it to perform application-specific functions. The User issues commands to the
Java iButton to perform operations programmed by the Crypto Officer. For this reason
the Java iButton offers functions to support the Crypto Officer in setting up the Java
iButton for an intended application, and it also offers functions to allow the authorized
User to invoke the services offered by the Crypto Officer.

2.4.1 Authentication

The Java iButton™ provides identification and authentication (I&A) functions for both
role-based and identity-based I&A.

2.4.1.1 Identity-Based Authentication

The Java iButton™ can perform identity-based authentication using challenge-response
protocols that use keyed message digest algorithms. Using these protocols, the iButton™
allows users to log in and log out. When operated in the FIPS mode, the Java iButton™
employs identity-based authentication using challenge-response protocols. This advanced
I&A, may be used in conjunction with the role-based authentication described below.

2.4.1.2 Role-Based Authentication

The Java iButton™ may optionally use role-based authentication, in addition to or in lieu
of identity-based I&A. There is a Crypto Officer personal identification number (PIN) for
each iButton, which must be supplied with each and every service request reserved for the
Crypto Officer. The Crypto Officer PIN (also called the iButton’s common PIN) can be
any value (numeric, alpha, or binary byte values), and is eight bytes in length. Similarly,
there is a User PIN, which must be supplied with every request for User services. There
are also non-cryptographic services (related to iButton status) which are available to User
and Crypto Officer without supplying an authenticating PIN.

2.4.2 Crypto Officer Services

A Crypto Officer can exercise the following services with appropriate authentication:

Master Erase – The entire contents of the RAM is zeroized. This will delete any
applets that are loaded, clear any existing logon statuses, and re-initialize the
module to factory defaults.
Set Master PIN – This function enables the Crypto Officer to enter the master
PIN number that will be used to access the module.
Set Ephemeral GC Mode - The ephemeral collector recovers data that was
referenced for a short period of time and then went out of scope (Objects whose
references were never stored in reference fields, etc).
Set Applet GC Mode - The applet collector recovers data that was referenced by
the fields of an applet. These references were new-ed and then the references were
lost either by setting the field to null or by new-ing another block of data.

10

Set Command PIN Mode - When Command PIN Mode is enabled, all commands
require a PIN match before the command is executed. When disabled, the PIN
match is skipped.
Set Load PIN Mode - When Load PIN Mode is enabled, nine bytes of PIN data,
pre-pended to the applet data (JiB file data), must match the Master PIN in order
for the applet load to succeed. When disabled, the applet must be signed
Set Restore Mode - When Restore Mode is enabled, All field updates and system
transactions are considered atomic. If a tear occurs in the middle of these updates,
the values just prior to the update are restored.
Set Exception Mode - When Exception Mode is enabled, java API exceptions are
thrown. All uncaught exceptions return 0x6f00 in the SW. When disabled, an
error is returned from the Virtual Machine (VM).
Set Commit Buffer Size - Committing one field to the buffer requires 9 bytes.
Therefore the default size of 72 bytes allows 8 field updates. The minimum size
allowed is 72 bytes and the maximum is restricted by the amount of free RAM.
All values will be rounded up to the next multiple of 9.
Run Self-Tests – initiates the running of the FIPS-required self-tests, specifically,
the SHA-1 test and the Statistical random number generator test. This service
returns either a status of either success or failure of the tests.

These functions allow the Crypto Officer to completely erase and zeroize an iButton, add
new applets, and lock the iButton to prevent additional applets from being added or
changed.

A complete description of each Java iButton command can be found in FIPS submission
Document 1O, iButton Commands Reference.

2.4.3 User Services

A User, by default, cannot execute any functions other than the status functions.

2.4.4 Status Functions

A number of status functions can be used to find the state of the iButton and various
configuration information about the iButton. These status functions can be used by both
User and Crypto officer without supplying any PIN:

Get Firmware Version String – Returns the Firmware Version String (FVS) in
the following format: [length byte - Len][Len bytes of FVS data].
Get Free RAM - Returns a short (least significant block (LSB) first) representing
the amount of free RAM remaining in the iButton.
Get Ephemeral GC Mode - Returns a byte representing the mode – 0 for disabled,
1 for enabled.
Get Applet GC Mode - Returns a byte representing the mode – 0 for disabled, 1
for enabled.

11

Get Command PIN Mode - Returns a byte representing the mode – 0 for disabled,
1 for enabled.
Get Load PIN Mode - Returns a byte representing the mode – 0 for disabled, 1 for
enabled.
Get Restore Mode - Returns a byte representing the mode – 0 for disabled, 1 for
enabled.
Get Exception Mode - Returns a byte representing the mode – 0 for disabled, 1
for enabled.
Get Commit Buffer Size - Returns a short (LSB first) representing the size, in
bytes, of the Commit Buffer.
Get Real Time Clock - Returns a 4 byte number (LSB first) representing the
current value of the real-time clock in seconds. This value counts up from zero
and represents the amount of time since the battery was attached.
Get Random Bytes - Input data: Short value (LSB first) representing the number
of random bytes to retrieve.
List Applet by Number - Returns the applet identification (AID), or applet name,
in the format [AID length - Len][Len bytes of AID data].
Get POR Count - Returns a short (LSB first) representing the number of Power
On Resets that have occurred since the last Master Erase.
Get State – Returns the current state the module is in as status information. The
state number is returned.

