
Red Hat Enterprise Linux Kernel Crypto API
Cryptographic Module v4.0

FIPS 140-2 Non-Proprietary Security Policy

Version 1.2

Last update: 2016-08-29

Prepared by:

atsec information security corporation

9130 Jollyville Road, Suite 260

Austin, TX 78759

www.atsec.co m

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 1 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

http://www.atsec.com/
http://www.atsec.com/

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Table of Contents
1Cryptographic Module Specification..4

1.1Module Overview...4
1.2FIPS 140-2 validation...6
1.3Modes of Operations..7

2Cryptographic Module Ports and Interfaces...8
3Roles, Services and Authentication...9

3.1Roles..9
3.2Services...9
3.3Authentication...11

4Physical Security...12
5Operational Environment..13

5.1Applicability...13
5.2Policy...13

6Cryptographic Key Management...14
6.1Random Number Generation...14
6.2Key / Critical Security Parameter (CSP) Access..15
6.3Key / CSP Storage..15
6.4Key / CSP Zeroization...15

7EMI/EMC..16
8Self-Tests...17

8.1Power-Up Self-Tests..17
8.1.1Integrity Tests...17

8.2Conditional Tests..18
9Guidance...19

9.1Cryptographic Officer Guidance...19
9.1.1Secure Installation and Startup..19
9.1.2FIPS 140-2 and AES NI Support...19

9.2User Guidance...20
9.2.1XTS Usage..20
9.2.2GCM Usage...20

9.3Handling Self Test Errors..20
Appendix AGlossary and Abbreviations...21
Appendix BReferences..23

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 2 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Introduction
This document is the non-proprietary Security Policy for the Red Hat Enterprise Linux Kernel
Crypto API Cryptographic Module v4.0. It contains the security rules under which the module
must operate and describes how this module meets the requirements as specified in FIPS PUB
140-2 (Federal Information Processing Standards Publication 140-2) for a Security Level 1
module.

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 3 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

1 Cryptographic Module Specification

1.1 Module Overview
The Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 (hereafter referred
to as the “Module”) is a software only cryptographic module that provides general-purpose
cryptographic services to the remainder of the Linux kernel. The Red Hat Enterprise Linux
Kernel Crypto API Cryptographic Module v4.0 is software only, security level 1 cryptographic
module, running on a multi-chip standalone platform.

The module is implemented as a set of shared libraries / binary files.

Figure 1: Cryptographic Module Logical Boundary

The module is aimed to run on a general purpose computer; the physical boundary is the
surface of the case of the target platform, as shown in the diagram below:

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 4 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

The list of components required for the module to operate are defined below:

• Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 with the version
of the RPM file 3.10.0-229.11.1.el7

• The configuration of the FIPS mode is provided by the dracut-fips package with the
version of the RPM file of 033-241.el7_1.5

• The bound module Red Hat Enterprise Linux NSS Cryptographic Module v4.0 with FIPS
140-2 Certificate #2711 (hereafter referred to as the “NSS bound module” or “NSS
module”)

• The bound module Red Hat Enterprise Linux Libreswan Cryptographic Module v4.0
with FIPS 140-2 Certificate #2721 (hereafter referred to as the “Libreswan bound
module” or “Libreswan module”)

• The contents of the hmaccalc RPM package (version 0.9.13-4.el7)

The Kernel Crypto API RPM package of the Module includes the binary files, integrity check
HMAC files and Man Pages.

The files comprising the module are the following:

• kernel loadable components /lib/modules/$(uname -r)/kernel/crypto/*.ko

• kernel loadable components /lib/modules/$(uname -r)/kernel/arch/x86/crypto/*.ko

• static kernel binary /boot/vmlinuz-$(uname -r)

• sha512hmac binary file for performing the integrity checks

The NSS bound module provides the HMAC-SHA-512 algorithm used by the sha512hmac
binary file to verify the integrity of both the sha512hmac file and the vmlinuz (static kernel
binary).

