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ABSTRACT

This paper addresses issues relevant to
implementing security for IP multicast networks.
These issues are of importance to application
developers wishing to implement security services
for their multicast applications. The paper
investigates the steps required to create a secure
multicast session including issues of group
membership and key distribution.  A common
simple criteria is established that can be used to
evaluate multicast keying architectures.  The
criteria focuses on the efficiency and scalability of
the keying solution.  Using this criteria, several
keying architectures are evaluated and compared to
determine their strengths and weaknesses.

INTRODUCTION

Multicast communications is an efficient means of
distributing data to a group of participants.  In
contrast to unicast communications, multicast
routing permits a single IP datagram to be routed to
multiple hosts simultaneously.  Membership in a
multicast group is dynamic, allowing hosts to enter
and leave the multicast session without the
permission or knowledge of other hosts.  The
inherent benefits of multicast routing may also
present some vulnerabilities making it susceptible
to attack unless they are secured.  The goal is to
secure these vulnerabilities while maintaining the
benefits of multicast service.

This paper presents issues relevant to securing IP
multicast communications.  An initial overview of
multicast technology is presented followed by a
general description of how security services can be
applied within the scope of conventional multicast
protocols.  In many cases, cryptographic techniques
such as encryption may be used to provide some of
these security services.  In this paper, issues related
to the cryptographic keys supporting these

techniques are shown to be crucial to the security
of a multicast session.  Many multicast security
problems may be abstracted into a key distribution
and management problem.

In order to secure a multicast session, a generic
outline for multicast session registration and key
distribution can be followed.  Using this outline as
a model, this paper establishes a set of criteria
useful in evaluating several recently proposed
multicast key distribution architectures.  Each
architecture focuses on methods designed to
efficiently distribute keys to a multicast group.
The techniques used to achieve this goal are
different in each example.

OVERVIEW OF MULTICAST SERVICE

IP multicast is the transmission of IP datagrams to
a host group [1].  A host group is a collection of
multicast capable hosts that either transmit IP
datagrams to or receive datagrams from a
particular Class D IP address.  Class D addresses
are reserved specifically for multicast
communications and can be dynamically assigned
among multicast groups.  Within the multicast
group, membership is also dynamic.  Hosts may
enter and leave the group at will without permission
from other group members.  In a non-secure or
public group, only knowledge of the multicast
address is required for membership.

Several protocols are necessary to route IP
datagrams to a multicast group.  Hosts identify
their desire to become part of a multicast group to
their local router using the Internet Group
Management Protocol (IGMP) messages defined in
[1].  In order to deliver multicast IP datagrams to
group members, routers may use one of several
routing protocols that define the network routing
topology [2, 3, 4, 24, 25].  The MBONE is an
example of a multicast network overlaid on top of
the traditionally unicast Internet by using the



Distance Vector Multicast Routing Protocol
(DVMRP) [2, 5].  Some properties of these routing
topologies may prove beneficial in multicast key
distribution architectures.  For example, in [7],
Ballardie describes a key distribution architecture
centered around a core router defined for the Core
Based Tree (CBT) multicast routing protocol [4].

The scope of a multicast group can be limited by
restricting the routing of its IP datagrams.  By
manipulating the time-to-live  field in each IP
datagram [6], hosts can limit the scope of their
traffic by controlling the number of hops a
datagram travels before routers discard it.  By
restricting the time-to-live field of a datagram, we
create basic form of confidentiality for the group
by limiting the potential audience of the data.  This
may be considered at best a very weak form of
confidentiality that is difficult to enforce.
Therefore, stronger mechanisms are required if we
want greater assurance.

Multicast application layer data is typically
encapsulated by the transport layer UDP protocol.
The combination of UDP and IP protocols create
an unreliable datagram service without error
correction capabilities.  Protocols such as the Real-
Time Transport (RTP) protocol are designed to
correct some of these deficiencies [8].  RTP runs
on top of UDP and the underlying network protocol
to provide end-to-end network transport functions
for multicast audio and video conferences or
sessions.  A session is defined as the exchange of
multimedia data (e.g., an audio conference) within
a multicast group [9].  Several sessions may be
active within a single multicast group (e.g., one for
audio and another for video).  The type of host
participation in a multicast session can further
define the nature of the session.  In a many-to-
many type application, multiple group members
may receive and transmit data simultaneously
during the session.  In contrast, a one-to-many  or
push application typically has only one transmitter
and many receivers for the session.  The type of
application may influence the design of a security
architecture.  For example, a one-to-many
application is inherently centralized and may
benefit from a security architecture centered around
a single trusted host.  Distributed many-to-many

applications may benefit from distributed security
architectures with multiple trusted hosts performing
registration and key distribution functions.

