
FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	1	of	21	

	 	

	

	

	

FIPS	140-2	Non-Proprietary	Security	Policy	

	

	

CryptoComply	for	Java	
	

Software	Version	2.2-fips	 	 	 	 	

	 	 	

	

Document	Version	1.2	 	

	

	

March	12,	2018	

	

	

	

	 	
SafeLogic	Inc.		

530	Lytton	Ave.,	Suite	200	
Palo	Alto,	CA	94301	
www.safelogic.com		

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	2	of	21	

Abstract	 	

This	document	provides	a	non-proprietary	FIPS	140-2	Security	Policy	for	CryptoComply	for	Java.	

SafeLogic's	CryptoComply	for	Java	is	designed	to	provide	FIPS	140-2	validated	cryptographic	

functionality	and	is	available	for	licensing.	For	more	information,	visit	

https://www.safelogic.com/cryptocomply-for-java/.	

	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	3	of	21	

Table	of	Contents	

1	 Introduction	...	5	
1.1	 About	FIPS	140	..	5	
1.2	 About	this	Document	..	5	
1.3	 External	Resources	..	5	
1.4	 Notices	..	5	
1.5	 Acronyms	..	5	

2	 CryptoComply	for	Java	...	7	
2.1	 Cryptographic	Module	Specification	...	7	

2.1.1	 Validation	Level	Detail	...	7	
2.1.2	 Approved	Cryptographic	Algorithms	...	8	
2.1.3	 Non-Approved	but	Allowed	Cryptographic	Algorithms	..	9	
2.1.4	 Non-Approved	Cryptographic	Algorithms	...	9	

2.2	 Module	Interfaces	...	12	
2.3	 Roles,	Services,	and	Authentication	..	13	

2.3.1	 Operator	Services	and	Descriptions	..	13	
2.3.2	 Operator	Authentication	...	15	

2.4	 Physical	Security	...	15	
2.5	 Operational	Environment	...	15	
2.6	 Cryptographic	Key	Management	..	16	

2.6.1	 Random	Number	Generation	..	18	
2.6.2	 Key/CSP	Storage	..	18	
2.6.3	 Key/CSP	Zeroization	..	18	

2.7	 Self-Tests	...	18	
2.7.1	 Power-On	Self-Tests	..	18	
2.7.2	 Conditional	Self-Tests	..	19	

2.8	 Mitigation	of	Other	Attacks	..	19	
3	 Guidance	and	Secure	Operation	...	20	

3.1	 Crypto	Officer	Guidance	..	20	
3.1.1	 Software	Installation	...	20	
3.1.2	 Additional	Rules	of	Operation	...	20	

3.2	 User	Guidance	...	20	
3.2.1	 General	Guidance	..	20	
3.2.2	 FIPS-Approved	Mode	of	Operation	...	21	

	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	4	of	21	

List	of	Tables	

	

Table	1	–	Acronyms	and	Terms	...	6	
Table	2	–	Validation	Level	by	FIPS	140-2	Section	..	7	
Table	3	–	FIPS-Approved	Algorithm	Certificates	...	9	
Table	4	-	Non	Approved	Algorithms	...	11	
Table	5	–	Logical	Interface	/	Physical	Interface	Mapping	...	13	
Table	6	–	Module	Services,	Roles,	and	Descriptions	...	14	
Table	7	–	Module	Keys/CSPs	...	17	
Table	8	–	Power-On	Self-Tests	..	19	
Table	9	–	Conditional	Self-Tests	..	19	
	

List	of	Figures	

	

Figure	1	–	Module	Boundary	and	Interfaces	Diagram	..	12	
	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	5	of	21	

1 Introduction	

1.1 About	FIPS	140	

Federal	Information	Processing	Standards	Publication	140-2	—	Security	Requirements	for	Cryptographic	

Modules	specifies	requirements	for	cryptographic	modules	to	be	deployed	in	a	Sensitive	but	

Unclassified	environment.	The	National	Institute	of	Standards	and	Technology	(NIST)	and	

Communications	Security	Establishment	(CSE)	Cryptographic	Module	Validation	Program	(CMVP)	run	

the	FIPS	140	program.	The	NVLAP	accredits	independent	testing	labs	to	perform	FIPS	140-2	testing;	the	

CMVP	validates	modules	meeting	FIPS	140-2	validation.	Validated	is	the	term	given	to	a	module	that	is	

documented	and	tested	against	the	FIPS	140-2	criteria.	

More	information	is	available	on	the	CMVP	website	at	

http://csrc.nist.gov/groups/STM/cmvp/index.html.	

1.2 About	this	Document	

This	non-proprietary	Cryptographic	Module	Security	Policy	for	CryptoComply	for	Java	provides	an	

overview	of	the	product	and	a	high-level	description	of	how	it	meets	the	security	requirements	of	FIPS	

140-2.	This	document	contains	details	on	the	module’s	cryptographic	keys	and	critical	security	

parameters.	This	Security	Policy	concludes	with	instructions	and	guidance	on	running	the	module	in	a	

FIPS	140-2	mode	of	operation.		

