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Compilation of Public Comments on NISTIR 8214C ipd

1 Context for the Public Comments

1.1 Announcing the draft and the period of public comments

The  — NIST First Call for Multi-Party threshold Schemes (Initial Public 
Draft) — with digital object identifier (doi) 10.6028/NIST.IR.8214B.ipd, is publicly available 
via the NIST Computer Security Resource Center (CSRC), at: https://csrc.nist.gov/publicat
ions/detail/nistir/8214b/draft. The draft call had an associated recommended period for 
public comments, until April 10th, 2013, as publicly announced in various forms, including:

1. “NISTIR 8214C ipd” contacts page (see copy in Section 1.3)

2. CSRC publication page: https://csrc.nist.gov/publications/detail/nistir/8214c/draft

3. MPTC-forum: https://groups.google.com/a/list.nist.gov/g/MPTC-forum

4. IACR news item: https://iacr.org/news/item/20034

5. Twitter (@NISTCyber): https://twitter.com/NISTcyber/status/1618294983228030977 and 
https://twitter.com/NISTcyber/status/1644334373892923392

6. Public presentations: https://csrc.nist.gov/projects/threshold-cryptography/presentations

1.2 Feedback on previous related documents

Prior NIST publications/events related to threshold schemes have also received public 
comments with topics that may be relatable to NISTIR 8214C ipd. Some useful links:

1. NISTIR 8214B ipd (2022-Aug-12) — comments: https://csrc.nist.gov/csrc/media/Publi
cations/nistir/8214b/draft/documents/NISTIR-8214B-ipd-public-feedback.pdf

2. Call2021a for Feedback (2021-Jul-02) — comments: https://csrc.nist.gov/csrc/media/pro
jects/threshold-cryptography/documents/MPTC-Call2021a-Feedback-compilation.pdf

3. Workshop MPTS’20 (2020-Nov-04–06): https://csrc.nist.gov/events/2020/mpts2020

4. NISTIR 8214A (2020-Nov-08 / 2021-Jul-07) — comments: https://csrc.nist.gov/CSRC/m
edia/Publications/nistir/8214a/final/documents/nistir-8214a-diff-comments-received.pdf

5. Workshop NTCW’19 (2019-Mar-11–12): https://csrc.nist.gov/Events/2019/NTCW19

6. NISTIR 8214 (2018-Jul-26 / 2019-Mar-01) — diff with comments: https://csrc.nist.gov/
CSRC/media/Publications/nistir/8214/final/documents/nistir-8214-diff-comments-received.pdf
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Reports on Computer Systems Technology


The Information Technology Laboratory (ITL) at the National Institute of Standards and 


Technology (NIST) promotes the U.S. economy and public welfare by providing technical 


leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, 


test methods, reference data, proof of concept implementations, and technical analyses to 


advance the development and productive use of information technology. ITL’s responsi-


bilities include the development of management, administrative, technical, and physical 


standards and guidelines for the cost-effective security and privacy of other than national 


security-related information in federal information systems.


Abstract


This document calls for public submissions of multi-party threshold schemes, to support the 


National Institute of Standards and Technology (NIST) in developing future recommenda-


tions and guidelines. In a threshold scheme, an underlying key-based cryptographic primitive 


is executed while a private/secret key is or becomes secret-shared across various parties. 


Submissions in response to this call should include security characterization, technical 


description, open-source implementation, and performance evaluation. Submitted threshold 


schemes should produce outputs that are “interchangeable” with a key-based cryptographic 


primitive of interest. There are two categories of primitives for the submission of threshold 


schemes: Cat1, for selected NIST-specified primitives; and Cat2, for primitives not specified 


by NIST, but which are friendlier (more amenable to) to the threshold paradigm, have 


enhanced functional features, or/and are based on different cryptographic assumptions. The 


analysis of Cat1-submissions will help develop future recommendations and guidelines for 


threshold implementations of the corresponding NIST-specified primitives. The analysis of 


Cat2-submissions will help assess new interests on primitives not standardized by NIST.


Keywords


Cryptography; distributed systems; provable security; secure multi-party computation; 


standards; threshold cryptography; threshold schemes.




















Preface


Please do not yet submit any threshold scheme.


The present draft is published for the purpose of obtaining public feedback. The final version 


of the “NIST First Call for Multi-Party Threshold Schemes” will consider received feedback 


about this document and will integrate other formal components. Please submit feedback 


comments to nistir-8214C-comments@nist.gov by April 10, 2023.


This document is intended for: technicians engaged in the development of recommendations 


for threshold schemes; cryptography experts interested in providing constructive technical 


feedback, or in collaborating in the development of open reference material; and all those, 


including from academia, industry, government and the public in general, interested in future 


recommendations about threshold schemes. Relevant preliminary context about this call 


can be found in the NIST-IR8214A (2020), the MPTC-Call2021a for feedback on criteria for 


threshold schemes (2021), and the NIST-IR8214B-ipd (2022). 
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Call for Patent Claims


This public review includes a call for information on essential patent claims (claims whose 


use would be required for compliance with the guidance or requirements in this Information 


Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 


directly stated in this ITL Publication or by reference to another publication. This call also in-


cludes disclosure, where known, of the existence of pending U.S. or foreign patent applications 


relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents.


ITL may require from the patent holder, or a party authorized to make assurances on its 


behalf, in written or electronic form, either:


a) assurance in the form of a general disclaimer to the effect that such party does not 


hold and does not currently intend holding any essential patent claim(s); or


b) assurance that a license to such essential patent claim(s) will be made available 


to applicants desiring to utilize the license for the purpose of complying with the 


guidance or requirements in this ITL draft publication either:


i) under reasonable terms and conditions that are demonstrably free of any unfair 


discrimination; or


ii) without compensation and under reasonable terms and conditions that are dem-


onstrably free of any unfair discrimination.


Such assurance shall indicate that the patent holder (or third party authorized to make 


assurances on its behalf) will include in any documents transferring ownership of patents 


subject to the assurance, provisions sufficient to ensure that the commitments in the assurance 


are binding on the transferee, and that the transferee will similarly include appropriate 


provisions in the event of future transfers with the goal of binding each successor-in-interest.


The assurance shall also indicate that it is intended to be binding on successors-in-interest 


regardless of whether such provisions are included in the relevant transfer documents.


Such statements should be addressed to: nistir-8214C-comments@nist.gov
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1. Introduction


Over several decades, the National Institute of Standards and Technology (NIST) has 


standardized important key-based cryptographic schemes, in various Federal Information


Processing Standards (FIPS) publications, and in Special Publications in Computer Security 


(the SP800 series). For example, they provide specifications for digital signatures [FIPS-


186-5-Draft], public-key encryption [SP800-56B-Rev2], pair-wise key-agreement (including 


key-derivation primitives) [SP800-56A-Rev3], and symmetric-key enciphering [FIPS-197].


In a traditional description or implementation of a key-based cryptographic primitive, the 


operation is performed by an individual party that has access to the private/secret key, when 


said key is created (in key-generation) or/and used as input (e.g., for signing, enciphering, 


or decryption) in the underlying basic primitives. In a corresponding conventional imple-


mentation, said party is a single-point of failure for confidentiality, integrity and availability.


Modern cryptography enables a multi-party implementation paradigm, based on devel-


opments in the fields of threshold cryptography, secure multi-party computation (MPC) 


and distributed systems. In a (multi-party) threshold scheme, multiple parties perform a 


distributed computation, emulating the operation of a key-based cryptographic algorithm, 


without combining the private/secret key in any single place, and ensuring security as long 


as the number of corrupted parties does not exceed a certain threshold. This enables decen-


tralization of trust regarding the creation, storage and use of the private/secret keys. This 


threshold paradigm can be applied to NIST-specified primitives and beyond.


The development of recommendations and guidelines for threshold schemes, tapping into 


the domain of advanced cryptography, is an important step in addressing various challenges 


in cybersecurity and privacy. As part of such development, it is expected that the present 


“Call for Multi-Party Threshold Schemes” will motivate broad community engagement for a 


diverse set of submissions, followed by expert public scrutiny by stakeholders.


Recent context leading to the formulation of this call can be found in the Multi-Party 


Threshold Cryptography (MPTC) project webpage, the NIST-IR8214A (2020) with con-


siderations toward criteria, the MPTC-Call2021a for feedback on criteria for multi-party 


threshold schemes (MPTS), the 2020 MPTS workshop webpage, and the NIST-IR8214B-ipd 


on threshold EdDSA/Schnorr signatures (2022). The present call has the following goals:


1. [Reference material] Create a basis of properly motivated, specified, implemented 


and analyzed threshold schemes, to support future recommendations and guidelines.


2. [Threshold feasibility] Assess the viability of threshold implementations of various 


primitives of interest, including of selected NIST-specified primitives.


3. [Pertinence of other primitives] In the threshold context, facilitate an initial assess-


ment of the merits of other cryptographic primitives that may be mature for adoption.











Table 1. Subcategories of interest in Cat1



Subcategory: Type Families of specifications Section
in this call



C1.1: Signing EdDSA sign, ECDSA sign, RSADSA sign A.1



C1.2: PKE RSA encryption, RSA decryption A.2



C1.3: 2KA ECC-CDH, ECC-MQV A.3



C1.4: Symmetric AES encipher/decipher, KDM/KC (to support 2KE) A.4



C1.5: Keygen ECC keygen, RSA keygen, bitstring keygen A.5



Note: In the second column, each item within a subcategory is itself called a family of specifications, since it
may include diverse primitives or modes/variants, some of which are mentioned in Table 4 (in Section 6).











Table 2. Examples of primitives in subcategories of Cat2



Subcategory: Type Example scheme Example primitive



C2.1: Signing Succinct & verifiably-deterministic signatures Signing
C2.2: PKE TF-QR public-key encryption (PKE) Decryption/encryption
C2.3: KA Low-round multi-party key-agreement (KA) Single-party primitives
C2.4: Symmetric TF-QR blockcipher/PRP Encipher/decipher



TF-QR key-derivation / key-confirmation PRF and hash function
C2.5: Keygen Any of the above Keygen
C2.6: Advanced QR fully-homomorphic encryption Decryption; Keygen



Identity-based and attribute-based encryption Decryption; Keygens
C2.7: ZKPoK ZKPoK of private key ZKPoK.Generate
C2.8: Gadgets Garbled circuit (GC) GC.generate; GC.evaluate



Legend: PRF = pseudorandom function [family]. PRP = pseudorandom permutation [family]. QR
= quantum resistant. TF = threshold-friendly. ZKPoK = zero knowledge proof of knowledge.











Table 3. Labels for some template threshold profiles



Corruption proportion Number of parties (n)



f/n Majority type
Two (2): Three (3): Small (S): Medium (M): Large (L): Enormous (E):



n = 2 n = 3 4 ≤ n ≤ 8 9 ≤ n ≤ 64 65 ≤ n ≤ 1024 n ≥ 1025



≥ 1/2 Dishonest (D) n2 n3 f D nS f D nM f D nL f D nE f D
> 1/3 Honest (h) — n3 f h nS f h nM f h nL f h nE f h
< 1/3 2/3 Honest (H) — — nS f H nM f H nL f H nE f H











Table 4. Primitives of interest in subcategories of Cat1



Subcategory: Type
(Sub)subcategory #:
Family of primitives



Some [Primitives] and/or {Threshold Modes}
Section



in this call



C1.1: Signing C1.1.1: EdDSA sign [EdDSA, HashEdDSA] {Prob; Q-PR; F-PR (not FE); FE} A.1.1



C1.1.2: ECDSA sign {Prob-FE; Q-PR; F-PR not-FE; PR-FE to Det-ECDSA)} A.1.2



C1.1.3: RSADSA sign [RSASSA-PSS; RSASSA-PKCS-v1.5] A.1.3



C1.2: PKE C1.2.1: RSA encryption [RSASVE.Generate, RSA-OAEP.Encrypt] {SSI} A.2.1



C1.2.2: RSA decryption [RSASVE.Recover, RSA-OAEP.Decrypt] {NSS, SSO} A.2.2



C1.3: ECC-2KA C1.3.1: ECC-CDH {NSS; SSO} A.3.1



C1.3.2: ECC-MQV [Full; One-pass] {NSS; SSO} A.3.2



C1.4: Symmetric C1.4.1: AES (en/de)cipher [encipher, decipher] A.4.1



C1.4.2: KDM/KC (for 2KE) [Hash, CMAC, HMAC, KMAC] A.4.2



C1.5: Keygen C1.5.1: ECC keygen [For ECC-signing and ECC-2KA] A.5.1



C1.5.2: RSA keygen [Just the modulus (mod); mod & keypair] A.5.2



C1.5.3: Bitstring keygen [RBG for AES keygen, RSA-SVE, and nonces] {SSO} A.5.3



Legend: 2KE = pair-wise key-establishment. Det = deterministic . FE = functionally equivalent. F-PR = fully PR (i.e., deterministic
even if the quorum changes). KD/KC = key derivation and key confirmation mechanisms; NSS = input/output is not secret-shared
(i.e., apart from the key); PKE = public-key encryption. PR = pseudorandom. Prob = probabilistic. RBG = random-bit generation.
Q-PR = PR per quorum. SSI/SSO = secret-shared input/output (see §2.3 of NIST IR8214A). SVE = secret-value encapsulation.











Table 5. Recommended implementation parameters for Cat1 primitives



Parameter type Primitives using said parameters For κ ≈ 128 For κ & 224



Elliptic curve EdDSA signing and keygen Edwards25519 Edwards448



ECDSA signing and keygen P-256 P-521



ECC CDH/MQVfor 2KA, and keygen {Curve25519, P-256} {Curve448, P-521}



RSA modulus size RSADSA, RSA PKE, and their keygen |N|= 3,072 |N| ≥ 11,264 *



RSA enc./ver. key RSA-related 216 < e < 2256 216 < e < 2256



Hash function EdDSA signing SHA-512 SHAKE256 (len 512, 912)



ECDSA/RSADSA; HMAC for KDM/KC SHA-256, SHA3-256, SHA-512, SHA3-512



SHA-512/256



SHAKE128 (len 256) SHAKE256 (len 512)



KMAC for KDM and KC KMAC128 KMAC256



Cipher KC (for RSA or ECC), encipher/decipher AES-128 AES-256



AES key-size AES encipher/decipher/keygen/CMAC |k|= 128 |k|= 256



Legend: κ = standardized “security strength” (in bits). enc./ver. = encryption/verification. len = length.



* The RSA modulus length |N| must be a multiple of 8; this call further suggests that it be a multiple of 512.
Approved hash functions or XOFs are specified in FIPS 180-4, FIPS 202, and SP 800-185, but only a subset
of them are suggested in this call. A XOF with predetermined length (len) can also be called a hash function.











Table 6. Notation (in Draft FIPS 186-5): EdDSA versus ECDSA



Element’s role In EdDSA In ECDSA



Signature (R,S) (r,s)
Private† key s d
Secret nonce r k
[Final]‡ nonce commitment R r
Challenge χ e



† EdDSA also uses d, but for the precursor private-key from which the signing key s and another
nonce-derivation key are obtained. ‡ The use of [final] is to convey that it is the actual value output in the
signature. It is an encoding of other intermediate computed values that are themselves also commitments
to the nonce. In particular, in ECDSA one of the intermediate values is denoted with symbol R.











Table 7. RSA-based primitives per party per RSA-2KE scheme



Type Scheme § in SP 800



-56B-Rev2
Party RSA-based primitive KDM



needed?



KA KTS1 §8.2 1st contributor (U) RSASVE.Generate Yes



2nd contributor (V ) RSASVE.Recover



KTS2 §8.3 Any RSASVE.{Generate & Recover}



KT KTS-OAEP §9.2 Sender (U) RSA-OAEP.Encrypt No



Receiver (V ) RSA-OAEP.Decrypt











Table 8. Seven ECC-KA schemes



Primitive ( f ) e s Scheme
Intermediate secret Z



(“agreed” by U and V )
§ in SP 800



-56A-Rev3



ECC CDH 2 2 (Cofactor) Full Unified Model f (eU ,EV )|| f (sU ,SV ) §6.1.1.2



2 0 (Cofactor) Ephemeral Unified model f (eU ,EV ) §6.1.2.2



1 2 (Cofactor) One-Pass Unified Model f (eU ,EV )|| f (eU ,SV ) §6.2.1.2



1 1 (Cofactor) One-Pass Diffie-Hellman f (eU ,SV ) §6.2.2.2



0 2 (Cofactor) Static Unified Model f (sU ,SV ) §6.3.2



ECC MQV 2 2 Full MQV f (sU ,SV ,eU ,EU ,EV ) §6.1.1.4



1 2 One-Pass MQV f (sU ,SV ,eU ,EU ,SV ) §6.2.1.4



Legend: || = concatenation. § = section in another document. e = number of generated ephemeral key pairs. f =



symbol representing the ECC primitive (CDH or MQV). s = number of generated static key pairs; U and V = the



two parties in the 2KA protocol. Let A represent one of the parties (U or V ). Abbreviated notation for keys: eA



(= de,A) and EA (= Qe,A) are the ephemeral private and public keys of party A; sA (= ds,A) and SA (= Qs,A) are the



static private and public keys of party A. The primitive f makes use of additional parameters not shown here.











Table 9. ECC-2KA primitives of interest for thresholdization



Primitive
Secret
input?



Secret
ouptut?



Threshold
friendly?



Section in
SP 800-56A-Rev3



Section in
this call



ECC keygen: get key-pair (d,Q) — Yes Yes §5.6.1.2 A.5.1
ECC CDH/MQV: Z = f (dA,QB, ...) Yes Yes Yes §5.7 A.3.1/2
Key derivation: k = KDM(Z, ...) Yes Yes No §5.8 A.4.2
Key confirmation: KC(Z, ...) Yes — No §5.9 A.4.2



Legend: d = private key. f = CDH or MQV transformation (primitive). k = final secret established by both parties.



KC = “key confirmation” pseudorandom function, to allow comparison between A and B. KDM = “key derivation



mechanism” function. Q = public key. Z = intermediate secret (before KDM) computed by both parties.











Table 10. Examples of keygen purposes



Keygen purpose (subsequent operation) Private/secret key Other public elements



ECC-signing; ECC-2KA primitives exponent d (integer mod n) Q = d ·G (elliptic curve point)



RSA signing and decryption primes (p,q) modulus N = p ·q



exponent d = e−1 mod φ N exponent e



RSA encryption for 2KE random bit-string Z c = RSAEP((n,e),Z)



Key-derivation / key-confirmation KC(Z, ...)



AES enciphering/deciphering random bit-string k —











Table 11. Criteria for the random primes of an RSA modulus



Type Sub-type Provable prime Probable prime



Simple provable p, q
probable p, q



Complex provable p1, p2 q1, q2 p, q
hybrid p1, p2, q1, q2, p, q
probable p1, p2, q1, q2, p, q



Per §A.1.1 of FIPS 186-5 (Draft): p1, p2, q1, q2 are called auxiliary primes and must be divisors of
p−1, p+1, q−1 and q+1, respectively, i.e., p1|p−1, p2|p+1, q1|q−1, q2|q+1.











Table 12. Example ZKPoKs of interest related to Cat1 primitives



Related
type



Related (sub)sub-
category: Primitive



Example ZKPoK (including consistency with public
commitments of secret-shares, when applicable)



Keygen C1.5.1: ECC keygen of discrete-log (s or d) of pub key Q
C1.5.2: RSA keygen of factors (p, q), or group order φ , or decryption key d
C1.5.3: AES keygen of secret key k (with regard to secret-sharing commitments)



PKE C1.2.1: RSA encryption of secret plaintext m (encrypted)
C1.2.2: RSA decryption of secret-shared plaintext m (after SSO-threshold decryption)



Symmetric C1.4.1: AES enciphering of secret key k (with regard to plaintext/ciphertext pair)
C1.4.2: Hashing in KDM of secret pre-image Z
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4. [Quantum resistance and other features] Help explore the space of threshold 


readiness in terms of quantum-resistance versus other advanced functional features.


The process of collecting high-quality security formulations, technical descriptions, open 


implementations, and performance evaluations is intended to compose a body of reference 


material. This will support a phase of analysis to identify sound approaches, best practices, 


and reusable building blocks. The results will help shape recommendations and guidelines.


Two categories for submissions.  To assess the viability of threshold schemes for cryp-


tographic primitives, the present call is organized into two categories of submissions, with 


regard to the primitives in consideration for thresholdization:


• Cat1: Selected NIST-specified primitives used in digital signature schemes in FIPS-


186-5-Draft, public-key encryption and respective decryption in SP800-56B-Rev2, 


elliptic-curve based pair-wise key-agreement in SP800-56A-Rev3, symmetric encipher-


ing/deciphering in FIPS-197, key-derivation and key-confirmation mechanisms in the 


SP 800-56 series (parts A, B, and C); and the corresponding key-generations.


• Cat2: Primitives not specified by NIST, including primitives for “regular” schemes 


of type similar to those in Cat1 (signing, public-key encryption, key-agreement, 


enciphering/deciphering, key-derivation and key-confirmation, and their keygen), 


primitives for “advanced” functionalities (e.g., fully-homomorphic, identity-based or 


attribute-based encryption), zero-knowledge proofs/arguments of knowledge (e.g., of 


a secret-shared private key that is consistent with a public key); and other threshold-


auxiliary gadgets. Primitives submitted in Cat2 should aim for threshold-friendliness 


and may be based on cryptographic assumptions different from those in Cat1. There 


is a particular interest in combined threshold-friendliness and quantum resistance.


The analysis in Cat1 will help assess threshold friendliness and develop future recommenda-


tions and guidelines for threshold schemes of NIST-specified primitives. The analysis in 


Cat2 will help assess new interests on primitives not currently standardized by NIST, and 


help characterize the possible alignment between (i) threshold-friendliness, (ii) quantum 


resistance, and (iii) additional useful features. This may also serve as relevant input to assess 


the ability to deploy secure multi-party applications with advanced privacy features.


Organization.  Section 2 explains the acronyms used in the document. Section 3 calls for 


submissions and explains the partition into two categories. Section 4 enumerates logistic 


and formatting requirements for the submission of packages. Section 5 defines technical 


requirements for threshold schemes. Section 6 lists primitives and threshold modes of interest 


for each subcategory of Cat1 (NIST-specified primitives), mentioning possible I/O interfaces 


and recommending cryptographic parameters. Section 7 describes the subcategories of 


interest in Cat2 (primitives not specified by NIST). Appendix A provides further details about 


subcategories. Appendix B displays a checklist of the elements of a submission.




















2. Acronyms


Acronym Extended form


2KA Pair-wise key-agreement


2KE Pair-wise key-establishment


ABE Attribute-based Encryption


AEAD Authenticated encryption with associated data


AES Advanced Encryption Standard


API Application programming interface


CDH Cofactor Diffie–Hellman


CMAC Cipher-based MAC


CPU Central processing unit


CRS Common reference string


CRT Chinese remainder theorem


DKG Distributed key generation


DOI Digital object identifier


ECC Elliptic curve cryptography


ECDSA Elliptic Curve Digital Signature Algorithm


EdDSA Edwards Curve Digital Signature Algorithm


FFC Finite field cryptography


FHE Fully-homomorphic encryption


FIPS Federal Information Processing Standards


FR Field representation indicator


GB Gigabyte (1,000,000,000 bytes)


GC Garbled circuit


HMAC Hash-based MAC


IBE Identity-based encryption


IETF Internet Engineering Task Force


I/O Input/output


IRTF Internet Research Task Force


ITL Information Technology Laboratory




















Acronym Extended form


KA Key agreement


KAS1/2 Key agreement scheme 1 or 2


KAT Known-answer test


KC Key confirmation


KDM Key-derivation mechanism


KT Key-transport


KMAC Keccak-based MAC


LCM Least common multiplier


LTS Long term support


LWC Lightweight Cryptography


MAC Message authentication code


MPC (Secure) multiparty computation


MPTC Multi-Party Threshold Cryptography


MPKA Multiparty key agreement


MQV Menezes-Qu-Vanstone


NIST National Institute of Standards and Technology


NIZK Non-interactive zero-knowledge


NISTIR NIST Internal Report


NSS not-secret-shared (input/output)


OAEP Optimal Asymmetric Encryption Padding


PC Personal computer


PDF Portable document format


PF Platform


PEC Privacy-Enhancing Cryptography


PQC Post-Quantum Cryptography


PKC, PKCS Public-Key Cryptography, PKC Standards


PKE Public-key encryption


PRF Pseudorandom function family


PRP Pseudorandom permutation family




















Acronym Extended form


PSS Probabilistic signature scheme


PVSS Publicly verifiable secret sharing


QR Quantum-resistant or quantum resistance


RAM Random access memory


RBG Random-bit generator/generation


RFC Request for Comments


RO Random oracle


RSA Rivest–Shamir–Adleman


RSADP RSA Decryption Primitive


RSADSA RSA Digital Signature Algorithm


RSAEP RSA Encryption Primitive


RSASSA RSA Signature Scheme with Appendix


RSASVE RSA Secret-Value Encapsulation


S2PC Secure two-party computation


SHA Secure hash algorithm


SHAKE Secure hash algorithm with KECCAK


SNARK Succinct non-interactive argument of knowledge


SP 800 Special Publication in Computer security


SSD Solid state drive


SSI, SSIO Secret-shared input, secret-shared input-and-output


SSO Secret-shared output


SVE Secret-value encapsulation


TB Terabyte (1,000,000,000,000 bytes)


TF Threshold-friendly


URL Uniform resource locator


VSS Verifiable secret sharing


XOF Extendable output function


ZKP Zero knowledge proof


ZKPoK Zero knowledge proof of knowledge




















3. Call and Scope for Submissions


This document is a call for multi-party threshold schemes. It solicits high-quality specifi-


cations of threshold schemes for primitives across two categories: Cat1 (selected NIST-


specified primitives) and Cat2 (primitives not specified by NIST). Each submission should 


include a security characterization, a technical description, an open-source reference imple-


mentation, and a performance evaluation. Submitted schemes will benefit from exposure 


to public analysis, and will be considered in a future report. This is a preliminary phase 


for collection of reference material, and assessment of threshold schemes. The results of 


this phase will inform future development of recommendations, and may be considered in 


possible future efforts for development of guidelines or standards.


