

FIPS 140-2 Non-Proprietary Security Policy

Acme Packet 3820 and Acme Packet 4500

FIPS 140-2 Level 2 Validation

Firmware Version ECx 6.4.1 and ECx 6.4.1 M1

Hardware Version A1

August 28, 2015

Oracle is committed to developing practices and products that help protect the environment

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. Oracle specifically disclaim any liability with respect to this document and no contractual obligations are formed either directly or indirectly by this document. This document may reproduced or distributed whole and intact including this copyright notice.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Hardware and Software, Engineered to Work Together

Document Version 3.0

© Oracle Communications

Table of Contents

1	Intro	duction	. 4
	1.1	About FIPS 140-2	4
	1.2	About this Document	4
	1.3	External Resources	4
	1.4	Notices	4
	1.5	Acronyms	5
2	Orac	le Communications Acme Packet 3820 and Acme Packet 4500	6
	2.1	Product Overview	6
	2.2	Validation Level Detail	7
	2.3	Algorithm Implementations	7
	2.3.1	FIPS-Approved Algorithms	7
	2.3.2	Non-Approved Algorithms and Protocols	8
	2.3.3	Non-Approved but Allowed Algorithms and Protocols	8
	2.4	Cryptographic Module Specification	9
	2.5	Module Interfaces	10
	2.6	Roles, Services, and Authentication	
	2.6.1		
	2.6.2		
	2.7	Physical Security	17
	2.8	Operational Environment	
	2.9	Cryptographic Key Management	
	2.10	Self-Tests	
	2.10		
	2.10		
	2.10		
	2.11	Mitigation of Other Attacks	29
3	Guid	ance and Secure Operation	30
	3.1	Crypto Officer Guidance	30
	3.1.1	Enabling FIPS Mode and General Guidance	30
	3.1.2	Placement of Tamper Evidence Labels	31
	3.2	User Guidance	35
	3.2.1	General Guidance	35

List of Tables

5
7
7
8
8
10
11
12
12
16
16
26
27
28
29

List of Figures

Figure 1 – Acme Packet 3820 Physical Boundary	9
Figure 2 – Acme Packet 4500 Physical Boundary	10
Figure 3 – Acme Packet 3820 Tamper Evidence Label Placement / Front	31
Figure 4 – Acme Packet 3820 Tamper Evidence Label Placement / Rear	32
Figure 5 – Acme Packet 3820 Tamper Evidence Label Placement Top/Front	32
Figure 6 – Acme Packet 3820 Tamper Evidence Label Placement Bottom/Rear	33
Figure 7 – Acme Packet 4500 Tamper Evidence Label Placement Rear	33
Figure 8 – Acme Packet 4500 Tamper Evidence Label Placement Front	33
Figure 9 – Acme Packet 4500 Tamper Evidence Label Placement Top/Front	34
Figure 10 – Acme Packet 4500 Tamper Evidence Label Placement Rear Bottom	35

1 Introduction

1.1 About FIPS 140-2

Federal Information Processing Standards Publication 140-2 — Security Requirements for Cryptographic Modules specifies requirements for cryptographic products to be deployed in a Sensitive but Unclassified environment. The National Institute of Standards and Technology (NIST) and Communications Security Establishment Canada (CSEC) jointly run the Cryptographic Module Validation Program (CMVP). The NIST National Voluntary Laboratory Accreditation Program (NVLAP) accredits independent testing labs to perform FIPS 140-2 testing; the CMVP validates test reports for all cryptographic modules pursuing FIPS 140-2 validation. *Validation* is the term given to a cryptographic module that is documented and tested against the FIPS 140-2 criteria.

More information is available on the CMVP website at http://csrc.nist.gov/groups/STM/cmvp/index.html.

1.2 About this Document

This non-proprietary Cryptographic Module Security Policy for the Acme Packet 3820 and Acme Packet 4500 from Oracle Communications provides an overview of the product and a high-level description of how it meets the security requirements of FIPS 140-2. This document also contains details on the cryptographic keys and critical security parameters. This Security Policy concludes with instructions and guidance on running the module in a FIPS 140 mode of operation.

The Oracle Communications Acme Packet 3820 and Acme Packet 4500 may also be referred to as the "modules" in this document.

1.3 External Resources

The Oracle Communications website (<u>http://www.oracle.com/us/products/enterprise-</u> <u>communications/enterprise-session-border-controller/index.html</u>) contains information on the full line of products from Oracle Communications, including a detailed overview of the Acme Packet 3820 and Acme Packet 4500 solution. The Cryptographic Module Validation Program website contains links to the FIPS 140-2 certificate and Oracle Communications contact information.

1.4 Notices

This document may be freely reproduced and distributed in its entirety without modification.

1.5 Acronyms

The following table defines acronyms found in this document:

Acronym	Term
ACLI	Acme Command Line Interface
AES	Advanced Encryption Standard
CBC	Cipher Block Chaining
CSEC	Communications Security Establishment of Canada
CSP	Critical Security Parameter
DTR	Derived Testing Requirements
EMS	External Management Server
FIPS	Federal Information Processing Standard
HMAC	Hashed Message Authentication Code
IP	Internet Protocol
КАТ	Known Answer Test
NDRNG	Non Deterministic Random Number Generation
NIST	National Institute of Standards and Technology
OS	Operating System
PBX	Private Branch Exchange
RSA	Rivest Shamir Adelman
SBC	Session Border Controller
SHA	Secure Hashing Algorithm
SIP	Session Initiation Protocol
SLA	Service Level Agreement
SNMP	Secure Network Management Protocol
SRTP	Secure Real Time Protocol
VOIP	Voice Over Internet Protocol
VPN	Virtual Private Network
UC	Unified Communications

Table 1 – Acronyms and Terms

2 Oracle Communications Acme Packet 3820 and Acme Packet 4500

2.1 Product Overview

Oracle Communications session border controllers (SBC) provide critical control functions to deliver trusted, first-class interactive communications—voice, video and multimedia sessions—across IP network borders. They support multiple applications in government, service provider, enterprise and contact center networks—from VoIP trunking to hosted enterprise and residential services to fixed-mobile convergence.