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 5 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Figure 2: Cryptographic Module Physical Boundary

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Using of the AES-GCM mode requires the Libreswan module to be bound to this module to
satisfy IG A.5 of the FIPS 140-2 Implementation Guidance. The diagram below depicts the
relationship between this module and the Libreswan bound module:

Figure 3: Relationship between Libreswan bound module and Kernel Crypto API module

The Libreswan bound module will provide the IKEv2 protocol implementation that will make
the use of the AES GCM implementation of this module by the IPsec protocol. Thus, the
operations of the IPsec protocol are entirely within the cryptographic boundary of the module
being validated.

The Libreswan module does not need to be bound to the kernel (and thus installed and
configured according to its FIPS 140-2 Security Policy) in the case that the AES-GCM algorithm
is not used.

1.2 FIPS 140-2 validation
For the purpose of the FIPS 140-2 validation, the module is a software-only, multi-chip
standalone cryptographic module validated at security level 1. The table below shows the
security level claimed for each of the eleven sections that comprise the FIPS 140-2 standard:

FIPS 140-2 Section Security Level

1 Cryptographic Module Specification 1

2 Cryptographic Module Ports and Interfaces 1

3 Roles, Services and Authentication 1

4 Finite State Model 1

5 Physical Security N/A

6 Operational Environment 1

7 Cryptographic Key Management 1

8 EMI/EMC 1

9 Self Tests 1

10 Design Assurance 1

11 Mitigation of Other Attacks N/A

Table 1: Security Levels

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 6 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

The module has been tested on the following platforms with the following configuration:

Hardware
Platform

Processor Operating System Tested

With
AES-NI

Without
AES-NI

HP Proliant DL380p
Gen8

Intel® Xeon® E5-2600 v2
product family (Intel x86)

Red Hat Enterprise Linux 7.1 yes yes

IBM POWER8 Little
Endian 8286-41A

POWER8 (ppc64le) Red Hat Enterprise Linux 7.1 n/a n/a

Table 2: Tested Platforms

The physical boundary is the surface of the case of the target platform. The logical boundary
is depicted in Figure 1.

The module also includes algorithm implementations using Processor Algorithm Acceleration
(PAA) functions provided by the different processors supported, as shown in the following
table:

Processor Processor Algorithm Acceleration (PAA) function Algorithm

Intel x86 AES-NI AES

Table 3: PAA function implementations

1.3 Modes of Operations
The module supports two modes of operation: the FIPS approved and non-approved modes.

Section 9.1.1 describes the Secure Installation and Startup to correctly install and configure
the module. The module turns to FIPS approved mode after correct initialization, successful
completion of power-on self-tests.

Invoking a non-Approved algorithm or a non-Approved key size with an Approved algorithm as
listed in Table 6 will result in the module implicitly entering the non-FIPS mode of operation.

The approved services available in FIPS mode can be found in section 3.2, Table 5.

The non-approved services not available in FIPS mode can be found in section 3.2, Table 6.

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 7 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

2 Cryptographic Module Ports and Interfaces
As a software-only module, the module does not have physical ports. For the purpose of the
FIPS 140-2 validation, the physical ports are interpreted to be the physical ports of the
hardware platform on which it runs.

The logical interfaces are the application program interface (API) through which applications
request services. The following table summarizes the four logical interfaces:

Logical
interfaces

Description Physical ports mapping the
logical interfaces

Command In API function calls, kernel command
line

Keyboard

Status Out API return codes, kernel logs Display

Data In API input parameters Keyboard

Data Out API output parameters Display

Power Input PC Power Port Physical Power Connector

Table 4: Ports and Logical Interfaces

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 8 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

3 Roles, Services and Authentication

3.1 Roles
The module supports the following roles:

⚫ User role: performs symmetric encryption/decryption, keyed hash, message digest,
random number generation, show status

⚫ Crypto Officer role: performs the module installation and configuration, module's
initialization, self-tests, zeroization and signature verification

The User and Crypto Officer roles are implicitly assumed by the entity accessing the module
services.