2.5 Key Management
No keys are implemented in the iButton. The Java iButton has a unique internal 64-bit
registration number which is not a key, is not private, and is also engraved on the outside
of the module.

12

3 Java™ iButton™ FIPS Mode

The Java™ iButton™ provides a rich set of cryptographic functionality in a physically
secure package. This versatile module can be configured to function in a wide variety of
applications such as an electronic change purse, biometric access token, or postage meter.
The iButton™ can also be configured to operate in a FIPS 140-1 compliant mode. When
configured and operated in this mode, the Java™ iButton™ provides a FIPS 140-1 level 3
compliant cryptographic module.

In all forms of operation, the Java™ iButton™ meets most level 3 and some level 4 FIPS
140-1 physical security requirements using sophisticated hardware security controls.
Other areas of FIPS level 3 requirements can only be met if the Java™ iButton™ is
configured for and operated in its FIPS mode.

3.1 FIPS Restrictions
FIPS 140-1 requires the use of FIPS approved algorithms and does not allow the use of
RSA public key algorithms for encryption or decryption of data, nor does it currently
allow the industry-standard PKCS #1 version of RSA digital signatures. Therefore, the
Java™-Powered Crypto iButton™ uses only SHA-1 for message digests in the FIPS
mode.

The Java™-Powered Crypto iButton™ provides several methods of identification and
authentication to provide role-based or identity-based authentication. In order to meet
level 3 FIPS 140-1 requirements the iButton™ must be operated using identity-based
authentication. The module is operated as a single-user device with identity-based
authentication of the user as described in section 2.4.1.1. The authentication used in the
FIPS mode incorporates a challenge-response protocol for login. The protocol ensures
that no plaintext authentication data is transmitted over the 1-Wire™ interface. In
addition, this authentication does not use RSA encryption, instead utilizing a keyed
message digest algorithm incorporating SHA-1.

For operation in FIPS mode, no plaintext keys may be exported from the iButton™.
Therefore, all keys are privatized and only accessed internally by applets.

3.2 FIPS Configuration
To configure the iButton™ for operation in FIPS mode, the factory performs the
following operations:

• Master Erase the iButton™, removing all previous data.
• Initialize the common PIN to a random value known only to the factory. The

common PIN is set with the “Set Master PIN” command.
• Load and install the FIPS 140-1 Applet.
• Set a User login password.
• Lock the iButton to prevent loading additional applets, or access to any

administrative commands.

13

• Set the seed value.
• Deliver the FIPS mode iButton™ and User login information.

Listed here are all the iButton modes set at the factory and what are set to before
shipping:

• Master Pin: Set to a Random Non-Released value
• Applet GC Mode 1
• Command PIN Mode 1 (default)
• Load PIN Mode 1 (default)
• Restore Mode 1 (default)
• Exception Mode 1 (default)
• Commit Buffer Size 72 (default)

3.3 Operation in FIPS mode
Operation of a Java iButton™ in FIPS mode is limited to functions available from the
FIPS applet. Because the factory initializes the button and does not release the Common
PIN for the any FIPS mode iButton™, the user cannot exercise any of the services listed
in section 2.4.2.

The User may not call any services other than the status services, however, the User can
also invoke one of the five FIPS applet functions, Get Challenge, Login, Logout, Run Self
Tests, and SHA-1 Hash. The User must first login to the iButton™ using the Login script.
To do this, the user calls the Get Challenge function to receive the random challenge data,
and computes the SHA-1 hash of the random challenge appended to the User login
password. This response is provided to the Login script.

Once a User has logged in, he may run the SHA-1 Digest script to hash data, or run the
Logout script. Once a User has been erased, the User can no longer login and the FIPS
mode iButton™ must be returned to the factory.

The User may also run the Self Tests from any of the user states. If the module fails any
part of the Self Tests, the module transitions to an error state that restricts the available
services.

3.4 Factory Configuration Reference
All FIPS mode iButtons™ are delivered from the factory tested, operational, and
configured. The applet described below, which contains the FIP-mode functions, is
loaded into the iButton™ customized with a User login password. The full factory
configuration process is described in section 3.2.