The Acme Packet 3820 platform supports up to 4,000 simultaneous signaled sessions for government agencies, smaller service providers, small enterprises and smaller sites within larger organizations.

The Acme Packet 4500 is a carrier-class platform supporting up to 32,000 simultaneous signaled sessions, delivering unmatched capabilities and performance. It offers extremely rich functionality, architectural flexibility, signaling protocol breadth, and satisfies all of the performance, capacity, availability and manageability requirements of defense and security–focused government organizations, service providers, enterprises and contact centers.

The modules feature Acme Packet's custom hardware design tightly integrated with Acme Packet OS to satisfy the most critical infrastructure security requirements.

In government, enterprise, and contact center environments, the Acme Packet 3820 and Acme Packet 4500 secure SIP/H.323 trunking borders to service providers and other 3rd party IP networks and the internet border to remote offices, teleworkers, and mobile employees. In extremely security-conscious organizations, they secure the border to the private VPN connecting other sites. SIP and H.323 interworking capabilities ensure interoperability with and between legacy IP PBX equipment and next-generation unified communications platforms. They control session admission, IP PBX or UC server loads and overloads, IP network transport, and SIP/H.323 session routing to assure SLAs and minimize costs. Regulatory compliance requirements are also satisfied with encryption ensuring session privacy and call/session replication for recording.

2.2 Validation Level Detail

The following table lists the level of validation for each area in FIPS 140-2:

FIPS 140-2 Section Title	Validation Level
Cryptographic Module Specification	2
Cryptographic Module Ports and Interfaces	2
Roles, Services, and Authentication	2
Finite State Model	2
Physical Security	2
Operational Environment	N/A
Cryptographic Key Management	2
Electromagnetic Interference / Electromagnetic Compatibility	2
Self-Tests	2
Design Assurance	3
Mitigation of Other Attacks	N/A

Table 2 – Validation Level by DTR Section

2.3 Algorithm Implementations

2.3.1 FIPS-Approved Algorithms

The module contains the following algorithm implementations:

- Hifn 8450: bump-in-the-wire processing (HMAC-SHA-1, AES, TRIPLE-DES)
- Broadcom 5862 (BCM5862): DH, SHA-1, HMAC-SHA1, AES and Triple-DES for SSH and TLS
- Firmware running on Intel Core Duo T2500, Intel Core Duo T9400 and Intel Celeron M 440: random number generation, SHA-1, SHA-256, RSA, HMAC-SHA-1, HMAC-SHA-256, and Hash_DRBG

These cryptographic algorithm implementations have received the following certificate numbers from the Cryptographic Algorithm Validation Program:

Algorithm Type	Algorithm	Standard	CAVP Certificate	Use
Keyed Hash	HMAC-SHA-1, HMAC-	FIPS 198-1	519	Message verification
	SHA-256	115 190-1	515	
Hashing	SHA-1, SHA-256	FIPS 180-4	912	Message digest
Symmetric Key	Three key Triple-DES	NIST SP 800-67	745	Data encryption /
	(CBC mode)	NIST SP 800-07	745	decryption
	AES 128 and 256			Data encryption /
	(CBC, ECB, CTR	FIPS 197	928	decryption
	modes)			

Table 3 – Algorithm Certificates for FIPS-Approved Algorithms in the Hifn 8450

Algorithm Type	Algorithm	Standard	CAVP Certificate	Use
Hashing	SHA-1	FIPS 180-4	1378	Message digest
Keyed Hash	HMAC-SHA1	FIPS 198-1	907	Message verification
Symmetric Key	Three key Triple-DES	NIST SP 800-67	1019	Data encryption /
	(CBC mode)	NIST SP 800-07	1019	decryption
	AES 128 and 256			Data encryption /
	(CBC, ECB, CTR	FIPS 197	1555	decryption
	modes)			

 Table 4 – Algorithm Certificates for FIPS-Approved Algorithms for the BCM5862

Algorithm Type	Algorithm	Standard	F/W 6.4.1 Cert. #	F/W 6.4.1 M1 Cert. #	Use
Hashing	SHA-1 SHA-256	FIPS 180-4	2748	2788	Message digest
Keyed Hash	HMAC-SHA1 HMAC-SHA- 256	FIPS 198-1	2107	2143	Message verification (via HMAC-SHA-256) and module integrity (via HMAC-SHA-1
Asymmetric Key	RSA 2048	FIPS 186-2	1697	1724	Verify operations
Random Number Generation	Hash DRBG	SP800-90A	762	791	Random number generation
Key Derivation Function	TLS 1.0/1.1, SSH, SRTP, SNMP ¹	SP 800-135	480	498	Key derivation

Table 5 – Algorithm Certificates for FIPS-Approved Algorithms in Firmware

2.3.2 Non-Approved Algorithms and Protocols

The module implements the following non-approved algorithms and protocols:

- DES
- ARC4
- HMAC-MD5
- IPSEC
 - The FIPS 140-2 module validation does not cover the full protocol implementation for the IKE in IPSec and it is therefore considered a non-Approved service.
- SNMP V3 is considered non-FIPS mode in F/W version ECx 6.4.1.

Unless otherwise noted, Non-Approved algorithms and protocols are not allowed for use in FIPS mode.

2.3.3 Non-Approved but Allowed Algorithms and Protocols

The module implements the following non-approved but allowed algorithms and protocols in FIPS Approved Mode:

¹ SNMP V3 is only FIPS Approved while running F/W version 6.4.1 M1 only.

- RSA (key transport/key establishment)
 - Used in FIPS mode for TLS sessions and SSH key establishment in and provides 112-bits of encryption strength, non-compliant less than 112 bits.
- Diffie-Hellman (key transport/key establishment)
 - Used in FIPS mode for SSH sessions key agreement/key establishment in and provides 112-bits of encryption strength in FIPS Approved Mode, non-compliant less than 112 bits of encryption strength.
- Hardware-based random number generator (entropy generation for seeding DRBG)
 - This RNG is used in FIPS mode only to generate entropy_input to the firmware-based FIPSapproved Hash_DRBG.

2.4 Cryptographic Module Specification

The module is the Oracle Communications Acme Packet 3820 and Acme Packet 4500 running firmware versions ECx 6.4.1 and ECx 6.4.1 M1 on hardware version A1. The module is classified as a multi-chip standalone cryptographic module. The physical cryptographic boundary is defined as the module case and all components within the case. No components are excluded from the requirements of FIPS PUB 140-2.