3.2 Services
The module supports services available to users in the available roles. All services are
described in detail in the user documentation.

The following table shows the available services, the roles allowed, the Critical Security
Parameters involved and how they are accessed in the FIPS mode. 'R' stands for Read
permission, 'W' stands for write permission and 'EX' stands for executable permission of the
module:

Service Algorithms Note(s) / Mode(s) CAVS
Cert(s).

Role CSPs Access

Symmetric
encryption/
decryption

Triple-DES ECB, CBC, CTR Certs.
#1988,
#1989

User 168 bits
Triple-DES
keys

R, W, EX

AES ECB, CBC, CTR,
CCM, GCM, XTS

Certs.
#3571,
#3575,
#3590,
#3592

128, 192
and 256 bits
AES keys

Note: XTS
mode only
with 128
and 256 bits
keys

ECB, CBC, CTR, GCM Certs.
#3567,
#3568,
#3569,
#3572,
#3573

ECB, CBC, CTR,
GCM, XTS

Cert.
#3574

Keyed hash
(HMAC)

HMAC SHA-1,
HMAC SHA-224,
HMAC SHA-256,
HMAC SHA-384,
HMAC SHA-512
(generic C
implementation)

BS < KS, KS = BS,
KS > BS

Certs.
#2273,
#2275

User at least 112
bits HMAC
keys

R, W, EX

HMAC SHA-1,
HMAC SHA-256,
HMAC SHA-512 (AVX
and SSSE3
implementation)

Certs.
#2274,
#2277

Message digest
(SHS)

SHA-1, SHA-224,
SHA-256, SHA-384
SHA-512 (generic C
implementation)

N/A Certs.
#2935,
#2937

User N/A R, W, EX

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 9 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Service Algorithms Note(s) / Mode(s) CAVS
Cert(s).

Role CSPs Access

SHA-1, SHA-256,
SHA-512 (AVX and
SSSE3
implementation)

Certs.
#2936,
#2939

Authenticated
encryption

AES CBC mode and
HMAC-SHA-1, HMAC-
SHA-256, HMAC-
SHA-512

Encrypt-then-MAC
cipher (authenc)
used for IPsec

Please
refer to
the AES
and
HMAC
Certs.

User 128, 192
and 256 bits
AES keys,
HMAC keys

R, W, EX

Random
number
generation (SP
800-90A DRBG)

CTR DRBG With derivation
function, with and
without prediction
resistance function
using AES-128, AES-
192 and AES-256

Certs.
#911,
#912,
#924
#926

User Entropy
input string,
V, C values
and Key

R, W, EX

Hash DRBG With derivation
function, with and
without prediction
resistance function
using SHA-1, SHA-
256, SHA-384 and
SHA-512

Certs.
#913,
#914,
#915
#917

HMAC DRBG With and without
prediction
resistance function
using SHA-1, SHA-
256, SHA-384 and
SHA-512

Signature
verification

RSA 2048 and 3072 bits
signature
verification
according to
PKCS#1 v1.5, using
SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512

Certs.
#1835,
#1836,
#1837,
#1839

Crypto
Officer

N/A R, W, EX

Module
initialization

N/A N/A N/A Crypto
officer

N/A EX

Self-tests HMAC-SHA-512,

RSA Signature
Verification

Integrity test of the
kernel static binary
performed by the
sha512hmac binary

RSA signature
verification
performs the
signature
verification of the
kernel loadable
components

N/A Crypto
officer

HMAC-SHA-
512 key

R, EX

Show status N/A Via verbose mode,
exit codes and
kernel logs (dmesg)

N/A User N/A R, EX

Zeroize N/A N/A N/A Crypto
officer

N/A R, EX

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 10 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Service Algorithms Note(s) / Mode(s) CAVS
Cert(s).