//FIPS 140-1 Applet for the FIPS 140-1 Level-3 Compliant configuration
//of the DS1955 Java-Powered iButton.
//
//Modifications: Initial version -- Corsec Security, Inc. Dec. 1999

import javacard.framework.*;
import javacardx.crypto.*; //For cryptographic functions like SHA-1

public class FIPS_140_1_Applet extends Applet
{
 // BEGIN INSTRUCTION DECLARATIONS
 public static final byte FIPS_140_1_CLA = (byte)0x80;

 public static final byte FIPS_140_1_INS_LOGIN = (byte)0;
 public static final byte FIPS_140_1_INS_LOGOUT = (byte)1;
 public static final byte FIPS_140_1_INS_GETCHALLENGE = (byte)2;
 public static final byte FIPS_140_1_INS_SETSEED = (byte)3;
 public static final byte FIPS_140_1_INS_SHA1HASH = (byte)4;
 public static final byte FIPS_140_1_INS_SETPASS = (byte)5;
 public static final byte FIPS_140_1_INS_GETSTATE = (byte)6;
 public static final byte FIPS_140_1_INS_SELFTEST = (byte)7;
 // END INSTRUCTION DECLARATIONS

 //State variable enumerations
 public static final short STATE_POST = (short)0; //Power up self test state
 public static final short STATE_POST_FAIL = (short)7; //POST Self tests have failed
 public static final short STATE_NOPASS = (short)8; //No password set yet
 public static final short STATE_UNSEEDED = (short)9; //No seed set yet
 public static final short STATE_LOGGEDOUT = (short)10; //Not logged in
 public static final short STATE_LOGGEDIN = (short)11; //Logged in
 public static final short STATE_RUN_FAIL = (short)12; //During run,Self tests failed

 //The parameters used to select an applet.
 final static private byte SELECT_CLA = (byte)0x00;
 final static private byte SELECT_INS = (byte)0xA4;

 //The Maximum number of bytes we will send in a single apdu.
 final static private short MAX_SEND_LENGTH = (short)1000;

 //BEGIN GLOBAL VARIABLES
 private int state; //The machine state
 //User Password
 private byte[] password= new byte[8];
 private int passlength; //the length of the User Password.
 private byte[] randomChallenge=new byte[20]; //Random data used for challenge response
 private byte[] lastRandom=new byte[20]; //last Random number generated.
 //(Stored for continuous RNG test.)
 public byte[] apduData; //Application Protocol Data Unit Data (input/output for Applet)
 private RandomData randGenerator=new RandomData(); //Random number generator object
 //END GLOBAL VARIABLES

 public FIPS_140_1_Applet() //Constructor called after install.
 {
 //Register this applet with the JCRE
 register();

 //Initialize state value to power-up self test state
 state=STATE_POST;

 //perform SHA-1 known answer test
 if (SHA_1_KAT()) //if we get the expected SHA result

15

 state=STATE_NOPASS; //mark the state to no password
 else
 state=STATE_POST_FAIL; //otherwise we failed self-tests
 }

 //Install function is called when the applet is first loaded. It is
 // then stored in memory and ready to be selected and then processed.
 public static void install(APDU apdu)
 {
 new FIPS_140_1_Applet(); //Create an instance and run constructor
 }

 public void process(APDU apdu)
 {
 //This function is what is called when the applet is run by
 // the Java Virtual Machine. It reads the APDU, makes sense of it,
 // and calls the various dispatcher functions (which execute based on
 // the received INS value)..
 byte[] buffer = apdu.getBuffer();

 //Determine if the applet is being selected.
 if((buffer[ISO.OFFSET_CLA] == SELECT_CLA) &&
 (buffer[ISO.OFFSET_INS] == SELECT_INS))
 {
 return;
 }

 apduData = new byte[buffer[ISO.OFFSET_LC] & 0x0FF];
 short apduDataOffset = 0;

 //Read in the entire APDU.
 short bytesRead = apdu.setIncomingAndReceive();
 //Loop until all bytes have been read.
 while (bytesRead > 0)
 {
 Util.arrayCopyNonAtomic(buffer, ISO.OFFSET_CDATA, apduData,
 apduDataOffset, bytesRead);
 apduDataOffset += bytesRead;
 bytesRead = apdu.receiveBytes(ISO.OFFSET_CDATA);
 }
 //Prepare the apdu for sending.
 apdu.setOutgoing();
 apdu.setOutgoingLength(MAX_SEND_LENGTH);

