Interoperability and Card Printing

A Joint Presentation from:

Oberthur Card Systems

GEMPLUS

Schlumberger
Introduction

◆ Printing during card manufacture v.s. card issuance

◆ Typical causes of print problems during issuance

◆ ISO Standards and Interoperability

◆ General recommendations
Old Fashion Manufacturing Process

- **Printing**
 - Artwork is identical on all cards and printed on large sheets

- **Lamination**
 - Card body is constructed using printed sheets on the outside layers
 - Optional inlet with antenna and contactless chip

- **Punching**
 - Individual cards are punched out of the lamination sheet

- **Milling**
 - A cavity is drilled to accommodate the chip

- **Embedding**
 - The smart card IC is plugged in

- **Personalization**
 - Card number and name are embossed on the card
Old Fashion Manufacturing Process

Pros
- Process derived from Financial Card Industry
- Sheet Printing similar to publishing
- High quality print
- Full card surface
- Print rejects scrapped before IC added value
- Low cost for large volume

Cons
- Visual personalization initially limited to embossable text
Interoperability Issues

Interoperability easily achieved on standard design
- Same artwork provided to all manufacturers
 - Standard films, disk etc...
- Color matching process at the proof approval level
 - Simple process on most artworks

Higher Skills required for visual security features:
- Rainbow Background
- Guilloche
- Microprint
- UV Printing
- Holographic Overlay

No Real Interoperability Issues Between Major Card Manufacturers
ID Cards Manufacturing Process
(as seen for US Gov Programs)

- Plain White Card Bodies Manufacturing
 - Lamination with or without contactless inlet
 - Punching

- Smart IC embedding
 - Milling & Embedding

- Card issuance
 - Chip personalization with card holder information

- Card Printing
 - Text (Name...)
 - Images (Logo, photo ID,...)
 - 2D & 3D bar codes
 - Color and B&W
US ID Cards Manufacturing Process

Pros
- Great Flexibility for multiple card designs

Cons
- Lowest yield operation done after addition of the highest added value (IC)
 - high cost print rejects
- Scratches and dust highly visible on white background
 - Higher percentage of cosmetic rejects
- Cannot print directly on the back of the chip
 - Limit the possibilities for artwork
- Print Quality generally not as good
 - High sensitivity to card body characteristics
- Printer Compatibility
 - Results are printer dependent
Typical Causes of Print Problems

- Card warpage or deformation
- Surface irregularities or dirt
- Surface plasticizer contamination
- Irregularities in thickness caused by chip or antenna embedding
- Printing too close to module
- Delamination issues
- Printer compatibility
Interoperability Issues

- Print results highly sensitive to material differences
 - Printer settings need adjustments for optimal performances
 - Print head pressure
 - Temperature
 - ...

- Different Printers may achieve different results

- Final card colors/contrast may vary per grades of «White» from different suppliers
ISO Compliance & Interoperability?

- **ISO/IEC 7810**: Identification Cards - Physical characteristics
 - Specifies card body characteristics such as Dimensions, Flatness, Opacity, Bending Stiffness, Flammability, Toxicity, Resistance to chemicals, Card dimensional stability and warpage with temperature and humidity, delamination, etc.

- **ISO/IEC 7816-1**: Physical characteristics
 - Specifies the card’s physical characteristics after the insertion of integrated circuit(s) with contacts into an ID-1 card type meeting the requirements of ISO/IEC 7810.

- **ISO/IEC 7816-2**: Dimensions and location of the contacts.
 - Specifies the dimensions, locations and assignment for each of the contacts on integrated circuit(s) cards.

- **ISO/IEC 7816-3**: Electronic signals and transmission protocols.
 - Specifies the power and signal structures, transmission mechanisms and communication with the card.

- **ISO/IEC 10373** Part 1, 2, and 3
 - Specify the test procedures used to check cards against the parameters specified in the above standards.

ISO Standard has paved the way for interoperability, but did not addressed post embedding printing.
Card Flatness (Warpage)

- According to ISO, the card warpage (or the height of the highest point on the card while the card lays on a flat surface) can be up to 0.060 inches or 1.5 mm (ISO/IEC 7810 - clause 8.1.11).

- Field returns show that the actual threshold of some desktop printers can be lower depending on the material used in the card structure.
Surface Profile of Contacts

- According to ISO, No point of the IC contact surface shall be higher than 0,05 mm above or lower than 0,1 mm below the adjacent surface of the card. (ISO/IEC 7816-10 - clause 4.2.3).

- In the same paragraph, ISO adds the following in bold:

 WARNING For cards which are printed after embedding, problems may be encountered when contacts are above the adjacent surface of the card.

Potential « tent effect » no printing zone
Contacts Plate Dimensions

- ISO defines eight contacts (C1 to C8), not the contact plate itself.
- Dimension, Shape, Geometry, Color etc are manufacturer dependant.
- Some contact plates may end closer to where you want to print text.

![Diagram of contact plate dimensions](image)
Contact Plates Samples
Contactless Cards

- **Pure Contactless**
 - single chip, contactless interface only

- **Hybrid Cards**
 - 2 separate Chips
 - No direct communication in between

- **Dual Interface Cards**
 - A single chip with both contact and contactless interfaces
 - Possibility to share memory resources between the two interfaces
Interoperability Issues

- Potential problem when printing directly above:
 - the antenna
 - The contactless chip

- Location of contactless chip not standardized
 - Varies from manufacturers to manufacturers

- Multiple type of antennas
 - Size
 - Geometry
 - Square
 - Round
 - Oval
 - Thickness
Conclusions

- Involve card manufacturers in the early stage of your artwork design
 - We’re here to help

- Get as much of your artwork printed by card manufacturers
 - Cardstock Inventory may be less costly than printing with high reject rate

- Don’t try to fill all the blank
 - A hardly required information can skyrocket your cost

- Avoid having to print variable data/picture
 - Too close to the contact plate
 - Too close to the edge of the card
 - Above the contact chip on the back of the card
 - Above the contactless chip
 - Above the antenna (contactless cards)

- Minimize risk of card contamination before printing
 - Keep the boxes sealed until the cards are needed
 - Use lint free gloves to handle the cards

- Perform some tests with printers and cards from multiple suppliers

- Don’t forget to clean your print heads!
Contact Information

Gilles Lisimaque - Senior Vice President
Gemplus Corporation
Gilles.Lisimaque@Gemplus.com
http://www.Gemplus.com

Christophe Goyet Director Program Management
Oberthur Card Systems
Christophe.Goyet@oberthurusa.com
http://www.oberthurusa.com

Craig Diffie - Marketing Manager
Schlumberger - Smart Cards
cdiffie@slb.com
http://www.slb.com