Multicast sessions may also be described in terms
of their membership.  In general, a session is
defined as either public or private.  Both types are
defined by the level of access control required to
join the multicast group [10].  Public sessions are
typically encountered on the MBONE and are
supported by the dynamic nature of multicast
communications (i.e., knowledge of the multicast
address is the only requirement for membership).
We can further restrict public sessions by requiring
users to register and pass an authentication check
in order to participate.  In order to limit the scope
of a private multicast session, both registration and
authentication are required for participation [10].
To limit the visibility of the secure session, the
session traffic is usually encrypted.  In this paper,
we define a secure multicast session as a private
session with encryption.

Multicast applications can benefit from the addition
of security services.  Commercial applications that
use public networks can limit user access to
services and control user participation.  Without
these security features, user participation cannot be
tightly controlled.  Access control mechanisms
applied during registration can limit participation to
only paying customers.  Military applications such
as command and control have obvious benefits
from the application of security.  By tightly
controlling access during registration, only users
with the proper credentials can join the session.  In
both arenas, access control is the important initial
step in defining the multicast group.  Once the
group is established, we can argue that most of our
security concerns can be abstracted into a key
management problem.

APPLYING SECURITY TO MULTICAST

Threats to IP multicast communications are similar
to those for unicast IP transmissions. In general,
threats include eavesdropping, the unauthorized
creation of data, the unauthorized alteration of
data,  the unauthorized destruction of data, denial
of service, and illegitimate use of data [11].  In the



case of multicast traffic, because of the inherent
broad scope of a multicast session, the potential for
attacks may be greater than for unicast traffic.

We can secure a system against these threats
through the application of several fundamental
security services (e.g., authentication, integrity,
confidentiality).  The security policy governing the
system determines how these security services
should be implemented in order to counter the
threats.  Implementation conflicts may arise when
overlapping security policies cover a multicast
group [12].  For example, conflicting policies may
arise between entities separated by international
boundaries.  In this situation, the conflicting
security policies might dictate using different
encryption algorithms and key lengths.  For this
reason, security protocols used in multicast
applications should be flexible to support a variety
of security mechanisms.  The IP security protocols
defined for the Internet in [13], including the
Encapsulating Security Payload (ESP) [14] and the
Authentication Header (AH) [15], support this
philosophy.  These protocols are not restricted to a
specific cryptographic algorithm or other security
standard.

Fundamental Security Services

In order to counter the common threats to multicast
communications, we can apply several of the
fundamental security services, including
authentication, integrity, and confidentiality as
defined in [11].

Authentication services provide assurance of a
host’s identity.  Authentication mechanisms can be
applied to several aspects of multicast
communications.  Foremost, authentication is an
essential part in providing access control to a
secure multicast group.  Applying authentication
mechanisms to the registration process ensures that
only authorized hosts are permitted to join the
secure group.  If the group employs cryptographic
techniques such as encryption for security, then
authentication measures may restrict access to the
keys used to secure the group’s communications.
Group membership is essentially defined by access

to these keys.  Therefore, their availability must be
restricted to only authorized group members.

In order to identify the source of multicast traffic,
authentication mechanisms may also be applied
directly to each IP datagram.  This application
serves to further define group membership by
positively identifying each member of the group.
Protocols such as AH provide authentication for IP
datagrams and may be used for host authentication.
Authentication is also an essential part of any key
distribution protocol [16].  Because of the sensitive
nature of keying material, authentication
mechanisms can identify the source of the key
material and provide a means to counter various
masquerade and replay attacks that may be
launched against a key distribution protocol.

Only strong authentication mechanisms are
recommended for secure multicast applications.
Digital signatures schemes, such as the Digital
Signature Standard (DSS), are an examples of a
strong authentication mechanisms based on public
key technology [16].  In order to bind the identity
of a host to their public key, certificates are formed
that are digitally signed by a trusted certificate
authority (CA).  This process provides the
necessary assurance to enable the proper
identification of hosts during the registration
process.

Integrity services provide assurance that multicast
traffic is not altered during transmission.  Integrity
is not inherent to IP datagram traffic and is usually
reserved for transport layer protocols (e.g., TCP).
The lack of integrity services in IP can lead to
spoofing attacks [17].  Integrity can be applied
indirectly at the network layer with security
protocols such as ESP and AH.  In some
applications where corrupted data can easily be
detected (e.g., voice applications), this service is
not vital.  However, in other applications including
key management protocols, integrity services are
essential means of countering spoofing attacks.