3.1. Category 1 (Cat1)


Cat1 consists of selected, stateless, NIST-specified cryptographic primitives, organized in 


Table 1 across five subcategories:


• C1.1, for EdDSA, ECDSA and RSADSA signing [FIPS-186-5-Draft];


• C1.2, for RSA encryption (for key-encapsulation) and decryption [SP800-56B-Rev2];


• C1.3, for ECC-based pair-wise key-agreement (2KA) [SP800-56A-Rev3] via CDH or MQV;


• C1.4, for AES-enciphering/deciphering [FIPS-197], and key-derivation (KD) and


key-confirmation (KC) for 2KE [SP800-56C-Rev2; SP800-135-Rev1; SP800-108-Rev1];


• C1.5, for ECC keygen [FIPS-186-5-Draft; SP800-56A-Rev3; SP800-186-Draft], RSA 


keygen [FIPS-186-5-Draft; SP800-56B-Rev2], and bitstring (or integer) keygen.


 Table 1. Subcategories of interest in Cat1


  Subcategory: Type  Families of specifications Section
in this call


 C1.1: Signing EdDSA sign, ECDSA sign, RSADSA sign A.1


 C1.2: PKE RSA encryption, RSA decryption A.2


 C1.3: 2KA ECC-CDH, ECC-MQV A.3


 C1.4: Symmetric AES encipher/decipher, KDM/KC (to support 2KE) A.4


 C1.5: Keygen ECC keygen, RSA keygen, bitstring keygen A.5


Note: In the second column, each item within a subcategory is itself called a family of specifications, since it 
may include diverse primitives or modes/variants, some of which are mentioned in Table 4 (in Section 6).
























Section 6 presents more details about versions and modes of primitives in Cat1, including 


options for input/output interfaces (Section 6.1) and cryptographic parameters recommended 


for evaluation (Section 6.2). The analysis of Cat1 submissions will facilitate the devel-


opment of recommendations and guidelines on threshold schemes for the corresponding 


NIST-specified primitives, highlighting reference approaches, techniques, building blocks, 


and best practices. The results will be reported in a NISTpublication.


3.2. Category 2 (Cat2)


The goal of Cat2 is to enable submissions that make a strong case for certain threshold-


feasible primitives that are not standardized by NIST. While the scope is wide, Cat2-


submissions should be justified on the basis of the primitives being thresholdized having/en-


abling useful differentiating features, such as having/being: (i) threshold-friendly(ier) (TF); 


(ii) based on alternative cryptographic assumptions (e.g., pairings), possibly quantum-resistant 


(QR) (e.g., lattice-based); (iii) useful probabilistic properties (e.g., determinism versus non-


determinism), (iv) more efficient in a relevant metric, or/and (v) advanced functional features 


(e.g., allowing homomorphic computation over encrypted data).


Cat2 has eight subcategories, including five “regular” (somewhat matching the subcategories 


of Cat1), and three others (“advanced”, “ZKPoK” and “gadgets”), as listed in Table 2:


• “Regular”: 


– C2.1, for signing (e.g., verifiably-deterministic succinct signatures, and/or TF-QR);


– C2.2, for PKE (e.g., TF-QR decryption and key-encryption);


– C2.3, for key agreement (e.g., TF primitives that are QR and/or that facilitate 


low-round key-agreement for more than two parties);


– C2.4, for symmetric-key primitives (e.g., TF enciphering/deciphering), and hash-


ing-related primitives for key derivation and key confirmation;


– C2.5, for keygen for primitives in other subcategories.


• “Others”:


– C2.6, for primitives for cryptographic schemes with advanced functional features, 


e.g., fully-homomorphic, identity-based, and attribute-based encryption schemes.


– C2.7, for zero-knowledge proofs of knowledge (ZKPoK) that are deemed useful 


to support the threshold setting, such as for proving knowledge of private/secret 


information consistent with a correct secret-sharing setup.


– C2.8, for other auxiliary “gadgets” deemed useful to support the threshold setting, 


namely to support the implementation of other threshold schemes in scope.




















 Table 2. Examples of primitives in subcategories of Cat2


 Subcategory: Type Example scheme Example primitive


 C2.1: Signing Succinct & verifiably-deterministic signatures Signing
 C2.2: PKE TF-QR public-key encryption (PKE) Decryption/encryption
 C2.3: KA Low-round multi-party key-agreement (KA) Single-party primitives
 C2.4: Symmetric TF-QR blockcipher/PRP Encipher/decipher
    TF-QR key-derivation / key-confirmation PRF and hash function
 C2.5: Keygen Any of the above Keygen
 C2.6: Advanced QR fully-homomorphic encryption Decryption; Keygen
    Identity-based and attribute-based encryption Decryption; Keygens
 C2.7: ZKPoK ZKPoK of private key ZKPoK.Generate
 C2.8: Gadgets Garbled circuit (GC) GC.generate; GC.evaluate


Legend: PRF = pseudorandom function [family]. PRP = pseudorandom permutation [family]. QR 
= quantum resistant. TF = threshold-friendly. ZKPoK = zero knowledge proof of knowledge.








Section 7 contains more details and examples on Cat2. Some Cat2-submissions may be 


evaluated within the scope of the NIST Privacy-Enhancing Cryptography (PEC) project 


[Proj-PEC]. It is expected that the results of this exercise will be reported in a NIST publication.


3.3. Vision


Quantum-resistant versus quantum-breakable primitives.  There is a strong interest 


in receiving submissions of threshold schemes for threshold-friendly quantum-resistant 


(TF-QR) primitives. As there is currently a gap between some known useful cryptographic 


features and quantum-resistance, there is also interest in submissions that have enhanced 


functional features even if they are only secure with respect to non-quantum adversaries.


Interchangeability.  This call is scoped on threshold schemes whose output can be used 


in subsequent operations (e.g., signature verification) that were specified to use the output 


of the corresponding conventional (non-threshold) primitive (e.g., signing). The intended 


notion is that of interchangeability, from §2.4 of NIST-IR8214A. EdDSA signing provides 


a notable example: the threshold setting favors a consideration not only of pseudorandom 


signatures, but also of probabilistic ones that are interchangeable in the sense of being 


verifiable by the standardized EdDSA verification (see NIST-IR8214B-ipd). In Cat1, the 


primitives of interest are already fixed. In Cat2-submissions, the primitives of interest need 


to be specified along with the corresponding threshold schemes.




















Provable security.  The security of submitted threshold schemes is expected to be assessed 


based on multi-party protocol analysis, which is supported by a large and mature body of 


knowledge in provable security. This is different from the extensive cryptanalysis that would 


be required in a call for basic primitives based on new cryptographic assumptions. That 


said, the security of threshold schemes is still recognized as multi-dimensional, depending 


on security formulation (e.g., which ideal functionalities or security games to choose), 


implementation (e.g., susceptibility to side-channels), and deployment suitability (e.g., 


whether security assumptions are appropriate for the deployment environment).


Diversity.  The domain space of multi-party threshold schemes is considerably wider than 


that of the primitives (e.g., digital signatures) being thresholdized. Acknowledging this, 


the present call allows leeway for the submitters to select from a variety of system models, 


threshold configurations, security formulations, technical approaches, and benchmarking 


focuses. Thus, the usual criteria for “apples-to-apples” comparison (e.g., number of par-


ties, common programming language, application programming interface, etc.) will not 


be required in the initial phase. Nonetheless, the submissions are expected to adhere to 


certain criteria, with respect to both technical documentation (see Section 4) and technical 


characteristics of the proposed threshold schemes (e.g., needs to include a security formu-


lation against active corruptions — see Section 5). After a review of the system models 


proposed in the initial set of submissions, a request may be made for submitters to provide 


new performance evaluation results (e.g., with a particular number of parties and threshold 


values) based on adjusted parameters to facilitate a comparison across submissions.


Initial phase.  The initial phase of analysis is expected to take about one year after the 


submission deadline, and will consider comments from the public. It will also include a 


workshop for presentation of the submitted threshold schemes. A NIST report will follow. 


For Cat1, the results will help determine how the development of future recommendations 


and guidelines may be differentiated per primitive, and whether it will focus on full-fledged 


threshold schemes, on identifying building blocks and composition techniques, or a hybrid of 


these. For Cat2, the results will include an initial characterization of the space of submissions 


to help assess possible interest in a subsequent more-focused analysis.


Reliance on contributions.  The success of the process will depend on:


• high-quality submissions by teams with appropriate expertise, including in the areas 


of secure multiparty computation and distributed systems;


• expert public scrutiny, including assessments of security;


• comments on pertinence, by stakeholders of applications of threshold schemes.




















4. Components of a Submission


4.1. Phases Until Full Submission


The submission process is organized with a deadline for package submissions, while also 


considering a possible early abstract and preliminary submission, as follows:


Ph1. (Optional) Early abstract: No later than about 90 days (exact date to be deter-


mined) after the final version of this call is published, a short document (with no 


more than three pages) can be submitted with a title, a list of team members, and 


a preliminary abstract of a planned full package to be submitted later (Ph3). The 


abstract should identify the primitives to be thresholdized and their corresponding 


category and subcategory(ies)/type(s), give an outline of the threshold approach 


(including system model, the protocol approach, and main security properties), and 


list the most relevant bibliographic references. This phase for optional submission 


(not mandatory and non-committing) is intended to facilitate early discussion of the 


expected coverage of each category/subcategory, and may help determine useful 


merges, differentiations, or alternative submissions.


Ph2. (Optional) Preliminary package: Submission packages received by NIST at least


45 days before the deadline for full packages will be early reviewed for complete-


ness. The submitters will be notified of identified deficiencies, tentatively within 25 


days, to allow amendments before the deadline.


Ph3. Full package: Full submission packages must be received by NIST no later than


about 150 days (exact date to be determined) after the final version of this call is 


published. Despite possible adjustments to be made in this call, submitters are en-


couraged to prepare early for future submissions, using the present draft as a baseline. 


A complete and proper package must contain the following main components:


• M1. Written specification: A technical specification (including security analy-


sis) of the threshold scheme and primitives (see Section 4.2).


• M2. Reference implementation: An open-source implementation (software), 


including code, license, comments, and explaining an API (see Section 4.3).


• M3. Execution instructions: Instructions to enable the execution of the thresh-


old scheme and reproduction of experimental results (see Section 4.4).


• M4. Experimental evaluation: A report describing an experimental setting, 


measuring performance, and interpreting the results (see Section 4.5).


• M5. Additional statements: Various statements (see Section 4.6).




















Submissions medium.  The submission of any documentation — early abstract (Ph1), 


preliminary package (Ph2), full package (Ph3), or any amendment — must be at least 


confirmed by sending an email to MPTS-submissions@nist.gov. The final version of this 


call may specify a complementary platform to help manage the process of submission and 


review. More-specific instructions will be provided in the final version of this call.


Public posting. after the SUBMISSION deadlines, approved submissions of early abstracts 


(Ph1) and full packages (Ph3) will be posted online, and hyperlinked from the MPTC project 


website [Proj-MPTC], for public review.


Note on LaTeX templates. To facilitate some common document structure across submis-


sions, the final version of the call will provide LaTeX-based templates applicable to some of 


the submission documents, for compilation into portable document format (PDF) files.


Note on multiple threshold schemes per package.  A submission package may include a 


family of distinguished threshold schemes based on common building blocks, and whose 


implementations may make use of common portions of open-source code. Even if a 


submission package proposes more than one threshold scheme, each of the above-mentioned 


five components should appear only once, possibly using subsections (when applicable) to 


distinguish which primitives/schemes the comments relate to.


4.2. Main component M1: Written specification


Submitted specifications of threshold schemes must be compiled in a PDF document, 


written in English and aided with mathematical notation, containing various (numbered or 


unnumbered) sections, as described ahead across a frontmatter (see Section 4.2.1), a main 


matter (see Section 4.2.2), and backmatter (see Section 4.2.3).


4.2.1. Frontmatter


S1. Title pages: Two title-pages, as follows:


• A first title-page (cover page) with: a title for the proposed submission, the names 


and affiliations of the submitters; and the submission date.


• A second title-page, with all content of the first title-page, and additionally includ-


ing: contact email-addresses for all the submitters; applicable disclaimers related 


to affiliations and funding; and, if applicable, other pertinent information about the 


team and the submission.
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S2. Abstract: A text with up to 500 words, identifying the primitives being thresholdized, 


their corresponding category and subcategory/type in the scope of this call, and the 


types of threshold schemes being proposed (i.e., their main features, cryptographic 


assumptions and performance highlights).


S3. Executive summary: An abridged explanation (up to four pages) of the content of 


the submission, highlighting relevant properties of the proposed threshold schemes, 


their applicability, their performance, and some of the challenges (e.g., in proving 


security). It should also briefly mention the submitted components beyond the 


specification, including the open-source software with reference implementation.


S4. Index: A table of contents (i.e., index of sections, subsections, etc.); and (however 


applicable) lists of figures, tables, pseudo-code, and other relevant enumerated com-


ponents. Each referenced element in the index should be hyperlinked to the respective 


position in the document, and also indicate the corresponding page number.


4.2.2. Main matter


S5. Clarification of prior work: An enumeration of the building blocks, techniques and 


ideas known to have been developed or authored in prior work and that are used in 


the specification of the primitives and threshold schemes of the present submission. 


With regard to the building blocks, techniques and ideas in the submission (preferably 


including hyper-references to the related portions of the submitted specification), 


this section should aim to clarify and distinguish between (i) those that may have 


been designed by authors that are not part of the submitters’ team, (ii) those that may 


have been previously developed/authored by members of the submitters’ team, and 


(iii) those that may be original in the present submission. Appropriate bibliographic 


references should be given where applicable, preferably including (when possible) 


a hyperlink to online-accessible documentation. If applicable, this section can also 


include known information pertinent to the “call for patent claims”.


S6. Conventional primitives/scheme: A review of the conventional (non-threshold) 


primitives/scheme that constitute the objects of thresholdization and determine the 


interchangeability requirements. For example, if a submitted package proposes a 


threshold scheme for ECDSA signing, then this section will provide a brief review 


of the conventional ECDSA signing algorithm, and the requirements related to 


the corresponding keygen and verification algorithms. The notation used in this 


description should be consistent with the one later used to describe the threshold 


scheme. Cat2-submissions are expected to be more thorough in this description.




















S7. System model: A thorough description of the system model, including participants, 


communication network, and adversary (see T2).


S8. Protocol description: A detailed description of the multi-party threshold scheme, 


modularizing the description of primitives/gadgets where appropriate.


S9. Security analysis: A detailed security analysis, including security formulation (e.g., 


ideal functionalities and/or games), proof(s) of security, and discussion of security 


properties and ideal components (see T3 and T4).


S10. Analytic complexity: An analytical estimation of (i) memory complexity, (ii) com-


putational complexity, (ii) communication complexity, and (iii) round complexity. 


The estimates should: include a breakdown across the various possible phases of the 


protocol; clarify the complexity per party versus the aggregate in the entire system; 


clarify its dependence on various configurable parameters, such as for example the 


security strength, the number of parties and the thresholds.


S11. Choices and comparisons: A rationale for design decisions and the chosen system 


model, as well as an explanation of known advantages and limitations compared to 


other options and approaches.


S12. Technical criteria: An evaluation of various items of technical criteria (see Section 5 


and Section B.7).


S13. Deployment recommendations: A set of deployment requirements and recommen-


dations, including those related to security. This section should also include a list of 


known and proposed applications of the submitted threshold scheme(s).


4.2.3. Backmatter


S14. Notation: A section explaining the notation, including:


• a list of the used acronyms, and their extended expressions;


• a list of the used abbreviations, and their complete words;


• a list of the used mathematical symbols, and their brief explanations;


• (optional) a glossary of selected important terms, with succinct explanations.


S15. References: A list of external references cited throughout the document, ideally 


including persistent identifiers (e.g., DOI, and ia.cr) and a link to a corresponding 


publicly and (when possible) freely accessible version of the referenced document.




















S16. Appendices: Auxiliary elements deemed too detailed or cumbersome for a first 


read may be deferred to appendices, at the end of the document, as long as properly 


referenced and hyperlinked in the corresponding above-mentioned sections.


4.3. Main component M2: Reference Implementation


Required clear implementation.  The submissions packages must contain open-source 


code (software), including explanatory inline comments, constituting a “clear” reference 


implementation of the proposed threshold scheme(s). The code and comments should strive 


for clarity and understanding, even if at some detriment to efficiency. Optionally, some 


modules may include additional code optimized for some efficiency metric(s), to enable 


demonstration of better experimental performance.


The implementation(s) must support all main features of the threshold scheme and be 


suitable to run each “party” in a modern personal computer (PC). To facilitate testing, the 


implementation should enable “running” the set of all parties in a baseline platform (PF1) 


consisting of a single PC (possibly virtualized), equipped with:


1. Processor: Central processing unit (CPU) with up to eight 64-bit processing cores.


2. Fast primary memory: Up to 32 gigabytes (e.g., of random-access memory [RAM])


3. Secondary memory: Up to 4 terabytes (e.g., in a solid state drive [SSD])


The code (and its instructions) should be designed to allow for a compilation and execution 


of the submitted implementation on top of a Linux Ubuntu Desktop 22.04.1 long-term 


support (LTS) operating system running installed in platform PF1, without requiring software 


download from external sources. Each party should be executed as one (or more) process(es), 


or within a software virtual container, separate from the other parties.


The submitted open-source software (and documentation) should satisfy the following:


Src1. Is self-contained: The code was tested to compile and execute properly within the 


baseline platform (PF1) with a Linux Ubuntu Desktop v22.04.1 operating system.


Src2. Is licensed as open-source: The code is explicitly licensed as open-source (e.g., 


possibly based on a license listed in https://opensource.org/licenses).


Src3. Contains inline comments: The code is explained with auxiliary comments.


Src4. Has a clear API: It explains the application programming interface (API), aimed 


at facilitating (i) testing, (ii) use in higher-level applications, and (iii) comparison 


of performance with other implementations that may follow the same API.
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On programming choices.  As explained in Section 3.3, it is intentional that this call 


does not specify a concrete programming language, compiler, or API to be used across 


submissions. That said, it would be useful that the provided open-source reference im-


plementation comes accompanied with explained rationale for choices made. This may 


include recommendations on the API that future implementations should follow to be easily 


comparable with the provided reference implementation.


On validation and verification.  The validation of implementations and formal verification 


are not included as technical requirements for this call. However, it is expected that the 


public scrutiny of submitted schemes (namely their specifications and implementations) will 


facilitate the production of high-assurance software. The analysis of the submissions may 


clarify what software testing may be proposed across various types of threshold schemes.


4.4. Main component M3: Execution Instructions


A submission package must include execution instructions, as follows:


1. User manual: A “user manual” with instructions (and examples) on:


X1. Compilation: How to compile the open-source code.


X2. Parametrization: How to configure execution parameters, such as the number 


of parties, the corruption threshold, the type of communication channels, some 


adversarial choices, and some client choices (e.g., input to the cryptographic 


primitive). Preferably the configuration of each parameter can be done via the 


editing of a human-readable text file, and/or command line arguments.


X3. Execution: How to test and execute the various phases of the proposed threshold 


schemes and underlying primitives.


X4. KAT set: A set of “known answer-test” (KAT) values, to aid in correctness 


verification of the execution of the protocol.


2. Set of scripts:


X5. KAT-script: A script to automatically execute the threshold schemes in a way 


that reproduces the set of KAT values (X4) provided in the user manual.


X6. Benchmark-script: A script to automatically benchmark the threshold scheme 


in platform PF1, using the “clear” reference implementation, to produce a 


table recording various performance measurements (similar to that required 


in Section 4.5) for various configurations. If the submitted implementation 




















includes additional code optimized for performance, and whose performance 


results are reported in M4, then corresponding scripts shoudl also be provided, 


to enable reproducibility of results.


X7. Other scripts (optional): Optionally, other scripts to provide better insights 


into the workings of the underlying primitives and threshold scheme.


4.5. Main component M4: Experimental evaluation


The package must include a report on experimental performance, obtained by executing the 


provided code in the baseline platform (PF1), evaluating a representative set of configurations 


supported by the proposed threshold scheme(s). The report must describe:


1. the experimental setting (see Section 4.5.1);


2. the measured performance (see Section 4.5.2); and


3. an analysis/interpretation of the results (see Section 4.5.3).


4.5.1. Experimental setting


The report must describe the expected performance characteristics of the experimental setting 


(namely of the underlying hardware) supporting the baseline implementation platform PF1. 


The description must describe at least the relevant expected characteristics of the (possibly 


emulated) processor (e.g., instruction set, and clock frequency), communication network 


(e.g., bandwidth, and latency), and memory (e.g., read and write speed).


The benchmarking can also include experimentation with different platforms (PF2, ...) of 


the submitter’s choice (motivated by real or conceivable applications). The performance 


results obtained with these alternative platforms (to also be described) may be better or worst 


than with PF1. For example, if there are more than eight parties and all require intensive 


computing, then the testing in a platform with more than eight cores may provide better 


results than with the baseline PF1.


4.5.2. Measurements


The evaluation of experimental performance should report, at least for platform PF1, at least 


the following metrics: 


• Perf1. Memory complexity (in # bytes required to be simultaneously stored).


• Perf2. Processing time (in seconds) and/or processing (e.g., # of processing cycles).




















• Perf3. Communication complexity (in # communicated bytes).


• Perf4. Networking time (in seconds).


• Perf5. Round complexity (in # alternations of the direction of communicated messages).


The mentioned metrics should be evaluated and reported in (i) total per execution, (ii) per 


identifiable phase of the protocol, and (iii) per party. The results can be reported across 


various configurations, e.g., with distinct numbers of parties, and across two distinct security 


strengths (e.g., 128 and 224–256 bits).


The reported measurements should include results obtained with the submitted “clear” 


reference implementation (see Section 4.3). If the submission includes additional code 


optimized for performance, then the corresponding results can be added to the measurements’ 


report. As prescribed in X7, all these benchmarking should be reproducible by a simple 


execution of the submission-required scripts.


4.5.3. Analysis


The performance analysis should include a written explanation/interpretations of the ex-


perimental results, indicating expected or unexpected observations (e.g., some observed 


correlation between some complexity metric and the number of parties). The comparison 


of results across different configurations and/or experimental settings may be useful to 


understand, test of verify tradeoffs and scalability of the system across different metrics.


4.6. Main component M5: Additional Statements


The packages must include certain statements (on intellectual property, agreements or dis-


closures) to ensure free worldwide availability of the submitted packages for public review 


and evaluation purposes, and allowing derivative work and use, in particular for the possi-


ble future elaboration and publication of recommendations, guidelines and standards. The 


concrete statements (to be included or referenced in the final version of this call) will be 


aligned with the NIST ITL Patent policy, and are likely to be similar to those used by the 


NIST Post-Quantum Cryptography (PQC) project [Proj-PQC].




















5. Technical Requirements (T) for Submission of Threshold Schemes


In addition to the structural requirements for submission packages, the specification of 


threshold schemes is subject to certain technical requirements (T1–T6) at a logical level. 


The following are based on a previous call for feedback on criteria [MPTC-Call2021a].


5.1. T1: Primitives


A submitted specification must explain in S6 the conventional (non-threshold) primitives 


(e.g., decryption) that are the object of thresholdization. Each such primitive must be framed 


within the subcategories structure established for Cat1 (see Sections 3.1 and 6) and Cat2 


(see Sections 3.2 and 7). The primitive must also be explained within the scope of an 


underlying conventional scheme, composed of various primitives. For example, a decryption 


primitive of a public-key encryption (PKE) scheme relates to corresponding encryption and 


key-generation primitives. The explanation of the primitive must define the corresponding 


scope of interchangeability, to be considered by the proposed threshold scheme.


Notwithstanding the advantage of referenceability to NIST specifications, a submission 


in Cat1 still needs to include a technical description of the primitives being thresholdized. 


The description should try to follow the notation and and operations specified in the cor-


responding NIST documentation. Some Cat2-submissions may require a more thorough 


description, since their underlying non-threshold primitive is not part of a NIST specification. 


The explanation should also include references to authoritative descriptions in publicly free 


documentation (e.g., papers and standards).


