Microsoft Windows

FIPS 140 Validation

Microsoft Windows 10 (Creators Update, Fall Creators Update, April 2018 Update)

Microsoft Windows 10 Mobile (Creators Update, Fall Creators Update)

Microsoft Windows Server (versions 1709 and 1803)

Non-Proprietary

Security Policy Document

<table>
<thead>
<tr>
<th>Document Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Version Number</td>
<td>1.3</td>
</tr>
<tr>
<td>Updated On</td>
<td>October 22, 2018</td>
</tr>
</tbody>
</table>
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. This work is licensed under the Creative Commons Attribution-NoDerivs-NonCommercial License (which allows redistribution of the work). To view a copy of this license, visit http://creativecommons.org/licenses/by-nd-nc/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2018 Microsoft Corporation. All rights reserved.

Microsoft, Windows, the Windows logo, Windows Server, and BitLocker are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.
Version History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Summary of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>October 3, 2017</td>
<td>Draft sent to NIST CMVP</td>
</tr>
<tr>
<td>1.1</td>
<td>November 18, 2017</td>
<td>Updates for Windows 10 version 1709</td>
</tr>
<tr>
<td>1.2</td>
<td>May 1, 2018</td>
<td>Editing updates</td>
</tr>
<tr>
<td>1.3</td>
<td>October 22, 2018</td>
<td>Updates for Windows 10 version 1803</td>
</tr>
</tbody>
</table>
Table of Contents

Security Policy Document ... 1

1. **Introduction** ... 6
 1.1 **List of Cryptographic Module Binary Executables** .. 6
 1.2 **Validated Platforms** ... 6

2. **Cryptographic Module Specification** ... 9
 2.1 **Cryptographic Boundary** ... 9
 2.2 **FIPS 140-2 Approved Algorithms** ... 9
 2.3 **Non-Approved Algorithms** ... 10
 2.4 **FIPS 140-2 Approved Algorithms from Bounded Modules** ... 10
 2.5 **Cryptographic Bypass** ... 11
 2.6 **Hardware Components of the Cryptographic Module** ... 11

3. **Cryptographic Module Ports and Interfaces** ... 12
 3.1 **Control Input Interface** ... 12
 3.1.1 **GetFveContext** ... 12
 3.1.2 **DumpWrite** .. 12
 3.2 **Status Output Interface** ... 13
 3.3 **Data Output Interface** .. 13
 3.4 **Data Input Interface** ... 13

4. **Roles, Services and Authentication** ... 13
 4.1 **Roles** .. 13
 4.2 **Services** ... 13
 4.3 **Authentication** .. 15

5. **Finite State Model** .. 15
 5.1 **Specification** .. 15

6. **Operational Environment** .. 16
6.1 SINGLE OPERATOR .. 16
6.2 CRYPTOGRAPHIC ISOLATION .. 16
6.3 INTEGRITY CHAIN OF TRUST .. 16

7 CRYPTOGRAPHIC KEY MANAGEMENT ... 19

7.1 CRITICAL SECURITY PARAMETERS ... 19
7.2 ZEROIZATION ... 19
7.2.1 VOLATILE KEYS .. 19
7.2.2 PERSISTENT KEYS ... 19
7.3 ACCESS CONTROL POLICY .. 19

8 SELF-TESTS ... 19

8.1 POWER-ON SELF-TESTS .. 19

9 DESIGN ASSURANCE .. 19

10 MITIGATION OF OTHER ATTACKS ... 20

11 SECURITY LEVELS .. 20

12 ADDITIONAL DETAILS .. 21

13 APPENDIX A – HOW TO VERIFY WINDOWS VERSIONS AND DIGITAL SIGNATURES 22

13.1 HOW TO VERIFY WINDOWS VERSIONS ... 22
13.2 HOW TO VERIFY WINDOWS DIGITAL SIGNATURES ... 22
1 Introduction

BitLocker Drive Encryption is a data protection feature of the Windows 10 operating system which encrypts data on a storage volume.

This security policy document describes the BitLocker Dump Filter cryptographic module which protects hibernation files and crash dump files on BitLocker encrypted computers. Other parts of BitLocker are described in the Security Policy Documents for Boot Manager, Windows OS Loader, and Windows OS Resume.\(^1\)

The BitLocker Dump Filter is part of the system dump stack. Whenever the dump stack is called during a crash or starting the hibernation process, this module ensures that all data is encrypted before written to storage as a dump file or hibernation file.