Confidentiality services are essential in creating a
private multicast session.  Although encryption is
typically used to provide this service, a weaker
form of confidentiality may be achieved by limiting



the routing of session IP datagrams.  Encryption
can be applied at several layers of the protocol
stack while maintaining the end-to-end service we
desire.  Transport protocols such as RTP support
encryption mechanisms within their protocol
definition.  At the network layer, ESP provides
confidentiality services for IP datagrams through
encryption.  Confidentiality services should also be
applied to key management transactions during the
exchange of key material.  Key management
protocols,  such as the Internet Security
Association and Key Management Protocol
(ISAKMP) [16],   support confidentiality services
for key exchanges.  Confidentiality may also be
applied to session announcements allowing them to
be advertised publicly while keeping the details of
the session private.

Figure 1 presents an example implementation that
summarizes some of these security  concepts.  In
this example, each host creates a public key pair
(i.e., kx,kx

-1).  The private key of the pair  (i.e., kx
-1)

is kept secret by the host and is used to sign
messages and key material (i.e., if the host
performs key distribution functions).  This
signature uniquely identifies the host to other group
members.  The public key of the pair (e.g., kx) is
signed by the CA and distributed to other group
members in the form of a certificate (e.g.,
CA<X>).  Hosts can verify the digital signatures of
other group members using the public key found in
their certificate.  In this example, host A has
generated and distributed a group key, KS, to the
multicast group.  After hosts are authenticated by
host A, the signed group key is securely distributed
to valid group members (i.e., host B and C).  KS

defines the secure group.  Host D is not a valid
member and therefore is not issued a copy of KS.
To further define group membership, multicast
messages encrypted in KS are signed by group
members using their private key.  Figure 1 shows
the message m encrypted by the group key KS and
signed by the transmitting host B (i.e., with kb

-1).
Using KS and CA<B>, group members A and C
can decrypt the message and verify its origin.

Secure Group

Host A
• (ka , ka

-1), KS

• CA<B>,
  CA<C>

Host D
• (kd , kd

-1)

<{m}KS>kb
-1

Certificate
Authority

(CA)

Host B
• (kb , kb

-1), KS

• CA<A>,
  CA<C>

Host C
• (kc , kc

-1), KS

• CA<A>,
  CA<B>

Figure 1. Hosts within a Secure Group

Communicating Security Requirements

After the security services required for a multicast
session have been identified, it is important to
communicate the details of their implementation to
current and potential group members.  This may
include information about the type of cryptographic
algorithm, the length of a crypto-period, key length,
type of authentication mechanisms used, and other
security related information describing the
implementation details of a particular secure
session.  In some unicast environments, these
parameters may be negotiated between hosts.
ISAKMP supports the negotiation of security
parameters between two hosts.  This feature may
be beneficial in situations of conflicting security
policies.  However, because of the potentially large
number of participants in a multicast group, it is
generally not efficient to allow the negotiation of
security parameters.  Therefore, session
requirements are typically defined by the initiator
of the session and announced to potential
participants.  The initiator may record the security
parameters for a secure session in the form of a
security association (SA) [13].  It is possible to
have multiple SAs within a secure group.  For
example, audio traffic may be encrypted under one
key and video under another key with each session
described by a separate SA.  When using ESP, a
security parameter index (SPI) within each IP



datagram identifies the SA required to decrypt the
traffic.  In all cases, the details of a SA must be
known by group members prior to the start of a
secure session.

The initiator of a session may distribute the SA for
a secure session prior to the session start time using
techniques similar to those used to announce non-
security parameters (e.g., session start time, type of
session protocol used).  Two methods are typically
used to announce a session: advertisement and
invitation.

The initiator may advertise their desire to start a
session by using the Session Announcement
Protocol (SAP) [9].  The announcement may be
advertised to potential members by broadcasting
the announcement to a particular multicast address
reserved for receiving session announcements.
Alternately, announcements can be extended to a
more selective group through invitation protocols
such as the Session Initiation Protocol (SIP) [18]
which directly contacts potential participants.  Both
SAP and SIP use the Session Description Protocol
(SDP) [19] to describe the requirements for the
multicast session.  The defined requirements may
include both security and non-security parameters.
These announcement techniques offer an efficient
means to distribute the SA and other non-security
conference information to potential participants
prior to the start of the secure session.

