
•
I

September 24-26, 1984 ·

TABLE OF CONTENTS

Title Page

Opening Remarks, Dr. Robert L. Brotzman ••••••••••••••••••••••••••••••••••••••• 1

Environmental Guidelines for Using the DoD Trusted Computer

Rules as the Basis of Access Control in

Structure of a Rapid Prototype Secure Military

Security Issues Involved in Networking

The Euclid Family and its Relation to Secure Systems,

An Overview of the Kernelized Secure Operating System(KSOS),

Keynote Address, Rep. Dan Glickman•• 4

Conference Theme, Marvin Schaefer•• 10

Computer Security in Practice, Col. JosephS. Greene••••••••••••••••••••••••• 12

System Evaluation Criteria, Sheila Brand••••••••••••••••••••••••••••• 17

Working Towards A1, D. Elliott Bell•• 24

The Practical Aspects of Multilevel Security, Terry S. Arnold •••••••••••••••• 30

Database Management Systems, David A. Bonyun••••••••••••••••••••••••• 38

Message System, Mark Cornwell and Robert Jacob ••••••••••••••••••••••• 48

Communications System Security Evaluation Criteria, Peter C. Baker•••••••••••58

Personal Computers, Alfred Arsenault •••••••••••••••••••••••••••••••••72

Glenn MacEwen and David Barnard ••••••••••••••••••••••••••••••••••••••79

A Comparison of Formal Security Policy Models, J.T. Haigh••••••••••••••••••••88

Extending the Bell & LaPadula Security Model, Dr. Ronald Gove ••••••••••••••• 112

The Security Model of Enhanced HDM, John Rushby ••••••••••••••••••••••••••••• 120

A1 Policy Modeling, Jonathan K. Millen•••••••••••••••••••••••••••••••••••••• 137

Brian M. Hardy et al ••••••••••••••.....••••.•...•...••••••••••...... 146

Future Directions of Security for Sperry

Series 1100 Computers, T.M.P. Lee ••••••••••••••••••••••••••••••••••• 161

Life Cycle Assurance for Trusted Computer Systems: A Configuration

Management Strategy for Multics, MariaM. Pozzo••••••••••••••••••••• 169

Gould Software Division's Security Program, Gary Grossman ••••••••••••••••••• 180

Electronic Funds Transfer Security, Dick Bauder ••••••••••••••••••••••••••••• 188

Authentication of Electronic Funds Transfers, Richard Y. Yen •••••••••••••••• 192

Information Systems Security at Security Pacific

National Bank, Ed Zeitler••• 195

Computer-Related Fraud in the Banking

and Insurance Industries, Jim Watts •••••••••••••••••••••••••••••••• 207

Computer Security in Practice, Robert Roussey •••••••••••••••••••••••••••••••214

A Commercial User's Perspective, James A. Schweitzer••••••••••••••••••••••••222

Computer Viruses, Fred Cohen••••••••.••••••••••••.•••••••••..•••••••••••.••• 240'

Password Management in Practice, Sheila Brand and Mary Flaherty•••••••••••••264

Microcomputer-Based Trusted Systems For Communication and

On the Inability of an Unmodified Capability Machine

Specifying Multi-Level Security in a Distributed System,

Computer Security for Today, Bernard Peters •••••••••••••••••••••••••••••••••270

Workstation Application, Dr. Roger Schell and Dr. Tien Tao••••••••••277

to Enforce the *-Property, W.E. Boebert ••••••••••••••••••••••••••••• 291

A Trusted Computing Base for Embedded Systems, John Rushby ••••••••••••••••••294

Secure Communications Processor Research, Dr. Derek Barnes ••••••••••••••••••312

Janice_.!. Glasgow et al ••• 319

A Multi-Level Secure Local Area Network, Albert L. Donaldson •••••• ~ ••••••••• 341

Automated Data Processing Security Accreditation Program,

JohnS. Cochrane, Sr ••.•.• 351

Configuration Management for Certified and Accredited

Operational Systems, Lynne Vidmar and Leslie 0'Dell ••••••••••••••••• 364

Analysis of a Kernel Verification, Terry Vickers Benzel••••••••••••••••••••• 391

~ I

The Automated Risk Profile, PeterS. Browne •••••••••••••••••••••••••••••••••402

A Bayesian Approach to the Assessment of Risk for

Computer and Communications Systems, Ali Mosleh•••••••••••••••••••••405

OPENING REMARKS

ROBERT L. BROTZMAN

DIRECTOR, DoD COMPUTER SECURITY EVALUATION CENTER

I'd like to join Jim Burrows in welcoming you to this, my
first Computer Security Initiative Conference here at NBS. As
Marv mentioned, I assumed responsibility for the Center in mid
July.

Mine is not the only new face to appear in the Center since
last year's conference. For openers, the Center has grown 40
percent from the 114 we had when Mel Klein spoke to you last
November to our present staff level of about 160. Much of the
Center's personnel growth was to continue staffing a fledgling
organization that began life with a lot of existing pre-Center
DoD responsibilities, including evaluating trusted commercial
products and operational systems, specifying the computer
security requirements for selected trusted system procurements
like the I-S/A AMPE and, of course, writing and publishing the
Orange Book, the Evaluation Criteria.

But as industry, the DoD components and other Federal
Agencies developed greater security awareness and became more
familiar with the Center, requests for our participation in their
activities also grew rapidly. In addition to these conferences
at NBS, we have moved forward in our education role. We have
conducted classes, often with the support of experts from the
private sector and other parts of the Government, on: computer
security policy, evaluation and certification, formal
specification and verification, trusted system technology, and a
special senior-level course on computer security awareness for
government executives. The Center gives several customized
briefings every week to government organizations on cl~ssified
and unclassified topics in computer security.

At last year's conference, Dr. DeLauer told you that the
Center would be conducting an extensive study on the DoD's
current computer security posture and its future requirements.
That study has been completed and has been distributed for
coordination and comment within the Department. The study has
already resulted in a close and healthy working relationship
between the Center and the Computer Security Focal Points from
the DoD Components, particularly now that the Criteria are being
incorporated in procurement specifications across the DoD.

You may also recall from last year that both Dr. DeLauer and
John Lane remarked that they had "heard it said that a DoD
computer acquisition has never been won or lost on the basis of
security features." Dr. DeLauer went on to say that "we need to
turn that perception around so that our friends in industry can
know that we are really serious about security." Well, I can
certainly tell you that we are. Several recent DoD procurements

1

have now called for products that fully satisfy the requirements
for specific Criteria classes. And, although I can't go into the
details, one DoD organization reported that they have
disqualified a major vendor because his proposal did not respond
to the evaluation class requirements designated for their ADP
procurement. The lesson is clear. The DoD services and agencies
are taking the Criteria and computer security seriously in their
planning.

we have seen a good deal of positive results from the Center ,
and from the private sector this year. The Evaluated Products
List now has its first trusted product entries. I am happy to
report that evaluations have been completed on IBM's RACF/MVS
Facility in the Cl Class, and SKK's ACF2/MVS Package has fully
satisfied the C2 requirements. Other product evaluations are
being completed and should be published in the next few months.
Among these is the Honeywell SCOMP evaluation. As you know, this
is the first evaluation the Center has undertaken for an Al
product. Penetration testing on the SCOMP was recently
completed, and the long and suspenseful ordeal is essentially
over. There are a few loose ends in the documentation area to
tie up right now, but I take real pleasure in telling you that
all of the technical requirements in the Criteria have been
satisfied by the SCOMP. Both the SCOMP evaluat1on and the
Honeywell MULTICS/AIM evaluations will be published soon.

I am also able to tell you that we are moving forward with
the transfer of the formal verification tools to the ARPANET.
The developers of FDM, HDM and GYPSY are all under contract to
transfer their verification systems to the Center's MULTICS/AIM
systems. We expect to be offering access and training in SDC's
formal Development Methodology in the near future. Once the
transfers have been completed, the Center will also provide
access and training in the Hierarchical Development Methodology
and the GYPSY Verification Environment.

Many of you were at Conferences here in Gaithersburg when
the BLACKER system concept was discussed by the DoD Director of
Information Systems. The Center has been assigned responsibility
to produce BLACKER as a system that satisfies the Al
requirements. As a network security application, this program is
a challenge to all of us, since the Network Security Evaluation
Criteria have not been completed. A panel session this afternoon
will discuss a number of relevant network security criteria
issues, and may give you some idea of the technical
consideraitons germaine to these applications.

In assuming this new responsibility, the Center has gone
through a reorganization. We still have our original four
offices of Product Evluations and Standards, Application Systems
Evaluations, Research and Development, and Tech~ical Support. In
addition, Dave Bitzer has joined the Center and serves as the
BLACKER SPO. ,

2

My last news item pertains to myself and the Deputy Director
of the Center. Many of you know that Mel Klein retired from the
Center following 36 years of service to the Agency, and Colonel
Roger R. Schell retired from the Air Force following the
completion of his tour with the Center. Mel and Roger built the
Center from its beginnings to its current position of technical
expertise and service. Our new Deputy Director, Colonel Joe
Greene and I have been very busy working with the challenges and
opportunities we face in the future. Joe will be speaking to you
following this morning's break, so I will not take the time to
tell you how capable he is and how fortunate we are to be able to
draw on his talents.

I am looking forward to working with you all in the future.
I hope you enjoy and profit from this, the seventh Computer
Security Initiative Conference.

3

KEYNOTE ADDRESS

HONORABLE DAN GLICKMAN

CHAIRMAN, SUBCOMMITTEE ON TRANSPORTATION, AVIATION AND MATERIALS
COMMITTEE ON SCIENCE AND TECHNOLOGY

U.S. HOUSE OF REPRESENTATIVES

I am delighted to be here and especially pleased to see the
level of participation in the 7th Conference on Computer Security
sponsored jointly by the DoD Computer Security Center and the NBS
Institute for Computer Sciences and Technology. The subject of
computer security hopefully has emerged from the world of the
specialist and entered into the consciousness of the public.

Computers and the communications links that connect them
pervade our society. Yet, average citizens seldom realize how
computers intrude upon their lives and, further, how much more
intrusive computers will become with each passing day.

Possibly for this reason we have also been largely unaware
of the possibilities for the improper use of computers or
unauthorized access to the information they contain. Even
professional computer people have frequently underestimated the
threat to their systems, often failing to take the most elementary
precaution -- the electronic equivalent of locking the door.
Until recently, it was only a few voices in the wilderness who
even discussed it at meetings such as this.

Now, however, with the media attention paid to "computer
hackers," and the popular films, "War Games" and "Superman III,"
the public is finally becoming aware that George Orwell may have
been right. There really is a "Big Brother" -- although he is not
restricted just to the government as in the novel. Intruders into
our personal lives in 1984 can be almost anyone with even
rudimentary knowledge who seeks to make mischief, gain an unfair
advantage, or commit a crime with computers.

Since my subcommittee began its examination of computer and
communications security and privacy over a year and a half ago,
we've found an incredible level of interest. So I can tell you
the public is beginning to hear the message. And your presence
here today confirms it.

My interest in this issue came about because a Science and
Technology Subcommittee which I chair has jurisdiction over
"communications research and development." That interest was
personalized last year when I was ordering tickets for an upcoming
Orioles game, using a system they have which uses the push buttons
on your telephone. And it occurred to me that here was a system
ripe for abuse. So I suggested to my staff and the Library of

-·,,
..

4

, 	 Congress -- many of you probably know Louise Becker who was until
recently the Library's expert on computer security --that we look
into it.

After a few weeks of digging around, we found that there was
{ndeed enormous potential for abuse, not only of this system but
of all kinds of computer-based information systems. We also found
a subject of immense complexity. There is an R&D component to be
sure, but we quickly found there are great policy, Federal
leadership and national security issues as well. We also
discovered that many of these issues were interrelated. Trying to
organize them into manageable units was a little like trying to
put socks on an octopus.

As many of you know, the Subcommittee held hearings last fall
aimed at covering more comprehensively than ever before all of
these related aspects.

We began by looking at the full range of threats and
vulnerabilities to computer systems. Our first witness was Neil
Patrick, a 17-year old high school student, whose exploits as a
computer hacker had just drawn national media attention, thereby
giving our hearing a timely boost.

He testified that his interest in computers began with an
introductory course in the seventh grade. From there he learned
various computer languages and using his family's home computer
managed to gain unauthorized access to systems around the country,
such as the Security Pacific Bank.

He told the Subcommittee that access to government and
private-sector computers was often made possible by poor control
of passwords. He described how he and other hackers exchanged
information on how to break in to computer systems by using
electronic bulletin boards.

He explained that hackers seldom see their activities as
harmful. The perception that "no harm intended is no harm done"
typifies the computer hacker mentality. The same individuals
would never consider breaking into someone's home, but destroying
an elderly woman's bank record is somehow merely an intellectual
challenge.

In fact, when asked when he first questioned the ethical
propriety of what he was doing, Mr. Patrick replied, "When the FBI
knocked on my door."

And yet, despite all the attention he got, Mr. Patrick
clearly illustrated a point that is often overlooked by the media
who usually portray such youngsters as the modern-day equivalent
of Robin Hood. And that point is that the far greater danger
comes not from hackers, but from insiders -- those that already
have authorized access.

5

We received testimony that the great bulk of computer-related
criminal actions in the commercial sector are perpetrated by an
individual who was authorized to interact with the system and who
knew enough about it to exploit it for personal gain.

Furthermore, there is generally little attention paid to
establishing the trustworthiness of individuals in critical and
sensitive positions. Some corporations do effectively nothing to
assure the trustworthiness of critical individuals~ others take
the minimal step of requiring that employees are bondable; and
very few, if any, perform comprehensive background investigations
or require specific training to sensitize their employees to
problems in computer security.

To deal with this situation, the Subcommittee concluded that
both the private sector and the federal government should
strengthen clearance procedures for all workers handling
sensitive, non-national security data. As part of their training,
they should receive awareness training on computer abuse,
including the penalities for illegal activities. In addition,
automated information systems and related documentation should
contain explicit warnings regarding unlawful activities or abuse.

Another area that the hearings were designed to address was
the effectiveness of leadership by the federal government. And
here we sought to examine several aspects of the government's
responsibility. The first of these was its performance in
protecting the systems used internally by virtually every agency
to carry out its mission.

What we found generally was a depressing picture of drift and
inattention to a potentially serious problem. No doubt, a few
agencies are well aware of the threats to their systems and are
giving high-level management attention to the need for better
security. But in the vast majority of cases, the data kept in
government computers is susceptable to manipulation, penetration
and unauthorized access. And what's worse -- no one seems to be
in charge. The administration's approach is basically to ignore
the problem.

One specific failure is the lack of training to sensitize
both computer and management personnel to the problems in computer
security and to teach good security practices.

To achieve this, I am contemplating legislation early next
year that would require agencies to provide such training. I also
believe the government needs a focal point -- perhaps an institute
within an existing agency or even totally separate -- for
conducting this training and for assisting agencies in selecting
tools and techniques to protect their computers.

Another important element of federal responsibility, I feel,
is the need to secure major, national systems that are computer
based. And I would argue that this responsibility includes not

6

only federal systems, but also certain private sector systems that
are key to the functioning of our society and which therefore
contribute to the "national security" in a broader sense.

For example, the federal government operates the air traffic
control network, a massive system designed to keep some 15,000
daily commercial flights from colliding with each other -- an
absolutely crucial function. It is a highly automated system and
will become even more so when the National Airspace System Plan is
implemented. The potential consequences of unauthorized intrusion
are enormous.

Clearly the government must assure the security of the ATC
system from such misuse. But what about others, such as the
electric power grid, or the banking system? Obviously these are
private, for the most part, but the country is highly dependent on
them.

For this reason, I believe the federal government should
assume some level of responsibility for their protection. But no
one seems to be worrying very much about it. And I don't find a
whole lot of concern even about the federally-operated systems.

I'm convinced there could be several potential disasters out
there just waiting to happen. A disgruntled employee, a terrorist
group, or someone with criminal intent could easily disrupt or
even cause irretrievable damage to our nation. So we can't allow
the present state of indifference to continue.

The Subcommittee concluded there is an immediate need to
pinpoint responsibility for security of critical national systems
and to implement necessary controls. Such a focus would require
input from a number of governmental areas (including national
security, intelligence, law enforcement, emergency management, and
commerce) as well as the private sector, to assure that all facets
are addressed.

Another area of federal responsibility that the Subcommittee
considered was our role in conducting research and developing
technology for use both by the government and in the private
sector. Here we found that system managers are often reluctant to
invest in technologies that they see as being too costly and which
may hamper performance or limit use. What seems to be needed -
aside from greater awareness of the ~hreats -- is research and
development of low-cost, effective computer and communications
protection equipment.

I believe a cooperative effort among vendors, users and the
government is needed to identify areas that might benefit from
additional research effort and to channel available resources
accordingly. At the federal level, a permanent task force,
consisting of both central management and mission agencies, should
be established to coordinate computer and communications research

7

I

(at the DoD Computer Security Center, the NBS Institute for
Computer Science and Technology and NSF) •

Turning now to the area of computer crime, the Subcommittee
was interested in examining the dimensions of this type of crime
along with the need for better laws to deal with it. Of course,
this is a tremendously complicated subject and we were only able
to scratch the surface. But there was substantial agreement on
several points.

The first relates to the lack of adequate definitions and, as
a result, of valid statistics on the size of the problem. The
only way we can characterize it, is through case-by-case empirical
analysis of reported cases. And those probably represent only a
fraction of the actual cases because of reluctance of victims to
reveal their losses.

As an example of how technology outpaces the law, the GAO
pointed to The Crime Control Act of 1968. That law used the
qualifying terms·"aural acquisition"-- or acquired by use of the
ear -- to define interception. As a result, only interceptions by
aural means are illegal under this Act. Anyone can conduct
unauthorized non-aural wiretapping of data communications without
a court order and not be in violation of this law.

Another point of more or less uniform agreement was the need
to strengthen existing law to facilitate prosecuting offenders. A
case in point is trespass.

Under current law, it is illegal for someone to enter someone
else's home even if he doesn't take anything or cause any damage.
Unauthorized access to a computer, in and of itself, does·not
constitute a federal crime, however.

Furthermore, the concept of damage is not well defined. For
example, has "damage" occurred if the only result of a trespass is
a delay in systems operation or time spent to determine that
nothing was altered?

The answers to this and other legal questions are complex.
Unfortunately, they are being addressed piecemeal by a long list
of new bills which have been introduced over the last two years.

All of these are aimed at valid problems. But the
Subcommittee did not endorse any of them because we feel that a
more global approach is required -- one that transcends the
boundaries of a particular agency or Congressional committee.

Looking back, what do I think the Subcommittee accomplished
by holding these hearings? Chiefly, I believe we achieved what
most Congressional hearings of this kind seek to achieve. We
focused public attention on a problem of national importance. And
judging by the interest we've received in the.Subcommittee's
report, I think it is fair to say we were highly successful in
doing that.

8

But what happens from here on? Obviously the issues haven't
gone away, nor are the solutions in hand. The break-ins continue.
Recently, as many of you know, hackers struck again -- a familiar
story. This time they got in through the Southwest Bell System in
Kansas City and gained access to computers in major corporations
all over the country, fooling the long-distance billing mechanism
in the process.