1.1 List of Cryptographic Module Binary Executables

The BitLocker Dump Filter module contains the following binaries:

- DUMPFVE.SYS

The Windows builds covered by this validation are:

- Windows 10 version 1703, build 10.0.15063
- Windows 10 Mobile version 1703, build 10.0.15063
- Windows 10 version 1709 and Windows Server version 1709 build 10.0.16299
- Windows 10 Mobile version 1709 build 10.0.15254
- Microsoft Surface Hub build 10.0.15063
- Microsoft Surface Hub build 10.0.15063.674
- Windows 10 version 1803 and Windows Server version 1803 build 10.0.17134

1.2 Validated Platforms

The Windows editions covered by this validation are:

- Microsoft Windows 10 Pro Edition (64-bit version)
- Microsoft Windows 10 Enterprise Edition (64-bit version)
- Microsoft Windows 10 Education Edition (64-bit version)
- Microsoft Windows 10 S Edition (64-bit version)
- Microsoft Windows 10 Mobile
- Microsoft Surface Hub
- Windows Server Standard Core
- Windows Server Datacenter Core

The BitLocker Dump Filter components listed in Section 1.1 were validated using the machine configurations and Windows Operating System versions specified in the table below.

\(^1\) Windows Resume is not a FIPS 140 cryptomodule in Windows 10 version 1803.
All the computers for Windows 10 and Windows Server listed in the table below are all 64-bit Intel architecture and implement the AES-NI instruction set but not the SHA Extensions. The exceptions are:

- Dell Inspiron 660s - Intel Core i3 without AES-NI and SHA Extensions
- HP Slimline Desktop - Intel Pentium with AES-NI and SHA Extensions

Windows 10 Mobile runs on the ARM architecture, which does not implement AES-Ni instructions or SHA extensions:

- Microsoft Lumia 950 - Qualcomm Snapdragon 808 (A57, A53)
- Microsoft Lumia 950 XL - Qualcomm Snapdragon 810 (A57, A53)
- Microsoft Lumia 650 - Qualcomm Snapdragon 212 (A7)
- HP Elite x3 - Qualcomm Snapdragon 820 (Kryo)

Table 1 Validated Platforms for Windows 10 Creators Update, Fall Creators Update and Windows Server

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Surface Book 2</td>
<td></td>
</tr>
<tr>
<td>Microsoft Surface Laptop</td>
<td>v^2</td>
<td></td>
</tr>
<tr>
<td>Microsoft Surface Pro 3</td>
<td>v^3</td>
<td>v^3</td>
<td>v^3</td>
<td></td>
</tr>
<tr>
<td>Microsoft Surface Pro 4</td>
<td>v^3</td>
<td>v^3</td>
<td>v^3</td>
<td></td>
</tr>
<tr>
<td>Microsoft Surface Pro 3</td>
<td>v^3</td>
<td></td>
</tr>
<tr>
<td>Microsoft Surface 3 with LTE</td>
<td>v^3</td>
<td></td>
</tr>
<tr>
<td>Microsoft Surface Studio</td>
<td>v^3</td>
<td></td>
</tr>
<tr>
<td>Windows Server 2016 Standard</td>
<td>v^3</td>
<td></td>
</tr>
<tr>
<td>Edition Hyper-V</td>
<td></td>
</tr>
<tr>
<td>Microsoft Lumia 950</td>
<td></td>
<td>v^5</td>
</tr>
<tr>
<td>Microsoft Lumia 950 XL</td>
<td></td>
<td>v^5</td>
</tr>
<tr>
<td>Microsoft Lumia 650</td>
<td></td>
<td>v^5</td>
</tr>
<tr>
<td>Dell Latitude 5285</td>
<td>v^3</td>
<td></td>
</tr>
<tr>
<td>Dell Latitude 5290</td>
<td>v^2</td>
<td></td>
</tr>
<tr>
<td>Dell Inspiron 660s</td>
<td></td>
</tr>
</tbody>
</table>

2 Tested on Windows 10 version 1709
3 Tested on Windows 10 versions 1703 and 1709
4 Tested on Surface Pro 4 hardware platform
5 Tested on Windows 10 Mobile versions 1703 and 1709
Dell Precision Tower 5810MT