Key Management Issues for Multicast

Through the use of encryption and digital
signatures, we can achieve desired levels of
confidentiality, integrity, and authentication.
Assuming that we use strong security mechanisms
that when implemented properly cannot be broken
by frivolous cryptanalytic attacks, we can focus
our security concerns on protecting the key
material.  We may generally assume that our
cryptographic algorithms cannot be broken and
thus, all security resides in the key material.
Therefore, we focus our security concerns around
key management, key distribution, and access
control for key material.  With this in mind, a
secure multicast session can be defined by its Class

D IP address and the required keying material for
the session.

The size, type (e.g., asymmetric vs. symmetric),
and number of keys required to secure a multicast
session is determined by the encryption mechanism
employed and the keying architecture.  In general,
session participants may use a common group
traffic encryption key (GTEK) to encrypt session
data.  The initiator of the session may use group
key-encryption-keys (GKEKs) to encrypt future
session keys (i.e., GTEKs) for distribution to group
members.  For a private multicast sessions, access
to these keys must be restricted to maintain the
security of the overall session.  Therefore, during
the registration process it is necessary to require
strong authentication mechanisms to establish the
identity of potential participants prior to
distributing key material.  The specific access
control mechanism may be unique to the
application.  For example, identity based access
control mechanisms may be appropriate for some
commercial applications while military models may
use permission based schemes that identify a
participant’s clearance level.  When these personal
attributes are bound to a signed certificate, the
identify of a participant and their assigned
permissions may be verified by the certificate’s
digital signature and its relationship in a certificate
hierarchy [20].

Depending on a system’s security policy and the
amount of traffic encrypted under a particular key,
it may be necessary to periodically issue a new key
or “rekey” a multicast session.  A rekey may also
be required in the event of a key compromise.  In
this case, it is necessary to exclude the
compromised site from future communications.
Therefore, a rekey must be targeted to specifically
exclude the compromised site while retaining the
rest of the group membership.  Depending on the
security policy in place, the definition of a
compromise might include the voluntary exit of a
participant from a secure session.  If this occurs,
the entire group may require a rekey in order to
prevent the excluded participant from rejoining the
group at a later time without re-registering for the
session. In addition, the keying architecture should



prevent collusion by a group of disbanded members
from generating or recreating the new group key.

THE SECURE MULTICAST PROCESS

As described in [12], a common process may be
applied to the establishment and maintenance of a
secure multicast session regardless of the
implementation details of the supporting keying
scheme.  Common functions may be derived from
the registration and authentication processes
required for private multicast sessions.  In the
following example, we assume that authentication
services are based on a public key certificate
hierarchy.  A certificate authority (CA) serves as a
trusted and centralized authority for participant
identification.  All participants have access to the
CA for verification of digital signatures.  The
following steps provide an overview of the
initialization, registration, and maintenance
processes required for secure multicast sessions:

1.  Someone identifies the need for a secure session
(i.e., the Initiator).

2.  After the need for the secure session has been
established, the Initiator defines the parameters
required to participate in the session using a
description protocol such as SDP.  Parameters
include security related details that may be defined
in a security association (SA) as well as other non-
security related parameters (e.g., session start time,
session address).

3.  Prior to the start of the secure session, the
Initiator determines whether assistance is required
to perform the participant registration or key
distribution functions.  The identity and location of
other trusted entities assisting in these functions
can be recorded in the session description.  This
allows participants to directly contact the
appropriate trusted entity at the start of the session.
In some keying architectures, such as the one
described in [7] for CBT multicast routing
networks, keying and registration functions are
immediately passed off to a trusted network “core”.
Other architectures delegate responsibilities to
outside trusted entities only as needed [21].  In a
truly distributed keying architecture such as that

described in [10], delegation of registration and key
distribution functions to all active participants is
assumed.

4.  In order to enlist membership for the secure
session, the session description is announced to
potential participants.  The announcement may
come in the form of a posted advertisement or a
personal invitation to each group member.  The
Initiator may list invited participants in a session
access control list (ACL). The ACL should be held
by all authorized keying entities.  Updates to the
ACL must be distributed among these trusted
entities.  Confidentiality may be applied to session
announcements in order to conceal the existence of
a secure session.  In most cases, the Initiator may
use multicast techniques to efficiently announce the
session to all potential participants prior to its start.

5.  After receiving the session announcement,
potential participants may register for the secure
session if they can meet its requirements.
Registration is performed by the Initiator or other
trusted entity. As part of the registration process,
participant identities and their permissions are
authenticated.  Only valid participants are extended
the invitation to become members of the secure
group and are issued the required keying material
for the session.  Keys exchanged during the
registration process must be provided the basic
security services.  Depending on the security policy
governing the session, it may be required to provide
a membership list of all registered participants to
the group.   After reviewing the membership list,
some participants may decide to not participate
further in the session.  In this case, the security
policy for the session may dictate that participants
delete the session key when exiting the session.