CryptoComply	for	Java	may	also	be	referred	to	as	the	“module”	in	this	document.		

1.3 External	Resources	

The	SafeLogic	website	(http://www.safelogic.com)	contains	information	on	SafeLogic	services	and	

products.	The	Cryptographic	Module	Validation	Program	website	contains	links	to	the	FIPS	140-2	

certificate	and	SafeLogic	contact	information.	

1.4 Notices	

This	document	may	be	freely	reproduced	and	distributed	in	its	entirety	without	modification.	

1.5 Acronyms	

The	following	table	defines	acronyms	found	in	this	document:		

	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	6	of	21	

	

Table	1	–	Acronyms	and	Terms	

	 	

Acronym	 Term	
AES	 Advanced	Encryption	Standard	

ANSI	 American	National	Standards	Institute	

API	 Application	Programming	Interface	

CMVP	 Cryptographic	Module	Validation	Program	

CO	 Crypto	Officer	

CSE	 Communications	Security	Establishment	

CSP	 Critical	Security	Parameter	

DES	 Data	Encryption	Standard	

DH	 Diffie-Hellman	

DSA	 Digital	Signature	Algorithm	

EC	 Elliptic	Curve		

EMC	 Electromagnetic	Compatibility		

EMI	 Electromagnetic	Interference	

FCC	 Federal	Communications	Commission	

FIPS	 Federal	Information	Processing	Standard	

GPC	 General	Purpose	Computer	

GUI	 Graphical	User	Interface	

HMAC	 (Keyed-)	Hash	Message	Authentication	Code	

KAT	 Known	Answer	Test		

MAC	 Message	Authentication	Code	

NIST	 National	Institute	of	Standards	and	Technology	

OS	 Operating	System	

PKCS	 Public-Key	Cryptography	Standards	

PRNG	 Pseudo	Random	Number	Generator	

PSS	 Probabilistic	Signature	Scheme	

RNG	 Random	Number	Generator	

RSA	 Rivest,	Shamir,	and	Adleman	

SHA	 Secure	Hash	Algorithm	

SSL	 Secure	Sockets	Layer	

Triple-DES	 Triple	Data	Encryption	Algorithm	

TLS	 Transport	Layer	Security	

USB	 Universal	Serial	Bus	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	7	of	21	

2 CryptoComply	for	Java	

2.1 Cryptographic	Module	Specification	

CryptoComply	for	Java	is	a	standards-based	“Drop-in	Compliance”	cryptographic	engine	for	native	Java	

environments.	The	module	delivers	core	cryptographic	functions	to	mobile	platforms	and	features	

robust	algorithm	support,	including	Suite	B	algorithms.	CryptoComply	offloads	functions	for	secure	key	

management,	data	integrity,	data	at	rest	encryption,	and	secure	communications	to	a	trusted	

implementation.	

The	module's	logical	cryptographic	boundary	is	the	shared	library	files	and	their	integrity	check	HMAC	

files	(cryptocomply-2.2-fips.jar	and	cryptocomply-2.2-fips.hmac).	The	module	is	a	multi)chip	standalone	

embodiment	installed	on	a	General	Purpose	Device.	The	module	is	a	software	module	and	relies	on	the	

physical	characteristics	of	the	host	platform.	The	module’s	physical	cryptographic	boundary	is	defined	

by	the	enclosure	around	the	host	platform.	All	operations	of	the	module	occur	via	calls	from	host	

applications	and	their	respective	internal	daemons/processes.	

2.1.1 Validation	Level	Detail	

The	following	table	lists	the	level	of	validation	for	each	area	in	FIPS	140-2:	

FIPS	140-2	Section	Title	 Validation	Level	
Cryptographic	Module	Specification	 1	

Cryptographic	Module	Ports	and	Interfaces	 1	

Roles,	Services,	and	Authentication	 1	

Finite	State	Model	 1	

Physical	Security	 N/A	

Operational	Environment	 1	

Cryptographic	Key	Management	 1	

Electromagnetic	Interference	/	Electromagnetic	Compatibility	 1	

Self-Tests	 1	

Design	Assurance	 1	

Mitigation	of	Other	Attacks	 N/A	

Table	2	–	Validation	Level	by	FIPS	140-2	Section	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	8	of	21	

2.1.2 Approved	Cryptographic	Algorithms	

The	module’s	cryptographic	algorithm	implementations	have	received	the	following	certificate	numbers	

from	the	Cryptographic	Algorithm	Validation	Program:	

Algorithm	 CAVP	Certificate		
AES	(128-,	192-,	256-bit	keys	in	ECB,	CBC,	CFB128	and	OFB	modes)	 3192	

DSA	(FIPS	186-4)		