Role CSPs Access

Installation and
configuration

N/A N/A N/A Crypto
officer

N/A R, EX

Table 5: Available Cryptographic Module's Services in FIPS mode

In non-Approved mode the Module supports the following non-FIPS Approved algorithms,
which shall not be used in the FIPS Approved mode of operation:

Service Algorithms Note(s) / Mode(s) Role CSPs Access

Symmetric
encryption/
decryption

AES XTS with 192-bit keys User 192 bits AES keys R, W, EX

DES ECB 56 bits DES keys

Message
digest

SHA-1, SHA-256 and
SHA-512 (AVX2
implementation)

N/A User N/A R, W, EX

SHA-1 (multiple-buffer
implementation)

Keyed hash HMAC Keys smaller than 112 bits User HMAC keys with size
less than 112 bits

R, W, EX

Random
number
generation

ansi_cprng N/A User seed R, W, EX

Table 6: Service Details for the non-FIPS mode

3.3 Authentication
The module is a Level 1 software-only cryptographic module and does not implement
authentication. The role is implicitly assumed based on the service requested.

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 11 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

4 Physical Security
The module is comprised of software only and thus does not claim any physical security.

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 12 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

5 Operational Environment

5.1 Applicability
The module operates in a modifiable operational environment per FIPS 140-2 level 1
specifications. The module runs on a commercially available general-purpose operating
system executing on the hardware specified in section 1.2.

5.2 Policy
The operating system is restricted to a single operator (concurrent operators are explicitly
excluded). The application that request cryptographic services is the single user of the
module, even when the application is serving multiple clients.

In FIPS approved mode, the ptrace(2) system call, the debugger (gdb(1)) and strace(1) shall
not be used. In addition, other tracing mechanisms offered by the Linux environment, such as
ftrace or kprobes (including systemtap) shall not be used.

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 13 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

6 Cryptographic Key Management
The application that uses the module is responsible for appropriate destruction and
zeroization of the key material. The library provides functions for key allocation and
destruction, which overwrites the memory that is occupied by the key information with
“zeros” before it is deallocated.

6.1 Random Number Generation
The module employs the Deterministic Random Bit Generator (DRBG) based on [SP800-90A]
for the creation of random numbers.

The DRBG is initialized during module initialization. The module loads by default the DRBG
using HMAC DRBG with SHA-512, with derivation function, without prediction resistance. The
DRBG is seeded during initialization with a seed obtained from /dev/urandom of length 3/2
times the DRBG strength. Please note that /dev/urandom is an NDRNG located within the
module's physical boundary but outside its logical boundary.

The module performs continuous tests on the output of the DRBG to ensure that consecutive
random numbers do not repeat. The module also implements the health checks defined by SP
800-90A, section 11.3. The noise source of /dev/urandom also implements continuous tests.

Here are listed the CSPs/keys details concerning storage, input, output, generation and
zeroization:

Type Keys/CSPs Key Generation Key Storage Key Entry/Output Key Zeroization

Symmetric
keys

AES N/A Protected
kernel memory

API allows caller on
the same GPC to
supply key

Memory is
automatically
overwritten by
zeroes when
freeing the cipher
handler

Triple-DES N/A Protected
kernel memory

API allows caller on
the same GPC to
supply key

Memory is
automatically
overwritten by
zeroes when
freeing the cipher
handler

DRBG
SP800-90A
entropy
string

SP 800-90A
DRBG
Entropy
string

The seed data
obtained from
/dev/urandom

Module’s
application
memory

N/A Memory is
automatically
overwritten by
zeroes when
freeing the cipher
handler

SP 800-90A
DRBG
nonce

SP 800-90A
DRBG Seed
and
internal
state
values V
and C

Based on entropy
string as defined
in SP 800-90A

Module’s
application
memory

N/A Memory is
automatically
overwritten by
zeroes when
freeing the cipher
handler

HMAC keys HMAC keys N/A Protected
kernel memory

HMAC key can be
supplied by calling
application

Memory is
automatically
overwritten by
zeroes when
freeing the cipher
handler

HMAC key
used for
integrity

HMAC key N/A – Installed as
aprt of the module

Persistently
stored in
plaintext as

N/A - key is only
used for integrity
verification

Zeroized in
memory by
sha512hmac

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 14 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

part of the
sha512hmac
application

Table 7: Keys/CSPs

As defined in SP800-90A, the DRBG obtains the entropy string and nonce from the Linux
kernel non-deterministic random number generator during:

a. initialization of a DRBG instance

b. after 2⁴⁸ requests for random numbers

The module does not provide any key generation service or perform key generation for any of
its Approved algorithms. Keys are passed in from calling application via API parameters.

