
Draft

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8930

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology
Willie E. May, Under Secretary for Standards and Technology and Director
Annex A: Approved Security Functions for FIPS PUB 140-2, Security Requirements for Cryptographic Modules

1. Introduction

Federal Information Processing Standards Publication (FIPS) 140-2, Security Requirements for Cryptographic Modules, specifies the security requirements that are to be satisfied by the cryptographic module utilized within a security system protecting sensitive information within computer and telecommunications systems (including voice systems). The standard provides four increasing, qualitative levels of security: Level 1, Level 2, Level 3, and Level 4. These levels are intended to cover the wide range of potential applications and environments in which cryptographic modules may be employed. The security requirements cover eleven areas related to the secure design and implementation of the cryptographic module. These areas include the following:

1. Cryptographic Module Specification
2. Cryptographic Module Ports and Interfaces
3. Roles, Services, and Authentication
4. Finite State Model
5. Physical Security
6. Operational Environment
7. Cryptographic Key Management
8. Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)
9. Self Tests
10. Design Assurance
11. Mitigation of Other Attacks

The Cryptographic Module Validation Program (CMVP - www.nist.gov/cmvp) validates cryptographic modules to FIPS 140-2 and other cryptography based standards. The CMVP is a joint effort between NIST and the Canadian Centre for Cyber Security (CCCS - https://cyber.gc.ca/en/). Modules validated as conforming to FIPS 140-2 are accepted by the Federal agencies of both countries for the protection of sensitive information (United States) or Designated information (Canada).

In the CMVP, vendors of cryptographic modules use independent, accredited testing laboratories to have their modules tested. Organizations wishing to have validations performed would contract with the laboratories for the required services.

2. Purpose

The purpose of this document, and of Annexes C and D, is to provide a list of the approved security functions applicable to FIPS 140-2. Annex C lists the approved Random Bit Generators, while Annex D shows the approved Key Establishment Methods. The remaining approved security functions are listed in this Annex. The Annexes also provide the links to the descriptions of the allowed algorithms.
## Contents

1. Introduction .................................................................................................................. 1
2. Purpose ............................................................................................................................ 1

ANNEX A: APPROVED SECURITY FUNCTIONS ................................................................ 1

Transitions .......................................................................................................................... 1

Symmetric Key Encryption and Decryption (AES, TDEA) .................................................. 1
   1. Advanced Encryption Standard (AES) ......................................................................... 1
   2. Triple-DES Encryption Algorithm (TDEA) ................................................................. 2

Digital Signatures (DSA, RSA and ECDSA) .................................................................. 2
   1. Digital Signature Standard (DSS) ............................................................................. 2

Secure Hash Standard (SHS) ......................................................................................... 2

SHA-3 Standard .............................................................................................................. 2
   1. SHA-3 Hash Algorithms (SHA3-224, SHA3-256, SHA3-384, SHA3-512) ...................... 2
   2. SHA-3 Extendable-Output Functions (XOF) (SHAKE128, SHAKE256) ...................... 2
   3. SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and ParallelHash .................. 2

Message Authentication (Triple-DES, AES and HMAC) ................................................ 2
   1. Triple-DES .................................................................................................................. 2
   2. AES ............................................................................................................................. 3
   3. HMAC ........................................................................................................................ 3

Document Revisions ........................................................................................................ 4
ANNEX A: APPROVED SECURITY FUNCTIONS

Annex A provides a list of the approved security functions applicable to FIPS 140-2. The categories include transitions, symmetric key encryption and decryption, digital signatures, message authentication and hashing.

Transitions

National Institute of Standards and Technology, Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths, Special Publication 800-131A, Revision 2, March 2019. Sections relevant to this Annex: 1, 2, 3, 9 and 10.

Symmetric Key Encryption and Decryption (AES, TDEA)

1. Advanced Encryption Standard (AES)


   National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation: Three Variants of Ciphertext Stealing for CBC Mode, Addendum to Special Publication 800-38A, October 2010.


   National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC, Special Publication 800-38D, November 2007.

   National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on Storage Devices, Special Publication 800-38E, January 2010.

   National Institute of Standards and Technology, Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping, Special Publication 800-38F, December 2012.


2. **Triple-DES Encryption Algorithm (TDEA)**


3. **NOTE.** The use of SKIPJACK is approved for decryption only. The $\text{SKIPJACK}$ algorithm has been documented in Federal Information Processing Standards Publication 185. This publication is obsolete and has been withdrawn.