 //Check for a valid CLA.
 if(buffer[ISO.OFFSET_CLA] != FIPS_140_1_CLA)
 {
 ISOException.throwIt(ISO.SW_CLA_NOT_SUPPORTED);
 }
 else
 {
 //Call the appropriate dispatch method for the given INS.
 switch (buffer[ISO.OFFSET_INS])
 {
 case FIPS_140_1_INS_LOGOUT:
 logoutDispatch(apdu, buffer[ISO.OFFSET_P1], buffer[ISO.OFFSET_P2]);
 break;
 case FIPS_140_1_INS_GETCHALLENGE:
 getchallengeDispatch(apdu, buffer[ISO.OFFSET_P1], buffer[ISO.OFFSET_P2]);
 break;
 case FIPS_140_1_INS_SETSEED:
 setseedDispatch(apdu, buffer[ISO.OFFSET_P1], buffer[ISO.OFFSET_P2]);
 break;
 case FIPS_140_1_INS_SHA1HASH:
 sha1hashDispatch(apdu, buffer[ISO.OFFSET_P1], buffer[ISO.OFFSET_P2]);
 break;
 case FIPS_140_1_INS_SETPASS:
 setpassDispatch(apdu, buffer[ISO.OFFSET_P1], buffer[ISO.OFFSET_P2]);
 break;
 case FIPS_140_1_INS_GETSTATE:
 getstateDispatch(apdu, buffer[ISO.OFFSET_P1], buffer[ISO.OFFSET_P2]);
 break;
 case FIPS_140_1_INS_SELFTEST:
 selftestDispatch(apdu, buffer[ISO.OFFSET_P1], buffer[ISO.OFFSET_P2]);
 break;
 case FIPS_140_1_INS_LOGIN:

16

 loginDispatch(apdu, buffer[ISO.OFFSET_P1], buffer[ISO.OFFSET_P2]);
 break;

 default:
 ISOException.throwIt(ISO.SW_INS_NOT_SUPPORTED);
 }
 }
 }

 // BEGIN INSTRUCTION DISPATCHER FUNCTIONS
 //These functions are the ones that actually execute the instructions
 //The first logs in, the second logs out, the third returns a random
 // challenge, the fourth sets the seed, the fifth returns a SHA1Hash
 // the sixth sets the password, and seventh returns the state, and
 // the eighth runs the self-tests.

 //Login Dispatch- Takes in "login parameters" and if correct transitions
 //to login state (provided it is already in the loggedout state).
 //Otherwise, it returns an error message of some sort
 //Assumes that input data is 20 bytes long
 public void loginDispatch(APDU apdu, byte p1, byte p2)
 {
 if(state==STATE_LOGGEDOUT)//If currently in logged out state
 {
 byte[] hashResult= new byte[20]; //Buffer for SHA hash value
 byte[] inData = new byte[apduData.length]; //Buffer for apdu
 //convert apdu data to byte[] for easier use
 Util.arrayCopyNonAtomic(apduData, (short)0, inData, (short)0,
 (short) apduData.length);
 //initialize SHA-1 Digest Generator
 Sha1MessageDigest digestGenerator=new Sha1MessageDigest();
 //Generate SHA-1 message digest
 digestGenerator.generateDigest(addByteArray(), (short)0, (short)20, hashResult, (short)0);
 //reset random challenge(to prevent multiple attempts on the same challenge)
 if (!getRandom(randomChallenge,1))
 {
 error2(apdu,p1,p2); //If continuous RNG test fails, error message
 return;
 }
 if(compareArray(hashResult, inData)) //If the hash result and the inData are the same.
 {
 state=STATE_LOGGEDIN;//Move to logged in state
 //On success send "Login Passed"
 byte[] tempdata = {(byte)'L',(byte)'o',(byte)'g',(byte)'i',(byte)'n',(byte)' ',
 (byte)'P',(byte)'a',(byte)'s',(byte)'s',(byte)'e',(byte)'d',(byte)0x00};
 sendByteArray(apdu, tempdata);
 }
 else //invalid hash indicates login failure (maybe wrong password)
 { // On failure send "Login Failed"
 byte[] tempdata = {(byte)'L',(byte)'o',(byte)'g',(byte)'i',(byte)'n',
 (byte)' ',(byte)'F',(byte)'a',(byte)'i',(byte)'l',(byte)'e',
 (byte)'d',(byte)0x00};
 sendByteArray(apdu, tempdata);
 }
 }
 else
 error1(apdu,p1,p2); //If invalid state send error message
 }

 //Logout Dispatch- No input required. Logs out from logged in state or
 // if in another state returns an error message.
 public void logoutDispatch(APDU apdu, byte p1, byte p2)
 {
 if(state==STATE_LOGGEDIN)//if currently logged in
 {
 state=STATE_LOGGEDOUT; //set the State to logged out.
 //On Success send "Logged Out"
 byte[] tempdata = {(byte)'L',(byte)'o',(byte)'g',(byte)'g',(byte)'e',
 (byte)'d',(byte)' ',(byte)'O',(byte)'u',(byte)'t',(byte)0x00};
 sendByteArray(apdu, tempdata);
 }
 else error1(apdu, p1, p2); //Send invalid state error message
 }

 //Get Challenge Dispatch- If currently in Logged Out State, IE, random
 // number generator seeded, but not logged in, returns a random challenge,

17

 // otherwise returns an error message. No input required.
 public void getchallengeDispatch(APDU apdu, byte p1, byte p2)
 {
 if(state==STATE_LOGGEDOUT)//if logged out but random number generator seeded
 {
 state=STATE_LOGGEDOUT; //Make sure state stays loggedout.
 if (!getRandom(randomChallenge,1)) //generate random challenge
 {
 error2(apdu,p1,p2); //If continuous RNG test fails, error message
 return;
 }
 sendByteArray(apdu, randomChallenge);//send random challenge to user
 }
 else
 error1(apdu, p1,p2); //Send error message "Invalid State"
 }