Well, several things are going on right now. One thing is a
follow-on day of hearings -- starting at 1:30 this afternoon -
before my Subcommittee. In these, we plan to continue calling the
public's attention to the security and privacy implications of our
dependence on computers. We also intend to keep urging the
Administration to take action.

Another thing which involves me personally, as a Member of
the Judiciary Committee, is an amendment I offered to H.R. 5616,
the Counterfeit Access Device and Computer Fraud and Abuse Act of
1984. My amendment makes it a crime to gain unauthorized access
to financial information and credit reports.

My rationale was that such information is protected by law
from release without authorization from the indivudual. So it
only makes sense that it should be illegal for a hacker to gain
access to it.

H.R. 5616 has so far passed the House; and I am hopeful that
it will also pass the Senate and become law next year.

In the longer term, what happens next depends in large
measure on you, the experts in this audience. The public is
beginning to appreciate the dangers. The Congress is energized.
But, it will be up to you to build on this support by developing
the detailed answers.

9

DOD/NBS COMPUTER SECURITY INITIATIVE CORFEKEBCE

MARVIN SCHAEFER

DOD COMPUTER SECURITY EVALUATION CENTER

Welcome to the seventh jointly-sponsored Conference on the Computer Security
Initiatives of the Department of Defense and the National Bureau of Standards.

Since 1979, the year of the first meeting in this series, attendance and
active participation have grown with its progression from seminar to symposium to
conference. A record of more than 500 persons had preregistered for this
Conference by the time these words were being written.

The growth in participation represents a growth in computer security
awareness as well as a parallel maturation of the technology and its use. At the
time of the first seminar, the community perceived less of a need for computer
security than it does today. There had not yet performed their publicized attacks
on systems; the popularization of computer piracy on television and in comic
strips had not yet brought computer crime to the public mind. Nor was there a
Computer Security Evaluation Center with a published Trusted Computer System
Evaluation Criteria or a populated Evaluated Products List.

The combined efforts of the National Bureau of Standards and the Department
of Defense have brought about the progress that has been made in the last five
years. The private sector has begun to produce commercial trusted computer
products for subsequent inclusion in their product lines. Such products are being
developed, generally without government subsidy, in all of the classes defined in
the "Orange Book", which was distributed at our Sixth Conference. In addition,
the DoD has begun to incorporate precise interpretations of the Criteria in their
procurement specifications for new application systems.

Recognizing the progress that has occured, this Conference represents a
significant departure from the agendas of our previous Conferences. We chose to
issue a Call for Papers to computer security practitioners and researchers in
order to provide a better forum for the exchange of current information about
advances in the state of the art as well as the expression of technological
challenges for the future.

As in previous Conferences, many of the papers deal with issues relevant to
trusted computing bases designed to support military computer applications. It 1s
clear that the nation's security depends on our ability to protect classified
information for unauthorized disclosure, modification or destruction. Trusted
computing products in Divisions B and A of the Criteria are designed to control
accesses between cleared users and classified data. We in the Department of
Defense will continue to emphasize the need for developing trusted systems in
these Divisions. A primary goal in this Conference series is to disseminate
information on trusted computing system technology to facilitate the general
improvement of security in commercially-available systems.

In this light, it is interesting to recall that this is the year 1984.
Large-scale networks of automated information systems have been realized that
outstrip Orwell's visionary prophecy of a technology having the potential to
destroy the privacy of the individual. Social Security numbers have become
universal identification codes for people living or working in the United States.

10

Electronic banking, electronic mail, and electronic records-keeping have become a
way of life for tens of millions of our population. The national economy has
literally been placed under the control of computers and computer programmers.

It is perhaps surprising to observe that by far the largest application of
computers in the Department of Defense deals not with classified data, but rather
with sensitive but unclassified information. These DoD computers store medical
records and data on patients in DoD hospitals; they process payroll and retirement
funds; control the acquisition, shipment and disposal of equipment; arrange the
transportation of personnel and material on airplanes; etc. Such DoD applications
are no different from the majority of computer applications in the bulk of the
Federal government and in the private sector.

The computer security threats to these computer systems are no different from
those to computer applications in most of the Federal government and in the
private sector. The audit and control requirements for these applications are no
different from those for the bulk of applications in the Federal government and in
the private sector. The ~raditional control requirement is for the establishment
and maintenance of protected audit trails that contain a record of each "security
relevant" system event, identifying the individual responsible and accountable for
each of these events along with the context of the individual's actions.

Such audit trails can quickly become a large, sensitive database.
Specialized tools need to be developed to process and analyze such audit trails in
order to help discover evidence of computer fraud or abuse. However, this is
where an Orwellian challenge comes to mind. The very records required by the
auditors can become a threat to individual privacy. It is almost as though
individuals need to sacrifice their privacy in order to protect their privacy!

Several papers in the Conference Proceedings address these concerns.

Advances in computer security research and technology are addressed in many
of the Conference sessions. Heavy emphasis is given to recent directions in
database management security, network security, and applications of interest to
the private sector. We have attempted to schedule sessions such that participants
can be exposed to reports and discussions of recent progress, to planned thrusts
in computer security, and to current problems that require solution. That
computer security is now in practice should be evident to the participant and to
the general reader of these Proceedings. We look forward to your support in
continuing to advance the technology base.

This Conference resulted from the prolonged efforts of a small group of
dedicated, but relatively invisible, professionals. I would like to acknowledge
the work of the Program Committee; Daivd Bell and Sheila Brand from the Center,
and Denny Branstad and Stu Katzke from NBS have done a splendid job of recruiting,
reviewing, and then selecting the papers and presentations that comprise this
Conference's sessions. The difficult and sometimes thankless task of planning,
coordinating, and organizing the Conference's mechanics and publications was done
by Al Duke, Carolyn Logan, Mimi Vaughn, Tammy Shelton, and Carol Atkinson of the
Center; and Gene Troy, Kathy Kilmer, Sarah Torrance and Jan Kosko of NBS.
Finally, more than sixty individual computer security practitioners and
researchers in the United States and abroad submitted professional papers for
inclusion in this year's program. Despite short notice and publication deadlines,
we received tremendous support from the computer security community. On behalf of
the Program Committee, I would like to express my appreciation for all their
contributions.

11

COMPUTER SECURITY IN PRACTICE

.JOSEPH S .. GREENE, .JR. COLONEL, USAF

DEPUTY DIREC'.OOR DOD COMPUTER SECURITY EVALUATION CENTER.

On the 2nd of July, I joined the Computer Security Evaluation Center as the
Deputy Director. Although computer software engineering has been a common thread ,
through my prior Air Force assignments, the subject of trusted computer base
technology represents a new challenge for me. For this reason, I am particularly
pleased with the opportunity this conference provides to meet those of you who
have a head start on security.

The significant event proceeding last year's DoD Computer Security Initiative
Conference was the publication of the Department of Defense Trusted Computer
Systems Evaluation Criteria in August of 1983. Actually on the first day of the
Conference -- that was 15 November 1983 -- the Under Secretary of Defense for
Policy published a Memorandum to the Defense Components that authorized and
encouraged use of the Criteria in the performance of security evaluations and as
the basis for system security requirements. The first question we could asked is
what has happened during the past year since the Criteria was published.

In the area of Product Evaluation, I am pleased to report that the Evaluated
Products List (EPL) is no longer an empty set. Two reports have been published.
The IBM Resource Access Control Facility called RACF has been given an overall
evaluation class of C1. RACF is designed to limit access to resources by
identifying authorized users and protected resources and controlling users' access
to those resources. It appears that RACF could be evolved to meet the C2 level of
evaluation criteria with the addition of the object reuse capability.

The second entry on the Evaluated Products List is the Access Control
Facility II built by SKK, Inc. ACF2 was determined to meet all of the
requirements of class C2 with no exceptions. ACF2's strong discretionary access
controls and audit features provide significant improvements to the security of
the IBM MVS operating systems.

The draft final report on CGA's Top Secret add-on security package assigns a
Cl rating. The package will allow users to protect project or private information
by keeping other users from accidentially reading or destroying that data.
Evaluation of Honeywell's Security Communications Processor, called SCOMP, has
been completed and with the correction of a few items (primarily in the
documentation area) is expected to be placed on the EPL at the Al level before the
end of the year.

During the past year, the Criteria has also been used for the development of
future military systems security requirements specifications. Procurement
specifications for the BLACKER and the I-S/A AMPE have been prepared based on the
Criteria and call for class Al products. The Center recommends these as good
examples of security procurement specifications. A bad use of the Criteria
combines features from different class levels defining, as it were, a new
evaluation class. We are concerned that this approach, if allowed to continue,
could undermine the DoD strategy of populating an Evaluated Products List by
sending mixed signals to industry as to our requirements.

12

In order to discourage this practice, the Director of NSA has recommended to
the Secretary of Defense that program managers be directed to explicitly state
computer security requirements in terms of a specific objective protection class
as defined in the DoD Trusted System Evaluation Criteria. This recommendation is
currently being reviewed at the OSD.

During the past year, we have develop an environment doctrine guide to help
system managers analyze their mission and environment to determine prudent levels
of security for their area. The document, to be described in detail by the next
speaker, is being coordinated now.

The Center has used the Criteria and the environment doctrine a~ the basis
for a standard system evaluation questionnaire. The questionnaire has been used
to conduct a survey to assess the security posture of automated information
systems handling classified and other sensitive DoD information, within the
department. A preliminary analysis of approximately 7000 survey responsives
covering about 15000 computer systems has interesting results. About one third of
these systems process some form of classified data. Of these classified machines,
62% of the systems reviewed are operating outside the region of acceptable risk as
defined in the environment doctrine guidance and 17% of the systems review are
operating today at a level of trust outside of available technology. That
situation is certainly not good.

We urgently need to get on with the task of developing technologies to bring
current and projected operations within prudent levels of security risk. Although
we have made significant progress since the Center was established in January
1981, it is our assessment that the development of the improved security measures
is not keeping pace with the proliferation of internetted and networked
information systems. In fact our exposure to unauthorized access is probably
greater today than it was four years ago for two reasons: (1) security
technology is not significantly more available and (2) the number of computers
accessible remotely has greatly increased. This very real and growing gap between
operational security need and the existing technology base is one measure of
urgency for a strong research program.

One reason for the slow pace of evaluated product development and, hence the
widening gap derives from the methodology and processes used to certify new
products and systems. Today's approaches are fundamentally human-expert
intensive, manual efforts. Although the Center has initiated an education and
training program, we are not training new people in sufficient numbers to keep up
with the demand for new system evaluations. Once assigned to a product or system
evaluation task, people may be largely unavailable for new work assignments for
several years. The Center has been forced to ask the services and agencies to
prioritize their security evaluation needs and only the most important are
undertaken.

Looking ahead, we realize that we are on the bowwave of a very large
endeavor. There is no reason to expect that once evaluated and certified, systems
and products will remain unmodified. And yet good security practice requires that
modified products must be reevaluated. The second and subsequent recertification
efforts would be expected to go faster if the original team members are still
available, but that may not always be possible.

As a community we have not come to grips with the fact that the availability
of trained, trusted-systems designers, specifiers and developers as well as
evaluators is a limiting factor. The situation can only become more difficult if

13

we do not find new ways of doing business. Although the data are insufficent to
project accurate work load trends, we are confident that the human wave approach
can not keep up with demand. We must find automated supplements and replacements
for the present people-intensive evaluation approaches. The situation is going to
get worse before it gets better. We must immediately add and train more people to
handled the immediate demand for additional evaluations. Simultaneously we must
greatly increase and focus our research initatives on developing and promulgated
trusted computer systems design and implementation approaches that are conducive
to an evaluation process requiring reduced levels of manual effort. System
designs that do not address computer security requirements increase the level of
nanual effort for evaluation and decrease the level of confidence in the resulting
evaluation. Research effort on formal specification, verification and eventually
automated theorem provers must be guided by the goals of acquiring and making
available tools that reduce the personnel burden, as well as providing a high
degree of assurance in computer security. Such tools must be developed and made
widely available to industry so that more of the burden of certification can be
placed upon the system developer and contractor.

Because there are only a handful of trusted software experts in the country,
and even fewer trusted hardware experts, the Computer Security Evaluation Center
must adopt approaches for leveraging the maximum return from the people we have
while we educate more people. In the remainder of my talk, I want to focus on the
leverage opportunities we have identified.

I want you to understand what we are trying to do and why so that you can
help us achieve our objectives. The approach I'm going to discuss, while
completely consistent with the philosphy of partnership with industry on which the
center was chartered, adds a new dimension to the existing approaches that will be
continued. As you examine our ideas, keep in mind that our fundamental .objective
is to cause more products to be available sooner. So far; the Center has
attempted to motivate industry to carry the burden of security development through
a indirect route of establishing standards, evaluating products, and providing
access to formal specification and verification tools.

This passive approach gives us no control over capability or schedule. We
are left largely at the choice of industry as influenced by the market-place to
move ahead with trusted products. This passive approach is not leading to the
development of trusted products at a rate sufficent to support DoD requirements.

While continuing to motivate industry through the indirect approach, the
Center will additionally accelerate the process by sponsoring development of
exemplary trusted system prototypes. In this undertaking, every effort will be
made to use software engineering practices that facilitate development of machine
independent products that offer maximum reusability. We will focus effort on the
development of common packages of logic that can be used by many vendors. With
this approach the Government will encourage and foster wider competition and can
therefore more easy justify the associated development cost. We plan to place
Government sponsored exemplary implementations in the public domain with wide
availability to vendors. Of course some parts of the code must deal with machine
dependencies. We will seek to isolate and carefully document these portions in
the expectation that vendors would undertake the task of developing the special
machine dependent packages that interface the common software to their particular
hardware base. Under this stratgey, industry should be able to design, develop,
and market trusted product with less risk than in the past, since they will be
able to obtain clarification on how well the product is likely to satisfy the
requirements of the criteria and they will be able to draw directly from the

14

I

common work sponsored by the DoD. The approach promises cost and schedule
leverage opportunities for both government and industry.

Reusable machine independent software requires a tightly controlled language
standard. The DoD Ada computer language standard and the Ada compiler validation
facility make Ada the most tightly controlled standard available today.
Additionally, the DoD has made a major commitment to the Ada computer language.
This action alone will naturally give preferential treatment to those vendors that
supply future technology base for our primary and most important DoD mission
critical customers.

We have decided to undertake as an additional research thrust, a commitment
to develop trusted technologies in and for Ada in order to obtain the maximum
leverage within the department. As you know, some within the security community
have raised concern about the feasibility of using Ada to implement trusted
systems. With our commitment to Ada, the Center is taking on the task of
resolving these questions for the community •. In order to move out in this new
direction, we have already undertaken a number of actions. We will use 15 of the
FY-85 manpower space increases to hire new people with Ada experience. These
people will develop Ada foundation technologies like trusted operating systems
technologies, trusted data management tools, and common telecommunications
protocol in and for Ada. We will also began to develop and make available tools
for validation and formal verification in Ada. We are in the process of
redirecting some of the consolidated computer support program activities toward
implementations in the Ada language. If requested additional FY-85 reprogrammed
funding is approved, we will increase our contractor support in this new
direction.

During the approximately 24 months prior to my assignment to the Computer
Security Center, I helped evaluate over 330 proposals from industry leading to the
award approximately SO contracts totalling over 15 million dollars. Much of that
work involved development of software in Ada. One of the lessons that I learned
from that effort was the critical importance of contracting mechanisms to
facilitate the rapid advancement of technology. We are working with our
contracting officers to develop the infrastructure to facilitate a responsive
contract award process. We will move out as soon as we can establish these
mechanisms and obtain needed funding. We are exploring the feasibility of
sponsoring briefings for industry on our research objectives. We hope to use
these mechanisms to establish an incentive for creative and new thinking on our
problems.

We believe also recognized that there is considerable leverage opportunity
for the Center by working with standards committees, by taking a more activity
role in the Government review of industry sponsored IR&D security related efforts,
and by encouraging a more active and formal exchange of information on security
work sponsored by other Government organizations. We are establishing points of
contact and mechanisms to facilitate our involvement in these areas.

In order to further strengthen our partnership with industry, we are
exploring ways to protect the market incentive for industry to invest private
sector dollars in security related software products. Today, proprietary software
is generally distributed in machine code form to reduce the opportunity for
piracy. This practice also increases the potential for subversion. The Computer
Security Center will undert~ke research to develop ways to accept proprietary
software that reduce the risk of subversion.

15

I

This may require that software be delivered in source code form, be examined
by the Government, ·COmpiled on Government machine and distributed under Government
control in machine code form. To be practical the approach cannot void vendor
warranties and must be responsive to a reasonable updating process. We believe
the DoD move to Ada will facilitate this goal. If successful, this research could
lead to the establishment of a trusted software acceptance facility for the
department.

As we look at the life-cycle systems implication of security, we recognize
that a related capability needs to be developed to place hardware configurations
deemed applicable to the DoD's most sensitive processing applications under strict
configuration control similar to those used to protect communication security
hardware from subversion. We plan to work closely with vendors to develop the
appropriate controlled-access hardware development environments within industry as
a cost effective alternative to forming a totally Government control hardware
verification facility for each vendor's product. Random sampling techniques in
which the hardware is periodically subjected to scrutiny in a Government
laboratory should serve to provide assurances that the hardware continues to meet
security specifications.

Our recommendations calling for three new initiatives dealing with exemplary
software development, a software acceptance facility, and a hardware verification
capability, represent new directions for the Computer Security Center. These
efforts should accelerate the availability of trusted products and must be
undertaken in a way that foster a growing partnership with industry.

These and other recommendations for greatly improving security measures and
reducing the growing exposure to unauthorized computer access are being examined
within the department.

I hope you will take the opportunity during the conference to introduce
yourselves. I will look forward to getting your view on the ideas that I have
proposed. We are looking for new ways to get on with our common objectives of
increasing the availability of trusted software products.

16

Environmental Guidelines

For Using the

DoD Trusted Computer System

Evaluation Criteria

by

Sheil a L. Brand

DoD Computer Security Center

1.0 Introduction

In August of 1983 the Department of Defense Computer Security
Center (DoDCSC) published the document entitled: Department of
Defense Trusted Com uter S stem Evaluation Criteria, CSC-STD-001
83. 1 The evaluation criteria defined in that document classify
systems into seven hierarchical classes of enhanced security
protection. They provide a basis for the evaluation of
effectiveness of security controls built into automatic data
processing system products. The criteria were developed for the
fo 11 owing reasons:

* to provide users with a yardstick with which to assess the
degree of trust that can be placed in computer systems for
the secure processing of classified or other sensitive
information

* to provide guidance to manufacturers as to what to build
into their new, widely-available trusted commercial
products to satisfy trust requirements for sensitive
applications

* to provide a basis for specifying security requirements in
acquisition specifications

Two types of requirements are described in CSC-STD-001-83. They
are: (1) specific security feature requirements, and (2)
assurance requirements. The underlying assurance requirements
can be applied across the entire spectrum of Automatic Data
Processing (ADP) system or application processing environments
without special interpretation. However, though the criteria are
application independent, it is recognized that the specific
security feature requirements may have to be interpreted when
applying the criteria to specific applications or other special
processing environments.

17

ough CSC-STD-001-83 provides the yardstick with which to
asure the degree of trust, it does not provide guidance on how

m ch trust is needed. That is, it does not provide a mapping of
e criteria classes to protection requirements of processing

environments of varying degrees of risk. In order to fill this
void and thereby provide guidance to DoD system managers and
others responsible for designing or procuring secure systems or
evaluating the effectiveness of controls in operational systems,
the DoDCSC has formulated doctrinal guidance for using the DoD
Trusted Computer System Evaluation Criteria.