The specific models included in the validation are as follows:

- Acme Packet 3820
 - Running network processor AMCC NP3750 @400 Mhz and host processor Intel Celeron M 440
 - Running Hifn 8450 and Broadcom 5862 for dedicated, hardware-based cryptographic processing.
- Acme Packet 4500
 - Running network processor AMCC NP3750 @700 Mhz and host processor Intel Core Duo T2500
 - o Running network processor AMCC NP3750 @700 Mhz and host processor Intel Core Duo T9400
 - Running Hifn 8450 and Broadcom 5862 for dedicated, hardware-based cryptographic processing.

The physical boundary for the modules are the entire module appliance and are pictured in the images below:

Figure 1 – Acme Packet 3820 Physical Boundary

Figure 2 – Acme Packet 4500 Physical Boundary

The logical boundary for the modules is the entire firmware image.

2.5 Module Interfaces

The table below describes the main interfaces on the Acme Packet 3820:

Physical Interface	Description / Use
LEDs ²	Indicates if any alarms are active on the module. The LED can be three
	different colors to indicate the severity of the alarms.
	 Unlit—system is fully functional without any faults
	 Amber—major alarm has been generated
	 Red—critical alarm has been generated.
Console Ports	Provides console access to the module. The module supports only one
	active serial console connection at a time. The rear console port is useful for customers who want permanent console access; the front console port provides easy access to the module for a temporary connection.
	Console port communication is used for administration and maintenance purposes from a central office (CO) location. Tasks conducted over a console port include:
	Creating the initial connection to the module
	 Accessing and using all functionality available via the ACLI
	• Performing in-lab system maintenance (services described below)
Alarm Port ³	Closes a circuit when a specific alarm level becomes active. The module
	features an alarm control signal interface that can be used in a CO location
	to indicate when internal alarms are generated. The appliances use alarm
	levels that correspond to three levels of service-disrupting incidents.
USB Ports	USB ports are disabled.
Network Management	Used for EMS control, CDR accounting, CLI management, and other
Ports	management functions
Signaling and Media Interfaces	Provide network connectivity for signaling and media traffic.

Table 6 – Acme Packet 3820 Interface Descriptions

The table below describes the main interfaces on the Acme Packet 4500:

 $^{^2}$ LED's do not provide FIPS Status indicators. FIPS status indicators are only in the form of logical indicators 3 Alarm port does not provide FIPS status indicators.

Physical Interface	Description / Use
LCD	Reports real-time status, alarms, and general system information
LEDs ⁴	 Indicates if any alarms are active on the module. The LED can be three different colors to indicate the severity of the alarms. Unlit—system is fully functional without any faults
	 Amber—major alarm has been generated
	• Red—critical alarm has been generated.
Console Ports	Provides console access to the module. The module supports only one active serial console connection at a time. The rear console port is useful for customers who want permanent console access; the front console port provides easy access to the module for a temporary connection.
	Console port communication is used for administration and maintenance purposes from a central office (CO) location. Tasks conducted over a console port include:
	 Creating the initial connection to the module
	 Accessing and using all functionality available via the ACLI Performing in-lab system maintenance (services described below)
Alarm Port ⁵	Closes a circuit when a specific alarm level becomes active. The module
	features an alarm control signal interface that can be used in a CO location to indicate when internal alarms are generated. The appliances use alarm levels that correspond to three levels of service-disrupting incidents.
USB Ports	USB ports are disabled.
Network Management	Used for EMS control, CDR accounting, CLI management, and other
Ports	management functions
Signaling and Media	Provide network connectivity for signaling and media traffic.
Interfaces	

Table 7 – Acme Packet 4500 Interface Descriptions

The modules provide a number of physical and logical interfaces to the device, and the physical interfaces provided by the module are mapped to four FIPS 140-2 defined logical interfaces: data input, data output, control input, and status output. The logical interfaces and their mapping are described in the following table:

FIPS 140-2 Logical Interface	Module Physical Interface	Information Input/Output
Data Input	Ethernet Ports (RJ-45), Console Ports (RJ-45),	Ciphertext (SSH, and TLS packets)
Data Output	Ethernet Ports (RJ-45), Console Ports (RJ-45),	Ciphertext (SSH, and TLS packets)

⁴ LED's do not provide FIPS Status indicators. FIPS status indicators are only in the form of logical indicators ⁵ Alarm port does not provide FIPS status indicators.

FIPS 140-2 Logical Interface	Module Physical Interface	Information Input/Output
Control Input	Console Ports (RJ-45), Network Management Ports (RJ-45), On/Off Switch	Plaintext control input via console port (configuration commands, operator passwords), ciphertext control input via network management (EMS control, CDR accounting, CLI management.
Status Output	Network Management Ports (RJ- 45), Console Ports (RJ-45), LCD Screen (4500), LEDs	Plaintext status output.
Power	Power Plug, On/Off Switch	N/A

Table 8 – Logical Interface / Physical Interface Mapping

2.6 Roles, Services, and Authentication

As required by FIPS 140-2 Level 2, there are three roles (a Crypto Officer Role, User Role, and Unauthenticated Role) in the module that operators may assume. The module supports role-based authentication, and the respective services for each role are described in the following sections.