 // Set Seed Dispatch- Takes in the seed value, and seeds
 // the random number generator. If the state is currently
 // the unseeded state, it transitions it to the logged out state
 public void setseedDispatch(APDU apdu, byte p1, byte p2)
 {
 byte[] outData = new byte[apduData.length];//output data space

 if (state==STATE_UNSEEDED) //If applet is unseeded still
 {
 state=STATE_LOGGEDOUT; //transition to logged out state
 //convert apdu data to byte[] to send to randGenerator
 Util.arrayCopyNonAtomic(apduData, (short)0, outData,
 (short)0,(short) apduData.length);
 //actually set the seed value.
 randGenerator.setSeed(outData, (short)0, (short)apduData.length);
 //On Success send "Seed Set"
 byte[] tempdata = {(byte)'S',(byte)'e',(byte)'e',(byte)'d',(byte)' ',
 (byte)'S',(byte)'e',(byte)'t',(byte)0x00};
 sendByteArray(apdu, tempdata);
 }
 else error1(apdu, p1, p2); //all other states get error message
 }

 //SHA-1 Hash Dispatch -- hashes data for a logged in user.
 // using FIPS 180-1 (SHA-1) message digesting.
 public void sha1hashDispatch(APDU apdu, byte p1, byte p2)
 {
 if(state==STATE_LOGGEDIN)//If currently logged in
 {
 byte[] tempData=new byte[20]; //temp data for hashing.
 byte[] inData = new byte[apduData.length]; //copy of apduData as byte

 //convert apdu data to byte[] for easier use
 Util.arrayCopyNonAtomic(apduData, (short)0, inData,
 (short)0,(short) apduData.length);
 //create hash object
 Sha1MessageDigest digestGenerator=new Sha1MessageDigest();
 //Actually hash the data
 digestGenerator.generateDigest(inData, (short)0,
 (short)apduData.length, tempData, (short)0);
 //And return it to the user
 sendByteArray(apdu, tempData);
 }
 else
 error1(apdu,p1,p2);//Send invalid state error message
 }

 //function to set password during initialization
 public void setpassDispatch(APDU apdu, byte p1, byte p2)
 {
 if(state==STATE_NOPASS)//works only if no pass has already been set
 {
 byte[] newPass= new byte[apduData.length]; //Password value to set
 //convert apdu data to byte[] for easier use
 Util.arrayCopyNonAtomic(apduData, (short)0, newPass,
 (short)0,(short) apduData.length);
 if(apduData.length>8)//check if password is too long
 { //If password too long, send, "Password Too Long".
 byte[] tempdata = {(byte)'P',(byte)'a',(byte)'s',(byte)'s',(byte)'w',

18

 (byte)'o',(byte)'r',(byte)'d',(byte)' ',(byte)'T',(byte)'o',
 (byte)'o',(byte)' ',(byte)'L',(byte)'o',(byte)'n',(byte)'g',(byte)0x00};
 sendByteArray(apdu, tempdata);
 }
 else
 { //set password to the new password
 Util.arrayCopyNonAtomic(newPass,(short)0, password, (short)0, (short)apduData.length);
 passlength=apduData.length; //Change passlength to match new passwords length
 state=STATE_UNSEEDED; //transition to unseeded state
 //On Success send "Password Set"
 byte[] tempdata = {(byte)'P',(byte)'a',(byte)'s',(byte)'s',(byte)'w',
 (byte)'o',(byte)'r',(byte)'d',(byte)' ',
 (byte)'S',(byte)'e',(byte)'t',(byte)0x00};
 sendByteArray(apdu, tempdata);
 }
 }
 else error1(apdu, p1, p2); //Invalid state error
 }

 //return the current applet state (run from any state)
 public void getstateDispatch(APDU apdu, byte p1, byte p2)
 {
 byte[] outgoingData = new byte[4]; //reserve space for returned state
 intToByteArray(outgoingData, 0, state); //convert state to byte for return
 sendByteArray(apdu, outgoingData);
 }

 // Self Test Dispatch- runs all the self tests and
 // reset the state if they pass.
 public void selftestDispatch(APDU apdu, byte p1, byte p2)
 {
 if ((state==STATE_POST_FAIL) || //works only in operational or failed states
 (state==STATE_RUN_FAIL) || //Available as a service from these states
 (state==STATE_LOGGEDOUT) || //But failure will transition to failed
 (state==STATE_LOGGEDIN)) //State and require re-run of tests
 {
 boolean TestsPass = false; //flag for whether SHA_1_KAT passes
 int code = 0; //return value from SRNG tests