• Signature	verification		

o L=1024,	N=160,	SHA-1	through	SHA-512	

o L=2048,	N=224,	256,	SHA-1	through	SHA-512	

o L=3072,	N=256,	SHA-1	through	SHA-512	

• PQG	generation	(Probable	Primes	P	and	Q,	Unverifiable	and	Canonical	

Generation	G)	

o L=2048,	N=224,	SHA-224	through	SHA-512	

o L=2048,	N=256,	SHA-256	through	SHA-512	

o L=3072,	N=256,	SHA-256	through	SHA-512	

• Key	Pair	Generation	

o L=2048,	N=224	

o L=2048,	N=256	

o L=3072,	N=256	

• Signature	Generation	

o L=2048,	N=224,	SHA-224	through	SHA-512	

o L=2048,	N=256,	SHA-256	through	SHA-512	

o L=3072,	N=256,	SHA-256	through	SHA-512	

914	

ECDSA		(FIPS	186-4)	

• Signature	Verification	(SHA-1	through	SHA-512)	

o P–curves	192,	224,	256,	384,	and	521	

o K–curves	163,	233,	283,	409,	and	571	

o B–curves	163,	233,	283,	409,	and	571	

• Signature	Generation	(SHA-224	through	SHA-512)	

o P–curves	224,	256,	384,	and	521	

o K–curves	233,	283,	409,	and	571	

o B–curves	233,	283,	409,	and	571	

583	

RSA	(FIPS	186-4)		

• Key	Pair	Generation	(X9.31)	

o Appendix	B.3.3	

o Mod	2048,	3072	

o Table	C.3	Probabilistic	Primality	Tests	(2^-100)	

• Signature	Generation	(PKCS	v1.5,	PSS)		

o Mod	2048,	SHA-224	through	SHA-512	

o Mod	3072,	SHA-224	through	SHA-512	

1622	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	9	of	21	

Algorithm	 CAVP	Certificate		
• Signature	Verification	(PKCS	v1.5,	PSS)		

o Mod	1024,	SHA-1	through	SHA-512	

o Mod	2048,	SHA-1	through	SHA-512	

o Mod	3072,	SHA-1	through	SHA-512	

HMAC	using	SHA-1,	SHA-224,	SHA-256,	SHA-384,	SHA-512	 2011	

SHA-1,	SHA-224,	SHA-256,	SHA-384,	SHA-512	 2637	

SP	800-90A	based	HMAC-DRBG,	no	reseed	 668	

Triple-DES	(two-	and	three-key	with	ECB,	CBC,	CFB8	and	OFB	modes)1	 1818	

Table	3	–	FIPS-Approved	Algorithm	Certificates	

2.1.3 Non-Approved	but	Allowed	Cryptographic	Algorithms	

The	module	supports	the	following	non-FIPS	140-2	approved	but	allowed	algorithms:	

	

• Diffie-Hellman	(key	agreement;	key	establishment	methodology	provides	between	112	and	219	

bits	of	encryption	strength)	

• EC	Diffie-Hellman	(key	agreement;	key	establishment	methodology	provides	between	112	and	

256	bits	of	encryption	strength)		

2.1.4 Non-Approved	Cryptographic	Algorithms	

The	module	supports	the	following	non-approved	algorithms	and	modes:	

Algorithm	 Modes	or	Cipher	Type		
DSA2	 PQGGen,	KeyGen	and	SigGen;	non-compliant	less	than	112	bits	

of	encryption	strength)	including	FIPS	186-2	signature	

generation	and	key	generation	

ECDSA2	 KeyGen	and	SigGen;	non-compliant	less	than	112	bits	of	

encryption	strength)	including	FIPS	186-2	signature	generation	

and	key	generation	

RSA2	 KeyGen	and	SigGen;	non-compliant	less	than	112	bits	of	

encryption	strength	

Diffie-Hellman	 key	agreement;	key	establishment	methodology	providing	

between	80	and	112	bits	of	encryption	strength	

EC	Diffie-Hellman	 key	agreement;	key	establishment	methodology	provides	

between	80	and	112	bits	of	encryption	strength	

AES2	 GCM,	CFB8,	CTR,	CMAC,	CCM	

																																																													
1
	The	use	of	two-key	Triple	DES	for	encryption	is	restricted:	the	total	number	of	blocks	of	data	encrypted	with	the	

same	cryptographic	key	shall	not	be	greater	than	2^20	
2
	Non-compliant	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	10	of	21	

Algorithm	 Modes	or	Cipher	Type		
ANSI	X9.31	Appendix	A.2.4	PRNG2		 (AES-128)	