The table below provides a mapping of default roles in the module to the roles defined by FIPS 140-2:

Operator Role	Summary of Services
User	 View configuration versions and a large amount if statistical data for the system's performance Handle certificate information for TLS and SSH functions
	 Test pattern rules, local policies, and session translations Display system alarms.
	 Set the display dimensions for the terminal
	 Connect to module for data transmission
Crypto-Officer	Allowed access to all system commands and configuration privileges
Unauthenticated	Show Status
	Initiate self-tests

Table 9 – Role Mapping

2.6.1 Operator Services and Descriptions

The services available to the User and Crypto Officer roles in the module are as follows:

Service and Description	Service Input	Service Output	Key/CSP Access	Roles
Configure Initializes the module for FIPS mode of operation	FIPS License, Image integrity (HMAC) value	None	HMAC-SHA-256 key	Crypto Officer
Firmware Update Updates the firmware	Signed firmware image	None	Public Key 1	Crypto Officer
Decrypts a block of data Using AES or TRIPLE-DES in FIPS Mode Decrypts a block of data using DES or ARC4 in Non-FIPS mode	Key Encrypted byte stream	Byte stream	TLS Session Keys (TRIPLE-DES) TLS Session Keys (AES128) TLS Session Keys (AES256) TLS Session Keys (DES,ARC4 in Non- FIPS Mode) SSH Session Key (AES128) SSH Session Key (AES128) SSH Session Key (AES256) SSH Session Keys (DES, ARC4 in Non- FIPS Mode) SRTP Session Key (AES-128) SNMP Privacy Key (AES-128) Private Key 2	User

Service and Description	Service Input	Service Output	Key/CSP Access	Roles
Encrypt	Кеу	Encrypted byte	TLS Session Keys	User
	Byte stream	stream	(TRIPLE-DES)	
Encrypts a block of data			TLS Session Keys	
Using AES or TRIPLE-			(AES128)	
DES in FIPS Mode			TLS Session Keys	
			(AES256)	
Encrypts a block of data			TLS Session Keys	
using DES or ARC4 in			(DES, ARC4 in Non-	
Non-FIPS mode			FIPS Mode)	
			SSH Session Key	
			(TRIPLE-DES)	
			SSH Session Key	
			(AES128)	
			SSH Session Key	
			(AES256)	
			SSH Session Keys	
			(DES, ARC4 in Non-	
			FIPS mode)	
			SRTP Session Key	
			(AES-128)	
			SNMP Privacy Key	
			(AES-128)	
			Public Key 2	

Service and	Service Input	Service Output	Key/CSP Access	Roles
Description				
DescriptionGenerate KeysGenerates AES orTRIPLE-DES keys forencrypt/decryptoperations in FIPSmodeGenerates Diffie-Hellman and RSA keysfor key transport/keyestablishment.	Key Size	AES-Keys or TRIPLE-DES Keys in FIPS mode DES keys and ARC4 Keys in Non-FIPS mode	TLS Certificates (RSA, Diffie- Hellman) TLS Session Keys (TRIPLE-DES) TLS Session Keys (AES128) TLS Session Keys (AES256) TLS Session Keys (DES, ARC4 in non- FIPS mode) SSH Certificates (Diffie-Hellman) SSH Session Key (TRIPLE-DES)	User
			(TRIPLE-DES) SSH Session Key (AES128) SSH Session Key (AES256) SSH Session Keys (DES, ARC4 in Non- FIPS mode) SRTP Master Key (AES-128) Public Key 2	
Verify Verifies the signature of a RSA-signed block	RSA Signed firmware	Verification success/failure	Public Key 1	User
Used as part of the TLS protocol negotiation	Nonce transported as part of TLS or SSH	Verification success/failure	Public Key 2	
Hash_Drbg seed Generate a entropy_input for Hash_Drbg	NDRNG generated random bits.	entropy_input	entropy_input Public Key 2	User
Hash_Drbg Generate random number.	Working state C and V	Random number	Hash_DRBG V Hash_DRBG Public Key 2	User

Service and Description	Service Input	Service Output	Key/CSP Access	Roles
HMAC Hash-SHA hash based Message	Key, data block	HMAC value	HMAC 160-bit key 1 HMAC 160-bit key	User
Authentication Code in FIPS mode HMAC-MD5 Hash			2 (TLS/SSH/SRTP) HMAC 256-bit key Public Key 2 HMAC-MD5 Key	
based Message Authentication Code in Non-FIPS mode			(non-FIPS mode)	
Zeroize CSPs ⁶ Clears CSPs from memory	Key, Key pair, entropy_input, password	Invalidated CSP	All CSPs	Crypto Officer

Table 10 – Operator Services and Descriptions

The module provides for the following unauthenticated services, which do not require authentication as they are not security relevant functions. These services do not affect the security of the module; these services do not create, disclose, or substitute cryptographic keys or CSPs, nor do they utilize any Approved security functions.

Service and Description	Service Input	Service Output	Key/CSP Access	Roles
Show Status Shows status of the module	None	Module status enabled/disabled	None	Unauthenticated
Initiate self-tests Restarting the module provides a way to run the self-tests on- demand	None	Console display of success/failure. Log entry of success/failure.	None	Unauthenticated

Table 11 – Unauthenticated Operator Services and Descriptions

⁶ During zeroization the Crypto-Officer must remain in possession of the module until it has rebooted in order to verify that successfully zeroization has completed.

2.6.2 Operator Authentication

2.6.2.1 Crypto-Officer: Password-Based Authentication

In FIPS-approved mode of operation, the module is accessed via Command Line Interface over the Console ports or via SSH or SNMP over the Network Management Ports. Other than status functions available by viewing the LCD panel, the services described in Table 10 – Operator Services and Descriptions are available only to authenticated operators.

Passwords must be a minimum of 8 characters (see Guidance and Secure Operation section of this document). The password can consist of alphanumeric values, {a-z, A-Z, 0-9, and special characters], yielding 94 choices per character. The probability of a successful random attempt is 1/94⁸, which is less than 1/1,000,000. Assuming 10 attempts per second via a scripted or automatic attack, the probability of a success with multiple attempts in a one-minute period is 600/94⁸, which is less than 1/100,000.

The module will lock an account after 3 failed authentication attempts; thus, the maximum number of attempts in one minute is 3. Therefore, the probability of a success with multiple consecutive attempts in a one-minute period is $3/94^8$ which is less than 1/100,000.

The module will permit an operator to change roles provided the operator knows both the User password and the Crypto Officer password.

2.6.2.2 Certificate-Based Authentication

The module also supports authentication via digital certificates for the User Role as implemented by the TLS and SSH protocols. The module supports a public key based authentication with 2048-bit RSA keys. A 2048-bit RSA key has at least 112-bits of equivalent strength. The probability of a successful random attempt is $1/2^{112}$, which is less than 1/1,000,000. Assuming the module can support 60 authentication attempts in one minute, the probability of a success with multiple consecutive attempts in a one-minute period is $3/2^{112}$, which is less than 1/100,000.