- V^3

Dell PowerEdge R630

- V^3

Dell PowerEdge R740

- V^1

HP Elite X3

- V^5

HP Compaq Pro 6305

- V^3

HP Pro x2 612 G2 Detachable PC with LTE

- V^3

HP Slimline Desktop

- V^3

Panasonic Toughbook

- V^3

Microsoft Surface 3

- V^6

Windows Server Standard Core Hyper-V

- V^2

Microsoft Surface Hub

- V^8

Table 2 Validated Platforms for Windows 10 and Windows Server version 1803

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Surface Go</td>
<td>\checkmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsoft Surface Book 2</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsoft Surface Pro LTE</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsoft Surface Laptop</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsoft Surface Studio</td>
<td>\checkmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows Server Standard Core Hyper-V9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>Windows Server 2016 Hyper-V10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td>Dell Latitude 5290</td>
<td>\checkmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 Tested on Windows 10 version 1703
7 Tested on Dell 5810MT hardware platform
8 Tested on Surface Hub 10.0.15063 and 10.0.15063.674
9 Hardware platform: Dell Precision Tower 5810MT
10 Hardware platform: Dell PowerEdge R740
2.1 Cryptographic Boundary
The software binary that comprises the cryptographic boundary for BitLocker Dump Filter is DUMPFVE.SYS.

2.2 FIPS 140-2 Approved Algorithms
BitLocker Dump Filter implements the following FIPS 140-2 Approved algorithms:\(^{11}\)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Windows 10 version 1703</th>
<th>Windows 10 version 1709 and Windows Server</th>
<th>Windows 10 Mobile version 1709</th>
<th>Microsoft Surface Hub (15063.674)</th>
<th>Windows 10 version 1803</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIPS 197 AES CBC 128 and 256</td>
<td>#4624</td>
<td>#4897</td>
<td>#4901</td>
<td>#4902</td>
<td>#5847</td>
</tr>
</tbody>
</table>

\(^{11}\)This module may not use some of the capabilities described in each CAVP certificate.
2.3 Non-Approved Algorithms

BitLocker Dump Filter implements the following non-approved algorithm:

- IEEE 1619-2007 AES-XTS 128 and 256

2.4 FIPS 140-2 Approved Algorithms from Bounded Modules

A bounded module is a FIPS 140 module which provides cryptographic functionality that is relied on by a downstream module. As described in the Integrity Chain of Trust section, the BitLocker Dump Filter depends on the following modules and algorithms:

When Hypervisor Code Integrity (HVIC) is not enabled for Windows 10 version 1703, Code Integrity (module certificate #3093) provides:

- CAVP certificate #2522 for FIPS 186-4 RSA PKCS#1 (v1.5) digital signature verification with 2048 moduli; supporting SHA-256
- CAVP certificate #3790 for FIPS 180-4 SHS SHA-256

When HVCI is not enabled for Windows 10 version 1709, Code Integrity (module certificate #3195) provides:

- CAVP certificates #2668 (Windows 10 and Windows Server), #2669 (Windows 10 Mobile), #2672 (Surface Hub) for FIPS 186-4 RSA PKCS#1 (v1.5) digital signature verification with 2048 moduli; supporting SHA-256
- CAVP certificates #4009 (Windows 10 and Windows Server), #4010 (Windows 10 Mobile), #4011 (Surface Hub) for FIPS 180-4 SHS SHA-256

When Memory Integrity, also known as HVCI in earlier Windows 10 releases, is not enabled for Windows 10 version 1803, Code Integrity (module certificate #3195) provides:

- CAVP certificates # 3080 for FIPS 186-4 RSA PKCS#1 (v1.5) digital signature verification with 2048 moduli; supporting SHA-256
- CAVP certificates # 4633 for FIPS 180-4 SHS SHA-256

When HVCI is enabled for Windows 10 version 1703, Secure Kernel Code Integrity (module certificate #3096) provides:

- CAVP certificate #2522 for FIPS 186-4 RSA PKCS#1 (v1.5) digital signature verification with 2048 moduli; supporting SHA-256
- CAVP certificate #3790 for FIPS 180-4 SHS SHA-256

When HVCI is enabled for Windows 10 version 1709, Secure Kernel Code Integrity (module certificate #3096) provides:

- CAVP certificate #2668 (Windows 10 and Windows Server) for FIPS 186-4 RSA PKCS#1 (v1.5) digital signature verification with 2048 moduli; supporting SHA-256
- CAVP certificate #4009 (Windows 10 and Windows Server) for FIPS 180-4 SHS SHA-256

When Memory Integrity is enabled for Windows 10 version 1803, Secure Kernel Code Integrity (module certificate #3096) provides:

- CAVP certificate #3080 for FIPS 186-4 RSA PKCS#1 (v1.5) digital signature verification with 2048 moduli; supporting SHA-256
- CAVP certificate #4633 for FIPS 180-4 SHS SHA-256

Note that the validated platforms listed in section 1.2 include processors that support the SHA Extensions. This module does not implement SHA, but the bounded modules may implement SHA and, therefore, use the SHA Extensions.