Blowfish	 SymmetricBlockCipher3	

Camellia	 SymmetricBlockCipher3	

CAST5	 SymmetricBlockCipher3	

CAST6	 SymmetricBlockCipher3	

ChaCha	 SymmetricStreamCipher4	

DES	 SymmetricBlockCipher3	

TDES	Key	Wrapping2	 SymmetricBlockCipher3	

ElGamal	 AsymmetricBlockCipher5	

GOST28147	 SymmetricBlockCipher3	

GOST3411	 Digest	

Grain128	 SymmetricStreamCipher4	

Grainv1	 SymmetricStreamCipher4	

HC128	 SymmetricStreamCipher4	

HC256	 SymmetricStreamCipher4	

IDEA	 SymmetricBlockCipher3	

IES	 Key	Agreement	and	Stream	Cipher	based	on	IEEE	P1363a	

(draft	10)	

ISAAC	 SymmetricStreamCipher4	

MD2	 Digest	

MD4	 Digest	

MD5	 Digest	

Naccache	Stern	 AsymmetricBlockCipher5	

Noekeon	 SymmetricBlockCipher3	

Password-Based-Encryption	(PBE)	 • PKCS5S1,	any	Digest,	any	symmetric	Cipher,	ASCII	

• PKCS5S2,	SHA1/HMac,	any	symmetric	Cipher,	ASCII,	UTF8	

• PKCS12,	any	Digest,	any	symmetric	Cipher,	Unicode	

RC2	 SymmetricBlockCipher3	

RC2	Key	Wrapping	 SymmetricStreamCipher4	

RC4	 SymmetricStreamCipher4	

RC532	 SymmetricBlockCipher3	

RC564	 SymmetricBlockCipher3	

RC6	 SymmetricBlockCipher3	

RFC3211	Wrapping	 SymmetricBlockCipher3	

																																																													
3
	Symmetric	Block	Ciphers	can	be	used	with	the	following	modes	and	padding:	ECB,	CBC,	CFB,	CCM,	CTS,	GCM,	

GCF,	EAX,	OCB,	OFB,	CTR,	OpenPGPCFB,	GOST	OFB,	AEAD-CCM,	AEAD-EAX,	AEAD-GCM,	AEAD-OCB,	PKCS7Padding,	

ISO10126d2Padding,	ISO7816d4Padding,	X932Padding,	ISO7816d4Padding,	ZeroBytePadding,	TBCPadding	
4
	Symmetric	Stream	Ciphers	can	only	be	used	with	ECB	mode.	

5
	Asymmetric	Block	Ciphers	can	be	used	with	ECB	mode	and	the	following	encodings:	OAEP,	PKCS1,	ISO9796d1	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	11	of	21	

Algorithm	 Modes	or	Cipher	Type		
RFC3394	Wrapping	 SymmetricBlockCipher3	

Rijndael	 SymmetricBlockCipher3	

Ripe	MD128	 Digest	

Ripe	MD160	 Digest	

Ripe	MD256	 Digest	

Ripe	MD320	 Digest	

RSA	Encryption	 AsymmetricBlockCipher5	

Salsa	20	 SymmetricStreamCipher4	

SEED	 SymmetricBlockCipher3	

SEED	Wrapping	 SymmetricBlockCipher3	

Serpent	 SymmetricBlockCipher3	

Shacal2	 SymmetricBlockCipher3	

SHA-32	 Digest	

SHA-512/t2	 Digest	

Skein-256-*	 Digest	

Skein-512-*	 Digest	

Skein-1024-*	 Digest	

Skipjack2	 SymmetricBlockCipher3	

SP	800-90A	DRBG2	 CTR,	Hash	

TEA	 SymmetricBlockCipher3	

TDES2	 CFB64	

Threefish	 SymmetricBlockCipher3	

Tiger	 Digest	

TLS	v1.0	KDF2	 Key	Derivation	Function	

Twofish	 SymmetricBlockCipher3	

VMPC	 SymmetricStreamCipher4	

Whirlpool	 Digest	

XSalsa20	 SymmetricStreamCipher4	

XTEAEngine	 SymmetricBlockCipher3	

	Table	4	-	Non	Approved	Algorithms	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	12	of	21	

2.2 Module	Interfaces	

The	figure	below	shows	the	module’s	physical	and	logical	block	diagram:	

	

	

Figure	1	–	Module	Boundary	and	Interfaces	Diagram	

	

The	interfaces	(ports)	for	the	physical	boundary	include	the	computer	keyboard	port,	mouse	port,	

network	port,	USB	ports,	display	and	power	plug.	When	operational,	the	module	does	not	transmit	any	

information	across	these	physical	ports	because	it	is	a	software	cryptographic	module.	Therefore,	the	

module’s	interfaces	are	purely	logical	and	are	provided	through	the	Application	Programming	Interface	

(API)	that	a	calling	daemon	can	operate.	The	logical	interfaces	expose	services	that	applications	directly	

call,	and	the	API	provides	functions	that	may	be	called	by	a	referencing	application	(see	Section	2.3	–	

Roles,	Services,	and	Authentication	for	the	list	of	available	functions).	The	module	distinguishes	between	

logical	interfaces	by	logically	separating	the	information	according	to	the	defined	API.	