### Digital Signatures (DSA, RSA and ECDSA)

1. **Digital Signature Standard (DSS)**


### Secure Hash Standard (SHS)


### SHA-3 Standard

1. **SHA-3 Hash Algorithms (SHA3-224, SHA3-256, SHA3-384, SHA3-512)**


2. **SHA-3 Extendable-Output Functions (XOF) (SHAKE128, SHAKE256)**


3. **SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and ParallelHash**


### Message Authentication (Triple-DES, AES and HMAC)

1. **Triple-DES**

   National Institute of Standards and Technology, Computer Data Automation, Federal Information Processing Standards Publication 113, 30 May 1985. This standard has been withdrawn by NIST on September 1, 2008. The CMVP will accept, until December 31, 2017, the new submissions with the
claims of vendor affirmation to this standard. The existing validations with the claim of Triple-DES MAC complying with FIPS 113 will remain in place.


2. AES


3. HMAC


### Document Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>05-13-2002</td>
<td><strong>Symmetric Key</strong>, Number 1:</td>
</tr>
<tr>
<td></td>
<td>Added: Advanced Encryption Standard (AES)</td>
</tr>
<tr>
<td></td>
<td><strong>Keyed Hash</strong>, Number 1:</td>
</tr>
<tr>
<td></td>
<td>Added: The Keyed-Hash Message Authentication Code (HMAC)</td>
</tr>
<tr>
<td>02-19-2003</td>
<td><strong>Symmetric Key</strong>, Number 1:</td>
</tr>
<tr>
<td></td>
<td>Added: Recommendation for Block Cipher Modes of Operation, Methods and Techniques</td>
</tr>
<tr>
<td>12-16-2003</td>
<td><strong>Asymmetric Key</strong>, Number 1:</td>
</tr>
<tr>
<td>03-11-2004</td>
<td><strong>Hashing</strong>, Number 1:</td>
</tr>
<tr>
<td></td>
<td>Added: Secure Hash Standard - SHA-256, SHA-384 and SHA-512</td>
</tr>
<tr>
<td>05-13-2004</td>
<td><strong>Hashing</strong>, Number 1:</td>
</tr>
<tr>
<td></td>
<td>Added: Secure Hash Standard - SHA-224</td>
</tr>
<tr>
<td>08-18-2004</td>
<td><strong>Asymmetric Key</strong>, Number 1:</td>
</tr>
<tr>
<td></td>
<td>Updated: Modified reference to include Change Notice 1 - Digital Signature Standard (DSS)</td>
</tr>
<tr>
<td>09-23-2004</td>
<td><strong>Message Authentication</strong>, Number 3:</td>
</tr>
<tr>
<td></td>
<td>Added: Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confidentiality</td>
</tr>
<tr>
<td>05-19-2005</td>
<td><strong>Symmetric Key</strong>, Number 2:</td>
</tr>
<tr>
<td></td>
<td>Added: Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher</td>
</tr>
<tr>
<td>04-03-2006</td>
<td><strong>Message Authentication</strong>, Number 4:</td>
</tr>
<tr>
<td></td>
<td>Added: Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication</td>
</tr>
<tr>
<td>01-24-2007</td>
<td><strong>Random Number Generators</strong>, Number 1:</td>
</tr>
<tr>
<td></td>
<td>Updated: Modified reference document date - Annex C: Approved Random Number Generators for FIPS 140-2, Security Requirements for Cryptographic Modules</td>
</tr>
<tr>
<td>05/19/2007</td>
<td><strong>Symmetric Key</strong>, Number 2:</td>
</tr>
<tr>
<td></td>
<td>Deleted: References to DES removed.</td>
</tr>
<tr>
<td></td>
<td><strong>Message Authentication</strong>, Numbers 1 and 2:</td>
</tr>
<tr>
<td></td>
<td>Deleted: References to DES removed.</td>
</tr>
<tr>
<td>10/18/2007</td>
<td>Updated: Modified URL’s</td>
</tr>
<tr>
<td>12/18/2007</td>
<td><strong>Symmetric Key</strong>, Number 1:</td>
</tr>
<tr>
<td></td>
<td>Added: Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC</td>
</tr>
<tr>
<td>10/21/2008</td>
<td><strong>Hashing</strong>, Number 1:</td>
</tr>
<tr>
<td></td>
<td>Updated: FIPS 180-3 replaces FIPS 180-2 - Secure Hash Standard</td>
</tr>
<tr>
<td>06/18/2009</td>
<td><strong>Asymmetric Key - Signature</strong>, Number 1:</td>
</tr>