2.5 Cryptographic Bypass

Cryptographic bypass is not supported by BitLocker Dump Filter.

2.6 Hardware Components of the Cryptographic Module

The physical boundary of the module is the physical boundary of the computer that contains the module. The following diagram illustrates the hardware components used by the BitLocker Dump Filter module:
3 Cryptographic Module Ports and Interfaces

3.1 Control Input Interface
The BitLocker Dump Filter module’s control input interface consists of parameter interfaces for the GetFveContext and DumpWrite functions. These interfaces are not exported, but rather, are internal to the cryptographic module.

3.1.1 GetFveContext
NTSTATUS GetFveContext(
 __in PFILTER_EXTENSION Context,
 __in ULONG MaxPagesPerWrite,
 __inout_xcount(FveContext->StructureSize) PFVE_CONTEXT FveContext
)

This function gets the BitLocker Full Volume Encryption Key for the storage volume. The Context parameter supplies the dump stack filter context. The FveContext parameter supplies the internal BitLocker context, which includes the BitLocker status and FVEK in this context so it can be used later when writing data to the volume.

3.1.2 DumpWrite
NTSTATUS DumpWrite(
 PFILTER_EXTENSION Context,
 PLARGE_INTEGER DiskByteOffset,
This function uses the FVEK from the Context parameter that is provided by the GetFveContext interface. The DiskByteOffset parameter is used to specify the location on the volume to receive the encrypted output data. The Mdl parameter points to the input data to be encrypted.

3.2 Status Output Interface

The BitLocker Dump Filter status output is a return value of type NTSTATUS that indicates whether the function completed successfully or not.

The BitLocker Dump Filter has no status output interface for self-test errors. If the self-tests pass, the module is loaded. If not, the dump filter securely zeroes out memory for any keys handed to it and unloads itself.

3.3 Data Output Interface

The Data Output Interface is the data returned from the DumpWrite function.

This function is responsible for providing the encrypted content for the crash dump file or hibernate file. Data exits the module in the form of encrypted blocks that may be written to a crash dump file or a hibernation file on an encrypted volume.

3.4 Data Input Interface

The Data Input Interface includes the GetFveContext function and DumpWrite function. GetFveContext is responsible for reading the FVEK. DumpWrite accepts the memory blocks to encrypt with the FVEK and the target disk locations for the blocks as input.

4 Roles, Services and Authentication

4.1 Roles

BitLocker Dump Filter is a kernel-mode driver that does not interact with the user through any service therefore the module’s functions are fully automatic and not configurable. FIPS 140 validations define formal “User” and “Cryptographic Officer” roles. Both roles can use any BitLocker Dump Filter service.

4.2 Services

BitLocker Dump Filter services are described below. This module does not export any cryptographic functions.

1. **Writing encrypted crash dump data** – This service is executed when the system crashes and must write the crash dump file to an encrypted volume.
2. **Writing encrypted hibernation file data** - This service is executed when the system enters the hibernation (S4) power state and must write the hibernation file to an encrypted volume.
3. **Show Status** – The module provides a show status service that is automatically executed by the module to provide the status response of the module either via output to the computer monitor or to log files.

4. **Self-Tests** - The module provides a power-up self-tests service that is automatically executed when the module is loaded into memory.

5. **Zeroizing Cryptographic Material** - This service is executed as part of the module shutdown. See [Cryptographic Key Management](#)

The following table maps the services to their corresponding algorithms and critical security parameters (CSPs) as described in Cryptographic Key Management.