6.  During the course of a secure session, it may be
necessary to perform several maintenance
operations including keying and registration
functions.  In order to support the dynamic nature
of multicast communications, it may be required to
add or delete participants after the start of the
session.  In some applications, the percent of
membership roll-over may be limited throughout
the lifetime of the session [12].  Participants added
during an ongoing session must complete the



authenticated registration process prior to receiving
group key material.  Individual or groups of
participants may be dropped from the secure
session either cooperatively or non-cooperatively
[21].  With a cooperative exit from the session, the
participant voluntarily leaves the group and is
asked to erase all session key material.  Depending
on the security policy governing the session, the
keys held by the participant may be treated as
compromised.  In the case of a key compromise, a
non-cooperative drop is required to forcefully
remove the compromised participant from the
secure session.  To remove the participant, all
potentially compromised keys must be replaced by
performing a rekey.  The rekey involves rekeying
all affected participants with a new session key
(e.g., KS).

CRITERIA FOR SECURE MULTICAST

There are numerous issues to consider when
developing a secure multicast application.  [22]
provides a general overview of non-security issues
that developers should consider.  This paper has
focused on identifying security related issues
developers should consider when implementing
private multicast sessions.  Several of these issues
relate to the key material used to secure the
multicast traffic.  Foremost, the registration
process provides a level of access control for  key
material.  For a private session, all participants
should be authenticated during the registration
process.  Upon successful registration, key material
and group membership may be extended.  For a
secure session, group membership is defined by the
session’s IP multicast address and the key material
required to communicate securely with other group
members.

A complete solution to the multicast security
problem  addresses all relevant security issues
including session announcement, registration, etc.
As mentioned previously, we may reduce many of
our security concerns to a key management and
distribution problem.  This enables the efficient
comparison and evaluation of various solutions to
the secure multicast problem.  In order to make a
fair comparison, we define a limited set of criteria
common to all viable solutions.  The criteria helps

to determine the advantages and disadvantages of
each keying architecture by focusing on key
distribution efficiency and the overall scalability of
the architecture.  Other issues including participant
registration and authentication are not considered
but are equally important.

Criteria

Efficiency:
Initial Keying

What is the efficiency of the
initial key distribution
exchange at the start of the
session ?

Efficiency:
Rekeying

What is the efficiency of  rekey
operations (i.e., for reasons of
compromise or crypto-period
roll-over)?

Computation
Requirements

What level of computational
resources is required by the key
distributor and members to
process keying messages?

Storage
Requirements

What amount of storage is
required by participants for key
storage?

Scalability Is the solution scalable for
large and small groups (i.e.,
large > 100 members)?

Table 1.  Criteria for Secure Multicast

Several solutions to the multicast key distribution
problem have been presented in papers such as  [7,
10, 12, 21, 23].  The core criteria used to evaluate
several of these proposed multicast keying
architectures is shown in table 1.  This criteria
focuses on key distribution efficiency, the ability to
support dynamic user entry and exit in an already
established secure session, computation
requirements placed on the system to perform the
keying operations, key storage requirements, and
scalability.    Efficiency is recorded in big-O
notation as a measure of the number of key related
messages transmitted per operation (e.g., rekey,
initial keying).  The size of each message is also
considered.  However, it is assumed that for some



applications network throughput will increase over
time making the issue of size less important.
Although efficiency is of primary concern to
networks with limited bandwidth, it also provides a
convenient measure of system performance.

KEY DISTRIBUTION ARCHITECTURES

In order to improve the efficiency of a keying
solution for secure multicast applications, it is
often beneficial to use features of multicast
communications that makes it an efficient form of
group communications.  The ideal key distribution
efficiency in a multicast environment is O(1).  In
such a scenario, a centralized server may transmit
only a single keying message to the entire group to
perform a group rekey.  Every group member can
extract the required key material from this one
message.  In contrast, the efficiency of using
unicast techniques to distribute a group key
separately to each group member is O(n).  Note, in
most cases it is more efficient to perform the initial
keying of participants in a unicast fashion during
the registration process.  The registration function
is inherently a one-to-one between a single
participant and the Initiator or other trusted
registration authority.  By coupling registration
with key distribution, the overall number of
transmissions required to perform both functions
can be reduced.