CAVEAT: The module generates random strings whose strengths are modified by available
entropy.

6.2 Key / Critical Security Parameter (CSP) Access
An authorized application as user (the User role) has access to all key data generated during
the operation of the module. Moreover, the module does not support the output of
intermediate key generation values during the key generation process.

6.3 Key / CSP Storage
Symmetric keys are provided to the module by the calling process, and are destroyed when
released by the appropriate API function calls. The module does not perform persistent
storage of keys. The RSA public key used for signature verification of the kernel loadable
components is stored outside of the module’s boundary, in a keyring file in /proc/keys/.

6.4 Key / CSP Zeroization
When a calling kernel components calls the appropriate API function that operation overwrites
memory with 0s and then frees that memory (please see the API document for full details).

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 15 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

7 EMI/EMC
Product Name and Model: HP ProLiant DL380p Gen8

Regulatory Model Number: HSTNS-5163

Product Options: All

EMC: Class A

Product Name and Model: IBM Power8 Little Endian 8286-41A

Product Options: All

EMC: Class A

The HP Proliant DL380p Gen8 and IBM Power8 Little Endian 8286-41A test platforms have
“been tested and found to comply with the limits for a Class A digital device, pursuant to Part
15 of the FCC Rules. These limits are designed to provide reasonable protection against
harmful interference when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and, if not installed and
used in accordance with the instruction manual, may cause harmful interference to radio
communications. Operation of this equipment in a residential area is likely to cause harmful
interference, in which case the user will be required to correct the interference at his own
expense.”

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 16 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

8 Self-Tests
FIPS 140-2 requires that the Module perform self-tests to ensure the integrity of the Module
and the correctness of the cryptographic functionality at start up. In addition, the module
performs conditional test for DRBG.

A failure of any of the self-tests panics the Module. The only recovery is to reboot. For
persistent failures, you must reinstall the kernel. See section 9.1 for details.

No operator intervention is required during the running of the self-tests.

8.1 Power-Up Self-Tests
The module performs power-up self-tests at module initialization to ensure that the module is
not corrupted and that the cryptographic algorithms work as expected. The self-tests are
performed without any user intervention.

While the module is performing the power-up tests, services are not available and input or
output is not possible: the module is single-threaded and will not return to the calling
application until the self-tests are completed successfully.

8.1.1 Integrity Tests

The Module performs both power-up self tests (at module initialization) and conditional tests
(during operation). Input, output, and cryptographic functions cannot be performed while the
Module is in a self test or error state. The Module is single-threaded during the self tests and
will stop the boot procedure, and therefore any subsequent operation before any other kernel
component can request services from the Module.

The Crypto Officer with physical or logical access to the Module can run the POST (Power-On
Self-Tests) on demand by power cycling the Module or by rebooting the operating system.

For Known Answer Test, HMAC SHA-512 provided by the NSS bound module is tested before
the NSS module makes itself available to the sha512hmac application. In addition, if the Intel
AES-NI support is present and the dracut-fips aesni RPM package (see section 1) is installed,
the AES-NI implementation is self-tested with the same KAT vector as the other AES
implementations.

An HMAC SHA-512 (provided by the NSS bound module) calculation is performed on the
sha512hmac utility and static Linux kernel binary to verify their integrity. The Linux kernel
crypto API kernel components, and any additional code components loaded into the Linux
kernel are checked with the RSA signature verification implementation of the Linux kernel
when loading them into the kernel to confirm their integrity.