<table>
<thead>
<tr>
<th>Service</th>
<th>Algorithms</th>
<th>CSPs</th>
<th>Invocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing encrypted crash dump data</td>
<td>FIPS 197 AES: AES CBC 128 and 256 bits AES XTS 128 and 256 bits<sup>12</sup> AES CCM 256 IEEE 1619-2007 XTS-AES (non-FIPS Approved algorithm)</td>
<td>Full Volume Encryption Key (FVEK)</td>
<td>This service is fully automatic.</td>
</tr>
<tr>
<td>Writing encrypted hibernation data</td>
<td>FIPS 197 AES: AES CBC 128 and 256 bits AES XTS 128 and 256 bits<sup>13</sup> AES CCM 256 IEEE 1619-2007 XTS-AES (non-FIPS Approved algorithm)</td>
<td>Full Volume Encryption Key (FVEK)</td>
<td>This service is fully automatic.</td>
</tr>
<tr>
<td>Show Status</td>
<td>None</td>
<td>None</td>
<td>This service is fully automatic. This service is executed upon completion of the Control Input Interfaces.</td>
</tr>
<tr>
<td>Self-Tests</td>
<td>AES-CBC - Encrypt/Decrypt KATs AES-CCM - Encrypt/Decrypt KATs Software Integrity Test (2048-bit RSA with SHA-256) AES XTS KAT</td>
<td>None</td>
<td>This service is fully automatic.</td>
</tr>
</tbody>
</table>

¹² The length of the data unit does not exceed 2^{20} AES blocks for storage applications such as BitLocker.

¹³ The length of the data unit does not exceed 2^{20} AES blocks for storage applications such as BitLocker.
4.3 Authentication
The module does not provide authentication. Roles are implicitly assumed based on the services that are executed.

5 Finite State Model

5.1 Specification
The following diagram shows the finite state model for BitLocker Dump Filter:

```
Ntoskrnl.exe loads DUMPFVE.SYS

HVCI Enabled?
  Yes
  SKCI validates DUMPFVE.SYS
  Integrity Check OK?
    No
    Driver Load Failure
    Yes
    Self Test Pass?
      No
      Wait for Crash Dump or Hibernate
      Encrypt Hibernate or Crash Dump file and write to storage
      Yes
```
6 Operational Environment
The operational environment for BitLocker Dump Filter is the Windows 10 operating system running on a supported hardware platform.

6.1 Single Operator
The BitLocker Dump Filter is loaded into kernel memory as part of the boot process before the logon component is initialized, and so there necessarily is a single operator for the module.

6.2 Cryptographic Isolation
In the Windows operating system, all kernel-mode modules, including DUMPFVE.SYS, are loaded into the Windows Kernel (ntoskrnl.exe) which executes as a single process. The Windows operating system environment enforces process isolation from user-mode processes including memory and CPU scheduling between the kernel and user-mode processes.

6.3 Integrity Chain of Trust
Windows uses several mechanisms to provide integrity verification depending on the stage in the OS boot sequence and also on the hardware and OS configuration. The following diagram describes the Integrity Chain of trust for each supported configuration for the following versions:

- Windows 10 version 1703, build 10.0.15063
- Windows 10 Mobile version 1709 build 10.0.15254
- Windows 10 Mobile version 1703, build 10.0.15063
- Microsoft Surface Hub build 10.0.15063
- Microsoft Surface Hub build 15063.674
The following diagram describes the Integrity Chain of trust for each supported configuration for the following versions:

- Windows 10 and Windows Server version 1709 and 1803
The integrity of the BitLocker Dump Filter module is checked according to the following:

- If Memory Integrity, also known as Hypervisor Code Integrity (HVCI), is not enabled, then the Code Integrity module performs the integrity check.
- If Memory Integrity is enabled then the Secure Kernel Code Integrity module performs the integrity check.
Windows binaries include a SHA-256 hash of the binary signed with the 2048 bit Microsoft RSA code-signing key (the key associated with the Microsoft code-signing certificate). The integrity check uses the public key component of the Microsoft code signing certificate to verify the signed hash of the binary.

7 Cryptographic Key Management

7.1 Critical Security Parameters
When the System Volume is encrypted with Bitlocker, BitLocker Dump Filter uses this critical security parameter (CSP):

- Full Volume Encryption Key (FVEK) - 128 or 256-bit AES key that is used to encrypt dump and hibernation files.

The FVEK is passed to BitLocker Dump Filter by the Windows Kernel which received the FVEK from either the Windows OS Loader or Windows Resume modules.