2.0 Scope

The doctrinal guidance has been developed with the objective of
being applicable to DoD systems that are entrusted with the
protection of a wide range of information. It addresses national
security related classified and unclassified information. It
also covers sensitive and nonsensitive unclassified information
that is not national security related.

3.0 Determination of Risk

In order to determine the minimum criteria class necessary to
protect information processed by a system it is first necessary
to determine the security risk inherent in that system. Looking
for parameters that would be universal to all DoD systems, the
DoDCSC chose two which are commonly used throughout the Defense
community. They are:

* sensitivity/classification of information processed by the
system - which is a measure of the value that DoD places
on information

* clearance of system users - which is a measure of trust
DoD places in users

3.1 Risk Index

Using the parameters of sensitivity and clearance, the DoDCSC
formulated that the inherent risk in a system, to be designated
as the RISK INDEX of a system, is defined as the disparity
between the maximum clearance or authorization of the least
cleared system user and the maximum sensitivity of data processed
by a system. In other words, RISK INDEX is defined by the
disparity between data sensitivity and user trust.

In order to calculate the RISK INDEX for a system it is necessary
to assign numeric rating values to the range of sensitivities and
the range of clearances.

18

Using assigned numeric ratings the risk index can be calculated:

RISK INDEX = Rmax - Rmin

where:

Rmax = 	 rating associated with the system's maximum data
sensitivity

Rmin = rating associated with the maximum clearance of
the least cleared system user

The rules for arriving at Rmax, the rating for maximum
information sensitivity, also take into account the presence of
non-hierarchical sensitivity categories such as NOFORN (Not
Releasable to Foreign National) and PROPIN (Caution- Proprietary
Information Involved). The term "sensitivity categories" also
encompasses compartmented information and information revealing
sensitive intelligence sources and methods.

4.0 Open and Closed Environments

In addition to user clearance and data sensitivity the DoDCSC
formulated that two types of environments had to be accounted for
in arriving at the appropriate Criteria Class. These deal with
the environment in which the application is developed and
maintained.

A system. whose applications are not adequately protected is
referred to as being in an open environment. If the applications
are adequately protected, the system is said to be in a closed
environment.

Here application refers to those portions of a system including
portions of the operating system that are not responsible for
enforcing the security policy.

4.1 Closed Environment

A closed environment is defined as one in which both of the
following hold:

*Application developers (including maintainers) have
sufficient clearances and authorizations to provide
acceptable presumption that they have not introduced
malicious logic. Sufficient clearance is defined as
follows: where the maximum classification of the data to
be processed is Confidential or less, developers are
cleared and authorized to the same level as the most
sensitive data; where the maximum classification of the
data to be processed is Secret or above, developers have
at least a Secret clearance.

19

* Configuration control 	 provides sufficient assurance that
applications are protected against the introduction of
malicious logic prior to and during the operation of
system applications.

4.2 Open Environment

An open environment is defined as one in which either of the
following holds true:

*Application developers (including maintainers) do not have
sufficient clearance (or authorization) to provide an
acceptable presumption that they have not introduced
malicious logic.

* Configuration control does 	 not provide sufficient
assurance that applications are protected against the
introduction .of malicious logic prior to and during the
operation of system applications.

The objective of differentiating between open and closed
environments, in terms of risk, is to take into account the
possibility of the insertion of malicious logic during the
system's development and maintenance phases. The presumption is
that systems in open environments are more likely to have
embedded malicious software than those developed and/or
maintained in a closed environment. Today, most systems are
developed and maintained in an open environment.

5.0 System Users

In making the determination of RISK INDEX the analysis must
address two types of possible users. These are:

* direct users: users with direct access to the system;
that is, users who can provide input to or obtain output
from the system without the intervention of another human,
and

* 	indirect users: users who do not have direct access to
the system, but who can still provide input or obtain
output from the system.

While it may be obvious why direct users must be accounted for in
the determination of RISK INDEX, the role of indirect users may
not be as obvious. To understand their importance consider the
following example: Suppose that there is a system operating in
the System High Mode at the Secret level and this system
automatically labels its output. By extension, all direct users
are cleared and are trusted to at least the Secret level •

.•.. .··. i

20

I

Under current DoD policy, all output produced by this system
should, before release, be manually reviewed and assigned the
proper sensitivity markings by a responsible authority. If this
is done, then there are no indirect users, and the Rmin value
used in calculating the RISK INDEX is that associated with the
least cleared direct user.

However, if there is reason to believe that the output will not
be manually reviewed prior to release, the element of trust that
was previously placed in the responsible authority reviewing the
output is now placed in the computer system itself. The labels
that this system places on its output are trusted to be accurate,
and the output is distributed according to the labels. In the
example, if a listing is marked Confidential by the system it may
be sent to someone with only a Confidential clearance. This
person should then be considered an indirect user, for he has
received output from the system, and the distribution of that
output was based solely on the label attached by the system.

At this point, the system security officers should carefully
examine the circumstances to determine whether or not they are
truly operating in System High Mode. The assumption was made
that all system users are cleared to at least the Secret level,
and yet someone with only a Confidential clearance has just
received output from the system without it being manually
reviewed. The system, therefore, is being trusted to accurately
separate and label various sensitivity levels of data (at least
Confidential and Secret, in this example). This assumption of
trust is not required of systems operating in System High Mode.

As the example shows, failure to take into account the
possibility of indirect users may result in an underestimate of
security requirements. In this case, calculation of RISK INDEX,
using the direct user's clearance for Rmin, would result in
requirements for a system possessing need-to-know protection.
However, when the indirect user's clearance is used for Rmin the
resulting RISK INDEX indicates a need for mandatory access
control protection.

6.0 Doctrinal Guidance

As of the writing of this paper The DoDCSC had not yet finalized
the document containing the doctrinal guidance. However TABLE 1
is provided in order to give the reader a draft representation of
the guidance.

TABLE 1: Security Index Matrix For Open Security Environments,
illustrates the results of applying the doctrinal guidance to
individual minimum clearance/maximum data sensitivity pairings,
where no categories are associated with maximum sensitivity below
Top Secret.

21

7.0 Conclusion

The DoDCSC has formulated doctrinal guidance to be used with The
DoD Trusted Computer System Evaluation Criteria by identifying
the minimum Criteria Class of system required for a given RISK
INDEX. RISK INDEX is defined as the disparity between the
minimum clearance or authorization of system users and the
maximum sensitivity of data processed by the system.

The purpose for developing this guidance was to make it available
for use in establishing minimum computer security requirements
for the processing and/or storage and retrieval of sensitivity or
classified information by the DoD whenever automatic data
processing systems are employed.

REFERENCE

1. DoD Computer Security Center, Department of Defense Trusted
Computer System Evaluation Criteria, CSC-STD-001-83, 15 August
1983.

22

TABLE 1

SECURITY INDEX MATRIX

FOR OPEN SECURITY ENVIRONMENTS}

Maximum Sensitivity of Data

Minimum
Clearance
or
Authorization
of S_vsten Users

u
U N C S TS lC

* *
)l,l *
83 Al
82 83

C2 82
I

c2 81 I

·e:2.· .• ; ·c2?
··.·••·... t•····.· ...cz ·c22 i ..

MC

*
*
*

A1

83

R2
813 J
C22]

N

c
s
TS (BI)

TS(SBI)
lC
MC

1Environments defined in the shaded area are for systens that
operate in system high mode. No minimum level of trust is
prescribed for systems that operate in dedicated mode. Cateqori es
are ignored in the matrix, except for the inclusion of compartments
at the TS 1evel.

2rt is assumed that all users are authorized access to all
compartments on the syst6!1. If some users are not authorized for
all compartments, then a class Bl

3Where there are more than two compartments,
82 system is required.

system or higher is required.
at 1east a class

U =Uncleared or Unclassified
N = Not Cleared but Authorized Access to Sensitive Unclassified

Information or Not Classified but Sensitive
C = Confidential
S = Secret
TS{B!) = Top Secret (Background Investigation)
TS(SBI) = Top Secret (Special Background Investiqation)
lC = One Compartment
MC =Multiple Compartments

23

WORKING TOWARDS AI

D. Elliott Bell

Department of Defense

Computer Security Center

Abstract. Building a system to meet the Al requirements for certification
necessitates scheduling work activities and documentation related to Al '
certification within a total system development schedule. This paper proposes
one approach to synthesizing development activities and Al certification
requirements.

INTRODUCTION

With the advent ··of the "Department of Defense Trusted Computer System
Evaluation Criteria" CSC-STD-001-83 (hereafter called the "Criteria"), system
developers and system acquirers were put in the position of being able to
specify very precisely degrees of computer security. Initial consideration,
ho'IA!ever, identified a gap between the Al requirements in the Criteria and the
process of system development. From a development point of view, it is as if
the Criteria say "At the end of the development process, the collective
engineering notebooks will contain the following." The Criteria do not (and
probably should not) detail how the activities and their documentation should be
monitored and reviewed, nor even how they should be ordered. This paper will
describe one approach to organizing Al certification activities and
documentation within the framework of a typical system development schema.
First, both the Al requirements and, the development process will be sunnnarized.
Then a synthesis that grew out of consideration of two actual programs - BLACKER
Phase 1 and the Inter-Service/Agency Automated Message Processing Exchange (I
S/A AMPE) - will then be presented along with some unresolved considerations.

AI REQUIREMENTS SUMMARY

The Criteria divide requirements into feature requirements and assurance
requirements. For the purposes of this paper, the Al requirements will be
viewed as quadripartite: system features; assurance formalisms; activities; and
documentation.

The system features that are required concern security policy,
accountability, system integrity, and trusted facility management. Also
included are system architectural features such as domain separation, process
isolation, the object abstraction, segmentation, and layering that have
historically been shown to simplify assurance. One feature (audit) is present
to the extent that it is at least in part to offset a known area of
vulnerability, that of covert channels. Thus the full list of auditable events
is tied to the successful activity of covert channel analysis and its
documentation. The full set of features required is an amalgam of direct
security transliterations and supplementing preventive and monitoring
techniques.

24

The assurance formalisms include secure system architecture, minimalization
of .the Trusted Computing Base (TCB), the principle of least privilege, an
implementation of the reference monitor, and a full design "certification
chain". The design certification chain begins at the security policy and
proceeds through the security policy model to both the Detailed Top-Level
Specification (DTLS) and the Formal Top-Level Specification (FTLS) and finally
to the coded implementation.

The activities required for Al certification are of several types. There
is a set of consistency and correspondence activities: show that the FTLS
accurately represents the TCB; show that the FTLS is consistent with the
security policy model; and so on. There are also testing and analysis.
Analysis of the specifications for covert channels must be undertaken, results
quantified, and, as directed, channels reduced or eliminated. In addition, an
implemented system must undergo full-scale security testing to discover design
and implementation flaws. Discovered flaws must be rectified. Finally, some
support activities are required, notably configuration management (both of the
usual design documentation and of the special Al documentation) and trusted
distribution.

Documentation to support an Al certification runs a wide gamut from
definition and justification of the design certification chain to a security
users' guide. In general, every feature, every assurance formalism, and most of
the activities are required to be documented.

SYSTEM DEVELOPMENT PROCESS

The system development process, encompassing both hardware and software
development, is divided into phases normally delimited by formal review of
program documentation. For the purposes of this paper, the paradigm shown in
Figure 1 will be adopted. There are five phases the definition of
requirements, design, build, test, and acceptance. The phases overlap, the
overlaps highlighted by shared documentation and a program review. The
requirements definition phase ends with the System Requirements Review that
addresses the adequacy of the Functional Description of the system to satisfy
the needs documented in the Statement of Requirements. The design phase begins
at the System Requirements Review and consists of a three-step refinement of the
Functional Description. The three evolving design documents are the System
Specification (reviewed at the System Design Review), the System/Subsystem
Specification (reviewed at the Preliminary Design Review), and the
Implementation Specification (reviewed at the Critical Design Review). At the
Critical Design Review, the development process enters the build phase. The
Implementation Specification is the basis for the building of actual modules,
whether the process is the writing of computer programs or the fabrication of

It
.. hardware items. The build phase ends when the modules have been tested

individually and the test phase begins. (The demarcation between the build and
test phases is not as clear as that between the earlier phases inasmuch as the
testing interacts with the building and the progress on different subsystems
proceeds at different rates.) Testing proceeds from modules towards the full
system, culminating with a test of the total system during the Developmental
Test & Evaluation. This test activity and its documentation initiates the
acceptance phase which includes both an Operational Test & Evaluation and a
final acceptance test and a sign-off document.

25

This representative system development schema can illustrate several
philosophical points about the system development process. First, the
underlying assumption is that there is a distinction between the system
developer and the system acquirer or "user" who promulgates the Statement of
Requirements. Even if a system is developed within a single organization, this
assumption tends to be supportable as the developer and user roles are adopted
by different subelements of the organization. Second, the review milestones
within the development process supports a compromise between the developer and
the user. The use.r needs to be assured periodically that the development is
progressing well. The developer needs some assurance that the user understands '
and approves the direction that the development is taking. The development
reviews and the documents that support them (particularly the design reviews)
are incremental program definitions where the developer and user jointly agree
to proceed and to share the risk and the potential cost of good faith errors
that may be found later in the process. All the development activities and
documentation are fit into the same incremental progress schedule. For example,
logistics planning and test plans are undertaken in parallel with the design
activities and the r~levant documents and milestones are scheduled so as to fit
naturally into the larger development review schedule.

The Al computer security certification requirements can be viewed as an
additional set of requirements that need to be added to the development schema.
The question is "Where do the Al requirements fit 1.n the larger system
development context?"

PROPOSED SYRTBESIS

Inserting the Al computer security requirements into the system development
process is not nearly as formidable as it seems at first blush. Most of the
requirements fold in neatly as minor additions and extensions to usual design
and documentation tasks. The primary exceptions are the additions of a design
certification chain and of covert channel analysis.

System Features. The system features required for Al certification
constitute a checklist of items that should be reflected in the usual design and
user documentation. This checklist is of use to both the user and the developer
and should, in fact, act as a memorandum of understanding concerning the system
features that will be scrutinized carefully for computer security relevance.
Three particular features deserve more comment. (1) The access control
features are inextricably tied up with the assurance formalisms of security
policy and its enforcement. The review of these features must of necessity be
coupled with a review of the corresponding elements of the design certification
chain. (2) The user functionality features of trusted facility management,
while directly addressing security issues, really embody just one more example
of an identified class of user. The requirement to include such features and to
document them in the trusted facility manual is not, therefore, a new type of
requirement, but rather another application of a standard system development
task. (3) The audit function for a system working towards Al certification is
important, extensive, and incompletely defined at the outset of system
development. The full definition of the audit function itself and of the list
of auditable events is arrived at through several of the activities required in
an Al system development, particularly covert channel analysis and routine
design analysis.

Assurance Formalisms. With one major exception, the assurance formalisms
are supported by computer-security-related activities and are reported in

26

specially tailored design documentation. Such items as the secure architecture,
the definition and justification of the TCB perimeter, the application of least
privilege, and the instantiation of the reference monitor concept fall into this
category. The design certification chain is more complicated. Two elements of
this chain, the DTLS and the software code, are not new requirements. The other
elements are new, as are the links between them. An important point is that the
DTLS consists of a set of design documents, each one a refinement of the one
before. Experience in system development has shown that the compromise of
publishing, reviewing, and approving design documentation at several milestones
(design reviews) leads to a better appreciation by both the user and the
developer of the direction and the progress of the effort. In an analogous
fashion, the FTLS is usually not monolithic but consists of levels of refinement
just like the DTLS. The Criteria call for an FTLS that corresponds to the
model, that 1s internally consistent, and that corresponds to the
implementation. A developer might well prefer to present the FTLS and its
assurances late in the development schedule. That approach would, however, give
the user no ability to gauge the progress of the development of the FTLS. As a
compromise, therefore, it is proposed that the refinement of the DTLS and the
FTLS be kept in rough lockstep. That is, that at the. major design reviews a
version of the FTLS comparable in level of detail to the design documents under
review be presented, reviewed and approved. Exactly equivalent risk will be
jointly assumed by the user and the developer, as in the case of the DTLS.
Additionally, by assuring that the developing DTLS and FTLS describe the same
design, confidence in the consistency of each set of refinements can act
synergistically to enhance the total confidence in the design. Moreover, the
requirements to show that both the DTLS and FTLS correspond to the model and to
the implementation code should be able to interact to mutual benefit.

Activities. Five major new activities must be added to the system
development schedule. (1) The development of the design certification chain
(particularly the FTLS) should proceed in lockstep with the development of the
DTLS, as described above. (2) The covert channel analysis should be undertaken
after the FTLS and DTLS are available, namely after successful completion of a
Critical Design Review. It is true that any necessary revisions uncovered
during the build or test phases might necessitate repeating this analysis, but
since the probability of a major revision being necessary is low, the risk is
worth taking. (3) Security testing to discover security protection flaws
should be undertaken after a stable system exists. This testing should
therefore be done in parallel either with the Developmental Test & Evaluation or
with the Operational Test & Evaluation. The decision is subjective and is based
on the potential for design change during testing. An important decision that
must be made early in a development is what role the developer will play in the
security testing. "No role" is probably not reasonable. The spectrum runs from
training the security test team through providing back-up consultant support to
providing team members. The impacts on the "contract" are substantial and the
issue should be resolved as soon as is feasible. (4) A configuration
management program for both normal system development material and for Al
specific material must· be executed beginning at the start of the design phase
and lasting until system acceptance. (5) The trusted distribution activity
should begin late in the test phase and is a direct extension of the
configuration management program.

Documentation. The documentation required for Al certification falls into
two classes: information tht fits naturally into normal system development
documentation and information that is idiosyncratic to Al c~rtification.

27

Figure 2 illustrates one possible packaging for Al documentation. Some of the
new documents (particularly the Design Certification Document) combine several
Al requirements. Since the component topics may be addressed at different
times, a prudent approach to making documentation available when needed while
minimizing unnecessary cost and effort rewriting documents is clearly called
for.

SUMMARY

Adding computer security requirements to the system development process
when working towards Al need not be difficult. The security features form a
checklist to be used in the development process. The assurance formalisms
consist of design analyses and the creation of a design certification chain.
The development of the FTLS and the DTLS should be intertwined, kept in rough
lockstep, and reviewed in parallel during the design reviews. Most of the
required activities fit naturally into the development schedule using standard
design analysis documentation formats. The covert channel analysis has no
traditional analogue, but should be initiated after the Critical Design Review.
Based on the role chosen for the developer in security testing, straightforward
planning will add routine tasks and documents to the schedule. The
documentation requirements are satisfied either by tailoring standard system
development documents or by adding Al-specific documents to the list of
deliverables.

This proposal covers all the requirements for Al certification, but it
leaves several issues unresolved. One that has been mentioned is the role of
the system developer in security testing. Another is the exact manner of
intertwining the FTLS and DTLS development: should the DTLS lead the FTLS or the
reverse? The decision is immaterial to the user but can have a marked effect on
the developer. Managing the effects of activities on features (covert channel
analysis on audit) or of assurance formalisms on features (security architecture
on access control features) is fraught with the possibility for failure.
Clearly this plan can aid the potential developer of an Al system, but it is by
no means the last word about working towards Al.