2.7 Physical Security

The module is a multiple-chip standalone module and conforms to Level 2 requirements for physical security. For details on tamper evidence, please see Section 3.1.2 – Placement of Tamper Evidence Labels.

2.8 Operational Environment

The module operates in a limited operational model and does not implement a General Purpose Operating System.

The module meets Federal Communications Commission (FCC) FCC Electromagnetic Interference (EMI) and Electromagnetic Compatibility (EMC) requirements for business use as defined by 47 Code of Federal Regulations, Part15, Subpart B.

2.9 Cryptographic Key Management

The table below provides a complete list of Critical Security Parameters used within the module:

Key/CSP Name	Description /	Generation	Storage	Establishment / Export	Destruction	Privileges
	Use					
TLS Session	TRIPLE-DES CBC	Internal	Storage: Volatile RAM in	Agreement: RSA key	Resetting / rebooting the	Crypto Officer
Keys (TRIPLE-	168-bit, AES-	generation by	plaintext	transport	module or power cycling	
DES, AES-128,	128 bit CBC,	FIPS-approved				R W D
AES-256)	AES-256 bit CBC	Hash_DRBG	Type : Ephemeral	Entry: NA		
		in firmware				
	For encryption		Association: The system is the	Output: None		
	/ decryption of		one and only owner.			
	TLS session		Relationship is maintained by			
	traffic		the operating system via			
			protected memory for the			
	Source:		respective session.			
	Broadcom					
SSH Session	TRIPLE-DES CBC	Internal	Storage: Volatile RAM in	Agreement: Diffie-	Resetting / rebooting the	Crypto Officer
Keys (TRIPLE-	168-bit, AES-	generation by	plaintext	Hellman	module or power cycling	
DES, AES-128,	128 bit CBC,	FIPS-approved				R W D
AES-256)	AES-256 bit CBC	Hash_DRBG	Type: Ephemeral	Entry: NA		
		in firmware				
	For encryption		Association: The system is the	Output: None		
	/ decryption of		one and only owner.			
	SSH session		Relationship is maintained by			
	traffic		the operating system via			
			protected memory for the			
	Source:		respective session.			
	Broadcom					

Key/CSP Name	Description /	Generation	Storage	Establishment / Export	Destruction	Privileges
	Use					
SRTP Master	For derivation	Internal	Storage: Volatile RAM in	Agreement: Diffie-	Resetting / rebooting the	Crypto Officer
Key (AES-128)	of the SRTP	generation by	plaintext	Hellman	module or power cycling	
	Session Key	FIPS-approved				R W D
		Hash_DRBG	Type : Ephemeral	Entry: NA		
		in firmware				
			Association: The system is the	Output: encrypted		
			one and only owner.			
			Relationship is maintained by			
			the operating system via			
			protected memory for the			
			respective session.			
SRTP Session	For encryption	NIST SP 800-	Storage: Volatile RAM in	Agreement: NIST SP	Resetting / rebooting the	Crypto Officer
Key (AES-128)	/ decryption of	135 KDF	plaintext	800-135 KDF	module or power cycling	
	SRTP session					R W D
	traffic		Type : Ephemeral	Entry: NA		
			Association: The system is the	Output: None		
			one and only owner.			
			Relationship is maintained by			
			the operating system via			
			protected memory for the			
			respective session.			

Key/CSP Name	Description /	Generation	Storage	Establishment / Export	Destruction	Privileges
	Use					
SNMP Privacy	For encryption	NIST SP 800-	Storage: Volatile RAM in	Agreement: NIST SP	Resetting / rebooting the	Crypto Officer
Key (AES-128)	/ encryption of	135 KDF	plaintext	800-135 KDF	module or power cycling	
	SNMP session					R W D
	traffic		Type : Ephemeral	Entry: NA		
			Association: The system is the one and only owner.	Output: None		
			Relationship is maintained by			
			the operating system via			
			protected memory for the			
			respective session.			
Diffie-Hellman	y=g^x mod p	Internal	Storage: Volatile RAM in	Agreement: NA	Resetting / rebooting the	Crypto Officer
Public Key	component;	generation by	plaintext		module or power cycling	
	Generator g is 2	FIPS-approved		Entry: NA		R W D
	and p is 2048	Hash_DRBG	Type : Ephemeral			
	(group-14)	in firmware		Output: None		
			Association: The system is the			
	Source: Host		one and only owner.			
	Processor		Relationship is maintained by			
			the operating system via			
			protected memory for the			
			respective session.			

Key/CSP Name	Description / Use	Generation	Storage	Establishment / Export	Destruction	Privileges
Diffie-Hellman	x component of	Internal	Storage: Volatile RAM in	Agreement: NA	Resetting / rebooting the	Crypto Officer
Private Key	DH; x is 2048	generation by	plaintext		module or power cycling	
	(group-14)	FIPS-approved		Entry: NA		R W D
		Hash_DRBG	Type : Ephemeral			
	Source: Host	in firmware		Output: None		
	Processor		Association: The system is the			
			one and only owner.			
			Relationship is maintained by			
			the operating system via			
			protected memory for the			
			respective session.			
HMAC 160-bit	160-bit HMAC-	Internal	Storage: Flash RAM in plaintext	Agreement: NA	Re-formatting flash	Crypto Officer
key 1	SHA-1 for	generation by			memory	
	message	FIPS-approved	Type: Static	Entry: NA		R W D
	verification	Hash_DRBG				
		in firmware	Association: The system is the	Output: None		
	Source:		one and only owner.			
	Broadcom		Relationship is maintained by			
			the operating system via			
			protected memory for the			
			respective session.			
HMAC 160-bit	160-bit HMAC-	Internal	Storage: Flash RAM in plaintext	Agreement: NA	Re-formatting flash	Crypto Officer
key 2	SHA-1 for	generation by			memory	
	message	FIPS-approved	Type: Static	Entry: NA		R W D
	authentication	Hash_DRBG				
	and verification	in firmware	Association: The system is the	Output: None		
	in SSH/TLS,		one and only owner.			
	SNMP and SRTP		Relationship is maintained by			
			the operating system via			
	Source: Host		protected memory for the			
	Processor		respective session.			