 TestsPass = SHA_1_KAT(); //Run SHA-1 KAT
 //Run Statistical RNG tests if previous test passed
 if (TestsPass) code = SRNG_Test();
 else code = 7; //code for SHA-1 KAT failure
 if (0 != code) TestsPass = false; //Nonzero return is an error

 if (TestsPass) //If all the self tests have passed.
 {
 //logout if we got here from a running state
 if (state==STATE_RUN_FAIL) state=STATE_LOGGEDOUT;
 //else if we came from POST, go to not initalized state
 else if (state==STATE_POST_FAIL) state=STATE_NOPASS;
 //else for STATE_LOGGEDIN, STATE_LOGGEDOUT,
 // we need no change the self tests were run and passed.
 //Tell the user that the Tests Passed.
 byte[] tempdata = {(byte)'T',(byte)'e',(byte)'s',(byte)'t',(byte)'s',(byte)' ',
 (byte)'P',(byte)'a',(byte)'s',(byte)'s',(byte)'e',(byte)'d',(byte)0x00};
 sendByteArray(apdu, tempdata);
 }
 else //self tests failed.
 {
 if ((state==STATE_LOGGEDIN) || (state==STATE_LOGGEDOUT) || (state==STATE_RUN_FAIL))
 state=STATE_RUN_FAIL; //if were were operational before, go to run failure
 else
 state=STATE_POST_FAIL; //if not, go to initialize restart.
 //choose return message based on code
 if (5==code)
 error2(apdu, p1, p2); //send error message for failed runs tests
 else if (4==code)
 error2(apdu, p1, p2); //send error message for failed poker tests
 else if (3==code)
 error2(apdu, p1, p2); //send error message for failed long runs test
 else if (6==code)
 error2(apdu, p1, p2); //failed continuous RNG test
 else if (7==code)
 error2(apdu, p1, p2); //failed SHA-1 KAT test
 else //monobit failure

19

 error2(apdu, p1, p2); //send error message for failed self tests
 }
 }//end if state is correct
 else //called from non-initialized state
 error1(apdu, p1, p2); //send invalid state error message
 }

 // END INSTRUCTION DISPATCHER FUNCTIONS

 // BEGIN CONVENIENCE FUNCTIONS
 public static void intToByteArray(byte[] outArray, int start, int value)
 { //Convert from integers to Bytes
 //BigEndian
 outArray[start] = (byte)((value & 0xFF000000) >>> 24);
 outArray[start + 1] = (byte)((value & 0x00FF0000) >>> 16);
 outArray[start + 2] = (byte)((value & 0x0000FF00) >>> 8);
 outArray[start + 3] = (byte) (value & 0x000000FF);
 }

 protected void sendByteArray(APDU apdu, byte[] data)
 { //Send an array of bytes back to the user
 short offset = 0;
 while((data.length - offset) > MAX_SEND_LENGTH)
 {
 apdu.sendBytesLong(data, offset, MAX_SEND_LENGTH);
 offset += MAX_SEND_LENGTH;
 }
 apdu.sendBytesLong(data, offset, (short)(data.length - offset));
 }

 private boolean SHA_1_KAT() //Perform SHA-1 Known Answer Test
 { //Known answer taken from the SHA-1 standard examples (FIPS 180-1)
 byte[] answer=new byte[20]; //the result of our sha test
 byte[] knownAnswer= {(byte)0x36,(byte)0x3E,(byte)0x99,(byte)0xA9,
 (byte)0x6A,(byte)0x81,(byte)0x06,(byte)0x47,
 (byte)0x71,(byte)0x25,(byte)0x3E,(byte)0xBA,
 (byte)0x6C,(byte)0xC2,(byte)0x50,(byte)0x78,
 (byte)0x9D,(byte)0xD8,(byte)0xD0,(byte)0x9C};
 //the expected result of our SHA test
 byte[] input = { (byte)'a',(byte)'b',(byte)'c'}; //value to be hashed
 Sha1MessageDigest testSHA=new Sha1MessageDigest(); //create sha object
 testSHA.generateDigest(input, (short)0, (short)3, answer, (short)0); //hash
 if(compareArray(answer , knownAnswer)) //if we get the expected SHA result
 return (true);
 else //we have failed the SHA KAT and must go to non-functional state
 return (false);
 }
 //compare two arrays(both hashes of length 20)
 public boolean compareArray(byte[] array1, byte[] array2)
 {
 for(int x=0; x<20; x++) //loop through all 20 bytes
 { //and complain if any are different
 if(array1[x]!=array2[x])return(false);
 }
 return(true); //otherwise they are equal
 }

 // Random number generation for bytes * 20 random data
 // Includes a continuous random number generator test
 // returns true if it succeeds
 // returns false upon failure and changes state to STATE_FAIL
 private boolean getRandom(byte[] RandomData, int bytes)
 {
 byte[] new_Bytes=new byte[20]; //a twenty byte sample value

 for (int y=0; y<bytes; y++) //get (bytes) values each 20 bytes long.
 {
 //get some random data
 randGenerator.generateData(new_Bytes, (short)(0), (short)20);