5.2. T2: System Model


A proposal of threshold schemes must strive for a clear description that facilitates under-


standing various options across possible deployment scenarios. Therefore, the specification 


of each submitted threshold scheme must describe (in S7) one system model (and may 


identify possible variants), including the set of participants, the communication model and 


the adversarial model (goals and capabilities). In addition to the actual “parties” that hold 


the secret-shared keys, the system may include coordinators, administrators, clients and 


other devices (e.g., routers, clocks, random-bit generators), etc. The model must also explain 


how the parties are activated (e.g., via an authorized/authenticated client request, or by an 


administrator). See also §2.3 of NIST-IR8214A.


Some of the paragraphs ahead describe baseline assumptions and options for a system 


model, with regard to participants (Section 5.2.1), communication (Section 5.2.2), and 




















adversary (Section 5.2.3). These assumptions are intended as a baseline, neither precluding 


submissions with sophisticated nuances, nor eliminating the utility of security evaluation 


across diverse deployment scenarios.


5.2.1. T2.1: Participants


The parties in a threshold entity.  There is a “threshold entity” composed on n “parties”, 


responsible for executing a cryptographic primitive. At the onset, all parties “know who” the 


n parties are, agreeing on n identifiers (e.g., possibly public keys to support authenticated 


channels). The suitability of public keys may need to be verified, locally or interactively, 


possibly via zero-knowledge proofs, in the keygen phase or in subsequent proposed phases.


It is conceivable that a threshold scheme is bootstrapped without prior agreement of who the 


n parties/identifiers are (or even what is value of n). However, said agreement problem may, 


in some system models, be a distributed-systems problem outside the scope of exploring the 


essential cryptographic thresholdization of the primitive at stake. Therefore, the assumption 


of initial agreement on n identifiers is a possibility, not a requirement. A submission that 


considers an additional preparatory phase for agreement of n and who the n parties are 


should try to present said phase modularly separated from the remaining threshold scheme.


Beneficiaries. For some operations, such as threshold keygen, the beneficiaries of the 


computation are the parties, who end with a new (secret sharing) state (possibly requiring 


agreement in the sense of “security with unanimous abort”), and/or an administrator (e.g., 


who receives a new public key). For other operations, such as threshold signing, the 


beneficiary can be an external client who requested the computation, to obtain an output.


Client interface.  The client may or may not be aware of (and be able to interact distinctively 


based on) the n-party threshold composition. This can be affected by the input/output (I/O) 


interface (see §2.3 of NIST-IR8214A). For example, a secret-sharing of the I/O can affect 


whether or not a client can separately send/receive input/output shares to/from each party.


Intermediaries.  The possibility of concurrent execution requests must be considered. A 


baseline description can assume that there is a possibly malicious proxy that can: interme-


diate the communication between clients and the threshold entity, and authorize requested 


operations (e.g., the signing of a message).






https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8214A.pdf#subsection.2.3















5.2.2. T2.2: Distributed Systems and Communication


As long as the interface and rules for composition are clear, the specification of a threshold 


scheme can (and is recommended to) decouple the description of (i) the building blocks 


(e.g., consensus, reliable broadcast) of classical distributed-systems, from (ii) the description 


of cryptographic operations needed to support the secure multiparty computation over (or 


of) a secret-shared key.


The specification of instantiations of building blocks that make use of weaker resources (e.g., 


enabling broadcast based on point-to-point channels) can be provided by referencing existing 


specifications, while evaluating the impact of those replacements. Then, the provided open-


source implementation (see Section 4.3) of the overall threshold scheme can include (with 


proper attribution) open-source code from the referenced existing implementation of the 


applicable building blocks. The protocol can also be described with various phases (e.g., 


offline, online, secret resharing), which may have differentiated requirements.


A baseline description can make strong assumptions about the communication network, 


including synchrony and reliability of transmission. However, the proposal must discuss the 


pitfalls of deployment in environments with weaker guarantees (e.g., with asynchronous and 


unreliable channels), and possible mitigations.


Different threshold schemes may be better suited to different communication environments, 


with dependence on guarantees (or lack thereof) of synchrony, broadcast, and reliability. It 


is important to understand how security guarantees break across these environments.


5.2.3. T2.3: Adversary


The security analysis in S9 must consider a well-specified adversary, namely their goals and 


capabilities. In particular, the specification must consider an adversary that:


1. [active] is able to corrupt parties (up to one or various specified corruption thresholds), 


them controlling them to arbitrarily deviate from the prescribed multi-party protocol;


2. [adaptive] is able to decide which parties to corrupt after observing some of the 


protocol execution; and


3. [mobile] persistently continues (attempting to) corrupt parties across multiple execu-


tions of the main protocol, possibly corrupting parties after they have been recovered 


from a previous corruption.


The concrete ways in which the adversary performs corruptions may be related to other 


system-model options (e.g., communication network). In practice, some of the adversary’s 




















capabilities will be modeled as part of the idealization required in T3. The characterization 


of threshold security may vary across various ranges of acceptable corruption thresholds 


mentioned in item 1. Furthermore, the case of item 3 is intended to induce characterization 


of various levels of insecurity (e.g., which properties break and which ones do not) when 


acceptable thresholds are surpassed. The latter characterization may in particular be affected 


by the use of proactive recovery mechanisms (see Section T4.3).


5.3. T3: Security Idealization


As mentioned in Section 3.3, provable security is a fundamental component of how modern 


cryptography analyzes the security of proposed multi-party threshold schemes. Therefore, 


the present call includes a requirement to include a security idealization that supports a proof 


of security. Such idealization will encompass the security goals of the threshold scheme. 


That said, there are aspects of security analysis that overflow the scope of a proof/idealization 


and that should also be discussed.


A proposal of threshold scheme must be supported on a simulation-based and/or a game-


based security formulation. This entails defining an ideal functionality (e.g., in the ideal-real 


simulation paradigm, within the universal composability framework) or/and an idealized 


adversarial game (or set of games). Since security analysis is a multi-dimensional exercise, 


it may include more than one form of idealization, and possibly even diverse proofs across 


different nuanced security properties or formulations.


A submission must include, in S9, a “security proof” that the proposed threshold scheme 


satisfies the proposed security formulation in a suitable adversarial context (see T4). Such 


proof can be given by showing “emulation” of the ideal functionality, or by showing that a 


non-negligible adversarial advantage in each security game implies breaking an assumption.


The security analysis must discuss which known useful properties are captured, and which 


ones are not, by the idealized security formulation. For example, even though availability is 


a desirable property, generically speaking, a security formulation with stronger emphasis 


on confidentiality and integrity may purposely specify that an adversary is allowed to 


abort protocol executions, so that the formulated security notion is achievable. As another 


example (now of an unsuitable formulation), a sole requirement of hiding and binding for a 


commitment scheme would not suffice for a use (e.g., committing bids in an auction) that 


would also require a non-malleability property.


In both cases (simulation and game-based), the security analysis should also discuss the 


security consequences of real implementation of idealized components. In particular, it must:




















• identify the required cryptographic assumptions, and any possibly-idealized trusted 


components in the setup or operations;


• discuss the (in)security consequences of foreseen real instantiations of the setup and 


ideal components.


The “security analysis” (S9) asked in this call relates to the logical specification of the thresh-


old scheme (S6–S8), and not to the submitted reference implementation (M2). Nonetheless, 


comments about implementation security are also welcome in the security analysis. Further 


details about implementation security can be included in S13.


5.4. T4: Security Versus Adversaries


The security analysis in S9 must consider a well-specified adversary (see T2.3), namely their 


goals and capabilities. In consideration of the modeled adversary (see T2.3), a proposed 


threshold scheme must aim for certain security goals, particularly with regard to how the 


adversary corrupts up to a corruption threshold number f  of parties.


5.4.1. T4.1: Active Security (Against Active Corruptions)


Proposed threshold schemes must achieve active security (i.e., against active corruptions, 


which enable corrupted parties to “maliciously” deviate from the protocol), as opposed to 


passive only.


5.4.2. T4.2: Adaptive Security (Against Adaptive Corruptions)


There is a strong preference for considering threshold schemes that achieve adaptive 


security (i.e., security against adaptively chosen corruptions), as opposed to static only, 


with respect to critical safety properties (e.g., unforgeability [NIST-IR8214B-ipd, §5.2.3] and 


key-secrecy). Therefore, submitted schemes should also aim for security against adaptive 


corruptions for the major safety properties of interest.


Adaptive security may pose significant challenges in formal proofs of security, depending 


on the security formulation. For example, while deniability of execution may in some 


cases be required for indistinguishability between ideal and real executions, the use of 


non-committing encryption to achieve it could be excessive without a necessary practical 


benefit. On the other extreme, a proposed protocol must not allow the major safety properties 


of interest to be trivially broken in case of adaptive corruptions, as in the classical example 


of a protocol that delegates all capabilities to a small quorum that is difficult to guess in 


advance, but whose overall corruption (by an adaptive adversary) would be disastrous.




















The set of security formulations across submissions of threshold schemes (some possibly 


proving adaptive security based on unrealizable assumptions, such as a programmable 


random oracle) is expected to serve as reference material for public discussion. It is 


acceptable that certain security assurances (e.g., liveness and termination options) vary 


across different adversaries. For example, a security analysis may prove security against 


static corruptions with respect to some formulation (e.g., simulation-based), and then in 


complement show which fundamental security properties or attributes (e.g., unforgeability) 


remain preserved against adaptive corruptions in another formulation (e.g., game-based), 


even if some other security properties (e.g., some aspect of composability) are not preserved.


Practical feasibility is also needed. Feedback is welcome on security formulations and 


reference approaches that simultaneously enable both practical feasibility and security 


against adaptive corruptions, as well as possible acceptable tradeoffs.


5.4.3. T4.3: Proactive Security (Against Mobile Attacks)


The proposed threshold schemes schould be compatible with modular subprotocols / mech-


anisms for proactive (and reactive) recovery, which attempt to recover possibly corrupted 


parties back to an uncorrupted state. This is especially important to better handle a persistent


mobile adversary that continuously attempts to corrupt more parties. With respect to re-


freshing secret shares, the solutions can be based on a modularized phase of secret-resharing 


(see T6), while also specifying the needed conditions (e.g., requirement of some initial/final 


agreement by a qualified quorum) for its integration.


5.5. T5: Threshold Profiles


For each primitive (to be identified in S6, within the scope established in Sections 6 and 7) 


considered for thresholdization, it may be useful to consider differentiated solutions across 


possible threshold parametrizations. Therefore, it is useful to consider a “threshold profile” 


that defines, for certain threshold-related parameters, which parametrization ranges are 


suitable for secure operation. The threshold profile should characterize at least the total 


number (n) of parties and the various thresholds ( f ) of corruption and (k) of participation. 


Table 3 proposes succinct labels for each default profile obtained from a restriction in the 


number of parties and the corruption threshold.


For convenience of discussion, the following nomenclature is defined to easily identify 


some default threshold profiles, based on the total number of parties and/or some corruption 


threshold ( f ) assumed clear in the context.




















• Number n of parties: (2) “two” for n = 2; (3) “three” for n = 3; (S) “small” for 


4 ≤ n ≤ 8; (M) “medium” for 9 ≤ n ≤ 64; (L) “large” for 65 ≤ n ≤ 1024; and (E) 


“enormous” for n > 1024.


• Corruption proportion f/n: (D) “dishonest majority” for f ≥ n/2; (h) “honest 


majority” for f < n/2; (H) “two-thirds honest majority” f < n/3.


 Table 3. Labels for some template threshold profiles


 Corruption proportion  Number of parties (n)


f/n Majority type
 Two (2):  Three (3):  Small (S):  Medium (M):  Large (L):  Enormous (E):


 n = 2 n = 3 4≤ n≤ 8 9≤ n≤ 64 65≤ n≤ 1024 n≥ 1025


 ≥ 1/2  Dishonest (D) n2 n3 f D nS f D  nM f D nL f D nE f D
 > 1/3  Honest (h)  — n3 f h nS f h nM f h nL f h nE f h
 < 1/3  2/3 Honest (H)  —  — nS f H nM f H nL f H nE f H


Note: the default profiles exclude the cases f = 0 and f = n. Therefore: for the “two”-party 


profile (with n = 2) — the usual secure two-party computation (S2PC) setting — only 


the “dishonest majority” case matters (with f = 1); for the “three”-party profile, the 2/3 


honest majority case does not apply. Other threshold profiles can be considered in concrete 


submissions. For example, some threshold schemes may have advantageous properties when 


considering an even stricter honest majority, such as more than 3/4 of honest parties.


A submission can focus on a single or on various threshold profiles. In particular, a protocol 


may be designed for full threshold, i.e., to ensure (for some range of number n of parties) 


some specific useful security notion regardless of the corruption threshold value f  (with 


f < n) that it is instantiated with. In some of such cases it may be especially relevant to 


distinguish between corruption threshold and participation-minus-1 threshold. For each 


submitted threshold scheme, the system model (S7) and the security analysis (S9) must:


• characterize its proposed threshold profile(s), including discussing the diversity of 


thresholds associated with various security properties; and


• characterize the breakdown that occurs when threshold-profile assumptions are broken.


Note on alternatives access structures. Depending on which secret-sharing schemes 


support the distributed computation, it is possible to consider monotone access structures 


(i.e., where the superset of a valid quorum is also a quorum) different from a simple threshold. 


The use of the traditional term “threshold” in this call is not meant to suppress possible 


submissions for other useful and properly-justified access structures.




















Motivating adoption. There is value in identifying motivating applications for the adoption 


of threshold schemes in each threshold profile. Therefore, the submission should identify 


(in S13) use-cases for which the proposed threshold ranges are adequate.


5.6. T6: Building Blocks


A submission should identify and modularize the description of building blocks (gadgets) 


that can be securely replaced by other instantiations with similar interface. These may be 


useful across various threshold schemes across various submissions. While some future 


guidelines and recommendations documents may focus on gadgets, the decision to do so is 


likely to be subordinate to their utility for concrete threshold schemes.


Example building blocks.  A notable building block is Shamir secret sharing (and Lagrange 


interpolation), either in the clear or homomorphically (e.g., “in the exponent”). Other secret 


sharing variants may also be useful, such as verifiable or publicly-verifiable secret-sharing. 


Other examples of gadgets include garbled circuits, oblivious transfer, generation of 


correlated randomness, commitments, secret resharing (possibly for new values f  and n),


multiplicative-to-additive share conversion, additively homomorphic encryption, MPC 


or ZKP friendly hashing, some zero-knowledge proofs, consensus and broadcast.


Modularized description.  To the extent possible, proposals of threshold schemes should 


modularize the description of gadgets. This means that a high-level description of the 


threshold scheme uses references to the interface and security properties of the gadgets, but 


not necessarily to low-level details. A lower level description can then be made for one (or 


more) possible instantiation of each needed gadget.


Modularized code.  The submitted open-source code (see Section 4.3) must include code 


for at least one instantiation of each used building block. If the proposed system model 


depends on special hardware components (e.g., a router) beyond the threshold “parties”, the 


submission should also include code for emulating the special component.


The challenges faced in (i) implementing networking between parties can be significantly 


different from those in (ii) implementing certain mathematical operations (cryptographic 


building blocks) per party. Also, neglecting any of these can lead to serious vulnerabilities. 


Therefore, it is strongly encouraged that there is a strong alignment between the proposed 


system model (see T2 in Section 5.2) and the provided implementation (see Section 4.3), 


notwithstanding possible virtualizations to enable execution in a personal computer. For 


example, if a system model relies on broadcast, then the provided implementation should 


instantiate it in alignment with the assumptions of the proposed system model.




















6. Cat1 primitives — Specified by NIST


Table 4 lists various Cat1 primitive-families of interest for thresholdization, organized in 


various “types” (subcategories): Signing (Section A.1); PKE (Section A.2); ECC-2KA 


(Section A.3); Symmetric (Section A.4); and Keygen (Section A.5). Within each type, each 


listed “primitive family” (itself identified with a more detailed subcategory index) may 


include several primitive variants (including ones not listed) and/or threshold modes, some 


of which are listed (non-exhaustively) in the third column of Table 4. A submission of 


threshold schemes fitting within a primitive family is not required to cover all indicated 


variants or modes, and may instead focus on a single one.


 Table 4. Primitives of interest in subcategories of Cat1


 Subcategory: Type
(Sub)subcategory #:
 Family of primitives


Some [Primitives] and/or {Threshold Modes}
 Section


in this call


 C1.1: Signing C1.1.1: EdDSA sign [EdDSA, HashEdDSA] {Prob; Q-PR; F-PR (not FE); FE} A.1.1


 C1.1.2: ECDSA sign {Prob-FE; Q-PR; F-PR not-FE; PR-FE to Det-ECDSA)} A.1.2


 C1.1.3: RSADSA sign [RSASSA-PSS; RSASSA-PKCS-v1.5] A.1.3


 C1.2: PKE C1.2.1: RSA encryption [RSASVE.Generate, RSA-OAEP.Encrypt] {SSI} A.2.1


 C1.2.2: RSA decryption [RSASVE.Recover, RSA-OAEP.Decrypt] {NSS, SSO} A.2.2


 C1.3: ECC-2KA C1.3.1: ECC-CDH {NSS; SSO} A.3.1


 C1.3.2: ECC-MQV [Full; One-pass] {NSS; SSO} A.3.2


 C1.4: Symmetric C1.4.1: AES (en/de)cipher [encipher, decipher] A.4.1


 C1.4.2: KDM/KC (for 2KE) [Hash, CMAC, HMAC, KMAC] A.4.2


 C1.5: Keygen C1.5.1: ECC keygen [For ECC-signing and ECC-2KA] A.5.1


 C1.5.2: RSA keygen [Just the modulus (mod); mod & keypair] A.5.2


 C1.5.3: Bitstring keygen [RBG for AES keygen, RSA-SVE, and nonces] {SSO} A.5.3


Legend: 2KE = pair-wise key-establishment. Det = deterministic . FE = functionally equivalent. F-PR = fully PR (i.e., deterministic 
even if the quorum changes). KD/KC = key derivation and key confirmation mechanisms; NSS = input/output is not secret-shared 
(i.e., apart from the key); PKE = public-key encryption. PR = pseudorandom. Prob = probabilistic. RBG = random-bit generation. 
Q-PR = PR per quorum. SSI/SSO = secret-shared input/output (see §2.3 of NIST-IR8214A). SVE = secret-value encapsulation.








There are significant differences in threshold-friendliness and usefulness across the Cat1-


primitives. For example, some symmetric-key primitives, such as HMAC and KMAC used 


for key-confirmation, are much less threshold-friendly than primitives based on public-key 


cryptography for signing and encryption/decryption. These differences are expected to affect 


the interest of stakeholders in submitting corresponding threshold schemes. Threshold-


friendlier primitives can be considered in Cat2, as already conveyed in Table 2 in Section 3.2.




















6.1. Input/Output (I/O) Interfaces


As discussed in §2.3 of NIST-IR8214A, threshold schemes can be considered in various 


modes with regard to the I/O interface. By default, a threshold keygen scheme produces a 


secret-shared output (SSO), i.e., a secret-shared secret/private key, and (when applicable) a 


corresponding not-secret-shared (NSS) public-key counterpart. Then, a subsequent threshold 


operation (e.g., signing) uses the private/secret key in a secret-shared input (SSI) manner. 


The mentioned secret-sharings (SSO and SSI) of the private/secret key are often left implicit. 


However, the secret-sharing of other input/output (that may itself be subject to confidentiality 


requirements) is relevant in some use cases, to hide said input/output from the threshold 


entity. Some of these SSI/SSO modes are explicit in Table 4. For example:


• a threshold decryption scheme can be in SSO mode to hide the decrypted plaintext;


• a threshold public-key encryption (exceptional case where there is no private key) can 


be in SSI mode to hide some secret key being encapsulated;


• a threshold CDH or MQV ECC key-agreement primitive may produce a SSO to hide 


the agreed key before it is subject to a final key-derivation (KD) transformation;


• a threshold signature scheme can be in SSI mode to hide the message being signed 


(not shown in Table 4).


A submitted specification of a threshold scheme must unequivocally identify which I/O 


parameters need to be in secret-shared form and which ones need not.


6.2. Cryptographic Parameters


Submitted threshold schemes should be implemented and evaluated with one set of pa-


rameters for security strength κ ≈ 128, and another one for some security strength κ ∈ ≈


[224,256]). Table 5 lists recommended options for cryptographic parameters.


6.2.1. Elliptic Curves, for ECC-related Primitives


NIST-approved curves for elliptic-curve cryptography are specified in SP800-186-Draft. 


There are various representations and curves over prime fields, including


• Weierstrass: P-256, P-384, P-521, W-25519, W-448


• Montgomery: Curve25519, Curve448


• Twisted Edwards: Edwards25519, Edwards448, E448




















 Table 5. Recommended implementation parameters for Cat1 primitives


  Parameter type Primitives using said parameters For κ ≈ 128 For κ & 224


  Elliptic curve EdDSA signing and keygen  Edwards25519  Edwards448


    ECDSA signing and keygen  P-256  P-521


    ECC CDH/MQVfor 2KA, and keygen {Curve25519, P-256} {Curve448, P-521}


 RSA modulus size RSADSA, RSA PKE, and their keygen |N|= 3,072 |N| ≥ 11,264 *
 RSA enc./ver. key RSA-related 216 < e < 2256 216 < e < 2256


  Hash function EdDSA signing SHA-512 SHAKE256 (len 512, 912)


    ECDSA/RSADSA; HMAC for KDM/KC SHA-256, SHA3-256, SHA-512, SHA3-512


       SHA-512/256


       SHAKE128 (len 256) SHAKE256 (len 512)


 KMAC for KDM and KC KMAC128 KMAC256


  Cipher KC (for RSA or ECC), encipher/decipher AES-128 AES-256


 AES key-size AES encipher/decipher/keygen/CMAC |k|= 128 |k|= 256


Legend: κ = standardized “security strength” (in bits). enc./ver. = encryption/verification. len = length.


* The RSA modulus length |N| must be a multiple of 8; this call further suggests that it be a multiple of 512. 
Approved hash functions or XOFs are specified in FIPS-180-4, FIPS-202, and SP800-185, but only a subset 
of them are suggested in this call. A XOF with predetermined length (len) can also be called a hash function.











A submission of threshold scheme for an ECC-based primitive should include an implemen-


tation based on at least one curve for security level for κ ≈ 128, and another for κ & 224, 


from the subsets detailed in Table 5. The curves W-x (for some x) and E448 do not appear 


in Table 5, as they are only intended for possible intermediate representations.


Note that SP800-186-Draft also specifies curves over binary fields (in short-Weierstrass form, 


namely Koblitz curves (K-163, K-233, K-283, K-409, K-571) and some pseudorandom 


curves (B-163, B-233, B-283, B-409, B-571). However, these are for legacy-only appli-


cations, and have been deprecated due to their limited adoption. Therefore, these are not 


recommended for submissions of threshold schemes.


Additive notation.  In elliptic-curve cryptography, it is customary to use additive group 


notation. There, a public key Q can be determined by a repeated sum of the base-point G, 


a secret number d of times. The repeated-sum operation is (in additive notation) usually 


expressed as a multiplication by an integer. Thus, the private key d is the integer (not an 


elliptic curve element) needed to be multiplied with G to obtain Q = d ·G.


On the set of suggested curves for 2KA. SP800-56A-Rev3 (from 2018) considers (in 


its Table 24 in Appendix D) various curves for ECC key-agreement. Apart from Koblitz 




















(K-x) and pseudorandom (B-x) curves that have been deprecated by SP800-186-Draft, the 


Weierstrass curves (P-x) remian valid. From the latter, P-256 and P-521 cover the cases 


for security levels κ ≈ 128 and κ & 224. The recent SP800-186-Draft also specifies new 


Montgomery curves Curve25519 and Curve448, and references the IRTF RFC7748 where 


those curves are suggested for use in 2KA. Despite their current potential for adoption, the 


older SP800-56A-Rev3 does not include the new Montgomery curves (from the more recent 


SP800-186-Draft) in the list of approved curves for 2KA. Therefore, for Cat1-submissions 


of threshold schemes for ECC-2KA (subcategory C1.3): (i) the reference implementation 


should use at least the approved Weierstrass curves (P-256, P-521); (ii) a complementary 


suggestion is that Montgomery curves (Curve25519, Curve448) also be implemented to 


allow for a comparison across the uses of the two types of curves.


6.2.2. RSA Modulus, for RSA-related Primitives


A submission of threshold schemes for RSA-related primitives (for signing, key-encapsu-


lation or decryption): should provide implementations with moduli of size |N| = 3072


for κ ≈ 128, and |N| ≥ 11,264 (or greater) for κ ≈ 224 (or greater, respectively). Note: 


SP800-56B-Rev2 uses the symbol s, instead of κ , to denote the “security strength” (in bits).


The recommended RSA-modulus length |N| for security parameter κ & 224 was obtained, 


from exponential interpolation between the cases (specified in SP800-57-P1-R5) using |N1|=


7680 for κ1 = 192, and N2=15,360 for κ2 = 256, and rounding up to the nearest multiple 


of 512. The used formula is |N|= 512 · d|N1| · (κ/κ1)
a/512e, where a = log(κ2/κ1)


(N2/N1). 


This is also the value that would be obtained by rounding up the result provided by the FIPS 


140-2 implementation guidance [IG-FIPS-140-2, §7.5, page 125].