Key/CSP Name	Description / Use	Generation	Storage	Establishment / Export	Destruction	Privileges
Operator	Alphanumeric	Not generated	Storage: Non Volatile RAM in	Agreement: NA	Issue command	Crypto Officer
passwords	passwords	by the	plaintext		secure_pwd_reset()	
	externally	module;		Entry: Manual entry via		R W D
	generated by a	defined by the	Type: Static	console or SSH		User
	human user for	human user of		management session		
	authentication	the module	Association: controlled by the			R W D
	to the module.		operating environment	Output: Not Output		
	Source: Host					
	Processor					
Premaster	RSA-Encrypted	Internal	Storage: Volatile RAM in	Agreement: NA	Resetting / rebooting the	Crypto Officer
Secret (48	Premaster	generation by	plaintext		module or power cycling	None
Bytes)	Secret Message	FIPS-approved		Entry: Input during TLS		
		Hash_DRBG	Type : Ephemeral	negotiation		User
	Source: Host	in firmware				None
	Processor		Association: The system is the	Output: Output to peer		
			one and only owner.	encrypted by Public Key		
			Relationship is maintained by			
			the operating system via			
			protected memory.			
Master Secret	Used for	Internal	Storage: Volatile RAM in	Agreement: NA	Resetting / rebooting the	Crypto Officer
(48 Bytes)	computing the	generation by	plaintext		module or power cycling	None
	Session Key	FIPS-approved		Entry: NA		
		Hash_DRBG	Type: Ephemeral			User
	Source: Host	in firmware		Output: NA		None
	Processor		Association: The system is the			
			one and only owner.			
			Relationship is maintained by			
			the operating system via			
			protected memory.			

Key/CSP Name	Description /	Generation	Storage	Establishment / Export	Destruction	Privileges
	Use					
Hash_DRBG V	440 bits long	Generated as	Storage: Volatile RAM in	Agreement: NA	Resetting / rebooting the	Crypto Officer
	value V used	per section	plaintext		module or power cycling	None
	for generating	10.1.1.2 of SP		Entry: NA		
	Hash_DRBG	800-90	Type: Ephemeral			User
				Output: NA		None
	Source: Host		Association: The system is the			
	Processor		one and only owner.			
			Relationship is maintained by			
			the operating system via			
			protected memory.			
Hash_DRBG C	440 bits long	Generated as	Storage: Volatile RAM in	Agreement: NA	Resetting / rebooting the	Crypto Officer
	constant C used	per section	plaintext		module or power cycling	None
	for generating	10.1.1.2 of SP		Entry: NA		
	Hash_DRBG	800-90	Type: Ephemeral			User
				Output: NA		None
	Source: Host		Association: The operating			None
	Processor		environment is the one and			
			only owner. Relationship is			
			maintained by the operating			
			environment via protected			
			memory.			

Key/CSP Name	Description / Use	Generation	Storage	Establishment / Export	Destruction	Privileges
Hash_DRBG	Input string for	Generated as	Storage: Volatile RAM in	Agreement: NA	Resetting / rebooting the	Crypto Officer
Entropy Input	DRBG	per section	plaintext		module or power cycling	None
String		10.1.1.2 of SP		Entry: NA		
	Source: Host	800-90	Type: Ephemeral			User
	Processor			Output: NA		None
			Association: The operating			None
			environment is the one and			
			only owner. Relationship is			
			maintained by the operating			
			environment via protected			
			memory.			
Hash_DRBG	Seed value for	Generated as	Storage: Volatile RAM in	Agreement: NA	Resetting / rebooting the	Crypto Officer
Seed Value	DRBG	per section	plaintext		module or power cycling	None
		10.1.1.2 of SP		Entry: NA		
	Source: Host	800-90	Type: Ephemeral			User
	Processor			Output: NA		None
			Association: The operating			
			environment is the one and			
			only owner. Relationship is			
			maintained by the operating			
			environment via protected			
			memory.			
Public Key 1	RSA Public	Entered	Storage: Flash in plaintext	Agreement: NA	Not destroyed as it is a	Crypto Officer
	2048-bit for	encrypted			public key	R W D
	firmware load		Type: Static	Entry: NA		Lleen
	verification					User
	operations.		Association: The system is the	Output: NA		R
			one and only owner.			
	Source: Host		Relationship is maintained by			
	Processor		the operating environment.			

Key/CSP Name	Description /	Generation	Storage	Establishment / Export	Destruction	Privileges
Public Key 2	Use RSA Public	Internal	Storage: Flash in plaintext	Agreement: NA	Not destroyed as it is a	Crypto Officer
Public Key 2			Storage. Flash in plaintext	Agreement. NA		
	2048-bit for	generation by			public key	R W D
	key	FIPS-approved	Type: Static	Entry: NA		licor
	establishment	Hash_DRBG				User
	for TLS/SSH	in firmware	Association: The system is the	Output: NA		R
	sessions.		one and only owner.			
			Relationship is maintained by			
	Source: Host		the operating system via			
	Processor		certificates.			
Private Key 2	RSA Private	Internal	Storage: Flash in plaintext	Agreement: NA	Re-formatting flash	Crypto Officer
	2048-bit for	generation by			memory	RWD
	key	FIPS-approved	Type: Static	Entry: NA		
	establishment ⁷	Hash DRBG				User
	for TLS/SSH	in firmware	Association: The system is the	Output: NA		R
	sessions		one and only owner.			
			Relationship is maintained by			
	Source: Host		the operating system via			
	Processor		protected memory.			

R = Read W = Write D = Delete

Table 12 – Key/CSP Management Details

Public keys are protected from unauthorized modification and substitution. The module ensures only authenticated operators have access to keys and functions that can generate keys. Unauthenticated operators do not have write access to modify, change, or delete a public key. For the session certificate, the module generates a PKCS10 certificate request (PKCS 10), and a standard Certificate Authority (CA) generates the certificate.

⁷ Key establishment methodology provides 112-bits of encryption strength

2.10 Self-Tests

The module includes an array of self-tests that are run during startup and periodically during operations to prevent any secure data from being released and to ensure all components are functioning correctly. In the event of any self-test failure, the module will output an error dialog and will shut down. When the module is in an error state, no keys or CSPs will be output and the module will not perform cryptographic functions.

The module does not support a bypass function.