Keying functions may be either centralized or
distributed throughout the architecture.  In a
centralized architecture, keying functions are
restricted to a single trusted authority.  In some
cases, this may be the Initiator of a session or
another entity assigned by the Initiator to handle
these vital functions.  For scalability purposes,
keying and registration functions may be
distributed to other trusted entities.  Applications
that are of the type “one-to-many” may benefit
from a strictly centralized architecture.
Alternatively, distributed architectures may prove
more scalable since processing and storage
requirements are distributed across the network.

The following sections provide a brief analysis of
several key distribution architectures [7, 10, 12, 21,
23].  Each section presents a brief description of

the architecture followed by an analysis of its
performance.  Performance is measured against the
criteria established in the previous section.  We
ignore issues of session definition, announcement,
and registration, focusing instead on the key related
criteria.

Manual Key Distribution

As noted in [12], manual key distribution
architectures are easily understood by users and in
many cases already in place (e.g., the military).  In
this type of architecture, all key generation and
distribution functions reside at a central key
distribution center (KDC).  Key material
requirements for a secure multicast session must be
determined by the Initiator well enough in advance
for the KDC to generate and manually distribute
the keys to all participants.  There is no
computational load on individual participants and
storage requirements may be limited to GTEK and
GKEK storage.

Because significant off-line coordination is required
with the KDC, this solution is not scalable.  Also, it
is generally slow to respond to dynamic user entries
and exits from the secure multicast group.  Manual
keying techniques are also slow to respond to
compromise.  In the event of a group key
compromise, new key material must be distributed
manually to valid participants.

Pairwise Keying

Several keying architectures have been designed
around the concept of pairwise keys [7, 12, 21].
With this type of architecture, the session Initiator
distributes the required key material for the secure
session.  The Initiator may also perform
registration and authentication functions or pass
them to another trusted entity.  Keying function
may also be distributed among trusted entities.
During the registration process, the Initiator
establishes and caches a unique session key with
each participant creating a “pairwise” keying
relationship between the Initiator and participant.
These unique participant session keys are used to
encrypt group keys for each authenticated
participant.  The encrypted keys can be distributed



to each participant individually or multicast in a
single complete message containing all of the
individually encrypted keys.

In [7], Ballardie proposed a pairwise multicast key
distribution solution based on the Core Based Tree
(CBT) multicast routing protocol.  In a CBT
architecture, a routing tree is centralized around a
core router.  The core router is centralized for the
multicast group making it a natural authorization
and key distribution point.  As other routers join
the tree, they may undergo an authentication
process with the core.  Through the addition of
other trusted routers to the tree, keying functions
may be distributed outside the core router allowing
the solution to scale to large groups.

In the CBT architecture, the Initiator of the secure
session creates an access control list (ACL) and
security association (SA) for the session.  The ACL
and SA are passed to the core who then creates a
GTEK and GKEK for the session.  The core
distributes the ACL, GTEK, and GKEK to
secondary routers as they are authenticated and
added to the tree. Ballardie recommends using a
keying protocol such as ISAKMP to distribute keys
between group members and the trusted routers.  In
a pairwise fashion, ISAKMP enables the creation
of a unique session key between the two entities
that can be used to securely exchange the group
key material.  The computational requirements at
each end of this exchange are limited to the creation
of the unique session key.

Because each participant must be keyed
individually, the efficiency of the initial keying
transmissions for the pairwise approach is  O(n).
Each participant must create a pairwise key
between with the Initiator prior to receiving the
group key material.  Several pairwise architectures
including Ballardie’s scheme and the Group Key
Management Protocol (GKMP) described in [21]
attempt to distribute keying functions to other
trusted entities.  Caching of the unique participant
session keys is not required in these architectures;
however, their presence makes the rekey operation
much more efficient.  Otherwise, in order to rekey
the group with a new group key requires essentially
the creation of another secure group that excludes

untrusted participants.  In [21], the use of a GKEK
can greatly improve the efficiency of a rekey.
However, if the GKEK is compromised, the
efficiency reverts back to the efficiency of creating
a new group.  Therefore, like the initial keying
functions, the rekey function has an efficiency of
O(n).

Hierarchical Trees

In [12], Wallner, et al propose a hierarchical
keying scheme that attempts to satisfy the problem
of rekeying to disenroll participants from a secure
group.  A hierarchical tree of key-encryption-keys
(KEKs) is created with the GTEK used for the
encryption of multicast traffic residing at the root
of the tree.  Participants become leaves of the tree
with each having their own unique KEK.  Each tier
above a participant corresponds to a different
KEK.  Participants store all of the keys within the
tree in a path between the themselves and the root.
In the event of a compromise, the Initiator may use
the tiered KEKs to exclude a single participant or
groups of participants during a rekey.  All
compromised KEKs and the GTEK are replaced
during the rekey process.