NOTE: The fact that the kernel integrity check passed, which requires the loading of
sha512hmac with the self tests implies a successful execution of the integrity and self tests of
sha512hmac (the HMAC is stored in /usr/lib/hmaccalc/sha512hmac.hmac).

With respect to the integrity check of kernel loadable components providing the
cryptographic functionality, the fact that the self test of these cryptographic components are
displayed implies that the integrity checks of each kernel component passed successfully.

The table below summarizes the power-on self tests performed by the module, which includes
the Integrity Test of the module itself as stated above and the Known Answer Test for each
approved cryptographic algorithm.

Algorithm Test

AES KAT, encryption and decryption are tested
separately

Triple-DES KAT, encryption and decryption are tested
separately

RSA signature verification Part of the integrity test (considered as a KAT)

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 17 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

DRBG (CTR, Hash, HMAC) KAT

HMAC SHA-1, -224, -256, -384, -512 KAT

SHA-1, -224, -256, -384, -512 KAT

Integrity check HMAC SHA-512

Table 8: Module Self-Tests

8.2 Conditional Tests
The module performs conditional tests on the cryptographic algorithms shown in the following
table:

Algorithm Test

DRBG The DRBG generates random numbers per block size depending on
the underlying DRBG type (CTR, HMAC or Hash based); the 1st block
generated per context is saved in the context and another block is
generated to be returned to the caller. Each block is compared
against the saved block and then stored in the context. If a
duplicated block is detected, an error is signaled and the library is
put into the “Error" state.

Table 9: Conditional Tests

This section provides guidance for the Cryptographic Officer and the User to maintain proper
use of the module per FIPS 140-2 requirements.

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 18 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

9 Guidance

9.1 Cryptographic Officer Guidance
To operate the Kernel Crypto API module, the operating system must be restricted to a single
operator mode of operation. (This should not be confused with single user mode which is
runlevel 1 on RHEL. This refers to processes having access to the same cryptographic
instance which RHEL ensures cannot happen by the memory management hardware.)

9.1.1 Secure Installation and Startup

Crypto Officers use the Installation instructions to install the Module in their environment.

The version of the RPM containing the FIPS validated module is stated in section 1.1 above.
The integrity of the RPM is automatically verified during the installation and the Crypto Officer
shall not install the RPM file if the RPM tool indicates an integrity error.

To bring the Module into FIPS approved mode, perform the following:

1. Install the dracut-fips package:

yum install dracut-fips

2. Recreate the INITRAMFS image:

dracut -f

After regenerating the initramfs, the Crypto Officer has to append the following string to the
kernel command line by changing the setting in the boot loader:

fips=1

If /boot or /boot/efi resides on a separate partition, the kernel parameter boot=<partition
of /boot or /boot/efi> must be supplied. The partition can be identified with the
command "df /boot" or "df /boot/efi" respectively. For example:

$ df /boot

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda1 233191 30454 190296 14% /boot

The partition of /boot is located on /dev/sda1 in this example. Therefore, the following string
needs to be appended to the kernel command line:

boot=/dev/sda1

9.1.2 FIPS 140-2 and AES NI Support

According to the Kernel Crypto API FIPS 140-2 Security Policy, the Kernel Crypto API module
supports the AES-NI Intel processor instruction set as an approved cipher. The AES-NI
instruction set is used by the Module.

In case you configured a full disk encryption using AES, you may use the AES-NI support for a higher
performance compared to the software-only implementation.

To utilize the AES-NI support, the mentioned Module must be loaded during boot time by
installing a plugin.

Before you install the plugin, you MUST verify that your processor offers the AES-NI
instruction set by calling the following command:

cat /proc/cpuinfo | grep aes

If the command returns a list of properties, including the “aes” string, your CPU provides the
AES-NI instruction set. If the command returns nothing, AES-NI is not supported.

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 19 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

You MUST NOT install the following plugin if your CPU does not support AES-NI because the
kernel will panic during boot.