Statement of Requirements ! Define Requirements
Functional Description ! ! Design System Requirements Review

System Specification System Design Review
System/Subsystem Specification Preliminary Design Review

Implementation Specification Build Critical Design Review
Module Build

Module Test Report Test Module Test & Evaluation
Subsystem Test Report Formal Qualification Test

System Test Report Developmental Test &
Evaluation

Requirements Test Report Accept Operational Test &
Evaluation

Acceptance Document

Figure 1. System Development

28

TAILORED DOCUMENTS

System Specification DTLS
System/Subsystem Specification DTLS
Implementation Specification DTLS
Users' Manual Security Users' Manual

Trusted Facility Manual
Security Features Guide

Configuration Management Plan Security Configuration Management Plan
Design Analysis Report Design Analysis
Test Plans, Procedures, Reports Security Test Plans, Procedures, Reports
Code Code

NEW DOCUMENTS

Design Certification Document Security Policy
Formal Security Policy Model
Model Supports Policy
Model Internally Sound
FTLS
DTLS Cross-Reference
Model-to-FTLS
DTLS-to-Model
FTLS Completeness Proof
FTLS-to-Code

Formal Verfication Document Verification Plan
Verification Tools

Covert Channel Analysis Document Covert Channel Analysis
System Security Architecture Document Security Features

(This document could be included Reference Monitor
in the DTLS documents.) Process Isolation

Al System Architecture

Figure 2. Packaging of AI Documentation

Acknowledgements. My thoughts on organ1z1ng Al computer security requirements
within a system development were formed during a variety of discussions with
colleagues. Within the the Department of Defense Computer Security Center, the
contributions of M. Schaefer, J. Houser, T. Losonsky, and L. O'Dell were
particularly noteworthy. Discussions with C. Savant, G. Cole, J. Hemenway, and
D. Cooper at SDC also proved very valuable.

29

THE PRACTICAL ASPECTS OF MULTILEVEL SECURITY

Terry s. Arnold
Vice President, Technology

Merdan Group, Inc.
4617 Ruffner Street

San Diego, CA 92111

ABSTRACT

The technology base for multilevel secure computer systems has
been evolving over the past 15 years. With appropriate develop
ment constraints this technology is sufficiently mature to be
incorporated in the current generation of new C3I systems. This
paper addresses these constraints from the perspectives of con
cept formulation and actual development. The process of defining
these constraints and the pitfalls which must be avoided are
described. The management posture needed for successful multi
level secure development is presented.

30

INTRODUCTION

The multilevel security issue has been widely discussed over
the past 15 years. The positions taken by various people range
from that "it is possible" to "nothing less is acceptable." This
paper presents the views of one practitioner who believes that it
is currently feasible, as long as appropriate constraints are
applied by management. The emphasis of the paper is to define
the impact of multilevel security on the C3I develo?ment process
and, in particular, the management issues involved.

WHY MULTILEVEL

Why we need multilevel secure operation is a question that
many people ask. The reasons are very basic and near and dear to
the manager's heart. The basic reason is that C3I is inherently
multilevel due to the fact that compartmentation is required for
some of the "I" data. When one thinks of applying a system high
policy where many compartments are involved, it becomes clear
that this type of policy does not make sense. In addition to
this aspect, successful implementation of multilevel security
will allow cost effective sharing of even now expensive computer
resources. One of the biggest benefits lies in that multilevel
secure operation will allow controlled information sharing within
the C3I community.

WHAT DOES MULTILEVEL SECURE MEAN?

For a system to be multilevel secure means several things.
The first and most significant is that we trust a computer to
enforce our security policy with respect to all of our data. The
means by which this security policy is enforced has several
aspects. The primary methods are to separate data based on
differing levels of classification/compartmentation and strictly
control user access. These concepts are not new to the world of
procedural security. The only thing that is new is that a
computer is used as a surrogate System Security Officer (SSO).
One of the functions of this automated SSO is to make a log of
all attempted security violations.

NEEDED TECHNOLOGY

The technology needed to support multilevel security covers
most of the computer science spectrum. First and foremost is the
concept of the reference monitor. The reference monitor is the
automated embodiment of the SSO. We need a rigorous expression
of our security policy in the form of a security model. We need

31

methods for verifying that our security policy is, in £act, being
enforced by the implementation. Lastly, we need computer archi
tectures which will efficiently support the refer2nce monitor.

CURRENT TECHNOLOGY

The current state-of~the-art in multilevel security is
evolving at a fairl~ rapid rate. While there are ~till some
holes in the technology base, research is well under way to fill
in the gaps. We have abstract mathematical models which have•
been shown adequate to describe most aspects of the Department of
Defense (DoD) security policy. The Bell-La Padula.model devel
o~ed at MITRE is the most widely accepted such model. Practical
application of this model quickly revealed that teal systems need
some exceptions to this model. While some people prefer to wate
hands in this area, progress is being made in that concrete
models are being put together for real systems. The fact that
concrete mod~ls of what it means for a given system to be secure
(i.e., a rigorous statement of the securi:ty policy) are being
constructed bodes well for application of multilevel security
technology in the C3 I community. At the pres·en t time such con
crete modeling is not widespread ·even in the computer security
community, but with time and applied determination, we will carry
the day. The situation in the area of verification methods is
somewhat less rosy. ·we do have methods for formally specifying
and verifying multilevel security at a fairly high level. Prob
lems arise in two areas. The f1rst is in the area of exceptions
to the Bell-La Padula model, wh~re some of the methods do not
have a means for expressing th~ allowed exceptions within their
notation. Several research groups are actively working-to elimi
nate this difficulty. We expect positive results in the near
future. The second area where problems arise is verification of
the actual implementation. Au tom a ted verification of soft ware
has been a research topic for a number of years. At the present
time, we do not have vi able au toma ted tools to supper t veri f i a
tion of software implementations. Some research groups are work
ing in the area, but solid results may be several years away. At
the present time we must use manual methods which are labor
intensive. Unfortunately, the labor resource needed (security
trained software engineers) is in short supply and tend to "burn
out11 on this type of work. On the brighter side, security kernel
designs embodying the reference monitor concept are starting to
appear. Several have actually been implemented and certified to
operate in the multilevel secure mode. Securable computer archi
tectures are becoming common, with securable microprocessors
starting to be produced in production quantities.

32

EXPERIENCE TO DATE

The experience wi~h:im~lemeritin~ multilev~l security has met
with mixed success, although even the .failures ha•1e added greatly
to the experience base of •.. the ,computer. security community. The
initial effort to u.se MULTICS as abase fo.r ·a multilevel set;ure
operating system for: the- Air Force Data Servic;es Center produced
what has to be considered a classic penetrat.ion study. The prob
lems identified were· remedied ·through .what we beli~ve to be the
first practical operationa:l application of modern multilevel
security technology. The SACDIN. system ·fostered the· development
of much of the technology base that we have to draw. tipon. At
this point in time it i_s not ,;yet operational, but the prospects
are excellent. The AN/GSC~40 was an effort to implement multi
level security for a special ptirpos~ network'control application.
It is operational today and represents, to o~r knowledge, the
first successful application of modern multilevel security
technology in an operational,environment. The,AUTODIN II pro
ject attempted to apply t·'he then state-of-the-art of multilevel
security to building a. replacement o-f AUTODIN.· The project
demonstrated that formal specificatioiT and verification are prac
t i c a 1 for a 1 a r g e s c a 1 e s y s t em ; however , i t became c 1 e a r that the
softw~re development process m~st be tightl~ contxolled. The
KVM-370 project attempted to- apply the referenc~- monitor concept
to an existing commercial operating- system. :The project appears
to have been successf-ul, .but there are reports. that performance
is less than optimum. T~he SCOMI? project 'is a commercial attempt
to produce a multilevel secure operating ~yst~m~ This effort is
particularly notable, sih~e ~t ~as been sub~itted to the DoD
Computer Security Center for evaluation at the Al (i.e.,
highest) level. The jury is s.till out on SCOMP, but the
prospect for off-the-shelf multi level secure operating systems
is improving. The projects described abov~ are only part of the
experience base of _the· computer secur'i ty community, but they are
all in their own way landmarks in· the ev.olution of this
technology. A numbe'r of •· ne~ ·.programs are underw_ay to
incorporate multilevel se9urity tech·nology in real world
systems. In particular, 1-S/A.AMPE, RegencyNet, and 'SLACKER
are rather serious about achieving multilevel secu:dty as part
of their project goals.

LESSONS LEARNED

As a result of the effo+ts describ_.ed ~hove,. a great deal h~s
been learned about what it reall~ takes to achieve mult_ilevel
security. The first and. possibly most important lesson. is per..;.
haps typified by the ww II expression "Keep it si_!!!~ stupid."
The attempts at gener•li~y have eith~~ resul~ed in failure or
poor performance. Se~urity models rt~ed to b~ tailored for the

.'~ ' '

33

http:describ_.ed

application, since the general models do not address the
specifics of the real world. Formal (in some sense) specifica
tions of what a given system is supposed to do correctly are
needed. In the absence of such specifications we have difficulty
in determining that we have a secure system. Securable computers
are becoming very common, since the architectural features that
are needed for general applications are similar to those required
to support a reference monitor. Painful experience has taught us
that standard software engineering practice is not good enough to,
provide the quality of software needed for multilevel security.
This is not a failing of software engineering technology, but
management of the software development process. Verification of
the product of the software engineering process is needed and
~ust occur in parallel with it.

TRUSTED COMPUTER SYSTEM EVALUATION CRITERIA

The DoD Computer Security Center (DoDCSC) was established in
1981. The mission of the DoDCSC is to serve as a focal point for
computer security throughout the DoD. One of its major accom
plishments has been the publication in 1983 of the Trusted
Computer System Evaluation Criteria (TCSEC). This landmark docu
ment defines eight evaluation categories for trusted computer
systems. While the main thrust of the TCSEC is directed toward
mainframe general purpose systems, they are being successfully
applied to systems which employ embedded computers. The TCSEC
defines fairly specific criteria which a computer system must
meet to be evaluated at a given level. The one criticism which
has been made is that the TCSEC does not define the category that
a given system must fall into for it to be considered adequately
secure. While some may view this as a fatal flaw, it has not
hampered application of the criteria,
in the field are in agreement about
for a given application.

in that
what le

the
vels

serious
are app

workers
ropriate

The
TCSEC:

following evaluation categories are defined in the

Beyond Al

Al Verified Design

B3 Security Domains

B2 Structured Protection

Bl Labeled Security Protection

C2 Controlled Access Protection

34

Cl Discretionary Security

D Minimal Protection

These criteria call out increasing levels of required secur
ity features and development requirements as one proceeds from
category D upward on the scale. Determination of what level that
a given system actually meets is one of the elements of the
charter of the DoDCSC. Unfortunately no commercially available
systems have been completely evaluated with respect to the
Criteria at this time. This state of affairs is going to change
in the near future as several vendors have submitted products for
evaluation. The impact time that this will have on the C3I
community will increase with time, in that some of the major
computer vendors are actively working the problem. However, for
new program starts in the next year or so, the C3I Program
Manager will have to "roll his own" security design and start
from scratch in the evaluation area. While this may seem to be a
somewhat sad state of affairs, it should not come·as much of a
surprise since many of the C3I systems in place or under develop
ment use custom operating systems rather than computer vendor
supplied "off-the-shelf" operating systems. The DoD efforts
toward standardization of hardware and software should improve
this situation significantly over the next five years. Even when
these products finally are available, a C3I Program Manager is
still going to have to apply good security engineering practice
to build his system on these foundations.

HOW TO DO IT RIGHT

All of this technology would go to waste unless there was a
systematic approach to implementing multilevel security for a
given application. Such approaches have evolved over time and
can be summarized by the following four seemingly simple steps:

DEFINE IT SECURE

BUILD IT SECURE

PROVE IT SECURE

KEEP IT SECURE

The first step is where security models come into the
picture. Defining up front exactly what it means for a given
system to be secure is a very important first step. It is a very
good idea to choose a TCSEC evaluation category at this point in
time. The second step is really the toughest one in that the

35

temptations to cut corners during the development process abound.
Most software developers will strongly object to the constraints
which must be placed on them in order to successfully perform
this step. We will address these constraints in detail below.
The third step will be successful only if the second step was
done properly. The term "PROVE" has many i nterpr·2ta t ions in the
computer security community. These interpretations range from
the somewhat naive concept of pure testing to the extreme of
rna them a tical proof of correctness. The TCSEC play a major role
in that they define levels of checking that are appropriate. The
last step is the simplest in that it consists of little more than
configuration management coupled with procedural security.

DEVELOPMENT CONSTRAINTS

As we mentioned earlier, constraints need to be placed on
the development process if multilevel security is to be success
fully implemented. Most of these constraints are derived from
common sense, but the necessity of them has been learned the hard
way. The first constraint is to perform all development in a
secure environment. The importance of this has only very
recently become public with the recent rash of "hacker 11 break ins
to what many people thought were "secure11 computer systems. The
usual means for providing a secure environment is to use a dedi
cated/closed computer for all development and to treat all soft
ware as if it were classified. The second constraint is to
recognize that security must drive the design. This may cause
some difficulty in that most software developers will want to
reuse previously developed programs which were not designed or
developed with security as a driving requirement. A security
model of the application should be the first order of business.
This model should be a concrete statement of what it means for
the application to be secure. A formal specification of how the
security model will be enforced is the next item which needs
definition. There is a strong tendency for the technical types
to start waving their hands at this stage, since few of them
understand the role of a formal specification. To most of them
MIL-STD-490 is a millstone around their neck to which they pay
only lip service. The degree of formality for the specification
may vary but the emerging techniques which gave a strong
theoretic basis are far and away the best. When a mathematically
based formal specification method has been used it is feasible to
show that the specification satisfies the security model and thus
describes a secure system. Once the specification has been shown
secure then it is appropriate to start detail design. There is a
very strong tendency to start the detail design before the
specification is shown to be secure. This may seem like a time
saver but experience has shown that this is not the case.
Verification of the detail design is a necessary step in that

36

most, if not all, designs initially exhibit sign:ficant security
flaws. Verification of the actual implementation should be
performed, since testing has the unenviable record of showing
only the presence of errors and not their absence. In one case,
testing lulled a program manager into believing that a security
f 1 a w exposed by veri f i cat i on i n fact did not ex i st. T h i s PM was
rather shocked when the "test" suddenly displayed the flaw some
months later after a few "minor" software changes.

MANAGEMENT ISSUES

In the material presented above it has become clear that
significant management issues arise when multilevel security is
involved. The first issue is whether a computer is really
needed • 0 f ten the r e a r e h a r d w a r e s o 1 u t i on s w h i c h can m a k e the
job easier. Hardware solutions are preferable, since they are
better understood and more easily analyzed. The second issue is
what does it mean for your system to be secure. This is clearly
important, since it will almost always have a major impact on the
overall design. The third issue is what are your accreditation/
certification requirements. Each of the services has some form
of accreditation/certification regulation. Figure 1 illustrates
the relationship between these regulations and the Executive
Order which forms the base requirement. A key step is to deter
mine what your specific requirements are in this area. Getting
the accreditation/certification authority in at the start is a
critical step. Six months before IOC is a bit late if success is
a desired objective. Require the developing contractor/agency to
provide all of the data needed for security evaluation. This
seems like a minor point but the standard data items don't pro
vide sufficient technical data for security evaluation. Lastly
stick by the rules come hell or high water.

CONCLUSIONS

Multilevel security is feasible today when appropriate con
straints and technology are employed. The needed technology
exists in that we know what has to be done and how to do it
right. We have a gap in that we cannot just take products off
the-shelf and use them to solve our security problems. Manage
ment by the book is required for success. Unfortunately only
part of the "book 11 exists today. Efforts are underway to flesh
out the "book 11 particularly in the area of data item descrip
tions. The light at the end of the tunnel is getting brighter
and it is looking a lot less like a train coming the other way.

37

Rules as the Basis of Access Control in Database ~~nagement Systems

David A. Bonyun

I.P. Sharp Associates Limited
600-265 Carling Avenue

OTTAWA, Canada KlS 2El

INTRODUCTION

From almost the beginning of the work aimed at the creation of provably
secure computer systems, the application area of databases and their management
has been of interest and near the top of the list of significant peripheral issues
to be pursued. While the primary effort was aimed at operating systems and the
reference monitors which they were to contain, other activity was planned and
executed in the database area. Both Systems Development Corporation [Rinke 75]·
and I.P. Sharp Associates [Grohn 76] were contracted to investigate the DBMS ·
problem and both chose to limit their rese~rch to those databases which were
relationally organized. A secure RDBHS was the elusive goal.

The 1982 summer study session, at Woods Hole, ~fussachusetts, sponsored by the
Air Force Studies Board of the National Academy of Sciences, reviewed the area and
determined that the relational model was the most attractive from a theoretical
(and hence, it was hoped, from a provable) point of view. Three different classes
of database were considered at Woods Hole: the first consisted of data of just
two different security levels; the second consisted of data which was largely
textual - e.g. messages or documents; the third constituted the general case. In
each case, DBMS problems requiring solutions in the foreseeable future were to be
addressed as fully as possible given the present state-of-the-art.

These three cases were chosen principally because it was believed that they
offered problems potentially solvable in the near, middle, and long terms
respectively. Horeover, each case was an abstraction of one or more real
situations presented to the session's steering committee by a variety of agencies
of the u.s. government.

There was at least one significant common element to emerge from the
briefings prior to the Woods Hole session. The agencies who provided the
briefings almost all felt that their data ought to be marked at the data element
level. Neither the SDC work nor the IPSA work had seriously contemplated that
security ought to be enforced at this fine level of granularity. Indeed the IPSA
team had opted for attributes to apply to full relations while SDC chose to assign
attributes to columns (or domains).

The second of the three cases presents a significantly different picture of
the database from the first and third. Databases appear to be separable into two
classes depending upon the degree of volatility which the data structures exhibit.
wbereas the first and third cases, the so-called "binary" and "general" cases,
appear to focus primarily on databases in which the structures are quite rigid,
with variable data within them, the second, textual, case carries with its
definition the corollary that the major data items - the messages or the documents

\ 	 - are of rather variable structure. If the designation, ~. is associated with
the smallest unit to carry an independent security attribute, and length is

38

accepted as the count of atoms within the data item, then "paragraph marking" (a
frequently imposed requirement involving designating security attributes for each
paragraph within a document or the textual part of a message) will cause wide
variability in the length of data items. This seems to imply that the structures
holding these data items, or containers, are not really fixed and rigid but
variable to accommodate the variety of different situations which may arise. This
paper will refer, subsequently, to databases of types A and B: the rigidly,
structured ones and the more fluidly structured ones respectively.

During the time which elapsed between the original studies and the Woods
Hole gathering, some manufacturers (notably Intel and Honeywell) proposed
architectures involving the notion of capability. Essentially, a capability is a·
property (or, in many cases, a possession) of a user. It enables him to access a
particular datum or collection of data and may further determine what he may do
with the data so accessed.