In the event of a compromise, the number of
transmission required to rekey the affected
participants in the tree is on the order of O(logn).
The number of messages required to rekey the tree
is (k-1)d for a k-ary tree of depth1 d.  Key storage
requirements for each participant is on the order of
d+1 keys.  There Initiator must store all keys in the
tree.

Efficiency in this scheme is achieved by using a
divide-and-conquer algorithm on the k-ary tree.
While multiple messages may be required to rekey
the compromised section of the tree, other less
affect sections of the tree can be rekeyed more
efficiently with fewer and smaller messages.  This
feature makes the scheme scalable towards large
groups.

                                                  

1 Rekey messages transmitted to each participant may
contain multiple keys.



In the hierarchical tree scheme, the keying
computational requirements are greatest at the
Initiator site.  During the initial keying of the tree,
the Initiator must generate a unique KEK with each
participant in the same fashion as the pairwise
approach (i.e., O(n)).   In addition, the Initiator
must also generate keys for all other tiers of the
tree.  During a rekey, the Initiator must encrypt the
new group key in the appropriate sequence of
KEKs corresponding to the tree hierarchy.

Secure Lock

The secure lock described by Chiou and Chen in
[23] utilizes the efficiency of multicast
communications to key and rekey session
participants.  Using the Chinese Remainder
Theorem (CRT), a secure lock is constructed that
is used to “lock” the deciphering group session key.
The single lock is transmitted with each encrypted
message.  Only users in the secure group can
“unlock” the session key.

The principle behind the secure lock lies in the
mathematics of the CRT.  The CRT states that for
N1, N2, ..., Nn positive, relatively prime integers
and R1, R2, ...,Rn positive integers, a set of
congruous equations

X= R1modN1   X= R2modN2    X= RNmodNN

have a common solution X in the range of [1, L-1]
where L=N1*N2*N3*...Nn and n is the number of
participants in the group [23].  Chiou and Chen use
the CRT properties to generate X where Ri =
Eeki(d) is the session key d encrypted by the
function E using participant ui’s public enciphering
key eki (part of a public key pair).  The common
lock X is generated by the Initiator using each
participant’s public enciphering key.  Each
participant can recover the locked session key d by
applying the CRT.  The participant computes d
using their secret deciphering key dki.  Only
participants whose enciphering keys were included
in the calculation of X can unlock d.

The secure lock method is flexible towards the
dynamic addition and deletion of group
participants.  Using the CRT, the Initiator can

generate the common X and rekey the group to
include or exclude certain participants from future
communications.  Only those participants whose
eki was used in the computation of X can recover
the session key.  Because X is common among all
valid participants, the efficiency of the transmission
of the lock is O(1).  Storage requirements at each
participant site is limited to their public key pair.
In order for the Initiator to create the lock, it must
store the public keys for each participant.

As noted in [23], computation time of the common
X using CRT is restrictive and may only be
efficient for small groups.  However, the
decipherment of d by each participant is fairly
efficient.  The overall efficiency of the distribution
of the secure lock (i.e., O(1)) may be eclipsed by its
computation time for large groups.  Additionally,
since the computation of a common X is not
distributable, the scheme is inherently centralized.
Therefore, the secure lock scheme does not scale
well to large groups unless a method for
distributing the generation of X can be defined.

Distributed Registration and Key Distribution
(DiRK)

Distributed Registration and Key Distribution
(DiRK) [10] by Oppliger and Albanese is a key
distribution protocol designed for application over
the MBONE.  It distinguishes between active and
passive participants in a multicast session.  In a
truly distributed fashion, any active participant
may assist the Initiator with registration and key
distribution duties.

During the initialization phase, the Initiator
generates a session public key pair (ka, ka

-1).  The
Initiator announces the session with a signed copy
of the public key ka.  The private key ka

-1 is used by
the Initiator to sign subsequent messages.  The
Initiator also generates a group key for the session,
KS.

After receiving the session announcement, hosts
may request to join the group by sending a
registration request message to the multicast group
(i.e., transmitted to the group’s Class D IP
address).  The request message contains the public



part of a public key pair created by the participant
for this session (i.e., kx).   Any active participant
already keyed with KS may respond to valid users
with the group key KS encrypted in kx.  Timers and
the use of the IP time-to-live field can be used to
restrict responses to registration requests to only
locally active participants and thus prevent a flood
of messages from the group.  Only user X can
decrypt the group key encrypted in kx.  The
response also contains a certificate signed by the
responder that validates the returned key.   The
returned certificates form a hierarchical participant
registration tree (PRT) that can be used to trace a
certificate back to the Initiator.