The support for the AES-NI instruction set during boot time is enabled by installing the
following plugin (make sure that the version of the plugin RPM matches the version of the
installed RPMs!):

install the dracut-fips-aesni package

yum install dracut-fips-aesni-*.noarch.rpm

recreate the initramfs image

dracut -f

The changes come into effect during the next reboot.

9.2 User Guidance
CTR and RFC3686 mode must only be used for IPsec. It must not be used otherwise.

There are three implementations of AES: aes-generic, aesni-intel, and aes-x86_64 on x86_64
machines. The additional specific implementations of AES for the x86 architecture are
disallowed and not available on the test platforms.

When using the Module, the user shall utilize the Linux Kernel Crypto API provided memory
allocation mechanisms. In addition, the user shall not use the function copy_to_user() on any
portion of the data structures used to communicate with the Linux Kernel Crypto API.

Only the cryptographic mechanisms provided with the Linux Kernel Crypto API are considered
for use. The NSS bound module, although used, is only considered to support the integrity
verification and is not intended for general-purpose use with respect to this Module.

9.2.1 XTS Usage

The XTS mode must only be used for the disk encryption functionality offered by dm-crypt.

9.2.2 GCM Usage

The GCM mode must only be used in conjunction with the IPSEC stack of the Linux kernel due
to the restrictions on the GCM IV generation mandated by IG A.5.

9.3 Handling Self Test Errors
Self test failure within the Kernel Crypto API module or the dm-crypt kernel component will
panic the kernel and the operating system will not load.

Recover from this error by trying to reboot the system. If the failure continues, you must
reinstall the software package being sure to follow all instructions. If you downloaded the
software verify the package hash to confirm a proper download. Contact Red Hat if these
steps do not resolve the problem.

The Kernel Crypto API module performs a power-on self test that includes an integrity check
and known answer tests for the available cryptographic algorithms.

The kernel dumps self test success and failure messages into the kernel message ring buffer.
Post boot, the messages are moved to /var/log/messages.

Use dmesg to read the contents of the kernel ring buffer. The format of the ringbuffer
(dmesg) output is:

alg: self-tests for %s (%s) passed

Typical messages are similar to "alg: self-tests for xts(aes) (xts(aes-x86_64)) passed" for each
algorithm/sub-algorithm type.

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 20 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Appendix A Glossary and Abbreviations

AES Advanced Encryption Standard

AES-NI Advanced Encryption Standard New Instructions

CAVP Cryptographic Algorithm Validation Program

CBC Cipher Block Chaining

CCM Counter with Cipher Block Chaining Message Authentication Code

CFB Cipher Feedback

CMAC Cipher-based Message Authentication Code

CMVP Cryptographic Module Validation Program

CSP Critical Security Parameter

CTR Counter Mode

DES Data Encryption Standard

DSA Digital Signature Algorithm

DRBG Deterministic Random Bit Generator

ECB Electronic Code Book

ECC Elliptic Curve Cryptography

FFC Finite Field Cryptography

FIPS Federal Information Processing Standards Publication

FSM Finite State Model

GCM Galois Counter Mode

HMAC Hash Message Authentication Code

KAS Key Agreement Schema

KAT Known Answer Test

MAC Message Authentication Code

NDF No Derivation Function

NIST National Institute of Science and Technology

NDRNG Non-Deterministic Random Number Generator

OFB Output Feedback

O/S Operating System

PAA Processor Algorithm Acceleration

PR Prediction Resistance

PSS Probabilistic Signature Scheme

RNG Random Number Generator

RSA Rivest, Shamir, Addleman

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 21 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

SHA Secure Hash Algorithm

SHS Secure Hash Standard

TDES Triple DES

XTS XEX-based Tweaked-codebook mode with ciphertext Stealing

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 22 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

Appendix B References

FIPS180-4 Secure Hash Standard (SHS)
March 2012
http://csrc.nist.gov/publications/fips/fips180-4/fips 180-4.pdf

FIPS186-4 Digital Signature Standard (DSS)
July 2013
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

FIPS197 Advanced Encryption Standard
November 2001
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