It is necessary to delineate the difference between non-discretionar~. and
discretionar~ security policy. The former (sometimes called mandatory securit~
policy) says that information may not be permitted to flow to those persons, or
computer locations, not authorized to receive it. In this context, authorization
usually implies the matching of security attributes (clearances for users and
classjfications for data) to determine that those of the recipient or destination
are "higher" than those of the sender or source. "Higher" is not usually
interpretable on a linear scale (e.g. Secret is higher than Confidential), but is
more frequently equivalent to the notion of dominance in a partially ordered set
(or lattice). In later parts of this paper we shall say that one security
attribute "dominates" another rather than that one is higher than the other.

On the other hand, discretionary policy usually carries with it the idea
that the contents of the item or items to which it is applied have also to be
given importance in determining access rights or privileges. This follows much
more closely the concept of need-to-know. Its purpose is to screen out from the
class of users whose attributes dominate those of the data all but the (usually
very small) subset who really do have a legitimate requirement to access the data.

Although capabilities may be used to assist in enforcing non-discretionary
access (most simply by denying the capability associated with an object to those
who, .§! _priori, do not have dominating security attributes), they seem to have more
noticeable utility in the discretionary arena. Setting aside the
non-discretionary issue, individual users requ1r1ng different fonns of access to
an object may be given finely honed capabilities.

Apart from capabilities, the principle means of handling discretionary
access in databases has been the access control list (ACL). This explicit
enumeration of users (or roles which users can play), and the nature of permitted
access associated with each, is usually tied directly to objects. Immediately
implied is the granularity of access control - the grain is the data item which
has its own ACL. Traditionally, these have been quite large objects.

The summer session at Woods Hole highlighted the requirement to take as the
access controlled grain a data element within a relation (thus unreasonably
proliferating the number of ACLs required if this technique were to be employed);
it also brought into focus the fact that, very frequently, accesses may occur only
subject to certain external conditions. Both reading and writing data resident in
a database may be subject to this conditional access. Horeover, these conditions

39

are usually content sensitive (CS): they refer to the current values of the data.

Conditional writing is, perhaps, more clearly recognized. The internal
consistency of the database (sometimes called database integrity) must be
preserved. To achieve this consistency, and for a host of other reasons as varied
as the nature of data housed in databases, the concept of side constraint has been
proposed (quite independently of all security considerations). The purpose served
by a side constraint is the inhibition of database modification or augmentation if
such a change would violate an explicitly defined condition- the constraint.

On the other side of the problem is the requirement, being more acutely felt
because of the study given it by the third group at l·Joods Hole, that certain data
reads ought to be inhibited or controlled because they constitute violations of
constraints enunciated to prevent information leakage by means of aggregation or
inference. Conditional reads may be the only feasible answer to these very
difficult issues.

As the result of these considerations, a new and somewhat different approach
to data access within databases is being proposed. This new approach is the Rule.
Borrowing from both the earlier concepts of ACL and capability, the Rule is, in
essence, neither. It provides, in a fundamental way, for the conditional access
of any subset of the database.

The remainder of this paper discusses the nature of a Rule, the issues
raised by the idea of Rules, and, finally, some conclusions about this concept.

WHAT IS A RULE ?

The basic definition of a Rule is a 4-tuple:

R = <U,D,O,C>

where U is a list of user identifications, user roles, or couples <Id,role>
D is a subset of the database (defined context free)
0 is a set of operations which may be performed on D by U
C is the set of (context sensitive) conditions which, jointly, must be

satisfied before U does 0 to D.

The list of users (roles) is flexible as indicated. In those situations
where each user is usually designated only by his identifying tag (i.e. name,
machine, or number) U will contain just these tags· In systems where roles are
pre-eminent (for example, in tactical situations where the operator of a piece of
equipment is important regardless of who is there at any moment), these alone may
suffice. Newer systems, for example the Eilitary Message System, may require the
pair consisting of user identification and the user's current role for unique and
unambiguous determination of access requirements. In such cases, the list may
consist of pairs.

The subset of the database designated as D may be any (proper or improper)
subset. Although the database is considered to be relationally organized, it is
not intended that the relational operators necessarily be used to define the
subset, D. Because it will usually, though certainly not necessarily, be the case
that each Rule will be associated with a particular task or subtask in some
on-going activity, there may be suitable pre-defined conceptual subschema (views)

40

associated with these tasks. Whatever method of defining the subset seems most
appropriate ought to be employable, at least in the first instance - with one
major caveat: the definition of D must be achieved in a totally context-free (CF)
way. This implies that no reference to the continually changing data may be made
at this stage; all context sensitivity is hand led by the conditions, c. This is
the principal reason that D (for "database subset") was used to designate the
second element of a Rule instead of V (for "view", implying use of all the
relational operators equally).

In practice, D is more likely to refer to fields or domains than to tuples
(projection rather than selection) while C will handle the contents of the tuples.
Databases of type B (those with fluid structures) will usually have wider ranging
subsets defined in D; this is because the structure becomes fluid, and therefore
difficult to describe in context free terms, specifically because of its contents.

The operations which might be invoked over a subset of a database are, when
examined at a low level, very few in number. Complex, user-friendly commands will
usually translate into a number of primitive operations. These primitives, rather
than the more complex (and meaningful) aggregates of them, form the domain from
which 0 is drawn. In an implementation of Rules, it is expected that groups of
Rules will be used conjointly to permit users to perform their tasks over their
subschema.

The domain of 0 is {read.replace,add,delete}. These activities refer to
tuples. It will be argued that a suitable structure within the database makes
this domain, slightly augmented, sufficiently powerful to permit all the usual
activities to be controlled in a satisfactory manner. This is true for even the
more application specific situations.

It is in the area of conditions that major difficulties arise. Any software
written to use Rules to mediate access to a database must have, as a significant
part of it, a condition interpreter. By their very nature, conditions are context
sensitive. They are predicates which are either true or false, based upon, in
most cases, the present state of the data in the base. Not infrequently other
entities besides those found in the database must also be referenced; these may
include the system clock or other elements of the operating system domain, or data
items intended for introduction to the DB. For the required access to occur, the
conditions must be checked at the time the operation is requested.

If, indeed, interpretation of the condition is to take place in tempo, the
question arises as to how it is to be expressed to expedite not only its
interpretation but the execution required to determine its truth value. This
question, to some degree, harkens back to the previously raised concern about the
definition of the subset, D; it is precisely here that the context sensitive
relational operators do, indeed, come into play. The fact that entities not in
the DB must also be referenced indicates, however, that these operators are not
sufficient.

Another obvious difficulty is the possibility that conditions might refer to
parts of the database to which the user is denied access for reasons arising from
non-discretionary policy. The potential for information leakage here seems very
great. However, in the following discussion of issues it is argued that this
channel may be blocked by using suitable techniques. Recognition of this problem
is essential as a first step in controlling it.

41

DISCUSSION OF ISSUES

In order to test the feasibility of Rules as the basis of access control in
DBHS, the }1ilitary Hessage System Security Model was chosen as the example system.
This system addresses the notion of multi-level entities; that is, atoms and
containers interact to form a hierarchy. As well, the second class of database,
the textual stream, at \·Joods Hole took the same model as its starting point and
produced a tentative paper design for a secure document system.

Applicability Issues

The present section will explore points that are applicable to type B
databases, which are essentially textual, and consider the degree of applicability
each may possess to those databases which are more rigidly structured and
essentially numeric.

The container/atom model developed in the paper [Bonyun 83] indicated that
the Rule concept is sufficiently powerful to handle the type B databa~es, which
are more fluidly structured than type A. Implied are two related beliefs: (1)
that type B is more general and more difficult, and (2) that if our concept of
Rules can be used here there is every reason to believe that it can be employed to
advantage in simpler, more conventional cases.

Five generic relational forms were assumed to form the basis of the database
system. These are Atom, Link, Container, User, and Rule. w'hile there is some
question about the direct applicability of these ideas to type A databases, it
ought to be remembered that besides message systems, document handling systems
and word processing applications fall into type B; consequently, they are subject
to the same kind of considerations. We take it as axiomatic that all type B
databases, besides being largely textual, have the multilevel requirement
realizable by the container/atom model.

Three points were derived from the example:

1. Distinction between reading and using an existing data item

The use of a data item for arithmetic purposes is nearly the same thing as
the use of an existing sentence in building a new paragraph. One can imagine
instances of data being available for output purposes alone and being forbidden as
direct computational elements. Because of this, the list of operations, 0, in
Rules ought probably to be permanently augmented by~·

2. Actions within Condit ions

A small percentage of Rules seem to require some modification to existing
data, as well as the determination of the truth of the predicate, in order tl~t
the operation on the data be permitted to proceed. This action constitutes a side
effect. Perhaps consideration ought to be given, likewise, to the idea that the
basic definition of Rule be augmented to include a fifth (optional) part, Actions.

·.>1

42

3. Universal and Specific Rules

Two kinds of Rules emerged - the universal and the specific - those which
handle the overall system and its individual elements, respectively. The use of
universal Rules was shown to be useful as a means of enforcing the policy, or
assertions given by the security model. These assertions constitute the heart of
the model; the universal Rules, if enforced, assure their validity. The
recursive nature of Rules (Rules which talk about Rules) may also be a useful
notion when universal Rules are being developed for security models.

Specific Rules are the chief means of enforcing, and even stating,
discretionary access control; the Rule is, primarily, a technique with the ability
to manage discretionary access limitations to data. In the area of very finely
granulated discretionary access control, specific Rules are the appropriate
vehicle.

Theoretical Issues

Two problem areas are related respectively to the D and C parts of the Rule.
Questions arise about the various methods which might be employed to define the
subset of the database, and about the nature and required power of the condition
interpreter.

Database Subset Definition

The design of a logical substructure and the consequent thorough knowledge of
it will materially assisted the writing of Rules.

If access control is to be at the data element level, then not only must the
non-discretionary attributes be attached to each data element, but discretionary
access must also operate at this level. As the Rule is intended to be the primary
vehicle for this control, it must have the capacity to designate any collection of
data elements for this purpose. It is for this reason that we believe the usual
relational operations are not sufficiently powerful. The result is the contention
that the definition of D ought not to have to rely solely on relational
operations.

~n1en collections of primitive operations are required to perform a single
logical task, the definition of D is again important. Many Rules are likely to be
involved (and sequentially ordered), and two external conditions must be
satisfied:

1. 	 the extension of the complex operation over the database must be shown to lie
totally within the D of the Rules; and

2. 	 all the operations in the sequence must be treated as a unit for purposes of
timing: other uses of the subset D must be shut out for the duration of the
activity.

It is desirable to have, as part of the complex operation definition, any
global internal consistency check which may seem required as well as a way of
backing out while still in the critical zone, if this becomes necessary because
the check fails. The use of well structured type managers to define complex

43

·· .. · i
:)

operations would appear-to be the best way of accamplishing all this.

The 	Condition Interpreter

The condition interpreter (CI) must have sufficient power to be able to
ascertain the truth or falsity of. the predicate parts of the conditions and also
to effect the required actions • •. The nature' of this power is the understanding of
the variable names used in the statements of the conditions and the capacity to do
the requisite computations involving them.

The 	follo~ing ov.erall conclusions have· been drawn about the nature of the CI:

1. 	 It must be effic:L~nt, andthisefficiency'will likely be achievable only if a
suitable fonnalism can be found; while nothing bas. been said about candidate
fonnalisms • the author" s prior' experience with APL makes this_ seem to be a
very suitable potential medium for the expression of'conditions, particularly
as APL has a number of very efficient interpreters already written for a
variety of hardware inCluding microprocessors; and

. ,. . 	 :

2. 	 It must be able to access not.only every part'of the database, by direct
address and by content, but also a wide variety of other data items outside
the database; a full enumeration of'tbese outside items is desirable in any
particullir implementation; · · · ·

Security Issues

Prior to any attempt to deal with secudty matters, it is possible to
hypothesize that every part of the database ought to·be accessible to the CI at
all times. We niust now explore~ the consequences of the fact that every data item
within the database, and the outside data elements ·alsd known to and accessible by
the CI, all have their own indiV:j.dual security attributes.

The real issue is the fear that the CI, fn order to check a condition
predicate, will access subsets of the database which are outside the normal access
rights of the user requiring the:checking. A conflict !~-imminent between the
requirements of database integrity and non-discretionary access.

Rather than have to choose between the two, we are suggesting that a solution
exists which simultaneously satisfies both requirements. The solution proposed
permits the unrestricted use of Rules and theit'conditions wl.thout fear that a
leakage pati1 is thereby being fo.rged. ·We claim that there does not exist any
channel back to the user about data in the environment to which he does not have
legitimate access.

The proposed ·solution is t() hide the conditipns (in fact, the complete Rule)
from the user. mien presumed to be a part of the database, a rule has its own
security attributes.· These.may.b~ forced to be the least: upper bound of the
attributes of anydatamentioned by them. in conjunction with the absence of any
specific Rule permitting anyone to. read or~ Rules, this assignment of
attributes is almost· enough. Z.1issing. is the capacity, assumed to be present in
the general case,· of users making Rules' to embody· the d;iscretionary aspects of
secur::tty.

. '

44

The puzzle becomes s.olved if one real:i,zes Xhat th.e problem of condition,s
referring to unauthoriz_ed data elements arises mainly in the area of database
integrity. This is a system problem which almost always req,uires universal Rules.
Discretionary access, on the other hand, the main use of Rules which are presented
and installed by users, ought ,not •to hiiV~ such far-:reaching conditions.

The price to be paid,. therefore, seems to be to permit the creation of Rules
involving data items of i'l J>igher classification only .. to those possessing
sufficiently high clearances. In the case of integrity Rules, this probably means;
either the SSO or the database manager, both of whom are expected to have
clearances which dominate every data element.

The only remaining issue involves what the user will be told when a condition·
fails. It would seem that the best course of action is to tell t.he user as littl..e
as possible: nothing more than that- the requested activity cannot be completed.
If there are a number of adjacent,primitive accesses contingent on this success,
then this simple failure condition must be 'recognizable by the .type manager or
other subprogram defining the complex operation;; any re,quired backing out should
then be begun as a consequence.

Without any knowledge about, th€ -various ~lements in the conditional part of
the applicable Rule{s), or even which Rule may have ·failed, -the. user cannot
possibly make any inference·~· All he/she will know. is that the proposed activity
cannot proceed. Hultiple attempts may be tried; but even if a later one is
successfully completed, there is no inference possible because the reasons for
earlier failure are not known.

Implementation. Issues

The location and availability of Rules and certain other design decisions
will need. to be considered in order to make the invocation of the Rules as smooth
and rapid as possible. It seems ,to be· essential, if Rules are to be handled
expeditiously and cheaply, to have handy an enumeration of those Rules which will
have to be invoked so that.excess or repeated "seeking" within the database is not
required.

It would be a timesaver if the Rules themselves, and not just their
identification, were readily available without a retrieval from the database being
necessary; but, as a- general cas~, this will probably be impractical and each
database access will require one or more Rules to be fetched and. sent to be
interpreted. If there is. some form of faster peripheral memory available, it
seems clear that the Rules ought to reside therein.

As has been found in other areas of computer security, it is apparent that a
system to employ Rules must be designed, from its beginnings, with this in mind.
Retrofitting Rules tci existing systems seems to be impractical and undesirable.

Issues in Distributed Systems

When data (and/or. processing) is physically remote, there are time.. delays.
If the notion of criticality is extended to systems which are distributed, then
the delays which one must expect become crippling. Locking out other users while
a collection of primitive operations takes place is conceivable only if the period

45

of time of lockout is small. When all required data elements are close by, this
is probably reasonable to expect. \llien the elements are scattered over a
distributed system, no such reasonable expectation can be made.

Clearly, this problem is not unique to Rule based systems. What makes the
matter worse for such systems is the very general nature of the conditional part
of Rules. The CI must be able to access a great many data elements in order to be
effective. h'hen these elements are widely distributed, the picture becomes
intolerable.

A number of implementation strategies may be suggested to help alleviate the
problem; the design of distributed systems in general has enjoyed a great deal of
study [Lampson 81]. Yet, until some of the basic problems associated with
distributed systems are completely under control, the extension of the notion of
Rules to such systems would seem to be best deferred.

CONCLUSIONS

The conclusions which may be drawn from the discussion above are largely the
result of personal and subjective analysis of the many problems and issues raised
(and of some not made explicit). The following short list is a synopsis of the
main ideas held by the author: readers are encouraged to differ in their
conclusions and to communicate their differences to the author.

1. 	 A Rule seems a suitable generalized way to manage both discretionary access
and the controlling aspects of specialized systems such as the HHS

2. 	 The security issues seem to be under control if the Rules are, in general,
hidden from the user and if only minimal information is given back to the user
in the event that a Rule has caused an access to fail.

3. 	 The primitive operations and the observation that user activities will usually
employ several of these primitive operations collected into clusters (handled
by a type manager) raised the idea of critical regions of code so that
database integrity be maintained. The extension of this concept over
distributed systems seems to be a particularly difficult task requiring more
time and results from research into distributed systems.

All in all, we believe that Rules are powerful tools which have a legitimate
place in the future design of secure database systems.

REFERENCES

[Bell-LaPadula 75] 	 Bell, D.E., and LaPadula, L.J., "Secure Computer System:
Unified Exposition and Nul tics Interpretation," M74-244, MITRE
Corp., Bedford, Nassachussets, July 1975.

[Bonyun 83] 	 Bonyun, D.A., "Rules as the Basis of Access Control in
Database Nanagement Systems," TR-83-5060-0lA, I.P. Sharp
Associates Limited, Ottawa, Canada, June 1984.

46

[Denning 76] Denning,D.E., "A Lattice Model of Secure Information Flow,"

[Grohn 76]

[Hinke 75]

[Landwehr 82]

[Lampson 81]

Lommun. ACH19(5), 236-243 (P.ay 1976).

Grohn, Michael J., "A Nodel of a Protected Data 'Hanagement
System," ESD-TR-76-289, I. P. Sharp Associates Limited, Ottawa,
Canada, June 1976.

Rinke, T.H., Schaefer, 1:-1., "Secure Data l"',anagement System,"
RADC-TR-266, Rome Air Development Centre, AFSC, Griffiss AFB,
N.Y., Nov. 1975, (NTIS AD A019201).

Landwehr, C.E., Heitmeyer, C.L., "Hili tary Hessage Systems:
Requirements and Security Nadel," NRL Memorandum Report 4925,
Washington D.c., 1982.

Lampson, Paul, M., Siegert, H.J., (Editors), Distributed
Systems- Architecture and Implementation; Advanced Courses,"
Springer (Berlin-Heidleberg) Verlag, N.Y., 1981.

47

Structure of a Rapid Prototype

Secure Military Message Syste1n

Mark R. Cornwell

Robert J. K Jacob

Computer Science & Systems Branch

Naval Research Laboratory

Washington, D.C. 20375

ABSTRACT

Past attempts at building multilevel-secure systems have
resulted in human-interfaces that were diffict~l1 to understand and
use. We posit that part of this difficulty resl'lts from a poor fit
between conventional security models and thE. intuitive notion of
security users apply to their application. The Secure Military Mes
sage Systems project attacks the:se problems by defining a secu
rity model intuitively closer to the application and testing this
model by constructing rapid prototype systems and trying them
out. Techniques used to construct these rapid prototypes include
the definition of abstract data types, an intermediate commat""ld
language, and an executable formal specification of the human
interface. Features of the MMS security model are presented using
examples from a rapid prototype system.