The following sections discuss the module's self-tests in more detail.

2.10.1 Power-On Self-Tests

Power-on self-tests are run upon every initialization of the module and if any of the tests fail, the module will not initialize. The module will enter an error state and no services can be accessed by the users. The module implements the following power-on self-tests:

Implementation	Self Tests Run
Hifn 8450	TRIPLE-DES encrypt known answer test
	TRIPLE-DES decrypt known answer test
	AES encrypt known answer test
	AES decrypt known answer test
	 HMAC-SHA-1 known answer test⁸
BCM5862	TRIPLE-DES encrypt known answer test
	TRIPLE-DES decrypt known answer test
	AES encrypt known answer test
	AES decrypt known answer test
	SHA-1 known answer test
	HMAC-SHA-1 known answer test
Firmware	SHA-1 and SHA-256 known answer test
	HMAC-SHA-1 and HMAC-SHA-256 known answer test
	Hash_DRBG known answer test
	Firmware integrity check using HMAC-SHA-256
	RSA (verify) known answer test
	• KDF KAT

Table 13 - Power-On Self-Tests

The module performs all power-on self-tests automatically when the module is initialized. All power-on self-tests must be passed before a User/Crypto Officer can perform services. The Power-on self-tests can be run on demand by rebooting the module in FIPS approved Mode of Operation.

⁸ Note: According to the CMVP FAQ p.57 "If a KAT is implemented for the HMAC-SHA-1, a KAT is not needed for the underlying SHA-1."

2.10.1.1 Status Output

An operator can discern that all power-on self-tests have passed via normal operation of the module and the following log message.

FIPS: KAT self test completed successfully.
FIPS: System is currently operating in FIPS 140-2
compatible mode.

In the event a POST fails, the module will output the following log message:

FIPS: ERROR - System is not in FIPS 140-2 compatible mode
FIPS: ERROR - <Test Name> failed.
For example:
FIPS: ERROR - RSA pair wise consistency test failed.

Note that data output will be inhibited while the module is in an error state (i.e., when a POST fails). No keys or CSPs will be output when the module is in an error state.

2.10.2 Conditional Self-Tests

Conditional self-tests are test that run continuously during operation of the module. If any of these tests fail, the module will enter an error state. The module can be re-initialized to clear the error and resume FIPS mode of operation. No services can be accessed by the operators. The module performs the following conditional self-tests:

Implementation	Self Tests Run
BCM5862	Continuous NDRNG test
Firmware	DRBG Health Test as specified in SP 800-90 Section 11.3
	 Continuous test on output of seed mechanism
	 RSA pairwise consistency test for encrypt/decrypt
	Firmware load test using RSA 2048

Table 14 – Conditional Self-Tests

2.10.2.1 Status Output

In the event a conditional self-test fails, the module will output the following log message:

FIPS: ERROR - System is not in FIPS 140-2 compatible mode
FIPS: ERROR - <Conditional Test Name> failed.
For example:
FIPS: ERROR - Continuous RNG test failed.
Document Version 3.0 © Oracle Communications Page 28 of 35

Note that data output will be inhibited while the module is in this error state. The module will self-correct this use case as follows:

Test	Remediation
Pairwise consistency test for RSA implementations	Generate a new RSA key pair and rerun test
Continuous test run on output of FIPS-approved	Generate a new value and rerun test
Hash_DRBG in firmware	
Continuous test on output of FIPS-approved	Generate a new value and rerun test
Hash_DRBG in firmware seed mechanism	

Table 15 – Conditional Self Tests and Module Remediation

No keys or CSPs will be output when the module is in an error state.

2.10.3 Critical Functions Test

The following are considered critical functions tests:

- Adding additional entropy to NDRNG;
- SP 800-90A DRBG critical function tests;
- KDF KAT performed at power-up.

2.11 Mitigation of Other Attacks

The module does not mitigate attacks.

3 Guidance and Secure Operation

This section describes how to configure the module for FIPS-approved mode of operation. Operating the module without maintaining the following settings will remove the module from the FIPS-approved mode of operation.

3.1 Crypto Officer Guidance

3.1.1 Enabling FIPS Mode and General Guidance

FIPS Mode is enabled by a license installed by Oracle, which will open/lock down features where appropriate.

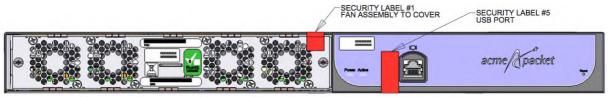
Additionally, the Crypto Officer must configure and enforce the following initialization procedures in order to operate in FIPS approved mode of operation⁹:

- Verify that the firmware version of the module is Version ECx 6.4.1 or ECx 6.4.1 M1.
- Ensure all media traffic is encapsulated in a TLS, SSH, or SRTP tunnel as appropriate.
- Ensure that SNMP V3 is configured with AES-128 (Version ECx 6.4.1 M1 only).
- Ensure all management traffic is encapsulated within a trusted session (i.e., Telnet or FTP should not be used in FIPS mode of operation).
- Ensure that the tamper evidence labels are applied by Oracle as specified in Section 3.1.2 Placement of Tamper Evidence Labels. The tamper evident labels shall be installed for the module to operate in a FIPS Approved mode of operation.
- Inspect the tamper evident labels periodically to verify they are intact and the serial numbers on the applied tamper evident labels match the records in the security log.
- All operator passwords must be a minimum of 8 characters in length.
- Ensure use of FIPS-approved algorithms for TLS v1.0:

TLS_RSA_WITH_Triple-DES_EDE_CBC_SHA TLS_DHE_RSA_WITH_Triple-DES_EDE_CBC_SHA TLS_RSA_WITH_AES_128_CBC_SHA TLS_RSA_WITH_AES_256_CBC_SHA TLS_DHE_RSA_WITH_AES_128_CBC_SHA

⁹ The licensing may ensure most of these are met. The Crypto Officer should verify all details prior to operation in FIPS mode.

TLS_DHE_RSA_WITH_AES_256_CBC_SHA


- Ensure use of FIPS-approved cipher suite algorithms for SSH V2.
- Ensure RSA keys are at least 2048-bit keys. No 512-bit or 1024-bit keys can be used in FIPS mode of operation.
- Do not disclose passwords and store passwords in a safe location and according to his/her organization's systems security policies for password storage.