7.2 Zeroization

7.2.1 Volatile Keys
The FVEK is zeroized when the module is unloaded as part of shutting down or hibernating Windows.

7.2.2 Persistent Keys
BitLocker Dump Filter does not have any persistent keys.

7.3 Access Control Policy
The BitLocker Dump Filter does not allow access to the cryptographic keys contained within it, so an access control table is not included in this document. BitLocker Dump Filter receives keys from outside the module and then manages them appropriately once received. BitLocker Dump Filter prevents access to its keys by zeroizing them after use.

8 Self-Tests

8.1 Power-On Self-Tests
The BitLocker Dump Filter implements Known Answer Test (KAT) functions each time the module is loaded. The module performs the following KATs:

- AES-CBC Encrypt/Decrypt Known Answer Tests
- AES-CCM Encrypt/Decrypt Known Answer Tests
- XTS-AES Encrypt/Decrypt Known Answer Tests

If the self-test fails, the module will not load and a status code STATUS_FAIL_CHECK will be returned.

9 Design Assurance
The secure installation, generation, and startup procedures of this cryptographic module are part of the overall operating system secure installation, configuration, and startup procedures for the Windows 10 operating system.

The Windows 10 operating system must be pre-installed on a computer by an OEM, installed by the end-user, by an organization’s IT administrator, or updated from a previous Windows 10 version downloaded from Windows Update.

An inspection of authenticity of the physical medium can be made by following the guidance at this Microsoft web site: https://www.microsoft.com/en-us/howtotell/default.aspx

The installed version of Windows 10 must be checked to match the version that was validated. See Appendix A for details on how to do this.

For Windows Updates, the client only accepts binaries signed with Microsoft certificates. The Windows Update client only accepts content whose signed SHA-2 hash matches the SHA-2 hash specified in the metadata. All metadata communication is done over a Secure Sockets Layer (SSL) port. Using SSL ensures that the client is communicating with the real server and so prevents a spoof server from sending the client harmful requests. The version and digital signature of new cryptographic module releases must be verified to match the version that was validated. See Appendix A for details on how to do this.

10 Mitigation of Other Attacks

The following table lists the mitigations of other attacks for this cryptographic module:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Protected Against</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>Timing Analysis Attack</td>
<td>Constant time implementation</td>
</tr>
<tr>
<td></td>
<td>Cache Attack</td>
<td>Memory Access pattern is independent of any confidential data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protected Against Cache attacks only when used with AES NI</td>
</tr>
</tbody>
</table>

11 Security Levels

The security level for each FIPS 140-2 security requirement is given in the following table.

<table>
<thead>
<tr>
<th>Security Requirement</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Module Specification</td>
<td>1</td>
</tr>
</tbody>
</table>
12 Additional Details
For the latest information on Microsoft Windows, check out the Microsoft web site at:

https://www.microsoft.com/en-us/windows

For more information about FIPS 140 validations of Microsoft products, please see:

13 Appendix A – How to Verify Windows Versions and Digital Signatures

13.1 How to Verify Windows Versions
The installed version of Windows 10 OEs must be verified to match the version that was validated using the following method:

1. In the Search box type "cmd" and open the Command Prompt desktop app.
2. The command window will open.
3. At the prompt, enter "ver".
4. The version information will be displayed in a format like this:
 Microsoft Windows [Version 10.0.xxxxx]

If the version number reported by the utility matches the expected output, then the installed version has been validated to be correct.

13.2 How to Verify Windows Digital Signatures
After performing a Windows Update that includes changes to a cryptographic module, the digital signature and file version of the binary executable file must be verified. This is done like so:

1. Open a new window in Windows Explorer.
2. Type “C:\Windows\” in the file path field at the top of the window.
3. Type the cryptographic module binary executable file name (for example, “CNG.SYS”) in the search field at the top right of the window, then press the Enter key.
4. The file will appear in the window.
5. Right click on the file’s icon.
6. Select Properties from the menu and the Properties window opens.
7. Select the Details tab.
8. Note the File version Property and its value, which has a number in this format: xx.x.xxxxx.xxxx.
9. If the file version number matches one of the version numbers that appear at the start of this security policy document, then the version number has been verified.
10. Select the Digital Signatures tab.
11. In the Signature list, select the Microsoft Windows signer.
12. Click the Details button.
13. Under the Digital Signature Information, you should see: “This digital signature is OK.” If that condition is true, then the digital signature has been verified.