1. 	 The Problem

The Secure Military Message Systems project is building rapid prototypes in
order to learn about techniques for building secure computer systems. In the
past, secure systems have been built from general-purpose security models.
While this yields an internal model that is elegant. and easy to understand, the
user interface of the resulting systems is often confusing, because it enforces
security restrictions that appear counter-intuitive from the perspective of a
user. Our solution to this problem is to define a security model that attempts to
capture the user's intuitive notion of security in a military message system [1].
Then, we examine the effects of that model on the system behavior visible at the
user interface by building and studying a '-'E::ries of rapid prototype systems that
implement the model. A sample session with one such rapid prototype is given
in the appendix. We have designed message systems offering a representative
range of functions for composing, reading, distri.buting, and processing military
messages. While the present security model was motivatc~d by message systems,
it has been found to be adaptable to other similar types of document systems.

Our definition of security is embodied ill a security model fur military mes
sage systems. This model is described iE detail by Landwehr [1]. The MMS secu
rity model consists of a set of definitions, assumptions and assertions. It differs
from some conventional models of security such as that of Bell & Lapadula [2]
in that it directly models multi-level objects, such as a SECRET message contain·
ing CONFIDENTIAL paragraphs; and recognizes message system operations such
as RELEASE, rather than the generic READ, WRITE, EXECUTE.

48

2. Design. Goals of the R~pid Prototype Systems

The rapid prototype systems o.re intended to exhibit the user-visible
behavior of secure message systems conforming to the MMS model. To make our
prototyping effort feasible we have chosen to concentrate on the security model,
functional requirements, and user interface. We have tried to implement these
aspects of the design faithfully, while other concerns that could be important for
a production system are not addressed. Fo:- example, time and space efficiency
are not a concern as long as they are acceptable for demonstration purposes.
The rapid prototypes support only a few- users and a low volume of message
traffic. Genuine security was not addressed, but the normal behavior of the
rapid prototype is just like that of the corresponding secure system. Some
other concerns are important for the rapid prototypes but not necessary for a
production system. For example, the rapid prototypes themselves should be
designed and built quickly. They should be easy to modify t.o reflect changes
both in functionality and in the underlying security model. At this stage, obtain
ing a genuinely secure implementation is not as important as obtaining an
apparently secure one quickly.

The software decomposition of the M2 rapid prototype (earlier prototypes
were called MO and M1 [3]) does address problems of building a system that
satisfies the MMS security model. The internal design has incorporated lessons
learned over several generations of rapid prototype systems. In MO and :Y11,
security checks Y.lere widely scattered throughout the code. The decompositicn
we present here identifies and localizes many of the mechanisrn.s that enforce
the MMS security model. This locality increases the promise of a verifiable
implementation of the design.

3. 	 Structure of the Rapid Prototypes

The M2 system is partitioned into two components, a user interface com
ponent and a semantic action component as shown in figure 1. The user inter
face handles the details of transforming sequences of keystrokes, mouse clicks,
and other user input into requests in an Intermediate Command Language (ICL)
and presenting the results of such requests as output to the user. The ICL
requests themselves cu-e processed by the semantic action component.

The user interface component is specified as a set of state diagrams after
the manner described by Jacob [4]. In the sts.te diagram model, an automaton
reads from a stream of tokens ar:d makes a transition to another state based on
the token read. Actions may be c:'saciated with state Lran,.,itlons; whenever such
a transition is made, its associated actions are perfurmed. In the present sys
tem, the actions consist of ICL commands, which are transmitted to and exe
cuted by the semantic action component. The user interface component is
implemented by an interpreter that executes the state diagram specifications
[5]. It traverses the diagrams and performs the actions associated with each
transition.

This division permits new systems with different user interfares to be coll
~tructed from the existing system conveniently. If the design of tL2 user inter
face is changed, only the user interface component must be modified so that it
will translate frorn the new command language into the same ICL commands; the
semantic component of the system need not be changed. The division also pro
vides a useful decomposition of programming tasks. Given a stable description
of the ICL, the user interface and semantic components of the system can be .
developed in isolation from one another, since the only cornmunication b8tween
them is via the defined ICL command~. Ir' fact, toe \{2 prototype ·was coded ir1
just this fashion, by the author~ wor·king in parallc ~- Our experience showed

49

M~ssag~)
(. SystE'm ~

fig. 1. System Decam:positiorr

that, with this decomposition, it was possible to make major changes to either
component of the system without affecting the other component or even telling
the person writing it.

The user interface itself is designed to be easy for naive users to learn (in
contrast to being easy for experienced users t.o operate). A command typically
consists of a verb (such as Display), an object (such as "the file named inbox"),
and, possibly, some extra parameters (in this example, a display filter). The
verb is selected from a menu; objects and other parameters are selected from
menus where possible or else typed in a window. For each item, a default value
is available with a single keystroke. After the user interface component has
accepted an entire ICL command with all its arguments and found it to be syn
tactically correct, it issues the complete command to the semantic component.
Finally, there are some user-level operations that do not correspond to ICL com
mands, such as the commands to abort a command, scroll the windows, select
special-purpose menus, and exit. These are pbced on function keys and may be
entered by the user at any point in the dialogue.

The semantic action component of the system is itself partit.i.oned into a
secure evaluator and a set of 1CL programs. The ICL programs perform the
actions requested by the user. The secure evaluator ensures that ICL programs
never get a chance to perform actions that would violate security. It performs
all the security checks necessary before an ICL program is invoked.

The actions taken by ICL commands are the uspr's means for- inspecting
and manipulating the sensitive information in the system. Each command avail
able to the user corresponds to one of these JCL programs. The ICL programs
manipulate objects in the message system database, such as directories, mes
sage files, citations, and messagP.s, which embody the sensitive information in
the system. ICL programs are written in terms of operations on these lower
level objects. Unlike the ICL commands, the user does not have access to these
lower level operations directly. Users can only invoke them indirectly by invok
ing ICL commar.ds.

50

http:commar.ds

The secure evaluator is made up of programs to perform three kinds of
security checks. The reference che.:::ker enforces secm·ity constraints while
determining whaL objects in the system a r~Squested ICL operation would act
upon. The access checker compares the access permissions of these objects
with the privileges of the user supplying the request. A precqndition checker
uses its knowledge of the semantics of the ICL programs to determine if a
request should be denied or allowed to proceed.

In the interest of building the system rapidly, we decided to use an existi.ng
text editor, Emacs [6], for composing and editing messages. Emacs is an exten
sible text editor with its own language for defining new commands and modifying
its user interface. We took advantage of this extensibility to tailor it to approxi
mate a secure editor for messages and to integrate it into our rapid prototype.
It protects some fields of a message from modification and it provides some
prompts and syntax checking on messages.

4. Abstract Types, Inheritance and Locality
Most of the implementation is oriented around abstract data types. Our

notion of abstract data types is fairly conventional but includes operator inheri
tance and overloading concepts similar to those of Smalltalk [7], and Flavors [8].
An abstract data type characterizes a class of data by associating a type name
with a set of values and 'a set of named access operators. The access operators
may alter values, return information about vaiues, or both. A type may be a
subtype of another type. If B is a subtype of A then by default B inherits the
access operators of A B's definition can then add new access operators not
associated with A By overloading operator names (defining new operators with
the same names as inherited operators) B can hide inherited operators.

This notion of types, and operator inheritance in particular, helped in
implementing security. A type ENTITY was associated with the security specific
information (e.g. classification, access set, CCR mark). Other types such as MES
SAGE were defined as subtypes of type ENTITY. The security checking programs
were written for ENTITY, and thus didn't depend on specifics of type MESSAGE,
only type ENTITY. We found it possible to add new secure types to the system by
defining new subtypes of ENTITY without adding new security checking pro
grams.

Our design uses abstract data types to define a wide variety of data classes.
Some are visible to users: ENTITY, ACCESS_.SET, MESSAGE, MESSAGE_FILE. Oth
ers are used internally: STATE_j)IAGRAM, TRANSITION, TIEQUEST.

5. Security Model and Mechanisms for Security Checking
This section describes some specific techniques used to implement the MMS

security model in the semantic component of the M? prototype. Our presenta
tion of the model will be in t':!i·rns of the techniques we have chosen to imple
ment it, though other implementations could satisfy the model without using
these particular techniques. Ccncepts from the model will be briefly described
as necessary. A complete definition and explanation of the model is given by
Landwehr [1]. ·

The MMS security model provides a set of definitions and assertions charac
terizing a secure system. Entities are units of information in the system that
are associated with protection information. Every entity has a classification, an
access set, a type and a value. User JD's represent the human users of the sys
tem. Every user ID has an associated clearance and a set of roles. Users indi
cate the entities they access by providing references to them. A di,rect refer
ence (e.g., MSG1190) is an atomic identifier that denotes exactly one entity

51

http:existi.ng

independent of the Vdlues of any other entities. Entities may contain ~ther enti
ties. An indirect reference indicates an entity by referriu.g to an enEty tho.t con
tains it. {e.g., "the fifth message in Cornwell's inbox file"). Say, an entity e 1 con
tains an entity e2. If e 1 is marked container clearance required {CCR), then a
user can't usee 1 in an indirect reference to e2 unless the user is cleared fore 1.

grantt>drf'quuts Secure rt>qut-stsUser ICLEvaluator
Interface t>xct-ptions Programs

rPsponses

fig 2. Se·curity Medi.atian

The division of the semantic action componP-nt into a s:,~cure evaluator and
ICL programs separates security checking from the normal case semantics of
user commands. The secure evaluator mediates the acces;,; of the user interface
to the ICL programs as shown in figure 2. The user interface constructs ICL
requests and sends them t.o the secure evaluator, which either grants the
request, by invoking an ICL program, or sends an exception back lo the user
interface. After a request is granted, the requested ICL program can run to
completion without the need to perform any other run-time security checks.
This obviates the need to consider problems that occur when a operation
encormters a security exception after it has begun its execution, such as restor
ing state or translating low level security exceptions into meaningful responses
to the user.

A request that enters tbe secure evaluator must pass three kinds of secu
rity checks before it is granted. Each kind is handled by a different component
of the secure evaluator, these components being a reference checker, an access
checker, and a precondition checker. A request <op r 1 ... rN> consists of an
operator followed by a sequence of references and possibly other pare.meters.
The requests goes ~hrough the following checks:

1) Reference Checker. Any violation of constraints imposed by CCR me.rks
is detected at this step. Each of the indirect references is derefer
enced. This yields a structure of the form <op e 1 ... eN> where the ei
is the the entity denoted by ri.

2) Access Checker. For each entity ei in e1... eN we check to see that the
access set of the entity permits the user to apply the operator with
that entity as its ith paramet.P.r.

3) Precondition Checker. Finally, we perform a check to determine
whether performing the requested actions the current state will main
tain the security assertions. If so, we apply op to e 1 ... eN.

Failure to pass any one of the above checks will cause the request to be denied
and a security exception to be generated. A brief explanation of why the request
was denied is passed back to the user interface which conveys it to the user.

With this outline of run-time security checking in place, we examine each

52

II

component of the secur·e evaluator elabordt-j_ng on the checking each performs.

The reference che·..:!ker evaluates the r~ferenccs in an ICL request based on
the classifications, values, and types of the entities appearing in each inchrect
reference. Every type of entity that can contain other entities is associated with
a selector function S that given an entity and an index returns the entity con
tained by the given entity at that index. For example, if e denotes a directory of
message files and i1 is the name of a tile in that directory, then S{e,i1) denotes
that file. Each indirect reference <e,il, ... ,i-k> is a sequence whose first element
is an atomic identifier for an entity and whose remaining elements are indices.
There is a procedure for evaluating a reference to determine the entily it
denotes. This dereferencing procedure maps references to direct references. It
acts as an identity on direct references. For indirect references it replaces the
first two elements of its argument with the entity denoted by applying a selector
function toe and il, and applies itself recursively to the result.

The dereferencing procedure also perfonns some security checks and will
generate an exception if attempted violations occur. An exception will occur if
the reference is indirect, the entity heading that reference is marked CCR and
the user's clearance does not dominate the classification of that entity. Notice
that it is possible to dereference an indirect reference that depends on entities
for which the user is not cleared w·ithout generating an exception.

The access checker compares the access sets of the requested entities with
the operator name and the privileges of the user making the request. Operators
are the commands users may invoke {directly) to change or inspect the entities
in the database. In the M2 rapid prototype, these operators are defined to be
the ICL programs. The access set of an entity determines what 0peralors may
be applied to it and by what users. An access set for a given entity e is a set of
triples of the form {useriD or role, operator, k). A user can use entity e as the
kth parameter of an operator if a triple with the user's userlD (or one of the
user's roles), that operator and k is in the access set of e.

The precondition checker compares the state of the system with the
requested action to determine whether the action can take place without violat
ing any security assertions nvt already addressed by the reference checker and
access checker. One such assertion is the hierarchy assertion, which states that
the classification of every entity must dominate the classification of every entity
it contains. For example, a message file contains a set of citations and each
citation contains a message. The message file must be classified higher than any
of its citations and each citation in turn must be dassified higher than its mes
sage. Another assertion states that only a user acting in the role of system secu
rity officer can change the clearance associated Vlith a user ID.

In order to guarantee that such assertions remain invariant, every operator
op is associated with a precondition pre{op) characterizing the eonditions under
which applying op will leave the system in a state satisfying the security asser
tions. Before applying any operation, this precondition is checked and an excep
tion is generated if the precondition does not hold. A::;suming the preconditions
are correct, an operation never causes an action that will invalidate the security
assertions.

Preconditions are attractive because mathernatical techniques (weakest
preconditions, predicate transformers [9] ,Hoare logic [10]) exist to derive
them from a specification of the semantics of the operator and a specification of
the security invariants. Dijkstra [9], Gries [11], and others have argued convinc
ingly that deriving programs from specifications yields benefits that verifying
programs after they are written does_ not. In deriving precondition checks for
our rapid prototype, we applied the concepts of invariant assertions and weakest

53

precond:tions informally to specify and prrJgrc.rr.. the system. Using thi!"
approash, we could then attempt to pr1Y..ride ~ormal proofs that preconditions
are sufficient to insure that the operatirms maiT::tain "he security invariants.

The use of an external text editor poses some problems to our security
design. Within the message system, messages are represented in linked struc
tures laden with security information. A message sent to the editor is translated
into a text form visually familiar to users but with much of the security informa
tion (e.g. access sets) stripped off. The system should prevent users from edit
ing certain fields, corrupting the security labels on entities, or entering ill
formed messages into the system. To this end, we partition the message being
edited into an editable and noneditable part, displaying the latter in a window
where the user cannot modify it. In Emacs, the user edits a textual representa
tion of a message in the absence of any security checking. When Emacs exits,
the message system parses the message, checking it for well-forrnedness and
conformity with the security constraints before we allowed it to be stored in the
message system data types. For example, a message might fail the well
formedness che_ck if a user mistypes a field name or leaves off a security label
on a paragraph. The message would not conform to security constraints if, say,
a CONFIDENTIAL text field held a SECRET paragraph.

6. Future Directions
The rapid prototype described h3re is onP of a se;-ies cf systems being built

to investigate secure message systems. The next sleps in this work includP-:

a) Obtain feedback from real message system users using the M2 proto
type.

b) 	 Develop a user interface incorporating a bitmapped display, graphics
and mouse. This will be done by modifying the user interface com
ponent (and moving it to a different host), while leaving the semantic
component unchanged.

c) 	 Investigate formal techniques for deriving precondition ch.ecks from
the specifications.

d) 	 Build a genuinely secure full-scale prototn:-e based on the current
rapid prototype.

7. Summary
We have observed that conventional security models, while intuitively

appealing to designer's, can appear confusing and inappropriate when viewed
through the user interface of a finished system. To overcome these problems, a
specific security model has been defir1ed to conform to an intuitive notion of how
the user interface to a secure message system should behave. A series of rapid
prototype systems has been built to allow us to observe directly the interactions
between this security model and a user interface. The M2 rapid prototype
demonstrates a particular approach to the implementation of a system that
incorporates this security model. The techniques used in building it are applica
ble to other application based security models.

B. Acknowledgments
Carl Landwehr, Connie Heitmeyer, and John McLean developed and formal

ized the MMS security model. Jean Tschohl. Ken Pon, and Brian Tretick contri
buted to building and testing the rapid prototypes. This work was supported by
the Naval Electronic Systems Command under the direction of H.O. Lubbes.

54

http:prrJgrc.rr

Ap~·~ndix: A session with the M2 "Ra.pid Prototypt"~

The followiDg scenario, bc.lsed 0'! the M2 prototype, illu~~rctes some funda
mental ideas of the S8·::•lre \[ilitary Meso;~g'-' Syste;n Design. Tn this example a
user, Jones, logs cnto Lhe message; sysb~ril and reads some incoming mail. The
session illustrates some of the data c'ojects the users manipulate and how mes
sage processing is integrated ~vith the security policy.

To gain access to the system, Jones musl first log in. Jones dues this b;
providing a useriD, the classification that the screen is to assume, in this case (T
cnwdi nato crypto), and and a password. A menu appears on the screen from
which Jones selects active roles for the session. The system checks to see that a
user with useriD Jones anrl the given password is authoriz~d to use lhe system,
and that Jones is authorized for each of the roles selected. With this precondi
tion satisfied, the login operation proceeds.

The screen has a current classification at the level specified at login. Cita
tions from Jones's message file "inbox" are displayed on the screen (Jig. la.)

Display Message File inbox

DISPLAY I CREATE I DELETE I UNDELETE[CCPY I MOVE I EXPUNGE ! EDIT
Msg/Fi le/1 Msg/Fi le/1 Msg/Fi le/: Msg i Msg I ."1sg I l=i le i Msg/Te><t
Text/Dir I Text I Text ! i I I I

1 N (Ul
From: (Ul D~.Jo;-k Subj: (U) Ada Conference

2 N (SECRET cn~.Jdi cr!Jptol
From: (Ul Adams Subj: (5) Beetr.oven Combiner

3 N (CONFIDENTIAL cn~.Jdi nuclear)
From: (U) JPL Subj: CCl Dense Pack Simulator

4 N (UNCLASSIFIED)
From: fUl NSA Subj: (Ul Securd•j Evaluation Stancards

fig. al

At this point the screen (an entity) contains a sequence of citations (also
entities). Each citation contains the From, Subject, and Security fields of the
message to which it refers. Only citations below the the classification of the
screen are displayed.

Displaying the second message, Jones can see all of its fields (Jig. a2.)
Notice that the message classification dominates the classification of each of its
fields. Similarly, the text field classification dominates the classifications of
each of its paragraphs.

55

Ci sp Ia~ i1essage inbux 2 a! !

DISPLAY I CREATE ! DELETE I U~~ELETEI COPY ! MOVE i E;{?UNGE i ED! T
~(lg/Fi Ie/ I Ms0/F i i e/: risg/F; Ie/, ils9 ; ~~3~' I Msg I ~i ~e I ~sg/Tex•
Text/Dir I Text I Text ; I - I I

Security: (S cnwdi crypto)

From: (U) Adams
To: (Ul Jones
Sub j: (Si Beethoven Combiner

Text: (S cnwdi crypto)

(UJ first paragraph

(SJ second paragraph

(S cnwdi cryptol last paragraph

fig. aZ

Jones's directory contains all of the message files belonging to Jones. The mes
sage file names are displayed along with the file classifications (Jig. a3.)