Processor	

Processor	

Opera+ng	System	

Host	Applica+on	

Module	
	

(FIPS	140-2	Logical	Boundary)	

Interface	=	D	

Interface	=	C	Interface	=	C	Interface	=	A	B	C	D	

=	Plaintext	

=	Ciphertext	

=	Logical	Boundary	

=	Physical	Boundary	

A	=	Data	Input	

B	=	Data	Output	

C	=	Control	Input	

D	=	Status	Output	

E	=	Power	

Interface	Legend	

Network	
Interface	

Keyboard	
Controller	

Mouse	
Interface	

Memory	
Power	
Supply	

Display	
Controller	

Interface	=	E	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	13	of	21	

The	API	provided	by	the	module	is	mapped	onto	the	FIPS	140-	2	logical	interfaces:	data	input,	data	

output,	control	input,	and	status	output.	Each	of	the	FIPS	140-	2	logical	interfaces	relates	to	the	

module’s	callable	interface,	as	follows:	

FIPS	140-2	Interface	 Logical	Interface	 Module	Physical	Interface	
Data	Input		 Input	parameters	of	API	function	

calls	

Network	Interface	

Data	Output		 Output	parameters	of	API	function	

calls	

Network	Interface	

Control	Input		 API	function	calls	 Keyboard	Interface,	Mouse	

Interface	

Status	Output		 Function	calls	returning	status	

information	and	return	codes	

provided	by	API	function	calls.		

Display	Controller	

Power		 None	 Power	Supply	

Table	5	–	Logical	Interface	/	Physical	Interface	Mapping	

As	shown	in	Figure	1	–	Module	Boundary	and	Interfaces	Diagram	and	Table	6	–	Module	Services,	Roles,	

and	Descriptions,	the	output	data	path	is	provided	by	the	data	interfaces	and	is	logically	disconnected	

from	processes	performing	key	generation	or	zeroization.	No	key	information	will	be	output	through	the	

data	output	interface	when	the	module	zeroizes	keys.	

2.3 Roles,	Services,	and	Authentication	

The	module	supports	a	Crypto	Officer	and	a	User	role.	The	module	does	not	support	a	Maintenance	

role.		The	User	and	Crypto-Officer	roles	are	implicitly	assumed	by	the	entity	accessing	services	

implemented	by	the	Module.	

2.3.1 Operator	Services	and	Descriptions	

The	module	supports	services	that	are	available	to	users	in	the	various	roles.	All	of	the	services	are	

described	in	detail	in	the	module’s	user	documentation.	The	following	table	shows	the	services	available	

to	the	various	roles	and	the	access	to	cryptographic	keys	and	CSPs	resulting	from	services:	

Service	 Roles	 CSP	/	Algorithm		 Permission	
Initialize	module		 CO	 None	 None	

Show	status		 CO	 None	 None	

Run	self-tests	on	demand	 CO	 None	

	

None	

Zeroize	key	 CO	 AES	key		

DH	components	

DRBG	Entropy		

DRBG	Seed		

DSA	private/public	key	

Write	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	14	of	21	

Service	 Roles	 CSP	/	Algorithm		 Permission	
ECDH	components	

ECDSA	private/public	key		

HMAC	key	

RSA	private/public	key	

Triple-DES	key		

Generate	asymmetric	key	pair	 User	 RSA	private/public	key		

DSA	private/public	key	

Write	

Generate	keyed	hash	(HMAC)	 User	 HMAC	key	 Read	/	Execute	

Generate	message	digest	(SHS6)	 User		 None	 None	

Generate	random	number	and	

load	entropy	(DRBG)	

User	 DRBG	Seed	

DRBG	Entropy	

Read	/	Execute	

Key	agreement	 User	 DH	components	

ECDH	components	

Write	

Signature	Generation	 User	 RSA	private	key	

DSA	private	key	

ECDSA	private/public		

Read	/	Execute	

Signature	Verification	 User	 RSA	public	key	

DSA	public	key		

ECDSA	private/public	

Read	/	Execute	

Symmetric	decryption	 User	 AES	key	

Triple-DES	key		

Read	/	Execute	

Symmetric	encryption	 User	 AES	key		

Triple-DES	key	

Read	/	Execute	

Table	6	–	Module	Services,	Roles,	and	Descriptions	

When	in	Non-FIPS	approved	mode	of	operation,	the	module	allows	access	to	each	of	the	services	listed	

above,	with	exception	of	FIPS	self-tests.	When	in	non-FIPS-approved	mode	of	operation	the	module	also	
provides	a	service	(API	function	call)	for	each	non-approved	algorithm	listed	in	Section	2.1.4.	These	

function	calls	are	assigned	to	the	User,	and	have	Read/Write/Execute	permission	to	the	module's	

memory	while	in	operation.	