NIST-specified requirements for the prime factors of an RSA modulus, and their primality 


testing, are described in Appendices A.1 and C of FIPS-186-5-Draft, for single-party genera-


tion. For threshold schemes that warrant different methods (e.g., direct biprimality testing), 


a rationale must be presented to convey why the used test (including the number of rounds) 


is appropriate. In particular, it is acceptable that the RSA modulus be biased toward being a 


Blum integer, i.e., with both primes being 3 mod 4.




















7. Cat2 Primitives — Not Specified by NIST


Cat2 allows for submissions of threshold schemes for primitives that are not specified by 


NIST. This category is aimed to allow for the consideration of primitives that are threshold-


friendlier than those in Cat1, and/or that have distinctive features, such as being based on 


distinct cryptographic assumptions (possibly being quantum-resistant), or having advanced 


functional features. Section 3.2 already enumerated the subcategories and listed some 


examples (see Table 2). A submission in Cat2 must provide a thorough description of the 


corresponding conventional (non-threshold) scheme that the primitive (being thresholdized) 


is part of. For example: a submission of threshold scheme for a signing primitive not 


specified by NIST must include a description of not only the conventional signing primitive 


but also its corresponding verification and keygen primitives.


7.1. “Regular” Primitives (Subcategories C2.1–C2.5)


As already enumerated in Section 3.2 (including listed in Table 2), Cat2 covers five regular 


types of primitives across subcategories C2.1 (for signing), C2.2 (for PKE), C2.3 (for 


key-agreement), C2.4 (for symmetric-key and hashing primitives) and C2.5 (for keygen).


Since selected candidates from the NIST PQC and Lightweight Cryptography (LWC) pro-


jects [Proj-PQC; Proj-LWC] are not yet standardized, possible threshold schemes for their 


primitives can be presented in the scope of Cat2, specifically in their matching subcategories: 


C2.1 (signatures) and C2.2 (public-key encryption) for PQC; C2.4 (symmetric-key and 


hashing primitives) for LWC. However, the present call is also intended to elicit submissions 


for threshold schemes for primitives that are threshold-friendlier. Submissions of threshold 


schemes for quantum-resistant primitives should include a comparison with the security 


levels (1–5) defined by the NIST PQC project [Proj-PQC].


Subcategory C2.3, for single-party primitives for use in multi-party key-agreement, also 


expects possible submissions of TF-QR type. Such submissions should demonstrate the 


use of the thresholdized primitives in the scope of an actual key-agreement application. 


Compared to NIST-standardized KA protocols, submissions in this sub-category may enable 


improved KA schemes, justified based on different assumptions.


Note on PKE versus KA.  Primitives within subcategory C2.2 for PKE can be used 


for multi-party key-establishment protocols, by allowing the confidential transmission 


of a contribution to a key. The subcategory C2.3 for KA (within Cat2) is intended for 


complementary primitives, such as those that may enable key-exchange protocols a la




















Diffie-Hellman, though possibly based on different assumptions (e.g., to be QR) or for more 


than two parties. Therefore, the subcategory C2.3 for KA excludes the key-transport-only 


mechanisms (whose main cryptographic primitive is already scoped by PKE).


7.2. “Other” Primitives/Schemes (Subcategories C2.6–C2.8)


Beyond the “regular” type of primitives (covered by Cat1 and Cat2), there are “other” types 


of primitives covered by Cat2, namely “advanced” primitives (C2.6; see Sections 7.2.1 


and A.6), “ZKPoKs” (C2.7; see Sections 7.2.2 and A.7) and “auxiliary gadgets” (C2.8; 


see Sections 7.2.3 and A.8). The subcategories for ZKPoK (C2.7) and gadgets (C2.8) are 


meant to allow for the submission of primitives that can support the threshold setting. Such 


a submission requires the specification of a conventional (non-threshold) primitive (see S6), 


but (in contrast with other subcategories) the specification of a threshold scheme is optional.


7.2.1. Cat2 subcategory C2.6: “Advanced”


Subcategory C2.6 (see more details in Section A.6) is suited for primitives with advanced 


functional features that are not covered by current NIST standards. For example, an 


encryption scheme may allow (i) homomorphically performing operations over encrypted 


data (possible with fully-homomorphic encryption), or (ii) selectively restricting the ability 


for decryption to designated sets of recipients (possible with identity-based and attribute-


based encryption). A submission in subcategory C2.6 should present a strong rationale for 


the utility of the enhanced features, compared to what is possible with primitives in the 


other subcategories. Since quantum resistance is a strongly desirable feature, a submission 


without such a property is encouraged to specifically present rationale about the lack of 


good TF-QR alternatives.


7.2.2. Cat2 subcategory C2.7: ZKPoK


Subcategory C2.7 (see more details in Section A.7) allows for the submission of zero-knowl-


edge proofs of knowledge (ZKPoKs) that can support the threshold environment. For 


example, they may be useful to prove knowledge of a secret/private key or input that is 


consistent with:


• a public-key and/or with the public commitments of secret-shares;


• the output of a cryptographic operation (e.g., public-key encryption, AES enciphering, 


or KDM hashing), when the input was secret-shared and committed.




















The generation of a ZKPoK can be considered both in conventional (non-threshold) and in 


threshold forms. For example:


• [Conventional generation] A dealer (single-party) of a secret-sharing (SS) can 


produce a ZKPoK that enables the various parties of a threshold entity (recipients of 


secret-shares) to non-interactively verify that the SS is adequate;


• [Threshold generation] The set of parties that interacted in a DKG to obtain a secret-


sharing of a secret/private-key, and when applicable also obtain a corresponding 


public-key, can interact in an MPC to distributively generate a ZKPoK string that 


proves access to (i.e., knowledge of, albeit in a threshold manner and despite the secret-


sharing aspect possibly remaining hidden from the proof) an adequate secret/private 


key consistent with a corresponding public commitment (possibly the public key) of 


the given threshold scheme.


(Note that the latter example is dissociated from a conceivable proof of distributed 


generation of a key, which can be considered if tied to public keys of the intervening 


parties, believed to not reveal their private keys.)


The above two examples have similarities with, respectively, (i) verifiable secret sharing 


(VSS), which can also be extended to publicly verifiable secret-sharing (PVSS), and (ii) 


publicly verifiable MPC. Said verifiable features are welcome in submitted threshold schemes, 


and may (preferably) be included as part of a submission more focused on one of the other 


subcategories, while identifying the applicability of the ZKPoK to the present subcategory. 


A submission that simply focuses in subcategory C2.7 must specify at least a conventional 


ZKPoK, and may (optionally) specify a corresponding threshold version thereof.


7.2.3. Cat2 subcategory C2.8: Auxiliary Gadgets


Subcategory C2.8 (see more details in Section A.8) allows for the submission of specifi-


cations of other auxiliary primitives, here called gadgets. They may be auxiliary in their 


conventional (non-threshold) form and/or in a threshold form. Gadgets can be modularized 


in the submission of a higher-level threshold scheme associated with another subcategory 


within Cat1 or C2.1–C2.7. Such modularization is already recommended by criterion T6 


(in Section 5.6) for various gadgets (e.g., those enumerated in §4.5.2 of NIST-IR8214B-ipd 


and §5.3.1 of NIST-IR8214A) whose underlying primitives (e.g., garbled-circuit generation, 


garbled circuit evaluation, commit, decommit) are not themselves thresholdized.




















A. Details for Subcategories and Primitives of Interest


A.1. Subcategory C1.1: Cat1 Signing


The three Cat1-signing primitives of interest are from EdDSA, ECDSA, and RSADSA. 


Submissions in this subcategory should take in consideration the aspects of unforgeability 


and threshold security mentioned in NIST-IR8214B-ipd (while some aspects are specific to 


EdDSA, others are applicable to generic signature schemes). For example, it is useful to 


differentiate between regular unforgeability and strong unforgeability.


A.1.1. Subcategory C1.1.1: EdDSA Signing


EdDSA is specified in §7 of FIPS-186-5-Draft. The default signing mode is pseudorandom, 


determining the secret nonce r as a hash output whose pre-image includes a nonce-derivation 


key ν . Ignoring some encoding details, the algorithm for EdDSA signing Signn[s,ν ](M)


of a message M outputs a signature σ = (R,S), where R = r ·G, G is the conventioned 


base-point of the elliptic curve, r = H(ν ,M), H represents a cryptographic hash function, 


S = r+ χ · s, χ = H(R,Q,M) is the “challenge”, and s is the private signing key (integer) 


needed to be multiplied with G to obtain the public-key Q.


A submission of threshold scheme for EdDSA signing: can choose to implement just one 


of or both HashEdDSA and EdDSA types (defining whether or not the message is “pre-


hashed”); should provide implementations with curves Edwards25519 (for κ ≈ 128) and 


Edwards448 (for κ ≈ 224), which are specified in SP800-186-Draft; and must include only 


schemes that are interchangeable with regard to EdDSA verification (see related notes in 


NIST-IR8214B-ipd). With respect to nonce generation, submissions are expected to include 


one or more of the following modes:


1. Probabilistic (via a random or hybrid contribution per party)


2. Pseudo-random per quorum (via a ZKP of pseudorandom contribution per party)


3. Pseudo-random (based on a threshold-friendly PRF)


4. Functionally equivalent to HashEdDSA (via MPC hashing)


Note. An SSI mode for threshold signing is costly because it requires a distributed com-


putation of a threshold-non-friendly hash of the message. However, if the regular NSS 


mode already requires such type of difficult computation (which is the case in functionally-


equivalent EdDSA threshold signing), then the SSI mode may be achieved with a simple 


extension, using the gadgets already required for the NSS mode.




















A.1.2. Subcategory C1.1.2: ECDSA Signing


ECDSA is specified in §6 of FIPS-186-5-Draft. The default signing mode is probabilistic 


(§6.3.1), but there is also a deterministic ECDSA mode (§6.3.2). Table 6 shows how the 


meanings of some symbols change significantly between EdDSA and ECDSA.


 Table 6. Notation of EdDSA versus ECDSA (in Draft FIPS 186-5)


  Element’s role  In EdDSA  In ECDSA


  Signature (R,S) (r,s)
  Private† key s d
  Secret nonce r k
  [Final]‡ nonce commitment R r
  Challenge χ e


† EdDSA also uses d, but for the precursor private-key from which the signing key s and another 
nonce-derivation key are obtained. ‡ The use of [final] is to convey that it is the actual value output in the 
signature. It is an encoding of other intermediate computed values that are themselves also commitments 
to the nonce. In particular, in ECDSA one of the intermediate values is denoted with symbol R. 














Ignoring some encoding details, the algorithm for ECDSA signing Signn[d](M) of a mes-


sage M outputs a signature σ = (r,s), where d is the private signing key (the integer 


needed to be multiplied with the base-point G to obtain the public-key Q); the “challenge” 


e = Encode(1)n (Hash(M)) is an encoding (mod n) of the hash of the message being signed; 


k←$ [1, . . . ,n−1] is (in the probabilistic version) a uniformly selected nonce that needs to 


remain secret; R= k •G is the “nonce commitment” and r =Encode(2)n (R) is a corresponding 


encoding (mod n); and s = k−1 · (e+ r ·d) (mod n).


A submitted threshold scheme for ECDSA signing should provide an implementation 


with at least one parametrization for κ ≈ 128 and another for κ & 224, with parameters 


recommended in Table 5. With respect to nonce generation, submissions are expected to 


include at least one of the following modes:


1. Probabilistic (via random or hybrid contributions per party)


2. Pseudo-random per quorum (via a ZKP of pseudorandom contribution per party)


3. Pseudo-random (based on a threshold-friendly PRF)


4. Pseudo-random functionally equivalent to Deterministic ECDSA (via MPC hashing)


Note on SSI-signing: In the case of SSI-signing for Deterministic ECDSA, the client 


can directly provide a secret-shared challenge (the hash e of the message), whereas in 


(Deterministic) EdDSA the pseudorandom challenge χ requires knowledge of a nonce 




















commitment that depends on a private element not known by the client. Note that signature 


verification still requires the ability to hash the message.


A.1.3. Subcategory C1.1.3: RSADSA Signing


RSA signature modes are specified in §5.4 of FIPS-186-5-Draft, by reference to IETF RFC8017. 


A submission for the RSADSA signing family is expected to implement a threshold signature 


scheme that is interchangeable with at least one of the following modes:


1. RSASSA-PSS (probabilistic signature scheme), using an approved hash function or XOF


2. RSASSA-PKCS-v1.5 (deterministic), using an approved hash function


A.1.4. Signing in Secret-Shared-Input (SSI) Mode


In an SSI-signing mode, no single-party (nor any collusion up to a certain number of parties) 


of the threshold entity will learn the hash of the message. This is akin, though not the same 


as, what is achieved with blind signatures. The difference is that in the threshold setting it is 


possible that a large enough collusion of parties is able to reconstruct the input message.


The SSI mode may be of use, for example, for private-preserving time-stamping, producing 


a certificate interchangeable with those produced by the conventional protocol where the 


authority learns the hash of the document being timestamped.


The threshold-generation of signatures in SSI mode may pose challenges with regard to 


unforgeability. For example, a protocol must prevent that a malicious party that maliciously 


changes their secret-share would affect the overall message being signed, i.e., must prevent 


the signing of a message whose signature has bot been requested. Such challenges may 


be resolved based on various techniques, including zero-knowledge proofs, or based on 


verifiability or error correction properties of the secret-sharing. For example, each party can 


prove that their interaction in the distributed computation is consistent with a secret-share 


that has been certified by the client, with regard to the ongoing signing session.


A.2. Subcategory C1.2: Cat1 Public-Key Encryption (PKE)


The PKE cryptosystem of interest is RSA. The main use case considered for RSA encryp-


tion/decryption is pair-wise key-establishment (2KE), as specified in SP800-56B-Rev2. 2KE 


can take the form of a key-agreement (KA) type of protocol (with contributions from both 


parties) or be more simply based on key-transport (KT) type of protocol (with contribution 


from a single party). For RSA-based instantiations, both types of protocol rely on secret-


value encapsulation (SVE), where RSA encryption is used to encapsulate a secret value 




















k (also denoted as a plaintext m) into a ciphertext c, which is then sent to another party 


for decryption. Ignoring some encoding details, the low-level RSA-based cryptographic 


primitives of interest are:


• RSA encryption primitive (RSAEP): Encryption c = memod N  (transforming a 


plaintext m into a ciphertext c). A threshold version of it uses a secret-shared input m 


(SSI) and a not-secret-shared public encryption key.


• RSA decryption primitive (RSADP): Decryption m= cdmod N . A threshold version 


of it uses a secret-shared private-key d (which is never reconstructed); the threshold 


operation produces an output that is either secret-shared (SSO) or not (NSS).


Additional relevant primitives include:


• Generation of an RSA modulus and/or key-pair (see Section A.5.2).


• Generation of a random bit-string (see Section A.5.3).


The values generated in SSO mode are for subsequent consumption in SSI mode.


A.2.1. Subcategory C1.2.1: RSA Encryption (of a Secret-Value)


Threshold schemes in this call are intended to operate over secret-shared material. Therefore, 


in the case of public-key encryption the secret-sharing does not usually apply to the public 


key. However, the application of key-encapsulation for key-transport/agreement uses the 


plaintext itself (being encrypted) as a value whose confidentiality requirement may warrant 


threshold protection. By default, a threshold scheme for such encryption will be in “secret-


shared input” (SSI) mode (see [NIST-IR8214A]) with regard to the value being encrypted, 


but will not secret-share the public key (to be known by every party).


The basic RSA encryption primitive (RSAEP) computes a ciphertext c = me (mod N), 


where m is a secret plaintext, e is the public encryption key, and N is the public modulus. 


The goal is to compute c from a secret sharing [m] of m. For interchangeability with regard to 


a subsequent decryption, an actual full-fledged threshold scheme for RSA key encapsulation 


should consider all of the appropriate encoding and padding details. In SP800-56B-Rev2, the 


primitive RSAEP (§7.1.1) is specified for use within two higher-level primitives:


1. RSASVE.Generate (§7.2.1.2): RSA for Secret-Value  Encapsulation (which also 


includes the generation of the random key to encapsulate)


2. RSA-OAEP.Encrypt (§7.2.2.3): RSA with Optimal Asymmetric  Encryption Padding




















A.2.2. Subcategory C1.2.2: RSA Decryption


SP800-56B-Rev2 specifies the use of RSA decryption in two higher-level primitives:


1. RSASVE.Recover (§7.2.1.3): Secret-Value Encapsulation recovery


2. RSA-OAEP.Decrypt (§7.2.2.4): Optimal Asymmetric Encryption Padding decryption


The RSA decryption primitive, RSADP(privKey, c), used to decrypt a ciphertext c, accepts 


the private decryption key privKey [SP800-56B-Rev2, §6.2.2] in three possible formats:


1. Basic format: (n,d)


2. Prime-factor format: (p,q,d)


3. Chinese-remainder theorem (CRT) format: (n,e,d, p,q,dP,dQ,qInv)


The notation [SP800-56B-Rev2, §3.2] is as follows: n is the public modulus; (p,q) is the pair 


of secret prime factors of n; d is the private decryption key; e is the public encryption key; 


dP is dmod (p−1); dQ is dmod (q−1); and qInv is the inverse of qmod p.


A.2.3. Implementation Recommendations and Options


A submitted threshold scheme for RSA encryption or decryption primitives should include 


an implementation in the scope of an RSA-based 2KE protocol, as follows:


• With an instantiation for κ ≈ 128 and another for κ & 224 (see Table 5).


• Showcasing at least one of the key-establishment protocols listed in Table 7, with at 


least one of the parties (U , or V ) being threshold-decentralized;


• If implementing threshold RSADP:


– secret-sharing the decryption key, for at least one of the three approved formats 


(Section A.2.2); the public elements (n and e) do not need to be secret shared;


– outputting the plaintext (the key that was encapsulated) in one of two forms: 


secret-shared, or not secret-shared.


• If implementing threshold RSAEP: using an SSI mode for the plaintext.


The various RSA-2KE schemes. SP800-56B-Rev2 specifies various RSA-2KE schemes. 


Two are of the key agreement (KA) type (obtaining contributions from both parties), whereas 


another one is based on key transport (KT) using a contribution from a single party. Table 7 


lists, across these three schemes, the corresponding RSA-based operations (excluding 


needed RSA key-pair generation). Each of the listed schemes allows for a basic version, 




















and a version with key confirmation (unilateral or bilateral, not based on RSA). The KDM 


operation specified for KA schemes is not RSA based.


 Table 7. RSA-based primitives per party per RSA-2KE scheme


  Type  Scheme  § in SP 800


-56B-Rev2
 Party RSA-based primitive KDM


 needed?


 KA KTS1  §8.2  1st contributor (U) RSASVE.Generate  Yes


           2nd contributor (V ) RSASVE.Recover


    KTS2  §8.3  Any RSASVE.{Generate & Recover}


 KT KTS-OAEP  §9.2  Sender (U) RSA-OAEP.Encrypt  No


           Receiver (V ) RSA-OAEP.Decrypt


In KTS1, one party (U) uses RSASVE.Generate to generate and encrypt a secret value Z, 


and the other party (V ) uses RSASVE.Recover to decrypt Z. The latter party then contributes 


a non-encrypted nonce NV . (Per §5.4 of SP800-56B-Rev2, the nonce used in KTS1 should 


be random.) Both the secret value and the nonce are then used as input to a KDM, which 


produces a final agreed key k (not to be confused with the nonce k of ECDSA). In KTS2, 


the clear-text nonce from party V  is replaced with an encapsulated key, therefore requiring 


both parties to implement both RSASVE.Generate and RSASVE.Recover. Both KTS1 and 


KTS2 include a subsequent KDM, either in a one-step version or a two-step version, which 


transforms the pair of contributions (Z and NV ) into a final derived key k. A threshold keygen 


can consider the generation of Z and/or NV  in SSO mode Section A.5.3, if they are to then 


be consumed in SSI mode by the subsequent KDM.


The KTS-OAEP scheme does not use a KDM. Instead, the output key is decided by one of 


the parties, who then sends it encrypted to the other party. The threshold modes of interest 


for KTS-OAEP depend on the primitive, as follows:


• RSA-OAEP.Encrypt with the plaintext (a key to be encapsulated) in SSI mode.


• RSA-OAEP.Decrypt with the plaintext (the key that was encapsulated) in SSO mode.


Each 2KE scheme can be implemented in either a basic form (without key confirmation), or 


with KC in either a unilateral or bilateral manner. Both KDM and KC primitives rely on 


hash-functions of symmetric-key cryptography (see Section A.4.2).


SP800-56B-Rev2 also specifies that any of the mentioned RSA-2KE schemes (KTS1, KTS2, 


and KTS-OAEP) can be followed by a key transport where the established key is wrapped 




















with an approved (symmetric-key based) key-wrapping algorithm [SP800-38F]. However, 


threshold-wise said key-wrapping algorithms are more-unfriendly than KTS-OAEP.


On the ability to bias the key in a 2KE protocol. The various mentioned NIST-specified 


protocols allow one of the parties to significantly bias the result. Specifically, the second 


contributor party in the KTS1 and KTS2 protocols can brute-force its contribution to bias 


several bits (e.g., 40 bits, at a parallelizable computational cost of approximately 240 KDM 


operations). In KTS-OAEP the sender fully determines the key being transported. This is is 


contrast with Blum-style coin-flipping protocols, where the contribution from each party is 


only revealed once the contribution from the other party is committed to, thus implying that 


an honest party can guarantee that the output is not biased (up to abort by the other party).


A.3. Subcategory C1.3: Cat1 ECC Primitives for Pair-Wise Key-Agreement (2KA)


Pair-wise key-agreement (2KA). SP800-56A-Rev3 specifies various pair-wise (i.e., two-


party) key-establishment (2KE) schemes of the KA-type (where the final key depends on 


contributions from the two parties), based on discrete logarithm cryptography. In a 2KA 


scheme, each party uses their own private key(s) and the public key(s) from the other party, to 


first obtain an intermediate common secret Z, and then applies a transformation to obtain a 


final key (called DerivedKeyingMaterial) k that is equal to the one obtained by the other party 


(not to be confused with the nonce k of ECDSA).


In some NIST publications the intermediate secret Z is referred to as a “shared” secret, 


meaning it is known by both parties of the 2KA. This should not be confused with the case of 


a “secret-shared” Z when “thresholdizing” (i.e., decentralizing) one of the original parties.


Each 2KA protocol specified in SP800-56A-Rev3 can be described with up to three phases:


1. A public-key cryptography (PKC) phase, where the parties interact to determine an 


intermediate common secret Z.


2. An asymmetric-key cryptography phase, where each individual party uses a key-


derivation mechanism (KDM) to derive a final key k.


3. An optional key confirmation (KC) phase, based on comparison of message authen-


tication code (MAC) tags, which allows at least one of the parties to confirm that their 


obtained key is equal to the key of the other party.


The subcategory C1.3 (2KA) of Cat1 in this call is only focused on the PKC primitives used 


in the initial phase, namely the Cofactor Diffie-Hellman (CDH) or Menezes-Qu-Vanstone 


(MQV) primitives. However, a submission of a threshold scheme for such a primitive should 


be demonstrated in an implementation of a full-fledged 2KA protocol. Therefore, this section 




















also provides some context about the KDM and (the optional) KC operations, whose possible 


thresholdization is considered in Section A.4.2.


ECC scope. From the schemes in SP800-56A-Rev3, Cat1 only includes those based on 


ECC, which are implementable with elliptic curves specified in SP800-186-Draft. Table 5 


in Section 6.2 lists the curves of interest. 2KA based on finite field cryptography (FFC) is 


left out of scope, following the trend of deprecating FFC in favor of more succinct ECC, 


as done in FIPS-186-5-Draft (which deprecated DSA in favor of ECDSA). The seven 2KA 


schemes in scope are listed in Table 8 and can be classified based on three factors:


• the underlying ECC primitive: CDH or MQV.


• the number of ephemeral (e) keys (2, 1 or 0),


• the number of static (s) keys (2, 1 or 0); and


 Table 8. Seven ECC-2KA schemes


  Primitive ( f ) e s  Scheme
 Intermediate secret Z


 (“agreed” by U and V )
 § in SP 800


-56A-Rev3


 ECC CDH  2  2  (Cofactor) Full Unified Model f (eU ,EV )|| f (sU ,SV )  §6.1.1.2


     2  0  (Cofactor) Ephemeral Unified model f (eU ,EV )  §6.1.2.2


     1  2  (Cofactor) One-Pass Unified Model f (eU ,EV )|| f (eU ,SV )  §6.2.1.2


     1  1  (Cofactor) One-Pass Diffie-Hellman f (eU ,SV )  §6.2.2.2


     0  2  (Cofactor) Static Unified Model f (sU ,SV )  §6.3.2


 ECC MQV  2  2  Full MQV f (sU ,SV ,eU ,EU ,EV )  §6.1.1.4


     1  2  One-Pass MQV f (sU ,SV ,eU ,EU ,SV )  §6.2.1.4


Legend: || = concatenation. § = section in another document. e = number of generated ephemeral key pairs. f  = 
symbol representing the ECC primitive (CDH or MQV). s = number of generated static key pairs; U and V  = the 
two parties in the 2KA protocol. Let A represent one of the parties (U or V ). Abbreviated notation for keys: eA
(= de,A) and EA (= Qe,A) are the ephemeral private and public keys of party A; sA (= ds,A) and SA (= Qs,A) are the 
static private and public keys of party A. The primitive f  makes use of additional parameters not shown here. 