Display Directory Jones

DISPLAY I CREATE I DELETE I UNDELETE!
Msg/F i Ie/ I Msg/F i I e/ I Msg/F i Ie/ I Msg ;
Text!Dir I Text I Text I I

COPY
Msg

I
I
I

MOVE
Msg

I EXPUNGE
I File
I

! EDIT
: Msg/Text
I

Cryptography n cnwd i crypto)

Dense Pack (T cnwd i nuc I earl

Mi sc !Ul

Nato l'flM (C nato)

Sensor Project (Ul

Speci fi cations (i.J)

Submarines (C cnwdi nuclear)

inbo>< (T nato crypto cnwdi nuclear)

fig. a3.

Accidental violations of the security model are prevented. Jones is
informed of denied requests in terms of familiar message system concepts. For
example, if Jones attempted to save the second iPbox entry (displayed earlier)
into the file "Nato MRM", the system would deny the reque~t. A bcief explanation
would appear in the error window (j:Jst beiow the menu) saying that the message
was classified to high to be inserted in the given message file.

Jones may move the message in the file Cryptography, since that file's classifi
cation dominates that of the message. Jones does so and logs out leaving the
terminal ready for another login.

56

References

1. 	 C. E. Landwehr. C.L. Heitmeyer, and J. McLean, A Security Model for .Milita-ry
Message Systems, Naval Research Laboratory, Washington, D.C. (May 1964).

2. 	 D.E. Belt and L.J. Lapadula, "Secure Computer Sy::;tems: Mathematical Foun
dations and Model," MTR-2779, Mitre Corp., Bedford, Mass. (July 1975).

3. 	 C. Heitmeyer, C. Landwehr, and M. Cornwell, "The Use of Quick Prototypes
in the Secure Military Message Systems Project," Software Engineering
Notes 7(5) pp. 85-87 (December 1982).

4. 	 RJ.K. Jacob, "Using Formal Specifications in the Design of a Human
Computer Interface," Comm. ACM 26 pp. 259-264 (1983).

5. 	 RJ.K. Jacob, "An Executable Specification Technique for Describing
Human-Computer Interaction," in Adva.nces in Human-Computer Interac
tion, ed. H.R Hartson, Ablex Publishing Co., Norwood, N.J. (1984). in press.

6. 	 J. Gosling, Unix Emacs, Unipress Software, Inc., Highland Park, N.J. {Janu
ary 1983).

7. 	 A. Goldberg and D. Robson, Smalltalk-80 The Language and Its Impl.ementa
tion, Addeson Wesley (1983}.

8. 	 D. Weinreb and D. Moon, LISP Machine Manual, Massachusetts Institute of
Technology, Cambridge, Mass. (March 1981).

9. 	 E.W. Dijkstra, A Discipline of Programming, Prentice-Hail, Edgewood Cliffs,
N.J. (1976).

10. 	 C.A.R\ Hoare, "An Axiomatic Basis for Computer Programming," Comm.
ACM 12 pp. 576-580 (1969).

11. 	 D. Gries, The Science· of Programming, Springer-Verlag, New York (1981).

57

Communications System Security Evaluation Criteria

Peter c. Baker

Ford Aerospace & Communications Corporation

ABSTRACT

This paper presents justification that there are sufficient differences
between operating systems and communications systems to warrant separate
criteria for evaluating the security properties of communications sys
tems. The criteria address those types of communications systems that
handle sensitive information and therefore must comply with DoD security
policy. The criteria require the DoD security policy be stated in terms
of acceptance/delivery criteria and an· internal control criteria. In
addition, the proposed criteria requires, for higher assurance classes,
that the design and implementation of the communications system be
evaluated in terms of a systematic decomposition strategy in order to
provide insight into the internal security properties of the system. A
summary of the proposed evaluation criteria for communications systems
is presented.

1. Introduction

The benefits of remote resource sharing between operating systems has
promoted growth in the development of supporting communications systems.
In cases where these operating systems must process and exchange sensi
tive information, additional requirements for protecting this informa
tion is placed on the communications system. Security criteria have
been developed and are being applied in the evaluation of the individual
operating systems and their supporting hardware bases. Because of some
significant differences between operating systems and their supporting
communications systems, it is not appropriate to attempt to apply
operating system security evaluation criteria to these communications
systems. Therefore, to insure that the total information system, com
posed of both operating systems and communications systems, is protected
from disclosing sensitive information, appropriate security evaluation
criteria for the communications systems must be developed.

Section 2 describes the bounds of the communications environment for
which the criteria was developed. As motivation for the development of
communications system evaluation criteria, Section 3 describes important
differences between operating systems and communications systems, and
provides criteria objectives for such Communications Systems. Section 4
describes the requirements for a Communications System Evaluation Cri
teria. Section 5 describes the proposed criteria and provides a

- This effort was partially funded by RADC Contract F30602-81-C-0233.

58

description of the assurance classes. Finally, section 6 raises some
issues that result from this effort.

2. Scope

The range of communications systems can be very broad; this section
establishes the scope of communications systems that are candidates for
evaluation.

2.1 Layered Protocols

For the purposes of this proposed evaluation criteria, communications
systems refer to message, packet and circuit switching systems that are
structured according to the concepts of either the ISO or DoD Reference
Model [1,2] for layered protocols. Also, the criteria is aimed pri
marily at communications systems that implement the lower protocol
layers of these models.

2.2 Protocol Verification

The proposed criteria, at the higher assurance classes, require the for
malization of certain security functions. It is expected that these
functions will be implemented by various processes throughout the sys
tem. The extent to which a given protocol process implements these
functions will determine the amount of security verification commen
surate with the assurance class.

2.3 Security Functions

The criteria address data compromise, data integrity, denial of service,
audit, accountability and authentication as security functions. Of
these functions, the protection of sensitive information from compromise
must be modeled by formal methods, at the highest defined assurance
class.

2.4 Operating System

By the term operating system is meant a multi-user, time-sharing operat
ing system in a single-host environment.

3. System Differences

The differences between operating systems and communicatiops systems are
sufficient to motivate the effort to develop a communications system
evaluation criteria. These differences are discussed below.

59

3.1 Distributed Structure

Operating syst~ms are not necessarily distributed. Communications Sys
tems are, of necessity, distributed systems. Communications system com
ponents can be communications systems in their own right, and each level
can exhibit a broad range of functional, performance and physical
characteristics. These characteristics are in contrast with operating
systems, which are typically implemented in single-host environments.
Host single-host systems have been developed with a single abstract
view. This single abstract view is not appropriate in communications
systems when attempting to understand and model their security proper
ties. Multiple layers of abstraction are essential to understand the
security properties and security implications of such systems and their
myriad components.

CRITERIA OBJECTIVE: The capability to evaluate the security properties
of designs and implementations that represent distributed systems
displaying a range of functional, performance and physical characteris
tics.

3.2 Protocol Structure

There are significant protocol structure differences between operating
systems and communications systems. Operating systems implement more of
the upper protocol layers in terms of the DoD or ISO Reference Model,
and they are all end-protocol functions. Communications systems imple
ment generally only the lower layer protocols, and these tend to be both
link and switching protocol functions. Operating systems also tend to
treat these protocol functions peripherally and consider them as one
entity. Protocol functions are central to a communications system, and
are a major factor in a communications system architecture. Although
fewer layers are supported, more functions within a given layer are
present, due to the possibility of different protocol sets implemented
by different hosts. Functionality, not present in hosts, includes pro
tocol switching and routing as well as various conversion functions to
allow host interoperability.

As in the argument for distributed systems, single abstract views of
protocol structures and hierarchies are no longer appropriate. Charac
teristics of these protocol structures include the concepts of protocol
layer hierarchy, protocol function independence and protocol layer hid
ing. Components of a communications system may implement different pro
tocol suites, depending upon the host operating system they support. Due
to the hierarchical nature of the protocol architecture, some nodes may
be hidden from other nodes at a given protocol layer. Again, multiple
layers of abstraction are essential in attempting to understand the
security properties of existing and anticipated protocol architectures.

CRITERIA OBJECTIVE: The capability to evaluate the security properties
of designs and implementations that represent hierarchical protocol
structures.

60

3.3 Internal Security Policy

In typical operating systems the security policy seen by the users is
the same as the internal security policy. Communications systems may be
required to implement different internal security policies. For exam
ple, certain protocols do not support sensitivity labels in their
headers, the label being at a different protocol layer. In these cases,
the policy should be the isolation of every data-unit known to that par
ticular protocol function. As another example, some protocol functions
have the capability to fragment and reassemble data-units. The reassem
bly security policy could be an exact-match, since it may not be
appropriate for the protocol function to reassemble data-units using a
dominance relationship even though the connected host supports such a
policy.

CRITERIA OBJECTIVE: The capability to evaluate designs and implementa
tions that support different security policies by component, protocol
layer and protocol function.

3.4 External Security Policy

As discussed above, a uniform security policy is applied across the
entire operating system. Communications systems may be required to
adhere to several implementations of the DoD security policy mandated by
the individual security requirements of the hosts they support. For
example, the delivery criteria to a connected host may be an exact-match
policy (data-unit sensitivity level must be at exactly the classifica
tion level of the host), rather than a dominance policy (data-unit sen
sitivity level must equal to or below the host classification level).
As another example, some hosts have the authority to send data-units at
a certain sensitivity level, but are not authorized to receive this
level.

CRITERIA OBJECTIVE: The capability to evaluate designs and implementa
tions where the system security policy is selectively applied to indivi
dual hosts attached to different parts of the system.

Operating systems lend themselves to a centralized reference monitor for
mediating all access to data. This concept may not be appropriate for
distributed communications systems where it it may not be acceptable to
have all packets (or service requests) flow through a single component.
The notion of distributed acceptance and delivery mediation with indivi
dual internal control mediation is more appropriate for communications
system.

CRITERIA OBJECTIVE: The capability to evaluate designs that provide
either centralized or distributed access control in the form of accep
tance and delivery checks.

61

3.5 Verification Assurance

The criteria objectives of decomposition in terms of distributed com
ponents and protocol structures will only provide clear insights into
the internal security properties of systems if there is means to verify
these properties in a clear and consistent manner. The objective is to
minimize the amount and types of verifi.cation evidence by limiting
verification requirements to a small set that can be applied to any com
ponent or set of components identified in the decomposition process.
Another objective is to reduce the amount of complexity by applying the
criteria in a uniform manner in the decomposition process.

CRITERIA OBJECTIVE: The ability to apply the criteria recursively in the
decomposition process, in terms of required security features and verif
ication evidence.

3.6 Why Not the Existing Criteria?

The existing security evaluation criteria require excessive interpreta
tion when applied to communications systems. The DoD Trusted Computer
System Evaluation Criteria [3] (known as the Orangebook) are aimed at
evaluating operating systems in the traditional sense. The application
of these criteria to communications systems rely heavily on interpreta
tion, since they were not specifically developed for evaluating systems
with distributed components and/or hierarchical protocol structures.

In the future, operating systems will be evaluated against the Orange
book and their supporting communications systems will be evaluated
against a communications criteria. To ensure consistent evaluation of
the systems as a whole, there must be compatibility between the two cri
teria.

CRITERIA OBJECTIVE: Compatibility with the existing operating system
criteria in terms of security features, verification evidence and
assurance classes.

4. 	 Communications Criteria Requirements

The criteria objectives can be integrated into a set of criteria
requirements as follows:

a. 	 Capability to evaluate communications systems based on a combina
tion of distributed component and hierarchical protocol struc
tures.

b. 	 Capability to evaluate communications systems that implement dif
ferent external(user-visible) and internal security policies.

c. 	 Capability to evaluate communications systems that implement

either centralized or distributed external security policies.

62

d. Capability to evaluate communications systems based upon well
defined and uniform design and verification evidence for both com
ponents and protocols.

e. Compatibility with the existing operating system criteria.

5. 	 Proposed Criteria

Three concepts are central to the proposed criteria:

a. 	 The criteria defines the decomposition approach to be taken and
defines the level of decomposition based on the assurance class.

b. 	 The criteria requires that the security policy be stated in terms
on an Acceptance/Delivery Criteria and an Internal Control Cri
teria.

c. 	 The criteria defines the structure, contents and level of detail
for security features and verification evidence required for the
various assurance classes.

5.1 Decomposition Approach

The specific decomposition requirements for communications systems is

shown in Figure 1. For lower assurance classes, the decomposition

approach begins at the level that identifies the Communications System,

External Systems and associated interconnects. A Communications System

Security Boundary is defined that encloses the Communications System.

To be evaluated for a higher assurance class, the Communications System

is to be decomposed into individual Nodes, and associated interconnects.

A Node Security Boundary is defined for each Node. This first level

decomposition supports the distributed nature of the Communications Sys

tem.

To be evaluated at the highest assurance classes, the level of decompo

sition extends to the protocol layers, and the associated interconnect

between these layers. This level of decomposition supports the layered

protocol nature of communications systems.

5.2 Security Policy Definition

The 	 Security Policy consists of an Acceptance/Delivery Criteria and an
Internal Control Criteria. The Acceptance/Delivery Criteria determines
how data-units are sent or received across the security boundary (Com
munications System, Node or Protocol). The Internal Control Criteria
determines the relationship between data-unit while inside a particular
security boundary. The two types of criteria must be complementary and,
in combination, must be shown to implement correctly the stated Formal
Policy Hodel.

63

5.3 Documentation

A uniform set of design documentation is used to support the evaluation
process (see Figure 2). The set of documentation consists of des~gn and
verification documentation that is hierarchical starting at the top with
the DoD Security Policy, and ending with a description of the underlying
"virtual machine". Each piece of documentation produced is assumed to
include the supporting evidence that it correctly represents the docu
ment above it. The documentation set has been structured such that it
is additive, each higher assurance class requires additional documenta- ,
tion, but is supported by that documentation required by lower assurance
classes. The documentation set is applicable to each component as it is
identified in the decomposition process.

Appendix A is an example of the proposed decomposition and verification
strategy.

5.4 Summary of Assurance Classes

The proposed criteria must be complementary to the existing criteria;
therefore the communications system criteri~ closely parallels the
existing criteria in terms of assurance classes.

The corresponding assurance classes of the two criteria is shown below.

Orangebook Criteria Communications System Criteria
Assurance Class: Assurance Class:

Cl Xl

C2 X2

Bl Yl

B2 Y2

B3 Y3

Al Zl

The communications system assurance classes are summarized as follo>vs:

Assurance class X requires that data must be segregated in accordance

with some stated security policy; however, no Acceptance/Delivery Cri

teria is imposed due to the lack of security labels. The principle

difference between assurance class Xl and X2 is the amount of additional

testing and documentation required.

Assurance class Y introduces decomposition in order to provide addi

tional assurance. In this class data must be labeled.

64

Assurance class Yl requires that a security policy and model must exist
that accurately describes the communications system at the level seen by
the External User. The security policy model must be stated in terms of
an Acceptance/Delivery Criteria applied to the Communications System
security boundary and an Internal Control Criteria that defines data
segregation inside the Communications System.

Assurance class Y2, in addition to the Communications System security
policy model, requires that a security policy model exist that accu
rately describes each physical node and link of the Communications Sys
tem and must describe how the combination of these security policy
models completely satisfies the Communications System Security Policy
Model. The lower-level Security Policy Models are also stated in terms
of an Acceptance/Delivery Criteria and Internal Control Criteria appli
cable to each node and link.

Assurance class Y3, in addition to the Communications System and
Node/Link policy models, requires that a security policy model must
exist that accurately describes each of the protocol layers implemented
by the Communications System or Nodes. As above, these policy models
must be shown to completely satisfy the upper level policy models. Cri
teria includes the use of existing specification and verification tech
nology in the demonstration of the consistency among the policies,
models and system components.

Assurance class Z requires no further mechanisms, but the level of
assurance is raised by extensive use offormal methods, including formal
specification and veri'fication, the application of >vhich is clearly
identified and incorporated into the overall system development method.

6. 	 Issues

A. 	 Should the decomposition approach be directed by the criteria?
That is, should the criteria force a designer/implementer in a
specific direction that may skew the design or have other undesir
able effects? The rationale basically is a desire for con
sistency; the decomposition requirement is central to the evalua
tion process and comparisons between two communications systems
should be on an equal basis.

B. 	 Should there be latitude for further decomposition?

c. 	 Is the notion of an abstract TCB and supporting virtual machine
sound? Is it helpful in the evaluation process?

D. 	 Should the integrity of sensitivity labels in the protocol headers
be modeled by formal methods? Clearly integrity issues are
involved to the extent that the sensitivity labels in the various
protocol headers must be protected from modification. Where sen
sitivity labels must be transferred from one protocol layer to

65

another the possibility of translation of such labels must be
addressed.

E. 	 What constitutes a valid protocol header? The format and content
of a protocol header defines the location and (perhaps) the mean
ing of the sensitivity label. The validity of the sensitivity
label therefore depends upon the validity of the format of the
header.

F. 	 What do we do about the higher protocol layers with additional
functionality? This is where the Orangebook and proposed criteria
meet.

G. 	 Can the criteria be applied to commercial communications systems,
where, perhaps, data corruption and authentication are more impor
tant than prevention of data compromise.

7. 	 Conclusions

We believe there is sufficient justification for a security evaluation
criteria for communications systems. The requirements for such cri
teria, as presented in this paper, are based on evaluation objectives
suited to the characteristics of connnunications systems. The intent of
the proposed criteria was to include as broad a range of such systems as
possible. In that respect, the criteria have been used by Ford
Aerospace as a basis of evaluation on current and proposed designs for
several projects, including the Multinet Gateway, the WWMCCS Information
System (WIS) and the Inter-Service/Agency Automated Message Processing
Exchange (I-S/A AMPE). As communications systems, these projects
represent a broad range of services and functionality. The criteria
were found to be applicable to all three project designs. The proposed
criteria require the incremental use of formal methods to provide
increasing confidence in the validity of the system security properties.
The rigor imposed by these methods is considered essential in evaluating
and certifying complex communications systems.

8. 	 Acknowledgements

The author wish to thank A. Paul Cook, George vJ. Dinolt, James W. Free
man and Richard B. Neely for their helpful and perceptive comments.

9. 	 References

[1] 	 Proposed Draft Recommendation X.200, Reference Hodel of Open Sys
tems Interconnection for CCITT Application, CCITT SG VII/WP5, Spe
cial Rapporteur of Layered Models, December 1982.

66

[2] 	 DoD Protocol Reference Model, TM-7172/201/02, System Development
Corporation, January 1983.

[3] 	 DoD Trusted Computer System Evaluation Criteria, CSC-STD-001-83,
DoD Computer Security Center, 15 August 1983.

Figure 1 - Decomposition Requirements
=====================================

Environment

External External Communications System
System System System Interconnect

I
I

~-----------------------~----------~--------I
I

Node Node Node
I In te rconnec t
I
I

~----'------~--------~ I I
I I

Protocol Protocol Protocol Protocol Protocol Protocol
Interconnect Interconnect

68

Figure 2 - Communications Criteria Documentation Tree
===

Informal Evidence: Formal Evidence:

1----------------------> DoD Security Policy
I I

Convincing I
Arguments I

I v
1<---------------------- English Description

the of
1-----------------> Security Policy
I I

Convincing I
Arguments I

vI1<-------------------- Formal
1-----------------------> Policy Hodel <-------------------1

1<--------------- Descriptive Formal ------------->1

I I I
I I Proof

Convincing
Arguments

-----------~----------~
1 I

of
Consistency

1 v v I

1-------) Specification Specification <-1
I I I I

I I I I

Convincing Consistency'------=-----1
Arguments I Happing

I v I
1<--------------- Trusted Computing ----------->1

1--------------> Base
I I

Convincing I
Arguments I

I v
I<---------- Virtual Machine

69

Appendix A - Example of Decomposition/Verification Approach
===

A. 	 The System (s-Component) is covered first:

1. 	 The s-English Description of the Security Policy is
developed and is shown by convincing arguments to satisfy
the DoD Security Policy.