																																																													
6
	SHA	–	Secure	Hash	Standard	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	15	of	21	

2.3.2 Operator	Authentication	

As	required	by	FIPS	140-2,	there	are	two	roles	(a	Crypto	Officer	role	and	User	role)	in	the	module	that	

operators	may	assume.	As	allowed	by	Level	1,	the	module	does	not	support	authentication	to	access	

services.	As	such,	there	are	no	applicable	authentication	policies.	Access	control	policies	are	implicitly	

defined	by	the	services	available	to	the	roles	as	specified	in	Table	6	–	Module	Services,	Roles,	and	

Descriptions.	

2.4 Physical	Security	

This	section	of	requirements	does	not	apply	to	this	module.	The	module	is	a	software-only	module	and	

does	not	implement	any	physical	security	mechanisms.	

2.5 Operational	Environment	

The	module	operates	on	a	general	purpose	computer	(GPC)	running	a	general	purpose	operating	system	

(GPOS).	For	FIPS	purposes,	the	module	is	running	on	this	operating	system	in	single	user	mode	and	does	

not	require	any	additional	configuration	to	meet	the	FIPS	requirements.	

The	module	was	tested	on	the	following	platforms:	

• OEM	PowerEdge	R420	running	64-bit	Windows	Server	2012	with	Java	Runtime	Environment	

(JRE)	v1.7.0_17.	

The	module	is	also	supported	on	the	following	platform	for	which	operational	testing	was	not	

performed:	

• OEM	PowerEdge	R420	running	64-bit	Windows	Server	2012	with	Java	Runtime	Environment	

(JRE)	v1.8.0_45	

• OEM	PowerEdge	R420	running	CentOS	6.7	and	CentOS	7	

• Nexus	5	running	Android	4	and	5	

Compliance	is	maintained	for	other	environment	where	the	module	is	unchanged.	No	claim	can	be	

made	as	to	the	correct	operation	of	the	module	or	the	security	strengths	of	the	generated	keys	when	

ported	to	an	operational	environment	which	is	not	listed	on	the	validation	certificate.		

The	GPC(s)	used	during	testing	met	Federal	Communications	Commission	(FCC)	FCC	Electromagnetic	

Interference	(EMI)	and	Electromagnetic	Compatibility	(EMC)	requirements	for	business	use	as	defined	

by	47	Code	of	Federal	Regulations,	Part15,	Subpart	B.	FIPS	140-2	validation	compliance	is	maintained	

when	the	module	is	operated	on	other	versions	of	the	GPOS	running	in	single	user	mode,	assuming	that	

the	requirements	outlined	in	NIST	IG	G.5	are	met.	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	16	of	21	

2.6 Cryptographic	Key	Management	

The	table	below	provides	a	complete	list	of	Critical	Security	Parameters	used	within	the	module:	