FIPS198-1 The Keyed Hash Message Authentication Code (HMAC)
July 2008
http://csrc.nist.gov/publications/fips/fips198 1/FIPS-198 1_final.pdf

RFC3394 Advanced Encryption Standard (AES) Key Wrap Algorithm
September 2002
http://www.ietf.org/rfc/rfc3394.txt

RFC5649 Advanced Encryption Standard (AES) Key Wrap with Padding
Algorithm
September 2009
http://www.ietf.org/rfc/rfc5649.txt

SP800-38A NIST Special Publication 800-38A - Recommendation for Block
Cipher Modes of Operation Methods and Techniques
December 2001
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

SP800-38B NIST Special Publication 800-38B - Recommendation for Block
Cipher Modes of Operation: The CMAC Mode for Authentication
May 2005
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

SP800-38C NIST Special Publication 800-38C - Recommendation for Block
Cipher Modes of Operation: the CCM Mode for Authentication and
Confidentiality
May 2004
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated
July20_2007.pdf

SP800-38D NIST Special Publication 800-38D - Recommendation for Block
Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC
November 2007
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

SP800-38E NIST Special Publication 800-38E - Recommendation for Block
Cipher Modes of Operation: The XTS AES Mode for Confidentiality on
Storage Devices
January 2010
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf

SP800-38F NIST Special Publication 800-38F - Recommendation for Block
Cipher Modes of Operation: Methods for Key Wrapping
December 2012
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 23 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

Red Hat Enterprise Linux Kernel Crypto API Cryptographic Module v4.0 FIPS 140-2 Non-Proprietary Security Policy

SP800-56A NIST Special Publication 800-56A Revision 2 - Recommendation for
Pair Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography
May 2013
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800 56Ar2.pdf

SP800-56C Recommendation for Key Derivation through Extraction-then-
Expansion
November 2011
http://csrc.nist.gov/publications/nistpubs/800-56C/SP-800-56C.pdf

SP800-67 NIST Special Publication 800-67 Revision 1 - Recommendation for
the Triple Data Encryption Algorithm (TDEA) Block Cipher
January 2012
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf

SP800-90A NIST Special Publication 800-90A - Recommendation for Random
Number Generation Using Deterministic Random Bit Generators
January 2012
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

SP800-90B NIST Draft Special Publication 800-90B - Recommendation for the
Entropy Sources Used for Random Bit Generation
August 2012
http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf

SP800-108 NIST Special Publication 800-108 - Recommendation for Key
Derivation Using Pseudorandom Functions
October 2009
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

SP800-131A NIST Special Publication 800-131A - Transitions: Recommendation
for Transitioning the Use of Cryptographic Algorithms and Key
Lengths
January 2011
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf

©2016 Red Hat Enterprise Linux / atsec information security corporation Page 24 of 24
This document can be reproduced and distributed only whole and intact, including this copyright notice.

	1 Cryptographic Module Specification
	1.1 Module Overview
	1.2 FIPS 140-2 validation
	1.3 Modes of Operations

	2 Cryptographic Module Ports and Interfaces
	3 Roles, Services and Authentication
	3.1 Roles
	3.2 Services
	3.3 Authentication

	4 Physical Security
	5 Operational Environment
	5.1 Applicability
	5.2 Policy

	6 Cryptographic Key Management
	6.1 Random Number Generation
	6.2 Key / Critical Security Parameter (CSP) Access
	6.3 Key / CSP Storage
	6.4 Key / CSP Zeroization

	7 EMI/EMC
	8 Self-Tests
	8.1 Power-Up Self-Tests
	8.1.1 Integrity Tests

	8.2 Conditional Tests

	9 Guidance
	9.1 Cryptographic Officer Guidance
	9.1.1 Secure Installation and Startup
	9.1.2 FIPS 140-2 and AES NI Support

	9.2 User Guidance
	9.2.1 XTS Usage
	9.2.2 GCM Usage

	9.3 Handling Self Test Errors

	Appendix A Glossary and Abbreviations
	Appendix B References