 //check this data
 if (compareArray(new_Bytes, lastRandom)) //If we got the same value
 { //NIST requires a failure be reported for this
 state=STATE_RUN_FAIL; //mark it bad and return
 return false; //return failure code
 }

20

 else //random value is good
 { //Record the new value in our global storage for later use
 Util.arrayCopyNonAtomic(new_Bytes, (short)0, lastRandom,
 (short)0,(short) 20);
 //save the new random data for output
 Util.arrayCopyNonAtomic(new_Bytes, (short)0, RandomData,
 (short)(y*20),(short) 20);
 }
 } //Otherwise we got 20 * bytes of good random data. return success
 return true;
 }

 //Function to quickly splice the random data together with the pass
 private byte[] addByteArray()
 {
 byte[] addedValue= new byte[20]; //Spliced value
 Util.arrayCopyNonAtomic(password, (short)0, addedValue,(short)0,
 (short)passlength);//copy password to target(to be returned)
 //copy rest of random data to target
 Util.arrayCopyNonAtomic(randomChallenge, (short)passlength, addedValue,
 (short)passlength, (short)(20-passlength));
 return(addedValue); //return the spliced value
 }
 //Error message return function
 private void error1(APDU apdu, byte p1, byte p2)//returns invalid state error message
 {
 byte[] tempdata = {(byte)'I',(byte)'n',(byte)'v',(byte)'a',(byte)'l',(byte)'i',
 (byte)'d',(byte)' ',(byte)'S',(byte)'t',(byte)'a',(byte)'t',(byte)'e',(byte)0x00};
 sendByteArray(apdu, tempdata); //Send invalid state error message
 }
 //Error message return function
 private void error2(APDU apdu, byte p1, byte p2)//returns self test fail error message
 {
 byte[] tempdata = {(byte)'S',(byte)'e',(byte)'l',(byte)'f',(byte)' ',(byte)'T',
 (byte)'e',(byte)'s',(byte)'t',(byte)' ',(byte)'F',(byte)'a',(byte)'i',(byte)'l',
 (byte)0x00};
 sendByteArray(apdu, tempdata); //Send "Self Test Fail" message
 }

 //Implement the FIPS 140-1 Statistical Random Number Generation Tests (SRNG)
 //Runs the tests and returns true on success or false if anything fails.
 //
 // (Actually this implements FIPS 140-2 SRNG tests, which are the same except)
 // (the acceptable values from the RNG must be closer to norms as noted)
 // (in the comments below)
 //The SRNG Tests have four parts that operate on a 20,000 bit random stream:
 // Monobit Test
 // Count the number of ones
 // Must be between 9,654 and 10,346 (FIPS 140-2: 9,725 and 10,275)
 // Poker Test
 // Take every four bits (5000 samples)
 // Record how many of samples fall into each of sixteen four bit possibilities
 // Sum the squares of the sixteen values = sigma
 // 16/5000 * sigma - 5000 = X
 // X between 1.03 and 57.4 (FIPS 140-2 X between 2.16 and 46.17)
 // Runs Test
 // Count runs of zeros or ones from one to six
 // Must be in following totals for all twelve counts:
 // Run FIPS 140-1 Range FIPS 140-2 Range
 // 1 2267-2733 2,315-2,685
 // 2 1079-1421 1,114-1,386
 // 3 502-748 527-723
 // 4 223-402 240-384
 // 5 90-223 103-209
 // 6+ 90-223 103-209
 // Long Run Test
 // Count runs of 34 or more in a row (FIPS 140-2 runs of 26 or more)
 // Fail if you get one.
 // RETURN CODES:
 // 0 = passed
 // 2 = failed self tests
 // 3 = failed long runs test
 // 4 = failed poker tests
 // 5 = failed runs tests
 // 6 = continuous RNG failed
 private int SRNG_Test() //Perform SRNG Self Test

21

 {
 int monobit_ones = 0; //the number of ones counted in the monobit test
 byte lastbit = 0x00; //the value of the last bit examined (one or zero)
 int runlength = 1; //the current size of the run of ones or zeroes examined
 int[] runs_ones={0,0,0,0,0,0,0}; //array counting the number of runs of ones
 //runs_ones[6] contains all runs of 6 or greater
 int[] runs_zeros={0,0,0,0,0,0,0}; //array counting the number of runs of zeroes
 boolean longrun4 = false; //flag for encountering a run of 26 or more
 boolean pokerfail3 = false; //flag for failure of poker tests
 boolean runsfail2 = false; //flag for general failure of runs tests
 boolean testsfail1 = false; //flag for general failure of tests
 //counts the number of each four byte possibility for poker test
 int[] poker={0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0};

 byte[] random_sample={(byte)0x00}; //place to store a random byte for analysis
 byte shift_sample=0x00; //scratch byte for shifting values.
 int X = 0; //sum for poker test
 byte[] random_byte=new byte[500]; //storage for raw randoms