Keys	and	CSPs	 Storage	
Locations	

Storage	
Method	 Input		Method	 Output	

Method	 Zeroization	

AES	key	

AES128,	192,	256	bit	

key	for	encryption,	

decryption	

RAM	 Plaintext	 Input	

electronically	in	

plaintext	

Never		 power	cycle	

Triple-DES	key	

Triple-DES	112,	168	

bit	key	for	

encryption,	

decryption	

RAM	 Plaintext	 Input	

electronically	in	

plaintext	

Never		 power	cycle	

HMAC	key	

HMAC	key	for	

message	

Authentication	with	

SHS	

RAM	 Plaintext	 Input	

electronically	in	

plaintext	

Never		 power	cycle	

RSA	private	key	

RSA	2048,	3072	bit	

key	for	signature	and	

key	generation	

RAM	 Plaintext	 Input	

electronically	in	

plaintext	

Never	 power	cycle	

RAM	 Plaintext	 Internally	

generated	

Output	

electronically	in	

plaintext	

power	cycle	

RSA	public	key	

RSA	1024,	2048,	3072	

bit	key	for	signature	

verification	and	key	

generation	

RAM	 Plaintext	 Input	

electronically	in	

plaintext	

Never		 power	cycle	

RAM	 Plaintext	 Internally	

generated	

Output	

electronically	in	

plaintext	

power	cycle	

DSA	private	key	

DSA	2048,	3072-bit	

for	signature	

generation	

RAM	 Plaintext	 Input	

electronically	in	

plaintext	

Never		 power	cycle	

RAM	 Plaintext	 Internally	

generated	

Output	

electronically	in	

plaintext	

power	cycle	

DSA	public	key	

DSA	1024,	2048,	

3072-bit	key	for	

signature	verification	

Module	

Binary	

Plaintext	 Input	

electronically	in	

plaintext	

Never		 power	cycle	

RAM	 Plaintext	 Internally	

generated	

Output	

electronically	in	

plaintext	

power	cycle	

ECDSA	private	

key	

All	NIST	defined	B,	K,	

RAM	 Plaintext	 Input	

electronically	in	

plaintext	

Never	exits	the	

module	

power	cycle	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	17	of	21	

Keys	and	CSPs	 Storage	
Locations	

Storage	
Method	 Input		Method	 Output	

Method	 Zeroization	

and	P	Curves	for	

signature	generation	

RAM	 Plaintext	 Internally	

generated	

Output	

electronically	in	

plaintext	

power	cycle	

ECDSA	public	key	

All	NIST	defined	B,	K,	

and	P	Curves	for	

signature	verification	

RAM	 Plaintext	 Input	

electronically	in	

plaintext	

Never	exits	the	

module	

power	cycle	

RAM	 Plaintext	 Internally	

generated	

Output	

electronically	in	

plaintext	

power	cycle	

DH	public	

components	

Public	components	of	

DH	protocol	

RAM	 Plaintext	 Internally	

generated	

Output	

electronically	in	

plaintext	

power	cycle	

DH	private	

component	

Private	exponent	of	

DH	protocol	

RAM	 Plaintext	 Internally	

generated	

Never		 power	cycle	

EC	DH	public	

components	

Public	components	of	

EC	DH	protocol	

RAM	 Plaintext	 Internally	

generated	

Output	

electronically	in	

plaintext	

power	cycle	

EC	DH	private	

component	

Private	exponent	of	

EC	DH	protocol	

RAM	 Plaintext	 Internally	

generated	

Never	exits	the	

module	

power	cycle	

DRBG	seed	

Random	data		440-bit	

or	880-bit	to	

generate	random	

number	using	the	

DRBG	

RAM	 Plaintext	 Internally	

generated	using	

nonce	along	with	

DRBG	entropy	

input	string	

Never	exits	the	

module	

power	cycle	

DRBG	Entropy	

Input	String	

512-bit	value	to	

generate	seed	and	

determine	random	

number	using	the	

DRBG	

RAM	 Plaintext	 Externally	

generated;	Input	

electronically	in	

plaintext	

Never	exits	the	

module	

power	cycle	

R	=	Read				W	=	Write				D	=	Delete	

Table	7	–	Module	Keys/CSPs	

The	application	that	uses	the	module	is	responsible	for	appropriate	destruction	and	zeroization	of	the	

key	material.	The	module	provides	functions	for	key	allocation	and	destruction	which	overwrite	the	

memory	that	is	occupied	by	the	key	information	with	zeros	before	it	is	deallocated.	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	18	of	21	

2.6.1 Random	Number	Generation	

The	module	uses	SP800-90A	DRBG	for	creation	of	asymmetric	and	symmetric	keys.	

The	module	accepts	input	from	entropy	sources	external	to	the	cryptographic	boundary	for	use	as	seed	

material	for	the	module’s	Approved	DRBG.	Therefore,	the	module	generates	cryptographic	keys	whose	

strengths	are	modified	by	available	entropy,	and	no	assurance	is	provided	for	the	strength	of	the	

generated	keys.	

The	module	performs	continual	tests	on	the	output	of	the	approved	RNG	to	ensure	that	consecutive	

random	numbers	do	not	repeat.	

2.6.2 Key/CSP	Storage	

Public	and	private	keys	are	provided	to	the	module	by	the	calling	process	and	are	destroyed	when	

released	by	the	appropriate	API	function	calls	or	during	power	cycle.	The	module	does	not	perform	

persistent	storage	of	keys.	

2.6.3 Key/CSP	Zeroization	

The	application	is	responsible	for	calling	the	appropriate	destruction	functions	from	the	API.	The	

destruction	functions	then	overwrite	the	memory	occupied	by	keys	with	zeros	and	deallocates	the	

memory.	This	occurs	during	process	termination	/	power	cycle.	Keys	are	immediately	zeroized	upon	

deallocation,	which	sufficiently	protects	the	CSPs	from	compromise.	

2.7 Self-Tests	

FIPS	140-2	requires	that	the	module	perform	self	tests	to	ensure	the	integrity	of	the	module	and	the	

correctness	of	the	cryptographic	functionality	at	start	up.	In	addition	some	functions	require	continuous	

verification	of	function,	such	as	the	random	number	generator.	All	of	these	tests	are	listed	and	

described	in	this	section.		

If	any	self-test	fails,	the	module	will	enter	a	critical	error	state,	during	which	cryptographic	functionality	

and	all	data	output	is	inhibited.		To	clear	the	error	state,	the	CO	must	reboot	the	host	system,	reload	the	

module,	or	restart	the	calling	application.	No	operator	intervention	is	required	to	run	the	self-tests.	

The	following	sections	discuss	the	module’s	self-tests	in	more	detail.	