3.1.2 Placement of Tamper Evidence Labels

To meet Physical Security Requirements for Level 2, the module enclosure must be protected with tamper evidence labels. The tamper evident labels shall be installed for the module to operate in a FIPS Approved mode of operation. Oracle Communications applies the labels at time of manufacture; the Crypto Officer is responsible for ensuring the labels are applied as shown below. Once applied, the Crypto Officer shall not remove or replace the labels unless the module has shown signs of tampering. In the event of tampering or wear and tear on the labels, the Crypto Officer shall return the module to Oracle Communications, where it will be reimaged and returned with a new set of labels.

The Crypto Officer is responsible for

- Verifying the five labels are attached to the appliance as shown in the diagrams below,
- Maintaining the direct control and observation of any changes to the module such as
 reconfigurations where the tamper evident seals or security appliances are removed or installed
 to ensure the security of the module is maintained during such changes and the module is
 returned to a FIPS Approved state.

NN3820 FRONT (BEZEL AND AIR FILTER REMOVED)

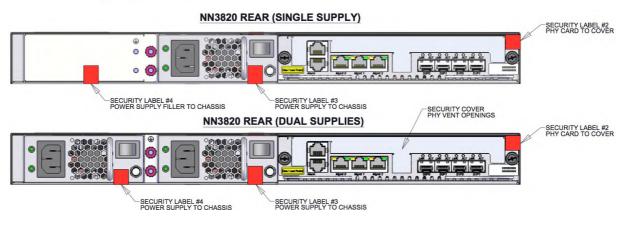


Figure 5 – Acme Packet 3820 Tamper Evidence Label Placement Top/Front

© Oracle Communications

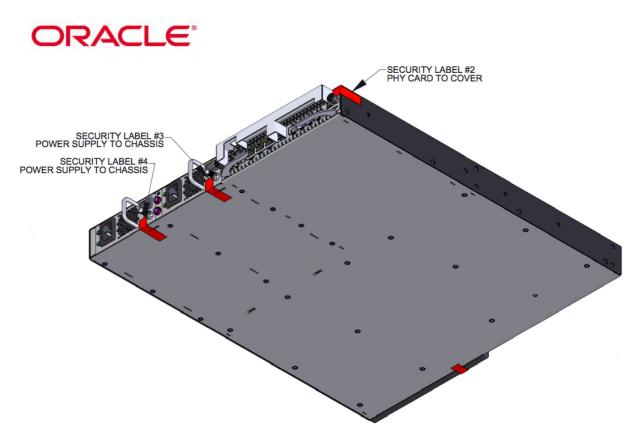


Figure 6 – Acme Packet 3820 Tamper Evidence Label Placement Bottom/Rear

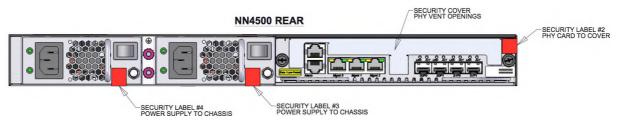
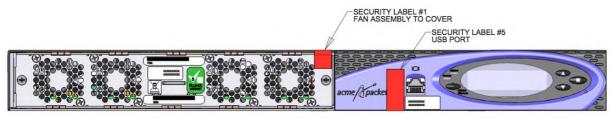



Figure 7 – Acme Packet 4500 Tamper Evidence Label Placement Rear

NN4500 FRONT (BEZEL AND AIR FILTER REMOVED)

Figure 8 – Acme Packet 4500 Tamper Evidence Label Placement Front

Document Version 3.0

© Oracle Communications

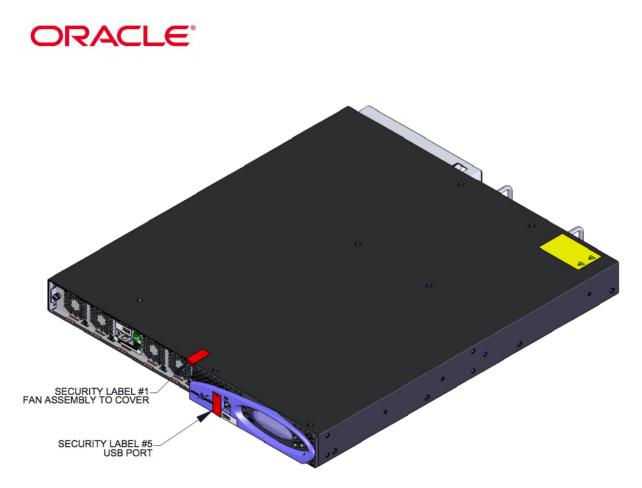


Figure 9 – Acme Packet 4500 Tamper Evidence Label Placement Top/Front

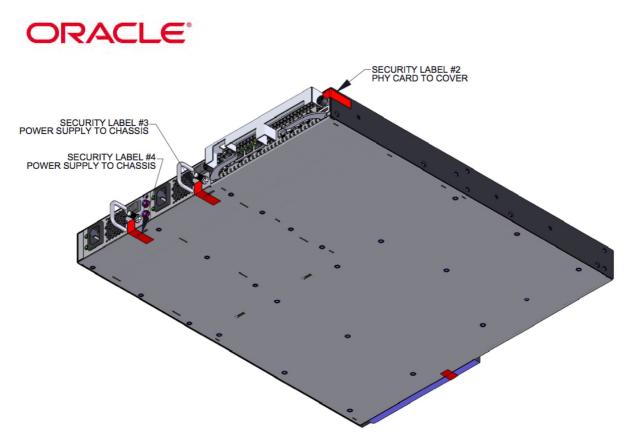


Figure 10 – Acme Packet 4500 Tamper Evidence Label Placement Rear Bottom

Note that Oracle Communications does offer the purchase of additional labels. If labels need to be replaced, please contact Oracle Communications to return the module for reimaging, and Oracle Communications will reimage the module and provide additional label (internal part number LBL-0140-60).

3.2 User Guidance

3.2.1 General Guidance

The User must not disclose passwords and must store passwords in a safe location and according to his/her organization's systems security policies for password storage.

End of Document

Document Version 3.0