Interchangeability scope. Regardless of the decentralization of any party, a 2KA scheme 


is already a protocol between two parties that intend to obtain a commonly agreed secret. 


Therefore, when considering a threshold scheme for a Cat1-primitive of a 2KA protocol, the 


interchangeability requirement is narrowed to “functional equivalence”. This ensures that 


the output secret (albeit possibly in secret-shared format) on one decentralized side will be 


equal to the one obtained by the other (possibly legacy) party in the 2KA interaction. Cat2 




















(see Section 7) allows for interchangeability in a broader sense, assuming that both parties 


interacting in the 2KA can agree on the new subsequent (KD/KC) mechanisms.


Single-party primitives. The objects of thresholdization are the primitives (see Table 9) 


computed by each individual party in the 2KA protocol. Each of these primitives has 


private/secret key-material in the input or/and output. The threshold protection provided to 


the keys handled by one side of the ECC-2KA depends on which primitives are thresholdized.


 Table 9. ECC-2KA primitives of interest for thresholdization


  Primitive
 Secret
 input?


 Secret
 ouptut?


 Threshold
 friendly?


 Section in
SP800-56A-Rev3


 Section in
 this call


 ECC keygen: get key-pair (d,Q)  —  Yes  Yes  §5.6.1.2 A.5.1
 ECC CDH/MQV: Z = f (dA,QB, ...)  Yes  Yes  Yes  §5.7 A.3.1/2
  Key derivation: k = KDM(Z, ...)  Yes  Yes No  §5.8 A.4.2
  Key confirmation: KC(Z, ...)  Yes  — No  §5.9 A.4.2


Legend: d = private key. f  = CDH or MQV transformation (primitive). k = final secret established by both parties. 
KC = “key confirmation” pseudorandom function, to allow comparison between A and B. KDM = “key derivation
mechanism” function. Q = public key. Z = intermediate secret (before KDM) computed by both parties. 







A threshold scheme for an ECC CDH/MQV primitive allows for confidentiality of the 


private key d. This can be useful even if the intermediate secret Z is reconstructed due 


to a subsequent non-thresholdized KDM. Conversely, in a full-fledged thresholdization of 


the sequence of 2KA primitives, the output Z of the ECC CDH/MQV primitive would be 


secret-shared (i.e., SSO mode), to serve as input to the subsequent threshold KDM phase.


The ECC-2KA“type” includes only the ECC primitives that produce the intermediate 


secret Z, from secret-shared ECC private keys (static or ephemeral). There are two such 


primitives: ECC-CDH (Section A.3.1) and ECC-MQV (Section A.3.2). The ECC key-gen 


and KDM/KC primitives are respectively considered in Sections A.5.1 and A.4.2.


Submissions.  A submitted threshold scheme for an ECC CDH or MQV primitive should:


• Evaluate it for at least one curve for κ ≈ 128, and another for κ ∈ ≈[224,256] — see 


Table 5 in Section 6.2.


• Showcase the execution of at least one of the seven 2KA ECC-based schemes (see 


Table 8), with at least one decentralized party (A, B, or both) using secret-shared 


private keys in the threshold ECC CDH/MQV computation. The implementation 


should also include the KDM (and optionally the) KC procedures, either threshold (see 




















Section A.4.2, if the threshold ECC CDH/MQV is in SSO mode) or non-threshold. In 


other words, the ECC CDH/MQV output may or not be secret-shared, depending on 


whether or not the subsequent KDM/KC primitive is thresholdized.


A.3.1. Subcategory C1.3.1: ECC-CDH Primitive


With a decentralized party A (which can be U  or V ), the ECC-CDH primitive is as follows:


• Secret-shared input:


– [dA] (secret sharing of private key of party A)


• Public input: (known to every party of the decentralized entity representing A)


– QB (the public key of party B);


• Secret-shared output: Secret sharing [Z] of a secret Z = Encode(P), where:


– P = (h ·dA) ·QB (where h is the cofactor)


– Encode is an encoding that does a field-element-to-byte string conversion of the 


x-coordinate of the input.


The output is distributively computed in a way that Z remains threshold confidential.


A.3.2. Subcategory C1.3.2: ECC-MQV Primitive


With a decentralized party A (which can be U  or V ), the ECC-MQV primitive is as follows:


• Secret-shared input:


– [ds,A], [de,A] (secret sharings of the static and ephemeral private keys of party A)


• Public input: (known to every party of the decentralized entity representing A)


– Qe,A (the ephemeral public key of party A);


– Qs,B and Qe,B (the static and ephemeral public keys of party B)


• Secret-shared output: Secret sharing [Z] of a secret Z = Encode(P), where:


– P = h · impsigA · (av f (Qe,B) ·QS,b);


– impsigA = (de,a +av f (Qe,A) ·ds,A) mod n;


– av f (Q) is an integer associated to a public key Q, computed via an “Associate 


Value Function” ([SP800-56A-Rev3, §5.7.2.2]);




















– Encode is the same encoding as defined for ECC CDH.


There are two possible implementation forms for the ECC MQV primitive:


1. The full form ([SP800-56A-Rev3, §5.7.2.3.1]), implemented as described above, where 


both static and ephemeral keys exist and are distinct.


2. The one-pass form ([SP800-56A-Rev3, §5.7.2.3.2]), where exactly one other party (A


or B) does not have an ephemeral key, and so the above algorithm uses instead the 


corresponding static key:


• If party A does not have an ephemeral key, then de,A and Qe,A are respectively 


instantiated by ds,A and Qs,A.


• If party B does not have an ephemeral key, then Qe,B is instantiated by Qs,B.


A.4. Subcategory C1.4: Cat1 “Symmetric”


The “symmetric” subcategory includes primitives for the NIST-approved symmetric-key 


enciphering scheme (the advanced encryption standard [AES]), as well as for other NIST-


approved primitives used for KDM/KC. Some primitives in scope (e.g., hashing) are techni-


cally defined as keyless, but in practice they can be considered in settings (e.g., for KDM/KC) 


where their “plaintext” input is a key (symmetrically) known by two parties.


While “symmetric” primitives are often used in standardized “modes of operation” for large 


inputs, the thresholdization focus of this call is on the basic primitives, where the complexity 


of specifying a threshold scheme lies. For example, once a threshold scheme for AES 


enciphering/deciphering is defined, then it is straightforward to apply it to some mode of 


operation based on AES, including for the purpose of computing a cipher-based message


authentication code (CMAC), or a ciphertext based on a mode for authentication encryption 


with associated data (AEAD). Similarly, a threshold scheme for an approved hash function 


could then also be applied to calculate an HMAC. Some threshold schemes may nonetheless 


allow a cost amortization when repeatedly executed.


A.4.1. Subcategory C1.4.1: AES Enciphering/Deciphering


With respect to threshold enciphering/deciphering in Cat1, there is only one symmetric-key 


block-cipher of interest: AES, specified in FIPS-197. A submission of threshold scheme 


for AES enciphering/deciphering must assume a secret-sharing of the secret key, and 


should provide implementations for at least the key-sizes 128 and 256. A submission 


can choose to implement any (or various) types of input/output interface from {NSS, SSI, 


SSO and SSIO}. In applications where the high-sensitivity of the plaintext warrants a 




















distribution of trust over its knowledge, then it can make sense to consider: an SSI mode for 


enciphering, and/or an SSO mode for deciphering, so that the plaintext is not reconstructed 


within the decentralized AES-evaluator. For benchmarking purposes, a submission should 


evaluate performance at least in the single evaluation case, i.e., for a single AES enciphering 


and/or deciphering. However, to help clarify possible amortization gains and/or clarify the 


feasibility of the threshold approach for AES modes of operation (in the SP800-38-series), 


the benchmarking can also measure performance for the threshold execution of 26 and/or 


210 AES encipherings/decipherings in some specific mode of operation.


Threshold AES enciphering versus oblivious AES evaluation.  Oblivious AES evaluation 


is a common secure 2-party computation (S2PC) benchmark in the literature. There, a single 


party holding the plaintext does not share it with a single party holding the key, and yet 


receives the corresponding ciphertext. The application of threshold AES in scope in this call 


is different, in that the threshold entity is responsible for computing the output, when the 


key has been secret-shared. The plaintext is either (i) directly shared with the threshold-de-


centralized entity responsible for the enciphering or deciphering, or (ii) is secret-shared in 


the input/output. A secret-shared-I/O threshold AES enciphering may also be useful for the 


computation of a CMAC, which can in turn be useful for 2KE KDM/KC. That said, techniques 


developed for threshold AES are likely to also be useful for oblivious AES evaluation.


A.4.2. Subcategory C1.4.2: KDM and KC for 2KE


The protocols for pair-wise key-establishment (2KE), in both the ECC-based [SP800-56A-


Rev3] and RSA-based [SP800-56B-Rev2] cases, are finalized with the use of a key-deriva-


tion mechanism (KDM) [SP800-56C-Rev2; SP800-108-Rev1] and optional key-confirmation 


(KC). These operations follow after the generation of a precursor intermediate secret M, 


obtained/produced via a key-agreement of key-transport type of 2KE protocol.


Threshold unfriendliness.  The current NIST-specified KDM and KC primitives are 


possible to thresholdize based on complex MPC protocols, but are based on threshold-


unfriendly hash-or-XOF functions ([FIPS-180-4; FIPS-202]) or MAC/PRFs (of the type 


CMAC [SP800-38B], HMAC [FIPS-198-1] or KMAC [SP800-185]).


Considering the “pair-wise” nature of key-establishment protocols (i.e., involving two sides), 


some use cases (namely when party A has to be thresholdized, but party B has to use a legacy 


implementation) may require the use of a KDM and/or KC that is functionally-equivalent 


to a currently NIST-specified one. However, the costs and benefits of implementing a 


potentially costly MPC in such a case should be carefully considered.




















Threshold schemes for AES enciphering/deciphering may be easy to adapt to threshold sch-


emes for CMAC primitives. Techniques used to enable threshold schemes for the hashing that 


is useful for KDM or KC may also be reusable for (pseudorandom) EdDSA and Deterministic 


ECDSA, which require a secret-nonce computed as a hash whose pre-image contains a private 


nonce-derivation key.


Cat2 of this call enables proposals of threshold-friendlier KDM and KC primitives that would 


still retain the desired properties of the final generated key, namely indistinguishability from 


uniform selection, and one-wayness with respect to the intermediate key Z used as input.


A.4.2.1. Key Derivation Mechanism (KDM)


A threshold KDM scheme makes sense if the corresponding party (in the pair-wise key-


-establishment) is supposed to not learn the final secret k. The threshold KDM scheme 


produces a secret-shared output (SSO) (similar to a threshold keygen scheme), so that the 


final secret k (to be consumed by another primitive) is secret-shared. There are one-step 


(extraction) and two-step (extract-then-expand) KDMs (see SP800-108-Rev1 for the second 


step). Additionally, there are variants (see SP800-135-Rev1) approved for specific applications.


Since the final key k can be easily derived from the intermediate key M, it follows that it only 


makes sense to thresholdize a KDM if the input (intermediate) key M is also secret-shared. 


Conversely, if a KDM is not thresholdized but Z has itself been produced in a threshold 


manner, (i.e., based on a secret-shared private key d), then the reconstruction of Z does not 


break the confidentiality of the private key d.


A.4.2.2. Key Confirmation (KC)


A threshold key-confirmation primitive computes a PRF image of the intermediate secret Z, 


without Z ever being reconstructed. This can make sense if the KDM is also thresholdized 


in SSI mode, to directly use a secret-shared Z as input, withouth needing to reconstruct it. 


Key-confirmation is defined, in various possible modes (unilateral or bilateral), for ECC-


based key-agreement in SP800-56A-Rev3 (§5.9, Table 5) and RSA-based key-establishment 


in SP800-56B-Rev2 (§5.6, Table 1).


A.5. Subcategory C1.5: key-Generation (keygen) for Cat1 Schemes


A key-generation (keygen) primitive determines a private/secret “key” that is needed by 


subsequent primitives. The threshold scheme may also compute other public parameters. For 




















example, the keygen primitive of a digital signature scheme produces a private/public keypair, 


whose private element is then required to produce signatures, and whose public element is 


used to verify the correctness of signatures. Typical requirements for private keys include 


unbiasing and confidentiality. These requirements can also apply to the generation of other 


secret material, such as a random secret nonce. Secrets generated via a keygen primitive may 


be persistent (e.g., for multiple-times use, without planned erasure), or ephemeral (e.g., for 


single-time use, followed by erasuse). Table 10 provides a non-exhaustive list of parameters 


that may be generated via a keygen operation (some variations are possible).


 Table 10. Examples of keygen purposes


  Keygen purpose (subsequent operation)  Private/secret key  Other public elements


 ECC-signing; ECC-2KA primitives  exponent d (integer mod n) Q = d ·G (elliptic curve point)


 RSA signing and decryption  primes (p,q)  modulus N = p ·q
     exponent d = e−1mod φ N  exponent e


 RSA encryption for 2KE  random bit-string Z c = RSAEP((n,e),Z)


  Key-derivation / key-confirmation    KC(Z, ...)


 AES enciphering/deciphering  random bit-string k  —


Terminology and scope for threshold schemes for keygen. Threshold schemes for keygen 


are often called distributed key generation (DKG) protocols. In this call, the focus on DKG is 


only on the generation of the private/secret keys and (when applicable) the public parameters 


that depend on them (e.g., an RSA modulus obtained from the product of two secret primes, 


or the elliptic curve public point obtained from integer-multiplying a base point by the secret 


key). Other “domain parameters”, such as the security strength κ , the parameters of an 


elliptic curve, or an RSA encryption key, which may be determined before the computation of 


the private key (but which in conventional specifications may sometimes be included within 


the keygen primitive) can be assumed to be fixed or pre-agreed upon.


Interchangeability of random values. In a DKG protocol, the random private/secret 


key to be output in secret-shared form, and possibly other intermediate random elements, 


is obtained by combining random contributions from several parties. This call does not 


pose specific requirements on these random values, i.e., beyond the requirement of inter-


changeability with regard to some subsequent operation of interest, However, a submitted 


DKG protocol should be accompanied by an explanation of why the proposed randomness 


generation mechanism provides appropriate security assurances, namely compared to the 




















assurances provided by the conventional random-bit generation (RBG) [SP800-90A-R1; 


SP800-90B; SP800-90C-3PD] that may be required in the corresponding conventional (non-


threshold) keygen specification. Some original RBG-related requirements associated with 


random values in the conventional specification may still be considered for the individual 


contributions of each party in a corresponding DKG.


A.5.1. Subcategory C1.5.1: ECC Keygen (for ECDSA, EdDSA, and ECC-2KA)


The ECC keygen of a private/public key-pair is similar across various schemes, including 


for ECDSA and EdDSA signature schemes [FIPS-186-5-Draft], and for ECC-2KA primitives, 


such as CDH and MQV [SP800-56A-Rev3]. In a threshold ECC keygen (i.e., DKG for an 


ECC scheme), the usual goal is to produce a secret-sharing [d] of a private key d (usually a 


positive integer mod n, the order of the subgroup of interest), along with a corresponding 


(not-secret-shared) public key Q = d ·G. In a threshold 2KA scheme, each party may 


need this decentralization (secret-sharing) for their static private key dA (or ds,A) and/or an 


ephemeral private key (de,A).


Some schemes, such as EdDSA, may include additional private/secret elements (e.g., a 


nonce-derivation key for pseudorandom generation of nonces) that do not require a sub-


sequent verifiable relation with the public key. The generation of said components in the 


threshold setting may be considered differently (or may even not be necessary), provided 


that an appropriate interchangeability property is satisfied with regard to the subsequent 


operations that use the ECC private/public keypair.


Submissions of threshold schemes for ECC signing and ECC-2KA primitives are expected 


(though not required) to include a corresponding proposal of a compatible ECC-DKG 


protocol. Implementation recommendations for a submitted DKG (e.g., which elliptic curves 


and security parameters) should apply to at least one subsequent threshold scheme of interest.


A.5.2. Subcategory C1.5.2: RSA Keygen


RSA keygen is needed for the RSADSA scheme (Section A.1.1) and the RSA PKE scheme 


used for 2KE (Section A.2). In its basic format, RSA keygen consists of:


• generating a pair of random secret primes (p,q), and outputting their product N; and


• computing and outputting as private key d the inverse (mod LCM(p−1,q−1)) of a 


public exponent e, where e is selected (randomly or as an input parameter) before the 


selection of the primes.




















DKG schemes for RSA can be submitted separately from subsequent threshold operations, 


such as threshold RSA signing, threshold RSA decryption, or threshold RSA SSI-encryption. 


Still, a submission of RSA DKG should be compatible with said subsequent schemes, 


and should include evaluation for at least two security parameters consistent with the 


recommendations from Table 5.


FIPS-186-5-Draft (§A.1) and SP800-56B-Rev2 (§6.2–§6.3) specify various requirements for 


the RSA keygen, respectively for signing and PKE. Possible variations of the format 


of the output key include the prime-factor format and the CRT format, as explained in 


Section A.2.2. The following paragraph list some of the requirements.


A.5.2.1. Criteria for the RSA Modulus and Primes


• p and q must be of the same bit length (i.e., half the length of the RSA modulus N).


• p and q must be randomly generated (but the two most significant bits of each may be 


arbitrarily set), as “probable” or “provable” primes, satisfying at least one of the five 


options from Table 11.


 Table 11. Criteria for the random primes of an RSA modulus


  Type Sub-type Provable prime Probable prime


  Simple provable p, q


    probable p, q


  Complex provable p1, p2 q1, q2 p, q


    hybrid p1, p2, q1, q2, p, q


    probable p1, p2, q1, q2, p, q


Per §A.1.1 of FIPS-186-5-Draft: p1, p2, q1, q2 are called auxiliary primes and must be divisors of 
p−1, p+1, q−1 and q+1, respectively, i.e., p1|p−1, p2|p+1, q1|q−1, q2|q+1.








To satisfy the “complex” type of key-generation, the auxiliary primes must exist with certain 


minimum lengths. If p and q are required to be provable primes, then their minimal required 


bit-length is roughly half of the minimal required length of probable primes.


In a submitted RSA DKG, the threshold computation of the primes and modulus may be 


modularized from the subsequent calculation of the private decryption/signing exponent 


d. Interestingly, there are conceivable applications (beyond signatures, encryption, and 


decryption) where RSA moduli are useful and a private exponent is not necessary.




















A.5.2.2. Criteria for the Private Exponent


The private exponent d = e−1 (mod L), where L = LCM(p−1,q−1), must be larger than 


2nlen/2 and smaller than L, where the public exponent e is an integer between 216 and 2256


selected before the generation of p and q.


A.5.3. Subcategory C1.5.3: Bitstring Keygen


Various primitives require the random generation of a secret bit-string (or integer within a 


defined interval), without the need for a corresponding public component. For example, this 


is the case with generating: an AES key; a secret-key for encapsulation under an RSA PKE; 


a nonce for use in other schemes; a salt for a KDM or KC in the scope of a 2KA.


A DKG based on verifiable secret-sharing may require public commitments of the shares of 


each party, even if the original primitive did not require any public key. A submission should 


explain how/whether the cryptographic assumptions sustaining the security of the threshold 


scheme change in comparison with those required for the security of the original primitive. 


For example, AES-256 is considered to be post-quantum secure, whereas ECC-based 


commitments used in typical MPC protocols might not be.


A.6. Subcategory C2.6: Advanced


As mentioned in Section 7.2.1, subcategory C2.6 allows for the submission of threshold 


schemes for primitives that support cryptographic schemes with advanced functional features 


that are different from those in current NIST standards. For example, in the case of a


fully-homomorphic encryption (FHE) scheme, the supported operations go beyond the usual 


keygen, encryption and decryption from a regular encryption scheme. There is also a set of 


homomorphic operations (e.g., addition and multiplication) over ciphertexts (see, e.g., [HES, 


§1.1.1]). As another example, an identity-based encryption (IBE) scheme has not just one 


key-generation primitive, but rather two: one for generating a public key and a master private 


key, and another one (requiring the master key as input) for generating a decryption key for 


each possible “identity” (e.g., email addresses). A generalization of IBE is attribute-based


encryption (ABE), where the private key of each user is created based on a set of attributes.


In this subcategory, the selection of the use-cases used to benchmark performance is left to 


the discretion of the submitters. For example, different FHE schemes may require different 


benchmarking operations to highlight their best features. One FHE scheme may be better 


suited to homomorphic Boolean operations (operations over bits), while another one may be 


better suited for homomorphic modular operations over large integers.




















A.6.1. Use-Case Example: Non-Threshold FHE-Based AES Oblivious Enciphering


0a. Setup FHE (keygen): An FHE scheme is initialized with encryption key e (for encryp-


tion operation FHE.Ence), and decryption key d (for decryption operation FHE.Ence), 


and allows homomorphic-evaluation (over FHE-ciphertexts) of any function f  (within 


a certain range of functions) using operation FHE.Hom[ f ].


0b. Setup AES (keygen): An AES cipher is initialized with secret key k, with AES.Enck


denoting the corresponding enciphering operation.


0c. Setup parties (private inputs): (i) Client A knows a secret plaintext m, and the FHE 


encryption key e; (ii) Server S knows the AES secret-key k; (iii) and client B (possibly 


the same as client A) knows the FHE decryption key d.


1. FHE-Encrypt. The client A FHE-encrypts the secret plaintext m, obtains the FHE-


ciphertext C = FHE.Ence(m), and sends it to the server S.


2. FHE-Homomorphic-Evaluate. The server S homomorphically evaluates the AES-


enciphering, obtains H = FHE.Hom[AES.Enck](C) (which is a valid FHE-encryption 


of the AES-enciphering of secret plaintext m), and sends the result to client B.


3. FHE-Decrypt. The client B FHE-decrypts the received ciphertext H, and thus obtains 


the AES-enciphering of the secret plaintext: AES.Enck(m) = FHE.Decd(H).


4a. (Optional) Prove correctness. The server S may also send a ZKPoK string π =


ZKPoK.Prove[k;(H,C) : FHE.Hom[AES.Enck](C) = H] to client B, thus ZK-proving 


knowledge of a secret AES key (k) that is consistent with the homomorphic operation 


that transformed the initial FHE-ciphertext C into the final FHE-ciphertext H. A more 


sophisticated ZKPoK can also be used to prove consistency with some additional 


public commitment of the AES-key k.


4b. Verify the proof. Anyone with the FHE-ciphertexts (C, H) can verify the correctness 


of the ZKPoK π , by checking true=? ZKPoK.Verify(π,(H,C),AES.Enc).


External engagement. Proposals of FHE schemes (and their threshold schemes) are 


welcome to be submitted and/or analyzed in connection with other related ongoing public 


efforts, such as HomomorphicEncryption.org and FHE.org, as a way of promoting: (i) 


fulfillment of community-based technical recommendations; (ii) alignment with existing 


reference material/specifications; and (iii) further public scrutiny of proposed schemes. Such 


engagements may also help clarify reference use-cases for useful benchmarking.




















A.6.2. Threshold Schemes for FHE-based AES Oblivious Enciphering


Once a conventional (non-threshold) scheme is specified (S6) in scope of the “advanced” 


subcategory C2.6, there may be multiple types of decentralization to consider. For the above-


described example of FHE application (Section A.6.1), the following is a non-exhaustive list 


of possible decentralizations of one of the original participants (client A, server S, or client 


B) into a threshold entity composed of multiple parties.


1. Threshold FHE.Keygen. In a setup phase with a thresholdized client B, a DKG can 


distributively compute a secret-sharing of an FHE decryption key d. Whether or not 


the encryption key e is secret-shared can depend on whether the FHE scheme is of, 


respectively, symmetric-key or asymmetric-key (i.e., public/private key pair) type.


2. SSI threshold FHE-Encryption. If client A is thresholdized, and set up with a secret-


shared plaintext m, a threshold scheme can compute C = FHE.Ence(m) without 


anyone learning m.


3. Threshold Homomorphoic evaluation (of function with secret parameter). If the 


server S is thresholdized, and setup with a secret-sharing of the AES key k, then the 


parties can distributively compute the homomorphic-evaluation operation, to obtain 


H = FHE.Hom[AES.Enck](C)), without anyone learning k.


• In an NSS mode, all server-parties learn H.


• In an SSO mode, each server learns a secret-share of H.


4. Threshold FHE decryption. If client B is thresholdized, and setup with a secret-


sharing of the FHE-decryption key d, then a threshold scheme can decrypt the received 


value H to obtain C = AESk(m), without anyone learning d.


• In a NSS mode, all clientB-parties learn C.


• In a SSO mode, each clientB-party learns only a secret-share of C.


5. Threshold ZKPoK. (See subcategory C2.7 in Section A.7)


On the use case of oblivious AES enciphering.  The use case is called oblivious AES-


enciphering because the client B obtained an AES-enciphering of the secret plaintext m


even though the AES-key holder (the server S) remained oblivious to the secret plaintext. 


Interestingly, oblivious AES-enciphering is also a typical benchmark case for secure 2-party 


computation (S2PC; consider the case where clients A and B are the same), usually using 


different techniques, such as garbled circuits and/or oblivious transfer. Compared with an 


FHE-based solution, usual S2PC protocols (expectably) lead to much faster execution, but 


also much larger communication complexity. 




