2.7.1 Power-On	Self-Tests	

Power-on	self-tests	are	executed	automatically	when	the	module	is	loaded	into	memory.	The	module	

verifies	the	integrity	of	the	runtime	executable	using	a	HMAC-SHA-512	digest	computed	at	build	time.	If	

the	fingerprints	match,	the	power-up	self-tests	are	then	performed.	If	the	power-up	self-tests	are	

successful,	the	module	is	in	FIPS	mode.	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	19	of	21	

TYPE	 DETAIL	
Software	Integrity	Check	 • HMAC-SHA512	on	all	module	components	

Known	Answer	Tests	 • AES	encrypt	and	decrypt	KATs	

• Triple-DES	encrypt	and	decrypt	KATs	

• HMAC	SHA1	KAT	

• HMAC	SHA-256	KAT	

• HMAC	SHA-512	KAT	

• RSA	sign	and	verify	KATs	

• SP	800-90A	DRBG	KAT	(HMAC)	

Pair-wise	Consistency	Tests	 • DSA	

• ECDSA	

• Diffie-Hellman	

• EC	Diffie-Hellman	
Table	8	–	Power-On	Self-Tests	

Input,	output,	and	cryptographic	functions	cannot	be	performed	while	the	Module	is	in	a	self-test	or	

error	state	because	the	module	is	single-threaded	and	will	not	return	to	the	calling	application	until	the	

power-up	self	tests	are	complete.	If	the	power-up	self	tests	fail,	subsequent	calls	to	the	module	will	also	

fail	-	thus	no	further	cryptographic	operations	are	possible.	

2.7.2 Conditional	Self-Tests	

The	module	implements	the	following	conditional	self-tests	upon	key	generation,	or	random	number	

generation	(respectively):	

TYPE	 DETAIL	
Pair-wise	Consistency	Tests	 • DSA	

• ECDSA	

• Diffie-Hellman	

• EC	Diffie-Hellman	

Continuous	RNG	Tests	 • SP	800-90A	DRBG	(HMAC)	
Table	9	–	Conditional	Self-Tests	

2.8 Mitigation	of	Other	Attacks	

The	Module	does	not	contain	additional	security	mechanisms	beyond	the	requirements	for	FIPS	140-2	

Level	1	cryptographic	modules.	

	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	20	of	21	

3 Guidance	and	Secure	Operation	

3.1 Crypto	Officer	Guidance	

3.1.1 Software	Installation	

The	module	is	provided	directly	to	solution	developers	and	is	not	available	for	direct	download	to	the	

general	public.	The	module	and	its	host	application	is	to	be	installed	on	an	operating	system	specified	in	

Section	2.5	or	one	where	portability	is	maintained.	

In	order	to	remain	in	FIPS-approved	mode,	the	following	steps	must	be	taken	during	the	installation	

process:	

1. The	Java	Cryptography	Extension	(JCE)	Unlimited	Strength	Jurisdiction	Policy	Files	7	must	be	

installed	in	the	JRE.	Instructions	for	installation	are	found	in	the	download	file	located	here:	

http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html	

2. The	module	must	be	configured	as	the	JRE's	default	Security	Provider	by	modifying	the	

jre/lib/security/java.security	file	and	adding	the	following	line	to	the	list	of	providers:	

security.provider.1=	com.safelogic.cryptocomply.jce.provider. Provider

3.1.2 Additional	Rules	of	Operation	

1. The	writable	memory	areas	of	the	module	(data	and	stack	segments)	are	accessible	only	by	the	

application	so	that	the	operating	system	is	in	"single	user"	mode,	i.e.	only	the	application	has	

access	to	that	instance	of	the	module.	

2. The	operating	system	is	responsible	for	multitasking	operations	so	that	other	processes	cannot	

access	the	address	space	of	the	process	containing	the	module.	

3.2 User	Guidance	

3.2.1 General	Guidance	

The	module	is	not	distributed	as	a	standalone	library	and	is	only	used	in	conjunction	with	the	solution.		

The	end	user	of	the	operating	system	is	also	responsible	for	zeroizing	CSPs	via	wipe/secure	delete	

procedures.	

If	the	module	power	is	lost	and	restored,	the	calling	application	can	reset	the	IV	to	the	last	value	used.	

FIPS	140-2	Non-Proprietary	Security	Policy:	CryptoComply	for	Java	

Document	Version	1.2	 ©SafeLogic		 Page	21	of	21	

3.2.2 FIPS-Approved	Mode	of	Operation	

In	order	to	maintain	the	FIPS-approved	mode	of	operation,	the	following	requirements	must	be	

observed:		

1. The	calling	application	must	instantiate	and	operate	the	module	through	the	JCE	interface	

provided	by	the	JDK.	

2. The	calling	application	may	not	share	CSPs	between	non-FIPS-approved-mode	and	FIPS-

approved-mode	of	operation.	The	operator	must	reset	the	module	before	switching	to	FIPS-

approved-mode	of	operation.	

3. The	calling	application	must	restrict	the	use	of	two-key	Triple	DES	encryption:	the	total	number	

of	blocks	of	data	encrypted	with	the	same	cryptographic	key	shall	not	be	greater	than	2^20.	

4. The	module	requires	that	a	minimum	of	256	bits	of	entropy	be	provided	for	each	use	of	the	

DRBG	/	load	entropy	service.	