DiRK includes a registration validation message
to keep participants up-to-date on the current group
membership.  Participants periodically send
validation messages to the group that include a
copy of the participants public session key (i.e., kx)
and the certificate they received when they were
registered for the session.

Several rekey options are supported by DiRK.  A
full session rekey can be performed by the Initiator
to rekey all participants with a new key.  This
rekey protocol simply encrypts the new key in the
previous session key.  In the event of a
compromise, a selective rekey can be performed by
the Initiator to rekey only selective participants.
The Initiator uses the public session keys received
in the registration validation messages to
individually encrypt the new session key for each
valid participant.  A single message is then sent to
the group with the individually encrypted keys.
Unique to DiRK is a  distributed session rekey
message that permits active participants to rekey
the group.  The initial distributed session rekey
message contains a list of participants banned from
participation.  This list is examined by active
participants before issuing the new group key to
other potential participants.

The overall architecture of DiRK is very efficient
because of its distributed nature. The processing
required to key and rekey n participants (i.e., O(n))
is distributed across the network to all active
participants.  Although the selective keying

function is O(1), this size of the rekey message is
the size of n.

DiRK is highly scalable because of its distributed
properties.  However, these same properties also
distribute the trusted registration and authentication
processes across the network.  In order to validate
messages, users must retain the certificates for all
local active participants.

SUMMARY OF KEYING ARCHITECTURES

Each of the solutions presented in [7, 10, 12, 21,
23] attempts to efficiently solve the multicast key
distribution problem in a slightly different fashion.
It is important to note that the best solution for one
particular application may not be well suited for
another application.  For example, centralized
applications such as multicast video servers may
benefit from a centralized keying architecture while
distributed command and control applications may
benefit more from an equally distributed key
distribution scheme.  The following paragraphs
summarize the evaluation results from the previous
section.

Manual keying methods were determined to be too
slow for dynamic multicast sessions in which
membership is not defined prior to the start of the
session.  However, in some military environments
with a well structured manual key distribution
architecture already in place, this solution may be
the easiest to implement.    

Pairwise keying techniques typically provide linear
efficiency for initial keying and rekey operations.
By consolidating all rekey messages into a single
multicast message, the efficiency of the rekey can
be dramatically improved.  However, this technique
increases the overall size of the rekey message to n.
Key storage requirements for pairwise techniques
are minimal at participant sites but requires n keys
to be stored with the key distributor. This method is
scalable if keying and registration functions are
distributed to other trusted entities.



The hierarchical trees method provides linear
initial keying performance and improved
logarithmic rekey performance.  The size2 of any
rekey message is no greater than (k-1)d.  Key
storage requirements at each participant site is d+1
keys while the Initiator must store all KEKs and the
GTEKs.  The solution is scalable because of the
logarithmic rekey performance.

The secure lock method has linear initial keying
performance and an impressive constant rekey
performance.  The size of the rekey message is also
constant providing the best rekey performance of
all methods reviewed.  The drawbacks of this
method include the computation time for the lock
and the fact that the technique is inherently
centralized and may not scale to large groups.

In order to improve overall system efficiency,
DiRK distributes linear initial keying and rekey
functions among active group members.  However,
a question of trust may arise because the
registration and key distribution functions are
distributed in such a broad fashion.  Otherwise, the
solution is scalable to large networks.

CONCLUSION

Multicast sessions can be secured through the
application of several fundamental security
services.  A complete solution to the multicast
security problem addresses all aspects of the
application of these security services.  This paper
has shown that many of these security concerns can
be abstracted into a key management problem.  The
key material required to communicate successfully
and securely within a session defines the secure
group.  Therefore, access to group key material
must be restricted and tightly controlled.

By using a set of criteria focusing on key related
issues, this paper analyzed several different keying
solutions.  Because the best solution for one
particular application might not be well suited for
another application, it is important to fully

                                                  

2 For a k-ary tree of depth d.

understand the requirements and security policy of
the application prior to applying a security
solution.  In general, it has been observed that most
keying solutions follow a similar process for
securing a multicast session.  In some cases, by
combining the inherently linear registration and
initial keying functions together into a single step,
the overall efficiency of the keying scheme can be
improved.

A security solution should compliment rather than
drive the implementation of a multicast application.
The application of security should be transparent to
the user and work efficiently with other required
protocols.  Future work should focus on achieving
a truly integrated security solution that functions
together with other non-security functions and
existing multicast protocols.
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