A.7. Subcategory C2.7: ZKPoKs


Besides (secure) multi-party computation (MPC), a broad type of primitive of great interest 


in the threshold context is the zero-knowledge proof of knowledge (ZKPoK), which is 


covered by subcategory C2.7. As mentioned in Section 7.2.2, a submission of ZKPoK in 


this subcategory must specify a conventional ZKPoK, and possibly also specify a threshold 


version (when the prover is distributed and there is a secret-sharing of the secret input).


In usual ZKP terminology [ZkpComRef], a ZKPoK is used to prove a statement of knowledge, 


such as knowledge of a secret witness (w) that satisfies a given relation (R) with a public


instance (x), such that R(x,w) is true. For example, in a ZKPoK of a private RSA key, the 


instance can be the RSA modulus N, the secret witness can be the corresponding pair (p,q)


of prime factors, and the relation can be the predicate that returns true if and only if the 


input witness is indeed a pair of primes and their product is the public modulus.


Type of “proofs” of interest:


• Proofs and arguments: The use of “proof” in this call is meant to also include the 


case of arguments with computational soundness. Any submission of ZKPoK should 


clarify its soundness type (to allow for differentiation between “proof” and argument).


• ZKP of knowledge (versus of correctness): The proofs in scope are ZKPoKs, but can 


also serve the purpose of ZK-proving correctness of the secret data (whose knowledge 


is being proven) as well as of the corresponding public data. In the literature, a ZKP 


of correctness is also known as a ZKP of “language membership”.


• Transferable and non-interactive. Traditionally, ZKPs and ZKPoKs are defined as 


two-party protocols with a requirement of deniability (also known as non-transferabil-


ity), implying that a verifier convinced by a proof cannot later transfer said confidence 


to a third party. This property often stems from interactivity between prover and 


verifier, and/or relies on local setup assumptions, such as a local common reference


string (CRS) or local random oracle (RO). Conversely, the present call is by default 


interested on transferable non-interactive zero-knowledge (NIZK) proofs that can be 


publicly verified non-interactively. A submission of ZKPoK can deviate from this 


default (non-interactiveness and transferability) as long as justified on the basis of 


utility to the threshold setting.


The instantiation of some of the above-listed attributes (e.g., transferability, and compu-


tational soundness) may affect some aspects of composability. These effects should be 


discussed in any submission that proposes a ZKPoK.




















Distributed prover (not verifier).  In this call, the default setting of interest for thresholdiza-


tion of a ZKPoK is the secret-sharing, across multiple parties, of the secret key (traditionally 


held by a single prover) whose knowledge is being proven. While a ZKPoK variant can 


also be conceived for the case of distributed verification (with the ZK property requiring 


that a threshold number of verifier parties do not collude), such setting is not the default. A 


deviation from the mentioned default in a submission of ZKPoK is possible but its auxiliary 


utility for the threshold setting then needs to be thoroughly argued for.


Examples.  Table 12 lists various examples of ZKPoK of anticipated interest with regard to 


Cat1 primitives. Other examples can be conceived for primitives in Cat2.


 Table 12. Example ZKPoKs of interest related to Cat1 primitives



 Related


 type
 Related (sub)sub-


 category: Primitive
 Example ZKPoK (including consistency with public


 commitments of secret-shares, when applicable)


 Keygen C1.5.1: ECC keygen of discrete-log (s or d) of pub key Q
    C1.5.2: RSA keygen of factors (p, q), or group order φ , or decryption key d
    C1.5.3: AES keygen of secret key k (with regard to secret-sharing commitments)
 PKE C1.2.1: RSA encryption of secret plaintext m (encrypted)
    C1.2.2: RSA decryption of secret-shared plaintext m (after SSO-threshold decryption)
 Symmetric C1.4.1: AES enciphering of secret key k (with regard to plaintext/ciphertext pair)
    C1.4.2: Hashing in KDM of secret pre-image Z


Some observations:


• A ZKPoK of a secret AES key that transforms a given plaintext into a given ciphertext 


corresponds to a signature primitive submitted to the PQC process.


• No ZKPoK example was provided in association with the signing operation, since 


their public verification operation already inherently verifies the signature correctness. 


In fact, a digital signature often constitutes a transferable NIZKPoK of the private 


signing key corresponding to the public key, with said proof being additionally bound 


to a message (the element being signed). For example, an EdDSA/Schnorr signature 


(Section A.1.1) is itself a NIZKPoK of discrete-log.


• The cases of ZKPoK related to a private signing key, but possibly without producing 


a signature, are associated with keygen (subcategories C1.5 and C2.5).


If a submission of threshold scheme uses a ZKP/ZKPoK that may be of interest to support 


other threshold schemes, then it should modularize the specification of said ZKP/ZKPoKand 


indicate it as useful also for consideration in subcategory C2.7.




















Submission of a ZKPoK as auxiliary to other threshold scheme(s): 


• Specification of a non-threshold version. A submission in the ZKPoK subcategory 


must specify a conventional (non-threshold) ZKPoK. This may be submitted without 


a corresponding distributed/threshold version, as long as the documentation clarifies 


how the conventional ZKPoK can be useful for the threshold setting (perhaps some 


other concrete threshold scheme). For example, a conventional ZKPoK can be justified 


for use by a dealer to prove correctness of an established secret-sharing setup. There 


may nonetheless be an additional value in also specifying a threshold version of the 


ZKPoK (i.e., when the secret input is distributed).


• Standalone versus embedded proposal of a ZKPoK. A package that proposes 


an auxiliary ZKPoK (and possibly a distributed version thereof) can be submitted 


within the standalone ZKPoK subcategory, or within a submission of a threshold 


scheme(s) for other primitives in Cat1 or Cat2. In the standalone case, the proposal 


must clarify how the secret and public knowledge matches the setting of (e.g., a 


particular secret-sharing useful for) a threshold scheme for some primitive of interest.


• External engagement. Proposals of ZKPoK schemes (and their threshold schemes) 


are welcome to be submitted and/or analyzed in connection with other related on-


going public efforts, such as ZKProof.org, as a way of promoting: (i) fulfillment of 


community-based technical recommendations; (ii) alignment with existing reference 


material/specifications; and (iii) further public scrutiny of proposed schemes. Such 


engagements may also help clarify reference use-cases for useful benchmarking.


Notes on features.


• Succinctness: For practicality, succinctness is a useful feature of a ZKPoK. When 


focusing on succinct and non-interactive ZKPoKs, it is also common to refer to them 


as SNARKs (succinct non-interactive arguments of knowledge).


• Transferability: As mentioned above, non-interactive public verifiability / transfer-


ability are default desired features


• Security assumptions: While the assessment of security of a ZKPoK may be based on 


assumptions different from those inherent to the underlying cryptographic primitive, 


or to a related proposed threshold scheme, said implications should be distinguished 


across various security properties. In particular, it is relevant to characterize the 


properties of ZK, soundness and non-malleability, and how they may vary upon 


various types of protocol composition (e.g., concurrent executions).




















Specialized versus generic ZKPoKs.  Some ZKPoKs (e.g., of a discrete-log, or of an RSA 


private key) may be based on specialized techniques somewhat similar to the operations 


(e.g., exponentiations) used to commit the secret pre-image. Conversely, other ZKPoKs (e.g., 


when proving knowledge of a pre-image of AES-enciphering, or of SHA-based hashing) 


may stem more easily from a generic ZKP system that simply requires “arithmetizing” the 


statement of knowledge, the instance and the witness in some suitable representation (e.g., 


specifying a Boolean or arithmetic circuit, and instantiating its input variables). In the latter 


case, a submitted ZKPoK can be explained generically, and then a simple explanation be 


given on how to apply it to a circuit (or other applicable representation). For example, 


the NIST Circuit Complexity project [Proj-CC] collects Boolean circuit representations of 


various NIST-approved primitives, such as from AES and SHA. The final version of this call 


may reference a specific representation for Boolean circuits, to facilitate an interchangeable 


specification of circuits of certain NIST-specified primitives (e.g., of certain block-ciphers 


and hash-functions) whose proof of knowledge of pre-image may be useful.


A.8. Subcategory C2.8: (Auxiliary) Gadgets


As mentioned in Section 7.2.3, subcategory C2.8 allows for the consideration of gadgets, 


such as garbled circuits, oblivious transfer, generation of correlated randomness, commit-


ments, secret resharing (possibly for a new threshold value and a new total number of 


parties), multiplicative-to-additive share conversion, additively homomorphic encryption 


(AHE), MPC or ZKP friendly hashing, consensus, and broadcast. The specification of 


some gadgets may also fit other subcategories. For example, an AHE scheme allows for an 


advanced feature (homomorphic addition over ciphertexts), and thus can fit in “advanced” 


subcategory C2.6 (if accompanied by a corresponding threshold scheme), and at the same 


time can also be useful to support multiple other threshold schemes, and thus fit in subcate-


gory C2.8. In such type of cases, a submission should identify (e.g., including in S2 and S3) 


the fit in various subcategories.


Gadgets can be proposed in a standalone manner in a submission, or as a module in a more 


encompassing submission in the scope of other subcategories. A standalone submission 


of an auxiliary gadget (and possible threshold version thereof) should make a strong case 


for its utility in supporting the threshold environment, and/or in directly supporting various 


concrete threshold schemes in scope of other subcategories in this call. 




















B. Submission Checklists


The following are draft templates of checklists to help keep track of the fulfillment of the 


various requirements for a complete submission:


B.1. Checklist for Submission Phases (Ph) (see Section 4)


 Check  #  Item Comments


 � Ph1  (Optional) Early abstract
 � Ph2  (Optional) Preliminary package
 � Ph3  Full package (M1–M5)


B.2. Checklist for Package Main Components (M) (see Section 4)


 Check  #  Item Comments


 � M1  Written specification (S1–S16)
 � M2  Reference implementation (Src1–Src4)
 � M3  Execution instructions (X1–X7)
 � M4  Experimental evaluation (Perf1–Perf5)
 � M5  Additional statements


B.3. Checklist for M1: Written Specification Sections (S) (see Section 4.2)


 Check  #  Item Comments


 � S1  Title pages
 � S2  Abstract
 � S3  Executive summary
 � S4  Index
 � S5  Clarification of prior work
 � S6  Conventional primitives/scheme
 � S7  System model
 � S8  Protocol description
 � S9  Security analysis
 � S10  Analytic complexity
 � S11  Choices and comparisons
 � S12  Technical criteria
 � S13  Deployment recommendations
 � S14  Notation
 � S15  References
 � S16  Appendices (optional)




















B.4. Checklist for M2: Open source (Src) Reference Implementation (see Section 4.3)


 Check  #  Item Comments


 � Src1  Is self-contained
 � Src2  Is licensed as open-source
 � Src3  Contains inline comments
 � Src4  Has a clear API


B.5. Checklist for M3: Execution Instructions (X) (see Section 4.4)


 Check  #  Item Comments


 � X1  User manual: compilation
 � X2  User manual: parametrization
 � X3  User manual: execution
 � X4  User manual: KAT set
 � X5  Script: KAT
 � X6  Script: benchmark
 � X7  Script: others (optional)


B.6. Checklist for M4: Performance Analysis (Perf) (see Section 4.5)


 Check  #  Item Comments


 � Perf1  Memory complexity
 � Perf2  Processing time
 � Perf4  Networking time
 � Perf3  Communication complexity
 � Perf5  Round complexity


B.7. Checklist for Technical Requirements (T) (see Section 5)


 Check  #  Item Comments


 � T1  Primitives
 � T2  System model
 � T2.1  Participants
 � T2.2  Distributed systems and communication
 � T2.3  Adversary
 � T3  Security idealization
 � T4  Security versus adversaries
 � T4.1  Active
 � T4.2  Adaptive
 � T4.3  Pro-active
 � T5  Threshold profiles
 � T6  Building blocks
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1.4 The optional template made available for comments

The following  was made available to facilitate comments.

Public comments about the NIST IR 8214C ipd
“NIST First Call for Multi-Party Threshold Schemes” (initial public draft)

FirstA LastA1 · FirstB LastB2 · FirstC LastC3

Month day, 2023

[[REMOVE  THIS  PORTION:  This  is  a  suggested  but  not  mandatory  template.  Once  filled,
preferably with no more than six pages, export to a file in portable document format (PDF) and send
by  email  to  nistir-8214c-comments@nist.gov with  the  subject  “Public  comments  on  NIST IR
8214C ipd (Call for threshold)”, before the public comment closes (April 11, 2023).]]

1.  Generic scope of submissions and organization into two categories (Section 3)
<Comments go here>

2. Requirements and recommendations for submissions (Section 4)
<Comments go here>

3. Technical requirements (Section 5)
<Comments go here>

4. Primitives and threshold modes in Cat1 (Section 6)
<Comments go here>

5. Subcategories in Cat2 (Section 7)
<Comments go here>

6. Details of subcategory ___ (Appendix A)
<Comments go here> (duplicate this section as applicable)

7. Submission checklists (Appendix B)
<Comments go here>

8. Diverse editorial feedback
<Comments go here>

9. Other comments
<Comments go here>

1 Fill in with affiliations and possible disclaimers.
2 Fill in with affiliations and possible disclaimers.
3 Fill in with affiliations and possible disclaimers.
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2 Informal Lists of Topics

The following topics, informally gathered based on the received comment sets, are intended 
as a mere auxiliary index of the content in the actual comments (detailed in Section 3).

 #  Main topics (informal)

#1  Scope; quantum resistance.
#2  Innovation; models.
#3  Threshold motivation and alternatives; some expired patents.
#4  Mandatory checks; KAT values; implementation complexity.
#5  Fully homomorphic encryption (FHE).
#6  Threshold & oblivious pseudo-random functions (PRF); keygen; robustness; asynchronicity.
#7  Shamir Secret-sharing (safe evaluation points)
#8  Scope; keygen; adaptive security; key-refresh; bounds; broadcast; thresholds; party’s state.
#9  Attribute-based encryption (ABE): ciphertext-policy, key-policy, multi-authority.
#10  All-or-nothing transform (AONT) and homomophic encryption.
#11  Implementation dependencies, KAT values in randomized multi-party runs.
#12  Robustness.

2.1 From A. Thompson (see Comment Set #1)

1. Emphasis of quantum resistance; examples of PQC selected schemes.

2. Clarify the types of adversaries.

2.2 From S. Ranellucci (see Comment Set #2)

1. Innovation: notes on state of the art, system setup, system model, applicability of protocols.

2. Continuous progress in the area.

3. MPC protocols vs. traditional primitives.

4. Broad scope vs narrow focus.

5. Protocol evolution.

6. Conservative assumptions, vulnerabilities, scrutiny, attacks.

7. Validation of key-shares.

8. Making assumptions explicit.

2.3 From F. Sudia (see Comment Set #3)

1. Theshold motivation, risk assessments.

2. Confidentiality, integrity, availability, authenticity.
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3. Auditability of various properties.

4. PKI decentralization.

5. ulti-signatures, secret-sharing of secret-shares.

6. Malicious design, testing, proof of use of key-shares.

7. References to 4 expired patents.

2.4 From J. Miller, and J. van de Pol (see Comment Set #4)

1. Mandatory checks with corresponding KAT values.

2. Implementation complexity.

3. Auditability of implementation and API.

4. Veto power and liveness property in threshold profiles.

2.5 From A. Badawi, A. Alexandru, N. Genise, D. Micciancio, Y. Polyakov, 
Saraswathy R.V., and V. Vaikuntanathan (see Comment Set #5)

1. FHE based on LWE / Ring-LWE.

2. Motivation for FHE, use-cases, standardization efforts.

3. FHE as a gadget for MPC.

4. FHE in passive model.

5. ZKP for actively secure (threshold) FHE.

6. Building blocks with increasing levels of complexity for active security.

7. Various concrete FHE schemes in three categories.

8. Three classes of use-cases: keygen/decryption; homomorphic additions; general computations.

9. Threshold friendliness across the three categories of FHE schemes.

10. Open-source implementations (existing libraries).

11. 26 bibliographic references.

2.6 From F. Benhamouda, S. Halevi, H. Krawczyk, and T. Rabin (see Comment 
Set #6)

1. Cat2 also relevant because of applications.

2. Threshold PRF/OPRF for key-management and decentralized identities.

3. Threshold PRFs, and threshold oblicious PRFs.

4. Threshold randomness beacon for keygen or as a gadget.

5. Clarification of gadgets vs. subprotocols (e.g., agreement, and broadcast encryption).
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6. Protocol robustness (e.g., guaranteed output delivery) and liveness.

7. Asynchronous channels.

8. DKG is also usable for ephemeral secrets.

2.7 From H. Maji (see Comment Set #7)

1. Security of secret-sharing when subject to leakage from the secret shares.

2. For example, some bits of binary representation of each share may leak.

3. Distinguisher attack when shares are evaluated at consecurity integers.

4. Safer evaluation places in Shamir secret sharing.

5. Security when selecting random evaluation places.

6. Derandomization of evaluation places, Mersenne prime modulus.

7. Needed caution in selecting evaluation places.

8. Five bibliographic references

2.8 From J. Katz, C. Komlo, X. Meng, and N. Smart (see Comment Set #8)

1. Broadness of call, divising attention across subcategories.

2. Threshold schemes for signatures are more mature than for other key agreement.

3. Keygen state of operations needs to be explict in submissions.

4. Adaptive security in long-term vs. short-term.

5. Possible different schemes aiming static and (optional) adaptive security.

6. Encouragement of partial analysis against adaptive attacks.

7. Key-refresh sub-protocols as standalone submissions.

8. Concrete security bounds (and note when proof bounds are not tight but only asymptotic).

9. Communication: broadcast vs. point-to-point communication model.

10. Threshold profiles: clarify the participation threshold (𝑘) possibly different from 𝑓 + 1.

11. Recommend modeling the state of parties (inc. erasures and session identifiers for concurrency).

2.9 From G. Alpáar, L. Botros, A. de la Piedra, and M. Venema (see Comment 
Set #9)

1. Considering ABE vs. MPC fields, clarify terminology, models and functionalities of ABE.

2. Ciphertext-policy (CP)-ABE and Key-policy (KP)-ABE, collusion resistance.

3. Multi-authority (MA)-ABE (multiple domains, separation of attributes).

4. In CP-ABE, access structure can eb determined durine encryption.
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5. Three types of MA-ABE: thresholdized, distributed, and decentralized.

6. Distributed and decentralized: authorities (typically) manage unique sets of attributes.

7. Decentralized (more difficult) & distributed: autonomy of user; keys from multiple authorities.

8. Thresholdized: each authorityhas a key (secret-share?) for each attribute.

9. Examples gadgets for ABE: access trees; LSSS matrices.

10. Methodologies exist to evaluate performance of pairing-based ABE (reference material?).

11. Clarify which design goal (e.g., keygen, encryption, ...) is being optimized.

12. 13 bibliographic references.

2.10 From G. Seghaier, and J. Doget (see Comment Set #10)

1. All-or-nothing transform (AONT).

2. Example of deployed application, with patented parts, available for licensing.

3. Distributed multi-cloud environment; threshold interfaces different from those in IR 8214A.

4. Multi-cloud storage (redundancy & availability); proxy orchestrator (entry point for client).

5. Client encrypts; the proxy homomorphically secret-shares data across multiple clouds.

6. Future submissions: open-source vs. copyright vs. copyleft+commercial-license.

7. Client transforms the input/output data using homomorphic encryption scheme.

8. Consideration of AONT in Cat1 or Cat2, possibly as a gadget.

2.11 From a. shelat, J. Doerner, E. Lee, and Y. Kondi (see Comment Set #11)

1. Whether to submit all dependencies: compilers, interpreters, libraries, languages.

2. Stable vs. nightly features of programming languages.

3. How to consider KAT values for multi-party, multi-round protocols.

4. Upcoming submissions.

2.12 From T. Ruffing (see Comment Set #12)

1. Robustness (protocol termination in spite of attacker) is security property against the attacker.

2. Importance depends on application, e.g., one-time keygen vs. threshold signing or decryption.

3. Make explicit the robustness guarantees/breakdowns.

4. Robustness may rely on additional adversarial assumptions.

5. Considerations on the terminology for robustness.

6. Broadcast has several flavours; relevant to know which one is considered in a proposal.
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3 Received Public Comments

Comment Set #1: From A. Thompson

Page 1 of 1 

Public comments about the NIST IR 8214C ipd 
“NIST First Call for Multi-Party Threshold Schemes” (initial public draft) 

Alyssa Thompson1  

April 6, 2023 

 

 

Generic scope of submissions and organization into two categories (Section 3) 

An increased emphasis on quantum resistant techniques may be beneficial. In Table 2, add Crystals-

Dilithium as an example for C2.1 and Crystal-Kyber as an example for C2.3.  

 

Technical requirements (Section 5) 
In section 5.2.3, it could be made clearer that protection against covert and passive adversaries is 

assumed. In addition, in the definition of an active adversary, can the adversary change the number 

of corrupt parties during computation? If so, please update the language to be more complete. 

 

Subcategories in Cat2 (Section 7) 

For C2.8, consider changing “gadget” to “framework” or “technique” since the term “gadget” 

doesn’t appear widely in the multi-party literature. It seems like a catch-all type here and it’s not 

clear if that is the intention. Technique or Framework would better represent GC and related 

mechanisms to create threshold systems.  

 

Other comments 

Section A.1.4, line 1312, change “bot” to “not.” 

                                                 

1 NSA 
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Comment Set #2: From S. Ranellucci

From: Samuel Ranellucci

Sent: Monday, April 10, 2023 12:37

To: nistir-8214C-comments; Arash Afshar

Subject: comments about “NIST First Call for Multi-Party Threshold Schemes” 

Dear Luís Brandão, Rene Peralta,

The comments about “NIST First Call for Multi-Party Threshold Schemes” can be found below.

Thank you and NIST for your effort.

Best Regards,

Samuel Ranellucci

Coinbase

----------------------------------------------------------------------------------------------------------------------------

Introduction

This document provides feedback on the NIST draft titled “NIST First Call for Multi-Party Threshold Schemes”.

This document will contain multiple sections, each describing independent feedback.

---------------------------------------------------------------------------------------------------------------------------

Mandates can Harm Innovation

I have many years of experience developing applied MPC protocols. Here are some of my observations from 

working in this field.

1. Very often, when I need to implement some MPC functionality, I have to significantly improve the state 

of the art.

2. Both the system setup and the security model heavily influence the choice of protocol, the customization

and the optimizations that I can use. A protocol that is acceptable in one context can be completely 

useless in another context.

3. Significantly more efficient protocols keep appearing in the literature and the eprint archive 

(https://eprint.iacr.org/)

4. There is generally no “best protocol” for a given functionality.

These issues don’t exist for more traditional cryptographic primitives such as encryption schemes and collision-

resistant hash functions.
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In many cases, companies and organizations look at the NIST standards to create requirements. FIPS 

certifications often require NIST-standardized primitives.  In many cases, this is a good thing and raises the bar 

in terms of security and auditability of software. Unfortunately, by virtue of the issues I mentioned above, in the 

particular case of MPC protocols, this might not be the case. Since organizations might be mandated to use a 

protocol that is not necessarily the best for their unique situation.

------------------------------------------------------------------------------------------------

Overly Broad Scope

This draft has a scope that is too extensive. By my calculation, In excess of 40 different standards could be 

provided where each standard either realizes a different functionality or provides security in a different security 

model. At this point, a narrower focus would have a better result. For example by focusing on a subset of such 

protocol for now and extending it to others in the future.

------------------------------------------------------------------------------------------------

Protocol Evolution

When traditional cryptographic primitives (encryption, digital signatures and collision-resistant hash functions) 

have been standardized it was the case that subsequent improvements within 5-10 years were non-disruptive. I 

do not believe this will be the case for MPC. As a result, it is plausible that standardized MPC schemes might be 

subsumed within a relatively short amount of time.

----------------------------------------------------------------------------------------------------------------------------

Conservative Assumptions and Constructions with Strong Validation

In the last few years, many protocols in the literature have been shown to have vulnerabilities. The paper 

https://eprint.iacr.org/2020/945.pdf proposed a novel attack for breaking blind signatures by using clever 

mathematical techniques. It is therefore essential that protocols should use conservative assumptions and 

constructions that have stood the test of time. In particular, the generic group model, and the one-more discrete 

logarithm assumption are suspect. In addition, we note that intense scrutiny must be given to any proposal since 

many well-known protocols have been revealed to have significant vulnerabilities. We list below some papers 

detailing significant attacks or issues in well-known constructions.

Primitive Attacks, Issues

Global page: 11 of 41 This Comment Set’s page: 2 of 3



Compilation of Public Comments on NISTIR 8214C ipd

Comment Set #2: From S. Ranellucci

Oblivious Transfer 
Extension

eprint.iacr.org/2022/192
eprint.iacr.org/2019/074
eprint.iacr.org/2019/706

Threshold ECDSA

eprint.iacr.org/2021/1621

https://blog.verichains.io/
p/vsa-2022-120-
multichain-key-extraction

Base Oblivious 
Transfer

eprint.iacr.org/
2017/370.pdf
eprint.iacr.org/
2016/624.pdf

-------------------------------------------------------------------------------------------------

Key-Share Validation

When using threshold cryptography, the secret key is often shared between parties. During threshold signing or 

threshold encryption, it is necessary to ensure that each party provides the correct share of the secret key. 