 for(int i=1; i<=5; i++) //loop for 5 500-byte samples from RNG
 {

 //get a 100 byte sample
 if (!getRandom(random_byte,25)) //generate random data (25*20 bytes)
 {
 return (6); //If continuous RNG test fails, fail entire test
 }

 for (int k=0;k<=499;k++) //loop for 500 bytes in sample
 {
 random_sample[0] = random_byte[k]; //examine a byte

 for (int j=7; j>=0; j--) //loop through each bit in our 8-bit byte
 {
 shift_sample = random_sample[0]; //make a copy for shifting
 shift_sample >>=j; //look at the j'th bit of sample
 shift_sample &= 0x01; //mask off just that bit
 if (shift_sample==0x01) //if this bit is a one...
 monobit_ones++; //add to the ones count
 if (shift_sample==lastbit) //if this bit extends a run
 runlength++; //add to the runs count
 else //ended a run, since new bit flipped from lastbit
 {
 if (runlength >= 26) //if this is a "long run"
 longrun4 = true; //flag the long run failure
 if (runlength > 6) //lump runs higher than 6 into the 6+ category
 runlength = 6; //set index into 6+ category
 if (lastbit == 0x01)
 runs_ones[runlength]++; //count the run in the appropriate index
 else
 runs_zeros[runlength]++; //count the run in the appropriate index
 lastbit = shift_sample; //save the new run bit
 runlength = 1; //reset the runlength for the new bit.
 }
 //end loop on each bit of 8-bit sample
 }
 shift_sample = random_sample[0]; //make a copy of the sample
 shift_sample >>=4; //rotate top half of sample to bottom
 shift_sample &=(byte)0x0F; //look at only that part of sample
 poker[(int)shift_sample]++; //add top half of byte as one poker sample
 shift_sample = random_sample[0]; //get a fresh copy of sample
 shift_sample &=(byte)0x0F; //look at bottom half of sample
 poker[(int)shift_sample]++; //add lower half of byte as one poker sample
 }//end loop on bytes in sample
 //end loop on 20,000 bit test
 }
 //check last run
 if (runlength >= 26) //if this is a "long run"
 longrun4 = true; //flag the long run failure
 if (runlength > 6) //lump runs higher than 6 into the 6+ category
 runlength = 6; //set index into 6+ category
 if (lastbit == 0)
 runs_zeros[runlength]++; //count the run in the appropriate index
 else
 runs_ones[runlength]++; //count the run in the appropriate index

 //check for failures
 if ((monobit_ones <= 9725) || (monobit_ones >= 10275))

22

 testsfail1 = true; //throw error on monobit selftest fails
 for (int i = 0; i <=15; i++) //loop through poker test values
 { //calculate X per FIPS 140-2 ((sum of squares)*16/5000 - 5000)
 X += poker[i]*poker[i]; //sum the squares
 }
 //We use 100 times formula so we can use int arithmetic and keep
 //two significant decimal places. (No Floats in iButton)
 X = X * 16 / 50 - 500000; //now we have 100 times the needed value
 //so we check against 100 times desired value
 if ((X <= 216) || (X >= 4617))
 pokerfail3 = true; //throw error on poker selftest fails
 if (//giant if statement on all the runs value bounds from FIPS 140-2
 (runs_zeros[1] <= 2315) || (runs_zeros[1] >= 2685) ||
 (runs_ones[1] <= 2315) || (runs_ones[1] >= 2685) ||
 (runs_zeros[2] <= 1114) || (runs_zeros[2] >= 1386) ||
 (runs_ones[2] <= 1114) || (runs_ones[2] >= 1386) ||
 (runs_zeros[3] <= 527) || (runs_zeros[3] >= 723) ||
 (runs_ones[3] <= 527) || (runs_ones[3] >= 723) ||
 (runs_zeros[4] <= 240) || (runs_zeros[4] >= 384) ||
 (runs_ones[4] <= 240) || (runs_ones[4] >= 384) ||
 (runs_zeros[5] <= 103) || (runs_zeros[5] >= 209) ||
 (runs_ones[5] <= 103) || (runs_ones[5] >= 209) ||
 (runs_zeros[6] <= 103) || (runs_zeros[6] >= 209) ||
 (runs_ones[6] <= 103) || (runs_ones[6] >= 209)
)
 //problem areas currently commented out.
 { //if any runs tests are out of bounds
 runsfail2 = true; //fail the runs tests
 }

 //return error codes in reverse order of likelihood
 if (testsfail1) // if general tests failed above
 {
 return (2); //return failure code
 }
 else if (longrun4)
 {
 return (3); //throw error on long runs selftest fails
 }
 else if (runsfail2)
 {
 return (5); //return error for runs tests
 }
 else if (pokerfail3)
 {
 return (4); //return error for poker tests
 }

 // all tests passed, return success
 return (0);
 }
 //END CONVENIENCE FUNCTIONS
} //End Class