<tr>
<td></td>
<td>Updated: FIPS 186-3 replaces FIPS 186-2 - Digital Signature Standard (DSS)</td>
</tr>
<tr>
<td>07/21/2009</td>
<td><strong>Asymmetric Key - Signature</strong>, Number 1:</td>
</tr>
<tr>
<td></td>
<td>Added: Included reference to archived Digital Signature Standard (DSS) – FIPS 186-2 until transition plan from FIPS 186-2 to FIPS 186-3 ends.</td>
</tr>
<tr>
<td>10/08/2009</td>
<td>Updated: Editorial Changes to align with the CAVP</td>
</tr>
<tr>
<td>10/22/2009</td>
<td><strong>Key Management</strong>, Number 1:</td>
</tr>
<tr>
<td></td>
<td>Added: Recommendation for Key Derivation Using Pseudorandom Functions</td>
</tr>
<tr>
<td>01/27/2010</td>
<td><strong>Symmetric Key</strong>, Number 1:</td>
</tr>
<tr>
<td></td>
<td>Added: Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on Storage Devices</td>
</tr>
<tr>
<td>Date</td>
<td>Action</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| 11/24/2010 | **Symmetric Key,** Number 1:  
Added: *Addendum to Special Publication 800-38A, October 2010:  
Recommendation for Block Cipher Modes of Operation: Three Variants of  
Ciphertext Stealing for CBC Mode*  
**Message Authentication,** Number 3:  
Updated: Revision date - *FIPS 198-1, July 2008: The Keyed-Hash Message  
Authentication Code (HMAC)*  |
| 01/04/2011 | **Moved Key Management/Establishment references to FIPS 140-2 Annex D.**                          |
| 07/26/2011 | **Added new Section: Transitions**  
Added: *Recommendation for Transitioning the Use of Cryptographic Algorithms  
and Key Lengths*  |
| 05/30/2012 | **Secure Hash Standard (SHS), Number 1:**  
Updated: FIPS 180-4 replaces FIPS 180-3 - *Secure Hash Standard*  |
| 01/31/2014 | **Asymmetric Key - Signature,** Number 1:  
Updated: FIPS 186-4 replaces FIPS 186-3 - *Digital Signature Standard (DSS)*  
Deleted: Reference to RSA Laboratories, *PKCS#1 v2.1: RSA Cryptography  
| 10/08/2014 | **Symmetric Key,** Number 1:  
Added: *Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping*  
**Secure Hash Standard (SHS), Number 1:**  
Added: *Guidelines for the Selection, Configuration, and Use of Transport Layer Security (TLS) Implementations*  |
| 09/17/2015 | **SHA-3 Standard:**  
Added: SHA-3 Hash Algorithms and Extendable-Output Functions  |
| 01/04/2016 | **Digital Signature Standard (DSS),**  
Deleted: References to FIPS 186-2  |
| 01/25/2016 | **Escrowed Encryption Standard (EES)**  
Deleted: Skipjack is withdrawn effective December 31, 2015.  |
| 02/01/2016 | **Symmetric Key, Advanced Encryption Standard (AES):**  
| 04/06/2016 | **Symmetric Key, Advanced Encryption Standard (AES):**  
Added: SP 800-38G, *Recommendation for Block Cipher Modes of Operation:  
Methods for Format-Preserving Encryption.*  |
| 05/10/2017 | **Transitions**  
Updated: SP 800-131Arev1 replaces SP 800-131A  
**Triple-DES Encryption Algorithm (TDEA)**  
Updated: SP 800-67rev1 replaces SP 800-67  
Added SP 800-38F to the list of standards defining the approved modes of TDEA  
**SHS**  
Deleted: SP 800-52 Rev 1, April 2014  
**Random Number Generators (RNG and DRBG)**  
Deleted RNG section. Approved RNGs are listed in Annex C.  
**Message Authentication (Triple-DES, AES and HMAC)**  
Added the transition information for vendor affirmation of Triple-DES MAC  
Added: *Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication*  
**Overall Document**  
Modified section titles, added notes and fixed broken links.  |
| 01/10/2018 | **Triple-DES Encryption Algorithm (TDEA)**  
Updated: SP 800-67rev2 replaces SP 800-67rev1  |
| 06-10-2019 | **Transitions**  
Updated: SP 800-131Arev2 replaces SP 800-131Arev1  
**SHA-3 Standard**  
Added: SP 800-185, December 2016  |