Therefore every standard should ensure that the adversary cannot tamper with the shares of the key. For 

example, consider the case where a non-interactive version of AES encryption is susceptible to related-key 

attacks, but its thresholdized version must not be susceptible to such attacks.

----------------------------------------------------------------------------------------------------------------------------

Assumptions

There should be a section stating the assumptions needed so that the protocol is secure. Each assumption should 

be written as a warning label. For example,

Security Requirements

 One-time trusted setup.

 All honest participants must participate in every signing operation.

 Security relies on the one-more discrete log assumption in the generic group model.

 Secure as long as three of the four participants are honest.
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Comment Set #3: From F. Sudia

Public Comments About the NIST IR 8214C ipd
“NIST First Call for Multi-Party Threshold Schemes” (initial public draft)

Frank W. Sudia1

April 10, 2023

To: nistir-8214c-comments@nist.gov 

Re: Public Comments on NIST IR 8214C ipd (Call for Threshold)

2. Requirements and Recommendations for Submissions (Section 4)

As we embark on threshold standardization, it is well to recall the reasons threshold systems were 
initially developed, which included the requirement that the implemented system be able to pass 
Internal, External (i.e., Big X), and Federal Reserve or DoD Audits, remind ourselves to perform 
adequate risk assessments, and to manage the level of reliance to be placed on a given system or 
key, based on those risk assessments. No algorithm, no matter how clever, can function outside of 
some physical implementation, including associated message protocols, while being subject to 
audit, control methodologies, operational risk, and reliance management. 

Recall the key info-sec principles of confidentiality, integrity, availability, and authenticity (CIAA), 
each of which can be defeated in various ways. Any responsible development team seeking to get 
their app into production will need to comply with a tall stack of app-development and security 
standards, and convince their Auditors to let them go live. How each mathematical quantity will be 
generated, stored, managed, used, verified, backed up, restored, where, when and by whom, in order
to achieve CIAA objectives, must be explained and documented.

In addition to verifying the physical implementation, the Auditors will also ask you to prove that the
system has the Abstract properties you say it has, and is immune from tampering by malicious 
adversaries. Is this really a 3 out of 5 system, and can we be assured there are no secret quorums or 
secret shares, let alone that one party somehow has the entire key, etc?

On the policy / marketing level, teams should recall how unpopular PKI has been, with experts 
decrying its risks, privacy groups deploring any central ID system, and government agencies who 
wish to “see through” everything, for whom every day there's no functioning PKI is another good 
day. To minimize such policy headwinds, non-centralized uses, such as the critical need to more 
reliably protect Bitcoin wallets, should be prioritized. 

3. Technical Requirements (Section 5)

Turning to technical matters, in many cases the going-in Availability issue of how can we plausibly 
backup an important key in case of system failure, might just as well be addressed by a non-
threshold (e.g., 3 out of 3) scheme using High School Algebra, as proposed in the pioneer US Patent
5,825,880 (expired). The eventual standard should include such non-threshold split key systems, as 
a limiting case, which may be simpler to implement and audit, yet could suffice for many users. 

Another feature larger users may find attractive would be a well-defined option in the protocol to 
generate sub-splits, wherein each key share can be “split” (or co-generated) again, to one or more 
successive tiers, as a further security and backup/recovery risk reduction feature.

1Independent researcher. No conflicts of interest.
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All such protocols should be future-proofed by including variable algorithm IDs and key lengths. 

As remarked in this Request For Comments, "On the other extreme, a proposed protocol must not 
allow the major safety properties of interest to be trivially broken in case of adaptive corruptions, as 
in the classical example of a protocol that delegates all capabilities to a small quorum that is 
difficult to guess in advance, but whose overall corruption (by an adaptive adversary) would be 
disastrous." Page 22, lines 912-915. Not to mention that such a system violates Audit principles, 
defrauds anyone who participates in or relies on it, creates financial, legal, and reputational risks, 
and may constitute a felony of tampering with an official system, warranting jail terms.

The enumeration of Adversaries must be expanded to include not only corrupt protocol participants 
or malicious intermediaries, but also corrupt sponsor personnel. Any persons or groups designing, 
setting up, or effectuating key generation operations may be in a position to mis-design or mis-
configure the process, either through their own math skills, exploits from criminal groups, or with 
the assistance of prior clients or employers (some with preeminent math skills) who they are still 
secretly working for. The notion that “you” will somehow be able to verify all this yourself is most 
likely false, since in reality some developer or consultant will be the one doing it. 

Hence in order to convince your many Audit teams that your system has the properties you say it 
has, and that adversaries (including any double-agents among your staff or consultants) have not 
altered them, it will be preferable if its critical properties can be verified, e.g., via a test suite of 
protocols, viewable by all participants, and logged onto some blockchain, which demonstrate them. 

For example, you could start by challenging all participants to create all partial signatures, to assure 
that no signatures with less that the stated quorum of signers are valid, including proof (possibly 
zero knowledge) that each partial signature was indeed made by the key shares that each participant 
supposedly has. Such proofs could be run again each time the system is modified to add, delete, or 
replace a key share, to assure that the claimed properties (or any new set of properties) still hold, 
and (perhaps for a nominal fee) upon demand of any participant. 

As a worst-case scenario, proof that the conditions held during a given signing operation might be 
block-chained and appended to the signature, as a further proof of its genuineness.

Many variations of such proofs might arise, but I will not develop any of them here. (Nor am I 
planning to research, develop, or patent any further ideas related to this topic.)

Many thanks to NIST for initiating this effort, and best of luck to the proposing teams.

9. Other Comments

Some Related Patents (all expired):

1. Sudia et al, US Patent 5,825,880, Multi-Step Digital Signature Method and System, 10-20-
1998 (the High School Algebra version)

2. Brickell et al, US Patent 5,867,578, Adaptive Multi-Step Digital Signature System and 
Method of Operation Thereof, 2-2-1999 (the advanced math version)

3. Asay et al, US Patent 5,903,882, Reliance server for electronic transaction system, 5-11-99 
(part 2 of the spec, written by me, may be more readable)

4. Sudia et al, US Patent 6,209,091, Multi-Step Digital Signature Method and System, 3-27-01 
(further claims re delegation)

Page 2 of 2

Global page: 14 of 41 This Comment Set’s page: 2 of 2



Compilation of Public Comments on NISTIR 8214C ipd

Comment Set #4: From J. Miller, and J. van de Pol

Public comments about the NIST IR 8214C ipd
“NIST First Call for Multi-Party Threshold Schemes” (initial public draft)

Jim Miller1 · Joop van de Pol2

April 10, 2023

1. Generic scope of submissions and organization into two categories (Section 3)
No comments.

2. Requirements and recommendations for submissions (Section 4)
● Regarding item S8 in Section 4.4.2, we recommend requiring that each protocol

specification clearly states all mandatory checks that are needed for security (including
trivial things like zero mod group order).

● Regarding item S10 in Section 4.2.2, we recommend also mentioning a consideration for
‘implementation complexity’. It is difficult to encapsulate this in a specific metric, but some
threshold schemes are more complicated to implement than others, which has security
implications for creating and auditing implementations. As an example,

● Regarding item M2 in Section 4.3, we recommend mentioning ‘auditability’ as a
requirement for reference implementations, both for the implementation itself and its API.
I.e., it should be straightforward to audit the reference implementation, and it should be
straightforward to audit the correct use of the API by implementations using the scheme.

● Regarding item X4 in Section 4.4, we recommend requiring that there are “known-answer
test” values (KAT) for each of the aforementioned mandatory checks (cf. the comment on
item S8), such that verification of these KAT values shows that the mandatory checks are
implemented. Preferably, KAT values are provided for all combinations of positive and
negative cases of these checks.

3. Technical requirements (Section 5)
Regarding item T5 in Section 5.5, we recommend mentioning the concept of ‘veto power’ or other
liveness properties in relation to the chosen threshold profiles.

4. Primitives and threshold modes in Cat1 (Section 6)
No comments.

5. Subcategories in Cat2 (Section 7)
No comments.

6. Details of subcategories (Appendix A)
No comments.

7. Submission checklists (Appendix B)
No comments.

8. Diverse editorial feedback
No comments.

9. Other comments
No comments.

2 Trail of Bits
1 Trail of Bits
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Comment Set #5: From A. Badawi, A. Alexandru, N. Genise, D. Micciancio, Y. Polyakov, 
Saraswathy R.V., and V. Vaikuntanathan

Comments on NIST First Call for Multi-Party
Threshold Schemes

Ahmad Al Badawi1, Andreea Alexandru1, Nicholas Genise1, Daniele
Micciancio1,3, Yuriy Polyakov1, Saraswathy R.V.1, and Vinod

Vaikuntanathan1,2

1Duality Technologies
2MIT

3UCSD

April 10, 2023

Our comments are for Fully Homomorphic Encryption (FHE) schemes based on LWE and
Ring/Module LWE over power-of-two cyclotomic rings, since that is what is most commonly
implemented in open-source libraries. Our comments could apply to other FHE schemes
with different hardness assumptions as well (e.g., NTRU).

Comment 1: Motivation for Standardizing (Threshold)

Fully Homomorphic Encryption

We strongly believe in an organized community effort to standardize both FHE and its
threshold variants. The state-of-the-art schemes for (threshold) FHE are quantum-resistant
and can be applied to many significant use cases, such as AES enciphering, (federated)
machine learning and statistics, secure database queries, Beaver triple generation in se-
cure multi-party computation (MPC), and many more. There are two existing prominent
standardization efforts for FHE: homomorphicencryption.org (since 2017) and https:

//www.iso.org/standard/83139.html (ISO from 2021).

FHE as a gadget. (Threshold) FHE is already an important cryptographic gadget in
itself. For example, semi-maliciously1 secure FHE [AJL+12] is used as a gadget in actively

1Semi-malicious security is where the adversary can choose its randomness malicously otherwise following
the protocol. RLWE-based threshold FHE schemes achieve some form of semi-malicious security “for free”
in the passive security model [AJL+12].

1
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secure MPC protocols [KPR18, CHI+21]. Standardizing FHE schemes in this simpler se-
curity model is more straightforward than doing it directly in the active security model.
Conversely, actively secure (threshold) FHE will likely use other important gadgets, such as
zero-knowledge proofs.

A path towards standardization for actively secure FHE. Standardizing actively
secure (threshold) FHE schemes is a significant effort since (i) FHE algorithms in themselves
are intricate, and (ii) state-of-the-art open-source FHE libraries use the passive security (also
called semi-honest) model. A potential simpler path to standardization is to standardize
building blocks, like the following, presented in order of complexity:

Class 1: Threshold key generation and decryption.

Class 2: HE schemes with linearly-homomorphic operations/additive homomorphic
encryption (AHE).

Class 3: FHE schemes, with relinearization/key switching (usually required by non-
linear homomorphic operations, e.g., multiplications or bootstrapping).

Note that the first class is roughly a subset of the second class, and the second class is
roughly a subset of the third class. The last class encompasses FHE schemes, which all
require circular security. The first two classes are less complex, and there are many use
cases of interest to the community utilizing only the capabilities in the first two classes, as
described in Comment 2. Moreover, (R)LWE-based schemes are key-homomorphic, so the
insights learned from standardizing the first class will likely be valuable in the second and
the third classes.

A potential course of action for standardization is to design a standard template for
transforming a passively secure or a semi-maliciously secure (threshold) FHE scheme into
an actively secure scheme via zero-knowledge proofs.

FHE Schemes. The most common FHE schemes can be separated into three categories:
(i) Brakerski-Gentry-Vaikuntanathan [BGV12] (BGV) and Brakerski [Bra12]/Fan-Vercauteren
[FV12] (BFV), (ii) Ducas-Micciancio [DM15] (DM, also called FHEW)/Chillotti-Gama-
Georgieva-Izabachène [CGGI16] (CGGI, also called TFHE), and (iii) Cheon-Kim-Kim-Song
[CKKS17] (CKKS, also called HEAAN). BGV and BFV are schemes supporting SIMD en-
crypted computations for arithmetic circuits modulo a prime power, DM and CGGI are
schemes supporting binary or small-precision arithmetic (larger-precision plaintext spaces
require either very large parameters or many small-precision bootstrapping operations), and
CKKS supports SIMD fixed-point-like arithmetic circuits. The main method for threshold
decryption in all three categories, against a passive adversary, is noise flooding.

2
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Comment 2: Use Cases

The AES enciphering use case mentioned in the NIST call falls in the third class described
above, requiring the full capabilities of FHE. However, there are already important use cases
in the first two classes. These include all the use cases in Category 1 from the NIST call,
some forms of federated learning and inference, and generating the offline setup for MPC.
For completeness, we mention a few existing works in each class, focusing on active security.

Class 1. Here, the use cases are the same as for Category 1 in the NIST call. This first class
of algorithms—threshold key generation and decryption—would build upon the NIST PQC
standardization effort. For instance, threshold-izing Kyber falls into this class. Therefore,
the insights gained in standardizing this first class in the active security model for adaptive,
mobile adversaries will apply to the latter two classes as well. Gladius [CCMS21], which
threshold-ized Saber, falls under this class, but it remains to be seen how its techniques—
FO transform, LWR, etc.—apply to threshold FHE (efficiently).

Class 2. The use cases for this class cover computations with plaintext-ciphertext addi-
tions/multiplications and ciphertext additions, such as secure aggregation and voting, some
forms of federated learning and inference, polynomial statistics, and Beaver triple generation
for MPC setup. For instance, Gazelle [JVC18] and Cheetah [HLHD22] use BFV encryption
for evaluating the linear layers of a neural network (and garbled circuits, oblivious transfer
and secret-sharing for the non-linear layers), in a semi-honest two-party setting. Further,
Badawi et al. [BJL+21] use BFV to compute CNN inference with plaintext-ciphertext mul-
tiplications, and their solution can be threshold-ized. These works can be adapted to be
circuit-private via noise flooding. In the active security model, Diogenes [CHI+21] uses
RLWE-ciphertext additions with zero-knowledge proofs to achieve distributed RSA modu-
lus generation against an active dishonest majority. Aranha et al. [ABGS22] use actively
secure threshold BGV (both threshold key generation and threshold decryption) and zero-
knowledge proofs to construct an efficient form of secure voting. In the context of providing
an actively secure setup for secure multi-party computation, Overdrive [KPR18] employs
BGV for addition and plaintext-ciphertext multiplication to generate Beaver triples, using
noise flooding for circuit privacy and zero-knowledge proofs for active security. Their solution
is for two parties, but can be easily threshold-ized, e.g., by following the BGV distributed
key generation and decryption protocols from [DKL+13, RST+22].

Class 3. Many impactful use cases are in this class: AES enciphering [GHS12] (using BGV
over non-power-of-two cyclotomic rings), neural network training and inference [SPT+21],
decision tree training [LMP22], private set intersection (PSI) [CMdG+21]2, private infor-
mation retrieval (PIR) [ACLS18]3 [GH19], and many more. The referenced works here are

2https://github.com/microsoft/APSI
3https://github.com/microsoft/SealPIR

3
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mostly in the passively-secure model, but the motivation towards making them actively se-
cure is clear. Brakerski et al. [BHP17] show actively secure distributed setup generation,
encryption and decryption protocols for an LWE-based homomorphic encryption scheme,
without practical implementation. We do not know of any practical works in this direction.
It is worth noting that in this class, even under a common passive security model (which
currently is still an active area of research), standardization has clear technical challenges.

Comment 3: FHE Schemes’ Threshold Friendliness

All three categories of FHE schemes: (1) BGV/BFV, (2) DM/CGGI, and (3) CKKS can
be threshold-ized up to linear operations (class 2 above) in the actively secure model with
similar techniques and impacts on performance. On the other hand, finding efficient ways to
perform threshold decryption in the active, adaptive, mobile security model for the third class
of algorithms (non-linear operations) is a technical challenge worthy of a serious community
effort. We now describe the current state of the art in each category’s passively-secure (or
semi-malicious) version and the respective performance degradation from thresholdization.

BGV/BFV. BGV and BFV are the two schemes most suitable for threshold key genera-
tion and decryption, as-is, without affecting performance. The reason is that in BFV/BGV,
threshold decryption is done efficiently by noise flooding with uniformly random noise in the
RNS representation. This adds two extra RNS limbs (50-63 bit moduli in the ciphertext
modulus) for 100+ bits of statistical security, while three limbs can easily achieve 128-bits of
statistical security with many adversarial queries (well over 250 assuming statistical security
degrades with the square root of the number of queries).

DM/CGGI and CKKS. Conversely, DM/CGGI and CKKS suffer from a larger perfor-
mance degradation from noise flooding. This is because the former category must increase
the parameters in a homomorphic accumulator, and the latter must increase its scaling factor
to over 64 bits, requiring 128-bit arithmetic, even in the RNS setting. Therefore, threshold
decryption alone introduces technical challenges simply in the passive security model for
these two categories of schemes.

Comment 4: Open-Source Implementations

Here we summarize existing implementations available in open-source libraries.

Active Libraries There are three main active FHE libraries, and two active MPC libraries
with some FHE algorithms:

4
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1. OpenFHE4 [BBB+22] builds off of previous libraries, such as PALISADE5, HEAAN6,
and HElib7. It implements the N out of N key generation/threshold decryption and
t > N/2 out of N Shamir secret sharing threshold key generation/decryption described
in [AJL+12] for BGV/BFV and CKKS in the passive security model. OpenFHE also
has an implementation of the non-threshold version of the BGV and BFV schemes, the
DM/CGGI schemes and the CKKS scheme in the recent IND-CPAD security model
[LMSS22]. The latter’s cryptanalysis is very similar to the cryptanalysis of threshold
RLWE decryption.

2. Lattigo8 implements threshold key generation/decryption for BFV/BGV and CKKS
for Shamir sharing with general t out of N sharing together with N out of N sharing
in the passive security model [MBH22], as well as the corresponding non-threshold
versions.

3. TFHE-rs9 is a (non-threshold) implementation of FHE over the torus (TFHE).

4. MP-SPDZ10 is an MPC library that has actively secure Beaver triple generation from
BGV and an implementation of actively secure distributed key generation for BGV.
The active security is specific to the application of Beaver triples and does not include
a generic actively-secure threshold BGV decryption.

5. SecretFlow11 is an MPC/FHE framework with AHE implementations of BFV and
CKKS, and an implementation of CGGI.

Inactive Libraries The following libraries are not nearly as active, or supported, as the
libraries above, or are completely inactive. SEAL12 has FHE implementations of BFV,
BGV, and CKKS schemes without threshold variants. PALISADE implements BFV, BGV,
and CKKS in both threshold and non-threshold settings and DM/CGGI in a non-threshold
setting. HElib implements BGV and CKKS, and has support for non-power-of-two cyclo-
tomic rings, in addition to power-of-two cyclotomics. NFLlib13 has an RNS implementation
of BFV.

4https://github.com/openfheorg/openfhe-development
5https://palisade-crypto.org/
6https://github.com/snucrypto/HEAAN
7https://github.com/homenc/HElib
8https://github.com/tuneinsight/lattigo
9https://github.com/zama-ai/tfhe-rs

10https://github.com/data61/MP-SPDZ
11https://github.com/secretflow/secretflow
12https://github.com/microsoft/SEAL
13https://github.com/quarkslab/NFLlib
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Generic scope of submissions and organization into two categories (Section 3) 

Another possible justification for a CAT2 submission could be its current use in interesting 

applications. (I.e., in addition to threshold-friendliness or advanced properties.) For example, the 

use of threshold PRF/OPRF in key management systems, decentralized identities and wallets can be 

used as a motivation for submitting a threshold-PRF protocol. 

 

An important set of protocols to call out explicitly are threshold PRFs. These are used in many of 

the sub-categories that are listed in the call, including symmetric-key encryption/decryption, key 

derivation, key management, key distribution centers, randomness beacons, and more. Threshold 

Oblivious PRFs should be considered too as PRFs whose inputs are hidden from the Threshold PRF 

servers (as such they are applicable in the above cases as well as additional uses such as password 

protocols and privacy-preserving ticketing systems). These should be mentioned as examples of 

interesting CAT2 primitives. 

 

Another threshold primitive that should be mentioned is a threshold implementation of a 

randomness beacon. Either in the keygen sub-category C2.5 or as a gadget C2.8. 

 

The scope of the “gadgets” sub-category can be made clearer. For example, many protocols have 

sub-protocols that could stand on their own; would you consider those sub-protocols as “gadgets”? 

Some examples are Agreement on a Common Subset (e.g., agreeing on the set of qualifying dealers) 

or multi-recipient encryption (a-la-[BBS PKC’03]) that’s used for a dealer to broadcast encrypted 

shares to many shareholders. If such sub-protocols are in-scope, then you should add some 

examples like that (both in section 3 and in 7.2.3). 

 

3. Technical requirements (Section 5) 

An important model distinction which is not mentioned in the draft call is whether the protocols are 

“robust”, i.e., ensure guaranteed output delivery. For example, guarantee that a threshold signature 

system always generates requested signatures. This should be (at least) on par in terms of 

significance as the various adversary models that are called out in 5.2.3 

(Active/Adaptive/Proactive). I.e., say that “the specification must consider the robustness and 

liveness guarantees of the protocol, e.g., whether they provide Guaranteed Output Delivery”. 

 

Similarly, the treatment of asynchronous channels must be elevated to at least as important 

consideration as the adversary model. It is not just “the pitfalls of deployment in environments with 

weaker guarantees (e.g., with asynchronous and unreliable channels”. Submissions must discuss the 

guarantees (if any) that they provide in an asynchronous model. Note that the asynchronous setting 

is the most realistic in scenarios with large number of parties. 

 

Details of subcategory CS.5 (Keygen) (Appendix A) 

As you point out in A.5, DKG protocols are sometimes used to generate ephemeral randomness 

(e.g., in the case of ECDSA and Schnorr signatures). In this light, consider weakening the text in 

 

1 Algorand Foundation, USA. {fabrice,shai,hugo}@algorand.foundation 
2 University of Pennsylvania, PA, USA. talr@seas.upenn.edu 
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A.5. “the focus on DKG is only on the generation of the private/secret keys and (when applicable) 

the public parameters that depend on them”. Maybe just add “long-term or ephemeral private/secret 

keys”. 
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“NIST First Call for Multi-Party Threshold Schemes” (initial

public draft)

Hemanta K. Maji

1 Improving the Security of Shamir’s Secret-Sharing Scheme

Additive and Shamir’s secret-sharing schemes are the foundations of nearly all cryptography and
privacy technologies. Their security is analyzed in a model where an adversary obtains a few secret
shares, and the remaining ones remain hidden. However, side-channel attacks can leak partial
information from all the secret shares. Security against such attacks is not ensured by typical
security analysis of these secret-sharing schemes. The objective is to make these secret-sharing
schemes secure against leakage attacks.

Notation. To illustrate such vulnerabilities, consider secret-sharing among n parties where the
reconstruction threshold is k. For example, the threshold for the additive secret-sharing scheme is
k = n. Suppose the secret-sharing schemes are over the prime field Fp, where the field’s order is p,
an odd prime. The secret is s, and the secret shares are s1, s2, . . . , sn, respectively, for the parties.

Attack model. Suppose the secret shares are stored in their binary representation. The length
of the secret and secret shares represents the security parameter λ. For example, we know that
2λ−1 < p < 2λ Consider the model where the adversary can leak m bits from each secret share.
This is a very standard model for leakage [ISW03] and is also widely studied in masking techniques.
Our objective is to ensure that the joint distribution of the leakage is (essentially) independent of
the secret.

Representative Attack on the Additive Secret-sharing Scheme. Consider a very elemen-
tary attack on the additive secret-sharing scheme. The adversary obtains the least significant bit
of each secret share. Define LSB(x) = 0 if x ∈ {0, 2, . . . , p − 1}; and LSB(x) = 1, otherwise.
The adversary sees the joint distribution (LSB(s1), . . . ,LSB(sn)). We aim to ensure that the joint
leakage distribution is independent of the secret; otherwise, this leakage poses a security threat.

Consider n = 2 and the secret s = 0. Note that the secret shares are as follows

(s1, s2) ∈
{
(0, 0), (1, p− 1), (2, p− 2), . . . , (p− 1, 1)

}
.

Then, the leakage is

(LSB(s1),LSB(s2)) ∈
{
(0, 0), (1, 0), (0, 1), . . . , (0, 1)

}
,

respectively. Note that LSB(s1)⊕ LSB(s2) = 1 with probability 1− 1/p.

1
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Likewise, for secret s = 1, the secret shares are

(s1, s2) ∈
{
(0, 1), (1, 0), (2, p− 1), . . . , (p− 1, 2)

}
.

In this case, LSB(s1) ⊕ LSB(s2) = 1 with probability 2/p. Therefore, the parity-of-the-parities
distinguisher can distinguish these two secrets with probability 1− 3/p, which is negligibly close to
probability 1. This distinguisher was proposed in [MNP+21].

This attack extends to arbitrary n, and the distinguishing advantage of the parity-of-the-parities
distinguisher is (roughly) (2/π)k [MNPW22, MNP+22], which is also optimal. Therefore, for any
constant k, the additive secret-sharing scheme is constant-insecure. Thus, this elementary attack
completely breaks the additive secret-sharing scheme.

Extension of the Attack to Shamir’s Secret-sharing Scheme. Shamir’s secret-sharing
scheme inherits this vulnerability if one is not careful in choosing the modulus and the evaluation
places. For a secret s ∈ Fp and distinct evaluation places X1, . . . , Xn ∈ F ∗

p , Shamir’s secret-sharing
scheme prepares the secret shares as follows. Pick a random polynomial P (Z) ∈ Fp[Z] such that
degP (Z) < k and P (Z = 0) = s. The secret shares are s1 = P (X1), . . . , sn = P (Xn).

Consider p = 1 mod k. Consider the solutions of the equation ζk = 1 in F ∗
p . Denote these

solutions by
{
1, ω, ω2, . . . , ωk−1

}
. Note that these solutions are a multiplicative subgroup of F ∗

p .

Suppose we have evaluation places {Xi1 , . . . , Xik} =
{
ρ, ρω, . . . , ρωk−1

}
, for some ρ ∈ F ∗. Observe

that
si1 + si2 +· · · sik = ks.

Essentially, the secret-sharing scheme reduces to the additive secret-sharing scheme. The parity-
of-that-parties attack will have (2/π)k advantage in distinguishing two secrets.

What is known? A Monte-Carlo Result. There are some results known for security. We
know that, for every prime p, if one picks each evaluation place of Shamir’s secret-sharing scheme
uniformly at random, they are (exponentially) secure [MNP+21]. However, no algorithm is known
to distinguish secure evaluation places from insecure ones. This problem is the standard “searching
hay in a haystack” problem, which is very common in mathematics and computer science. There
are indications that it is a highly challenging problem to solve.

Consequently, one needs to derandomize the result of [MNP+21]. For example, NIST cannot
recommend choosing evaluation places at random and hoping the particular choice is secure. Note
that even for n = k = 2, this derandomization problem is challenging.

Derandomization Results. We have derandomized this problem for n = k = 2 and (n = 3, k =
2). We present an efficient algorithm that takes as input X1, . . . , Xn) and outputs whether this
choice of evaluation places is secure against physical bit leakage.

We recommend using Mersenne prime modulus, i.e., the prime p = 2λ − 1. In the sequel, we
consider n = k = 2 to present the key technical innovations. Suppose an adversary leaks the
i-th and the j-th least significant bits from secret share s1 and s2, respectively. In a Mersenne
prime modulus, the leakage is equivalent to the LSB attack on Shamir’s secret-sharing scheme with
evaluation places (2iX1, 2

jX2). Consequently, an algorithm to determine security against the LSB
attack suffices. For example, if the following set of evaluation places{

(2iX1, 2
jX2) : i, j ∈ {0, 1, 2, . . . , λ− 1}

}
.

2

Global page: 26 of 41 This Comment Set’s page: 2 of 4



Compilation of Public Comments on NISTIR 8214C ipd

Comment Set #7: From H. Maji

If all these evaluation places are secure against the LSB attack, then the scheme with evaluation
places (X1, X2) is secure against all physical bit leakage attacks.

Now, consider determining the security of the evaluation places (X1, X2). This problem reduces
to determining the orthogonality of the following two functions.

(Function 1) Y = sgnp(X1 ·X)

(Function 2) Y = sgnp(X2 ·X),

where

sgnp(x) :=

{
+1, x mod p ∈ {1, 2, . . . (p− 1)/2}
−1, otherwise.

We call these functions “signs of lines.” The following sum determines the orthogonality∑
:=

∑
x∈F

sgnp(X1 · x) · sgnp(X2 · x).

This sum is proportional to the following integral involving “square wave functions.”

I :=

∫ 1

0
sgn(sin(2π ·X1t)) · sgn(sin(2π ·X2t)) dt.

Here sgn(·) is the real-values sign function. In an unpublished work [MNPY23], we present the
algorithm that identifies secure evaluation places. Evaluation places deemed “not secure” are, in
fact, insecure. This work also identifies new attacks on these secret-sharing schemes.

Conclusions. Physical bit leakage is an elementary leakage model – simpler the attack model, the
greater the security threat. Securing against these side-channel attacks is essential. Such attacks
completely break the additive secret-sharing scheme. One needs to be extremely careful in choosing
the modulus and the evaluation places to be secure against this attack class. Although randomly
chosen evaluation places are secure with high probability, no algorithm is known to identify the
secure ones. More research on this problem must be directed from the cryptographic research
community.

3
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1 Generic Scope of Submissions

The scope (i.e., number of subcategories) of the call is very broad. This overly broad scope runs
the risk of dividing the attention of the research community both during the submission phase and
the subsequent analysis phase. NIST may miss out on some submissions simply because submitters
don’t have the time to contribute to submissions in multiple categories.

Some subcategories are also much less mature than others. (For example, there has been much
more work on threshold signatures than on threshold key agreement.) It may therefore be premature
to ask for submissions in certain subcategories at this time.

2 Technical Requirements

2.1 KeyGen

For subcategories C1.1–C1.4 and C2.1–C2.4, submissions should explicitly note the required initial
state (e.g., key shares) of the parties, as well as how that initial state is assumed to be established
for purposes of the security analysis. This would give submissions the flexibility to assume a
trusted dealer (that could, in turn, be realized by an appropriate KeyGen protocol submitted in
subcategories C1.5/C2.5), and/or to include their own specialized KeyGen protocol as part of the
submission. This will help to facilitate analysis and security proofs, and also allow for better
integration with submissions to subcategories C1.5/C2.5.

2.2 Adaptive/Proactive Security

While adaptive security on long timescales makes sense—and the example in lines 912–915 of a
“secure” protocol that is trivially broken by an adaptive adversary is well-motivated—the formal
model of adaptive security that allows an adversary to instantaneously corrupt parties may be too
strong for some practical applications, and achieving that notion of adaptive security can require
modifications that severely impact efficiency (as noted in lines 910–912). Thus, while a proof of
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adaptive security may be a positive point in favor of a scheme, NIST should consider making
adaptive security optional for submissions, and/or allowing submitters to include both a statically
secure and an adaptively secure version of a scheme. For schemes that are not proven adaptively
secure, submitters should still be encouraged to provide a partial analysis against adaptive attacks
and/or to provide an analysis of the scheme against known adaptive attacks.

While proactive security is an important property, mechanisms for key refresh that achieve
proactive security are generally orthogonal to the threshold protocols envisioned for subcategories
C1.1–C1.4 and C2.1–C2.4. (In particular, key refresh would typically be run in between invocations
of, e.g., a threshold signing protocol.) Thus, techniques to achieve key refresh/proactive security
may be better as stand-alone submissions in subcategories C1.5/C2.5 (only).

2.3 Concrete Security Bounds

When giving proofs of security, submitters should be encouraged to include concrtete security
bounds and set parameters of their schemes accordingly. It should be clearly noted when proofs
are only asymptotic and not tight.

2.4 Communication Environments

We have observed that protocol implementers are often unsure about how to implement a “broad-
cast channel” in practice, and there is no general guidance available about how protocols that rely
on a broadcast channel should be implemented in a point-to-point network. We therefore encour-
age NIST to require submissions to either explicitly state that their security analysis assumes a
broadcast channel (and then suggest how such a channel should be implemented), or otherwise
provide a protocol specification and proof of security in the point-to-point communication model
(i.e., without the assumption of a broadcast channel).

2.5 Threshold Profiles

Line 942 appears to be the only place in the document where the participation threshold k is
mentioned. Although in many schemes k = f + 1, that need not be the case.

2.6 Modeling State: Deletion and Concurrency

In multi-round protocols, it will be helpful to explicitly describe the state being maintained by
the protocol between rounds. As part of this requirement, it would also be useful for schemes to
specify when certain values must be deleted (as opposed to assuming the implementer knows when
to delete based on context).

Protocols that rely on a unique session identifier (sid) for security, especially in a concurrent
setting, should make the sid explicit in the protocol description and state any assumptions made
about the sid in the security analysis.

NIST should give explicit recommendations for modeling state-keeping, deletion, and concur-
rency in order to ensure more consistency across submissions.

3 Other Comments (Typos)

• line 421: missing space (“NISTpublication”).
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• line 957, the first column should be “< 1/2” (or “1/3 ≤ f/n < 1/2”).

• line 1312: “bot” should be “not.”

• line 1437: Did you mean “symmetric”?

• line 1703: the requirement for p, q to be “randomly generated” does not match what is said
in lines 1134–1135 about acceptability of ensuring p = q = 3 mod 4.
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1 Comment on Appendix A.6

Currently, Section 7.2.1 and Appendix 4.6 introduce the notions of identity-based
and attribute-based encryption as suitable primitives for thresholdization. How-
ever, apart from some high-level requirements, it might not be entirely clear
what kinds of schemes this call welcomes. Most notably, we wanted to address
this, because there is a body of work in the field of attribute-based encryption
that addresses the deployment of multiple parties (herein called “authorities”).
However, not all terminology and proof techniques in this particular subfield
match those of the multi-party community. Furthermore, this subfield contains
several different functionalities and security models, which differ subtly in ways
that we do not see in the more general multi-party computation paradigm. We
were therefore wondering whether it would be appropriate to include these dif-
ferent functionalities and security models in the call. We explain the nuances
among these security models more clearly below.

1.1 Ciphertext-policy attribute-based encryption

Ciphertext-policy attribute-based encryption (CP-ABE) [1] is a type of attribute-
based encryption (ABE) [11] that associates the ciphertexts with access struc-
tures (or: policies) and the keys with attributes. (In contrast, key-policy ABE
(KP-ABE) [5] associates the keys with policies and the ciphertexts with attribute
sets.) A key can decrypt a ciphertext if its associated attributes satisfy the access
structure of the ciphertext. In this way, we can enforce attribute-based access
control on a cryptographic level. Crucially, for this to work securely, if several
users have keys for sets that do not satisfy the ciphertext policy, they should not
be able to decrypt the ciphertext. This security aspect is also called collusion
resistance.
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1.2 Multi-authority attribute-based encryption

A type of attribute-based encryption that follows, to some extent, the spirit
of multi-party computation is called multi-authority attribute-based encryption
(MA-ABE) [2]. Instead of deploying a single authority to generate secret keys
for the users, multiple authorities are deployed. By doing this, the system be-
comes more flexible, as it can naturally support multiple-domain settings, and
it is more secure, because there is no single trusted authority. In most multi-
authority schemes, each authority in the system manages a unique set of at-
tributes. Furthermore, the security model allows for corruption of authorities,
as long as, together, they cannot decrypt the challenge ciphertext. In particular,
with multi-authority CP-ABE, we can associate the ciphertext with an access
structure using attributes that are managed by different authorities. Essentially,
we can ensure in this way that the access structure associated with the ciphertext
is determined during encryption.

Compared to more traditional threshold schemes, ABE has various types
of functionalities and their associated security models. In fact, some MA-ABE
schemes have some interesting properties that seem to more flexible and fine-
grained than more traditional thresholdized schemes, but it can also be more
restricted. On a high level, we observe that there exist three types of multi-
authority ABE: thresholdized, distributed and decentralized. These have various
trade-offs in flexibility and security, but each may provide advantages over single-
authority ABE (typically at the cost of some efficiency).

Distributed and decentralized ABE. The terms distributed and decentral-
ized typically consider the setting in which the authorities manage unique sets
of attributes [13] (although this is not a requirement for the security of such
schemes [12]). The goal of distribution and decentralization is to ensure that
the authorities do not need to fully trust one another to manage access control
securely (e.g., in multiple-domain settings). As long as the malicious authorities
do not manage a large enough set of attributes that satisfies the access structure
of the ciphertext, it cannot be decrypted.

The difference between decentralized and distributed is in in the level of au-
tonomy and independence that the user has. More specificially, the difference is
in whether the decrypting user would need a key from each authority associated
with the access structure or simply only keys from those authorities for which
they have attributes that satisfy the access structure. For instance, consider the
access structure “doctor at Mayo Clinic” OR “doctor at Johns Hopkins Hospi-
tal”. We assume that the first attribute is managed by an authority associated
with the Mayo Clinic and the second by an authority associated with the Johns
Hopkins Hospital. Then, distributed ABE would require the decrypting user
to have keys from both hospitals, while decentralized ABE would not require
this. Instead, decentralized ABE allows users that have obtained a key for the
“doctor” attribute from either of the two hospitals to decrypt. Because of this
latter property, it is actually more difficult to achieve decentralization than it
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is to achieve distribution. Therefore, relatively few schemes have this property:
[7,8,10,4,12].

One of the main reasons why achieving distribution and decentralization is
difficult is because it is challenging to achieve collusion resistance across differ-
ent authorities [2,7]. In particular, users that have keys from different authorities
should not be able to combine those keys. For instance, suppose that one user
has a key for the attribute “doctor” generated by the Mayo Clinic, and another
user (who is not a doctor) has a key for the attribute “employee” generated by
the Johns Hopkins Hospital, then they should not be able to decrypt a cipher-
text with the policy “doctor at the Mayo Clinic” AND “employee at the Johns
Hopkins Hospital” together. Requiring this type of collusion resistance is also
one of the reasons why multi-authority schemes are typically much different from
their single-authority counterparts: either in their structure [7,10] or in the level
of expressivity of the access structures [2,3].

Thresholdized ABE. In addition to the notions of distributed and decen-
tralized ABE (as proposed in [13]), we would also like to propose the notion
of thresholdized, which solely considers the setting in which all authorities gen-
erate keys for the same attributes, and only the public-key material is shared
among authorities. This requires a lower bar of functionality compared to decen-
tralization, but increases the security of ABE compared to its single-authority
variants, because the key material is not stored on one server, but rather on
multiple servers. For instance, with a t-out-of-n thresholdized ABE scheme, a
user would require keys from at least t servers of the n listed servers to decrypt
a ciphertext, rather than of one single server. Compared to distributed schemes,
it might enable more fine-grained access structures. It might also lower the bar
with respect to security compared to decentralized schemes, because we might
not require security against collusion among different authorities. (However, note
that decentralized ABE implies thresholdized ABE.)

To summarize, thresholdized, distributed and decentralized ABE would dis-
tinguish them from one another in the following way. If a multi-authority scheme
allows the various authorities to manage different attributes, and requires users
to only interact with those authorities that manage their attributes, then we call
the scheme decentralized. If users have to interact with all authorities to decrypt
(regardless of whether these authorities manage their attributes), then we call
the scheme distributed. If the scheme does not allow the authorities to manage
different attributes, but requires users to only interact with those authorities
that manage their attributes, then we call the scheme thresholdized.

2 Comment on Section 5.6 T6: Building Blocks

In lines 988–994, various examples of building blocks for threshold cryptography
constructions are given. We would like to note several building blocks or gad-
gets related to ABE that could also be included as examples of building blocks.
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In particular, ABE constructions use access structures, which are in specific in-
stantiations often represented as access trees [5] and linear secret-sharing scheme
(LSSS) matrices [6]. Possibly, ABE constructions can benefit from more efficient
representations of such access structures, which may be of interest to the call as
well.

3 Comment on Section 3: Call and Scope for Submissions

According to line 390: “Each submission should include a security characteri-
zation, a technical description, an open-source reference implementation, and a
performance evaluation.”

We would like to note that, for attribute-based encryption in particular, ex-
isting methodologies for analyzing the performance of pairing-based ABE con-
structions have been recently proposed [9]. We were wondering if it would be
helpful for potential submitters to include it as reference material. Specifically,
this methodology was proposed to benchmark and compare schemes more fairly
by optimizing them with respect to the same design goal. For example, a scheme
that was implemented to optimize the key generation (possibly at the expense
of the other algorithms) may perform much differently than a scheme that was
optimized for the encryption algorithm. Had they been optimized with respect
to the same goal, they might have compared differently. By being transparent
about such design goals, it becomes clearer which schemes are the most suitable
choices for certain use cases.
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April 10, 2023 
 

 
1.  Generic scope of submissions and organization into two categories (Section 3) 
 
The current comment is related to a Quantum-resistant solution falling in the Category 2 (Cat2) based 
on AONT, HE and Secret Sharing. We would like to add AONT as a building block (Q1) as stated in 
the NIST.IR.8214A. 
 
The related solution is falling in the Cat2, for primitives not specified by NIST, but which are 
friendlier (more amenable) to the threshold paradigm, have enhanced functional features, and are 
based on different cryptographic assumptions. 
 
The current comment is based on a deployed application making use of threshold schemes, despite 
lack of standards (or NIST standards). The development of such new standards can promote best 
practices and interoperability in a field with already concretely demonstrated use cases. 
 
Some parts of the solution are patented but they are available for licensing (and already in use by 
private and government organizations). Indeed, the first version of this solution is already generally 
available on a distributed multi-cloud environment. 
 
This architecture relies on a threshold interface that differs with the ones listed and presented in the 
original NIST.IR.8214A. (section 2.3 Modes of Input/Output interface - Figure2. Several threshold 
interfaces (and one non-threshold case)). 
 
Usually cloud users assume (erroneously) the cloud providers to be secured, but cloud providers seem 
to be honest but curious in many situations. In our solution, we focus on cloud storage in terms of 
confidentiality, integrity and availability, based on a proxy that orchestrates the threshold scheme, but 
in a different way from the non-threshold scheme presented in the NIST.IR.8214A, in order to 
preserve data confidentiality against the proxy. 
 
At the moment, confidentiality and integrity can be achieved using classical encryption but at the 
very high cost of key management client-side. Availability is let to the cloud providers. 
 
We present a novel approach to brings confidentiality, integrity and availability without needs of key 
management nor any long-term parameters storage.  
 
The solution relies on a multi-cloud approach managed by a proxy storage server. The multi-cloud 
approach allows redundancy and availability (and performance) and the proxy acts as the orchestrator 
and a unique entry point to the client. 
 
Technically it relies in one side on secret sharing to bring integrity, availability (k amongst n scheme) 
and confidentiality with regards to the cloud providers. In the other side it relies on homomorphic 
encryption to bring confidentiality with regards to the proxy itself. 
 
In details, a proxy server acts as the unique entry point to allow plug and play compatibility with 
classical storage service (e.g. AWS S3). The role of this proxy is to spread the data over several cloud 
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providers using a secret sharing scheme (such as Shamir Secret Sharing scheme or AONT-RS) and 
hide the multi-cloud configuration to the client. 
 
In details, a (k,n) secret sharing scheme is an algorithm which splits the data into n shares in a way 
such that every subset of k shares permits the reconstruction of the data whereas every subset of l < 
k shares does not bring any information on the underlying data. 
 
This fragmentation method can be used to overcome some (up to n-k) cloud providers failure or for 
instance to overcome overseas surveillance by choosing less than k cloud providers in a specific 
country. 
 
In this scenario, the user sends data through the proxy server which applies the secret sharing and the 
data is protected against lower than k cloud collusion. 
 
Nevertheless, the proxy still has access to transmitted data. To avoid that we use an innovative 
combination of AONT and Homomorphic Encryption. 
 
AONT (All Or Nothing Transform) is a transformation which ensures that every subset of the data 
does not bring any information on the data. A realization of such a transformation (as in [ref AONT-
RS]) can rely on a symmetric cipher with a random key, the data is ciphered, the random key is 
masked by the ciphertext and append to it. In this case one needs the whole data to unmask the key 
and decipher the data. 
 
Homomorphic encryption is a kind of encryption which allows computation on ciphertext (for 
example let f(x) and f(y) be the cyphertext of x and y, we can compute f(x+y) = f(x)+f(y) without 
need of deciphering). Whereas homomorphic encryption schemes are available ([ref BGV] there are 
very cumbersome to use. 
In the following we show how to combine AONT with homomorphic scheme to leverage the cost and 
we propose a plug and play implementation based on AWS S3. 
 
To bring confidentiality with regards to the proxy, the homomorphic encryption must be done client 
side. To avoid long term keys, the storage providers must decrypt the data (which remain secure 
thanks to the secret sharing scheme which has been apply homomorphically). 
A common temporary key must be priorly set between the client and all the cloud providers. This key 
must not be known by the proxy. This key establishment is out of the scope of this document. 
 
Finally: 
Client side: 
 - the data is transformed with an AONT scheme then split into 2 parts, a fixed-length one (e.g. 128 
bits) and the remaining data. if the data is smaller than the fixed length, a padding occurs 
 - the remaining part is sent as-is to the proxy server 
 - the fixed-length part is encrypted with a HE schemes 
 - the HE encrypted fixed part is send to the proxy 
  
 Proxy side: 
  - the remaining data is shared to the cloud providers with a secret sharing scheme 
  - the encrypted data is shared to the cloud providers with a secret sharing scheme applied 
homomorphically 
   
 Providers side: 
  - the remaining data shares are stored as-is 
  - the homomorphically encrypted shared are decrypted then stored 
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An implementation over AWS S3 API is available. AONT scheme is based on AES256, HE is BGV, 
Secret sharing is RS and SSS, Client-side computation are done by overwriting the Signature Module 
of she S3 SDK 
 
 
2. Requirements and recommendations for submissions (Section 4) 
 
Comment regarding Src2. Is licensed as open-source: 
Would it be possible to submit solutions that are copyrighted or under a double license mode 
(copyleft + commercial license)? 
 
 
3. Technical requirements (Section 5) 
 
5.2.1. T2.1: Participants 
As stated in comment on section 3, we would like to present a solution where the client needs to 
transform the data before requesting or after getting the reply from the proxy. This use case does not 
fall into any of the existing threshold interfaces mentioned. 
 
 
4. Primitives and threshold modes in Cat1 (Section 6) 
 
As stated in comment on section 3, would it be possible to consider adding the AONT as a Cat1 
primitive? 
 
 
5. Subcategories in Cat2 (Section 7) 
 
As stated in comment on section 3, would it be possible to consider adding the AONT as a Cat2 
C2.8 primitive (gadget non-threshold)? 
 
 
6. Details of subcategory ___ (Appendix A) 
 
N/A 
 
7. Submission checklists (Appendix B) 
 
N/A 
 
8. Diverse editorial feedback 
 
N/A 
 
9. Other comments 
 
N/A 
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Hello NIST committee, 

Overall we are very excited by  NIST Internal Report NIST IR 8214C ipd, entitled "NIST First Call for
Multi-Party  Threshold  Schemes.”   It  is  a  very  well  written  document  that  clearly  enumerates  the
concerns that a standardization body should raise for this problem domain.

Below, we only have 2 small comments:

(1) Line 659–662: " The code (and its instructions) should be designed to allow for a compilation and
execution  of  the  submitted  implementation  on  top  of  a  Linux  Ubuntu  Desktop  22.04.1  long-term
support  (LTS)  operating  system  running  installed  in  platform  PF1,  without  requiring  software
download from external sources.” 

We would appreciate clarification on this minor point. While certain compilers or interpreters (gcc,
python) may be available by default on a 22.04LTS image, others such as rustc, golang etc, as well as
some system libraries such as openssl, etc. may not be available by default.  Does this mean that the
project should include all of its dependencies, including compiler and external libs? Or do you intend
for a more general setup than is suggested by these lines?

Additionally, do you have any guidance on using “nightly” features of certain programming languages,
e.g., Rust, versus the declared “stable” versions of those languages?

(2) Line 695: "KAT set: A set of “known answer-test” (KAT) values, to aid in correctness
verification of the execution of the protocol.” 

A threshold signing application may require each of the participants to use many random bits during
any operation.  It is not clear how to specify a KAT for a more complicated, multi-party, multi-round
protocol.

We look forward to preparing a submission later this year in collaboration with several other groups
who have similar opinions about threshold schemes.

Best,

abhi
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Hello,

Sorry for being a few hours late. I hope my feedback is still useful.

Robustness:

I think the call should also consider robustness, i.e., the ability to finish a threshold protocol in the 
presence of an attacker controlling the network and/or a number of participants. I consider robustness a 
security property (exactly because it holds in the presence of an attacker), and I feel it's very relevant 
for threshold cryptography.
Since robustness is "functionality/correctness against an attacker", some form of robustness will be 
required in every application, though the specific degree depends on the application, e.g., it's a bit less 
important for a one-time key generation, and it's more important for a threshold signing or decryption 
scheme that is supposed to run every few minutes.  

So proposals should include a description of their robustness guarantees, and how they break down if 
various assumptions (number of honest parties, network assumptions such as broadcast) are violated. 
"Breaking down" can also be "soft", e.g., it may be possible for an attacker to delay the protocol but not
prevent it from running entirely. Assumptions for robustness may (and usually will) differ from 
assumptions for other security properties, e.g., robustness is not possible against a malicious 
network/coordinator, and the maximum tolerable number of malicious nodes may be different for 
robustness than for other properties.  

Note: Maybe a better name can be found. The term "robustness" is very generic. Even though this is a 
common term for threshold primitives, this term has also been used in the cryptography literature to 
denote entirely different properties. But I don't have a concrete suggestion that I think is better than 
"robustness". One candidate is "liveness" but I don't think it's good. It applies rather to systems. (For 
example, a robust threshold signing protocol can help ensure that a system using this protocol is live.)

--- 

Broadcast:

It's good that the draft mentions broadcast as possible requirement. Maybe it should emphasize more 
that there are many different forms and flavors of reliable broadcast (found in the distributed systems 
literature), and proposals should specify the exact properties that except from a broadcast mechanism. I
think my comment applies more or less to network assumption in general (e.g., also to synchrony 
assumptions or message delivery guarantees), but things are particularly complex when it comes to 
broadcast.

Best,
Tim Ruffing
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