2. 	 The s-Formal Policy Model is developed in terms of the s
Acceptance/Delivery Criteria and s-Internal Control Criteria
and is shown by convincing arguments to satisfy the s
English Description of the Security Policy. The s-Formal
Policy Model is proven internally consistent.

3. 	 The s-Descriptive/Formal Specification is developed and is
shown by convincing arguments and/or proof of consistency to
satisfy the s-Formal Policy Model.

4. 	 The s-TCB is developed and is shown by convincing arguments
and/or proof of consistency to satisfy the s
Descriptive/Formal Specification. (The s-TCB is probably
abstract.)

B. 	 The Node (n-Components) are covered next:

1. 	 The s-Component is decomposed into one or more n-Components.

2. 	 An n-English Description of the Security Policy is developed
for each n-Component and they are in combination shown to
satisfy the s-English Description of the Security Policy.

3. 	 An n-Formal Policy Model is developed for each n-component
in terms of the n-Acceptance/Delivery Criteria and n
Internal Control Criteria and is shown by convincing argu
ments to satisfy the respective n-English Description of the
Security Policy. Each n-Formal Policy Model is proven
internally consistent. The combination on n-Formal Policy
Hodels are shown to satisfy the s-Formal Policy Hodel.

4. 	 An n-Descriptive/Formal Specification is developed for each
n-Component and is shown by convincing arguments and/or
proof of consistency to satisfy the respective n-Formal Pol
icy Model. The combination of n-Descriptive/Formal Specifi
cations are shown to satisfy the s-Descriptive/FormalIll

Specification.

70

5. 	 An n-TCB is developed for each n-Component and is shown by
convincing arguments and/or proof of consistency to satisfy
the respective n-Descriptive/Formal Specification. The com
bination of n-TCBs are shown to satisfy the s-TCB. (The n
TCB may be abstract.)

C. 	 The Protocol (p-Components) are covered next:

1. 	 Each n-Component is decomposed into one or more p
Components.

2. 	 A p-English Description of the Security Policy is developed
for each p-Component and they are in combination shown to
satisfy the n-English Description of the Security Policy.

3. 	 A p-Formal Policy Hodel is developed for each p-component in
terms of the p-Acceptance/Delivery Criteria and p-Internal
Control Criteria and is shown by convincing arguments to
satisfy the respective p-English Description of the Se~urity
Policy. Each p-Formal Policy Model is proven internally
consistent. The combination of p-Formal Policy Models are
shown to satisfy the n-Formal Policy Hodel.

4. 	 A p-Descriptive/Formal Specification is developed for each
p-Component and is shown by convincing arguments and/or
proof of consistency to satisfy the respective p-Formal Pol
icy Model. The combination of p-Descriptive/Formal Specifi
cations are shown to satisfy the n-Descriptive/Formal
Specification.

5. 	 An p-TCB is developed for each p-Component and is shown by
convincing arguments and/or proof of consistency to satisfy
the respective p-Descriptive/Formal Specification. The com
bination of p-TC13s are shown to satisfy the n-TCB.

71

SECURITY ISSUES INVOLVED IN NETWORKING

PERSONAL COMPUTERS

Alfred Arsenault

DoD Computer Security Center

INTRODUCTION

In recent months, there have been several preliminary
attempts made at writing trusted computer network evaluation
criteria, similar to the standards established in the Department
of Defense Trusted Computer System Evaluation Criteria. One of
the goals of a trusted network evaluation criteria should be to
be as widely applicable as possible. If possible, it should
apply to both long haul networks, such as ARPANET, and local area
networks, or LANS. Also, it should apply· to cases in which hosts
attached to the network are mainframes, as well as when hosts are
microprocessor-based personal computers, or PCs.

A major difficulty encountered in writing trusted network
evaluation criteria is that the definition of a "secure network"
is not fully agreed upon.· In attempting to define what is meant
by a "secure network", it is necessary to consider the issues
involved in network security. It has been discovered that there
are several cases in which a security issue relates to only one
particular type of network. One of the types of networks which
has a large number of unique problems is the case in which
several personal computers in a close geographical area are
linked together, possibly with other devices, to form a local
area network. It is on this special case that this paper will
concentrate.

CAUSES OF SECURITY PROBLEMS

There are two basic causes for most of the security problems
that arise specifically because most of the hosts on a LAN are
PCs: first, because a PC is a single state machine, and second,
because where PCs are concerned, communication protocols have
traditionally been weak from a security standpoint, with few or
no security features designed in.

Problems Caused by Single State Machines

First, consider the problems caused by the fact that PCs are
single state machines. A single state machine has no dominance
domain. A dominance domain, also called a supervisory state, is
a characteristic of most large main frame computers that
restricts the ability of certain users to access certain
locations in the machine's memory. Thus, a PC has no capability
to support a Trusted Computing Base, or TCB, because no
hardware/software security mechanisms can be tamperproof. For
this reason, any single state machine is a division D system,
according to the Department of Defense Trusted Computer System
Evaluation Criteria•

. . ·. _. -~

72

Currently, in many LANs having PCs as hosts, many crucial
network functions are implemented in the PC itself, and, since
the PC has no dominance domain, there is no way to prevent a
penetrator from accessing those network functions and changing
them to allow violations of the network security policy. Thus, a
penetrator can evade any security mechanism that is implemented
in the PC. This is clearly not desirable in the operation of a
secure network.

Problems Caused By the Network

There are two characteristics of most LANs that account for
many security problems. First, particularly where PCs are
concerned, communication protocols historically have tended to be
very weak from a security standpoint, with few or no security
features designed in. Second, the transmission method in many
LANs is broadcast.

From a security point of view, the protocols are among the
most important functions of the network. The problem is that
most PC communication protocols are very simple in comparison to
those used in mainframes. They are usually designed only to
insure that a message sent from one host to another is
transmitted properly, and, upon arrival at the destination host,
is received properly. From a purely operational or functional
standpoint this is sufficient in most cases, but from a security
point of view it is less than desired. Well designed, security
oriented protocols tend to be slow, and to take up much memory
space. This has resulted in their being unfeasible for use in
many microprocessor-based PCs, which have had slow processing
speeds and small memories. The situation should be improving,
however, because PCs now have much larger memories and higher
speeds than they used to. This development improves the
capability of the PC to handle sophisticated protocols, with much
more security designed in.

LANs having PCs as hosts using broadcast transmission is a
second cause of many major security problems. This is true
regardless of whether the actual communications medium is twisted
pair wire, coaxial cable, optical fiber, or even satellite
transponders. Broadcast transmission can lead to spoofing,
wiretapping, and the surreptious entry of messages into the
communications medium in an attempt to violate the security of
the network. These problems appear to exist on any LAN using
broadcast communications, regardless of whether ring, bus, or
some other architecture is used.

73

ISSUES AND PROBLEMS: SOME EXAMPLES

Consider now some of the actual security issues and problems
that arise from the networking of computers. There are four
areas in which the interconnection of PCs to form a LAN causes
problems that either do not exist in other types of computer
networks or are significantly different in the case under
consideration. These areas are: access controls, spoofing,
wiretapping, and auditing. Each of these topics will be
discussed in turn.

Access Controls

Access controls are one of the principal mechanisms used to
prevent the compromise of data. Access controls are used to
restrict the ability of users to read from or write to a specific
memory location. ·Access controls are vital to the security of a
network; however, there is no way to implement either mandatory
or discretionary access controls in a single state machine, since
any user with access to a single state machine can access any
memory location known to the machine, regardless of what is
stored there.

This lack of access control extends not only to the host
being directly accessed by a penettator, but also to any host
which can be remotely accessed. That is, if a user can access
another PC over the network, that user can access any memory
location known to that remote PC, usually including anythiog
stored on any disks located in the system's disk drives at that
time.

On the type of network under consideration, access controls
cannot be used to prevent a penetrator from accessing network
functions that are implemented in the PC itself. As an example,
consider a LAN using a contention scheme or collision detection
algorithm. A penetrator can subvert the contention algorithm on
his host, and send out a continuous stream of messages. This
will deny use of the network resources to other, legitimate
users, some of whom may have urgent messages to send. The worst
part of the scenario discussed here is that it may be impossible
for other network users to determine exactly what has happened.

Spoofing

Another common network security problem is spoofing.
Spoofing occurs when one user pretends to be another user, an
operating system, or even the network, in an attempt to cause a
second user to violate the security of the network. Spoofing is
usually relatively easy to do in the case under consideration,
and is very difficult to detect.

74

Spoofing plays a part in data integrity violations. Suppose
that "host #22" sends a message to "host #5", but labels the
message as if it came from "host #19". This is a spoof, because
"host #22 11 is pretending to be something it is not~ namely, "host
#19 11 In the type of network under consideration, it is likely•

· . 	 that the recipient of the message, 11 host #5 11
, will not be able to

detect the spoof. "Host #5" may then proceed to perform some
action for which "host #22" has no authorization to request, but
for which "host #19" does.

Wiretapping

Although wiretapping can occur on all networks, the fact
that the transmission method is broadcast makes it an even more
serious problem than usual. Each host on the network sees all of
the messages being transmitted across the network, instead of a
fraction of them, as is the case in a packet switched network.
This greatly increases the damage that can be done by one
penetrator: he can cause the compromise of all data sent on the
network, instead of a fraction.

For example, suppose that a message is sent by one host, and
is addressed to "host #22". While the message is passing along
the network, "host #19" copies the message off of the network.
("Host #19" must at least look at the header of the message to
determine whether or not is is the intended recipient.) Since
all hosts are essentially taps on the communications medium, it
is quite likely that the fact that the message has been copied
will not be detected. This is a compromise of data.

Auditing

Consider now the problem of auditing a LAN composed
primarily of PCs. There are two basic strategies for auditing a
network: auditing the actions of each node at that node itself,
or auditing the traffic flow at a small number (possibly one) of
centralized locations. If auditing were implemented such that
each node kept an audit trail of its own actions, a user could
then alter the audit trail of his actions. A penetrator could
then incur numerous security violations, and erase any record of
their having occurred. Therefore, any audit trail obtained for
the network from the nodes themselves would be essentially
worthless, since it would contain records of only those actions
which the users wanted others to know about.

The alternative scheme would be for auditing to take place
at a small number of centralized locations. However, in this
scheme, the audit mechanism could not detect much of the
surreptitious copying of messages taking place. That is, it
would not be able to detect a large number of the security
violations that could be occurring throughout the network. Since
it is important that some type of audit trail be kept of the
activities occurring on the network, detecting all security
violations is an important objective, and auditing is a very
difficult problem.

75

POSSIBLE SOLUTIONS

Now that several of the security problems associated with
connecting PCs in LANs have been outlined, consider several
possible solutions, along with some of the advantages and
drawbacks of each.

"Network High" Mode

One solution currently in common use is to keep all PCs
connected to the LAN operating at the same "network high" level,
and only allow communication at a single sensitivity level. That
is, all hosts attached to the network can be physically accessed
only by people who are trusted to at least the "network high"
sensitivity level, and all communications over the network are
considered to be at that level. This is analogous to the system
high operating mode of stand-alone computer systems. This
strategy results in letting only trusted users have access to the
LAN, and in basing our trust in the network users rather than the
hardware/software mechanisms. While this method is more secure
than simply allowing unrestricted access and communication over a
range of levels, it can lead to instances of multiple LANs when
communications are necessary at more than one level. This is
generally less efficient and more costly than open
communications. It should be remembered that the primary purpose
of a LAN is to facilitate communication between users, and too
many restrictions on communication would defeat this purpose.

Better Protocols

A second possible solution is to design a "better" set of
protocols that would allow multilevel communication; i.e., would
allow messages to be sent at one of several distinct sensitivity
levels. This would allow wider communication among users, and
would lead to greater efficiency. For example, good access
controls can be designed into communications protocols. A
protocol could contain the mechanisms necessary to support
mandatory access controls. Therefore, all data coming from a
host would be appropriately labeled, as would all access requests
arriving at that host. Any access request arriving without an
appropriate sensitivity label would be refused. One major
problem with this approach is that well designed, security
oriented protocols that allow for labelling, access control
decisions, and auditing tend to be very slow and take up a great
deal of memory. This may be overcome shortly, due to the rapidly
expanding memory sizes and processing speeds of newer PCs.
However, as long as these protocols are implemented in the PCs
themselves, they are susceptible to subversion, and thus do not
completely solve the problem.

76

Encryption

A third possible solution is the use of encryption. All
messages sent between hosts can be encrypted with a suitable
encryption algorithm. This can help solve the data compromise
problem - a spoofer may still be able to copy messages without
being detected, but may not be able to decipher and understand
the stolen information. Encryption might also help solve the
data integrity problem since messages which have been changed
during transmission can be detected, and a good encryption scheme
would help validate the authenticity of return addresses on
messages received. However, encryption will do nothing to help
prevent certain types of integrity or denial of service problems.
A penetrator can still inject an endless stream of messages onto
the transmission medium. Encrypting the message does not prevent
this, and in fact has no effect on the entire situation.

Trusted Interface Devices

Another solution would be the use of a trusted interface
device, or front end, between the PC and the communications
medium. This could definitely help solve the data compromise
problem, because the front end could prevent a PC from spoofing
the system by only giving the system messages actually intended
for it. It would also help solve the data integrity problem if
it attached the message headers itself and was trusted to attach
only the proper ones. A trusted front end may also provide help
in solving the denial of service problem. For example, if the
network used a contention scheme, and the front end enforced the
backoff time algorithm and could not be reprogrammed by the user,
the penetrator could no longer send an endless stream of messages
onto the network. The denial of service problem could be
lessened in that respect.

The key factor in this solution would be the fact that the
user could NOT reprogram the trusted front end to subvert its
security features. This method, alone or in combination with
some of the others previously mentioned, is probably the best
hardware/software solution to the problem of LAN security
currently under consideration. It is, however, one of the most
expensive, since each host on the network would require a
complete (hardware and software) front end device, and these
would not be cheap to develop in such a manner that they would be
considered to be trusted.

77

Current Best Strategies

The best security strategies currently in use are
administrative, physical, and "common sense" strategies. These
include letting only "trusted" users have access to the network,
keeping disks locked up when not in use and out of the machine
when not necessary, and paying close attention to the
classification and compartmentation of messages sent and received
over the net. Until one or a combination of the above solutions
is fully implemented, these strategies will continue to be the
best available.

78

The Euclid Family and its Relation to Secure Systems

Glenn H. MacEwen

David T. Barnard

Andyne Computing Limited

Kingston, Ontario

and

Department of Computing and Information Science

Queen's University, Kingston, Ontario

This paper discusses the evolution of, and the technical differences between, the
various versions of the Eudid programming language that have appeared since the original
publication of a language designed for verfiabl.e systems programs. In addition, some
current work directed at transporting verified Euclid programs into Ada systems is
described. The motivation for this transporting work is to provide trusted software within
Ada systems.

The language Euclid was first developed for use in secure operating systems. How
ever, it never was used for that purpose and since its original introduction it has evolved
through several variants. As Euclid was evolving, the Ada language has appeared as a
military standard raising the question as to the relation of secure Euclid systems to Ada
environments.

This paper reviews the current variants of Euclid very briefly and then looks at the
question of the Euclid/ Ada relationship. The approach of transporting Euclid programs
into Ada environments is discussed in the context of two experimental projects. Finally,
some observations regarding the requirements for concurrency support in Euclid and its
associated verifiers are made.

79

Ewlill

The original definition of Euclid was published in 1977 [Lam77, Lon78, Pop77). That
report states that the language is intended for the expression of system programs that are
to be verified:

"By a ftri/Ulbk program we mean one written in such a way that existing formal
techniques for proving certain properties of programs can be readily applied; the
proofs might be either manual or automatic, and we believe that similar considera
tions apply in both cases. By qna. we mean that the programs of interest are
part of the basic software of the machine on which they run; such a program
might be an operating system kernel, the core of a data base management system,
or a compiler."

The language explicitly is not a general-purpose one, and does not address the prob
lems of constructing very large programs.

Euclid is based on Pascal. The main changes are restrictions, thus allowing stronger
statements about the properties of a program to be made based on compiler analysis. The
main differences from Pascal include:

There is explicit control of identifier visibility (via import and export specifications
in programs) rather than implicit inheritance of containing scope.

Aliasing (referring to the same or overlapping variables by two identifiers in the
same scope) is prohibited.

' Pointer variables are constrained to refer to an object in a specified collection.

Dynamic allocation is under program control, but is constrained.

A type can have a formal parameter allowing arrays with bounds fixed at creation,
and type-safe variant records.

Modules are an encapsulation mechanism for variables, types, and routines.

The concept of a constant is extended to include a variable whose value cannot
change in the present scope.

A module can be a generator, producing values to be used in a for statement.

There are explicit mechanisms to access the underlying machine, and to override
type checking.

Assertions can be inserted in programs, and code to check them can be generated.

Some features present in Pascal are omitted, including input and output, real
numbers, multi-dimensional arrays, (arrays of arrays are permitted) labels and gotos, and
functions and procedures as parameters.

Other considerations in the design were the need to run programs on several
machines (thus several code generators would be required), the need for efficiency of gen
erated code without excessive compilation cost, and the need to keep run-time support to
a minimum so that verification could be done.

80

In addition, the language design was intended to be based on current knowledge of
programming languages and compilers, and thus not include features not understood or
difficult to implement. This, as later developments showed, was not achieved. In particu
lar, the first completed implementation (see the following section) uncovered several prob
lems. A revised language definition, call Full Euclid (FE), was published in 1981 (Lam81].

Torolllo Eru:lill

The first successful implementation of Euclid was a joint effort of I.P. Sharp Associ
ates and the University of Toronto [Hol78a, Hol80, Wor81a, Wor81b, Pas80]. The work to
produce this compiler resulted in a version of the language named Toronto Euclid (TE),
and pointed out a number of problems with the original definition.

TE is best characterized as a subset of FE, although there are a number of minor
extensions or modifications to the language. For example, machine code routines are Unix
assembly code (for the PDP-11); this feature is not part of FE. There are some restric
tions such as requiring expressions in assertions to be enclosed in parentheses, and ignor
ing case in the spelling of identifiers.

Some features of the FE language are not included in TE. For example, finalization
routines for modules are not allowed, there is no inline expansion of routines, types
returned by functions must be scalar or set types, there are no parameterized types, there
is no range checking on assignment, separate compilation is not supported, and variant
records are not allowed. Most of these are relatively minor as far as security is concerned.

A relatively successful research project to translate TE programs into Ada was car
ried out between 1982 and 1983 by Andyne Computing (Lee84). The rationale for this
investigation is that critical software, such as trusted secure components, can be verified in
Euclid and then transported to an Ada environment in which they are required to run due
to language standardization. The important issue of the security of the Ada run-time sys
tem was not addressed. This TEJAda translator, built by modifying the TE compiler, is
able to translate a significant subset of TE. We call this subset Kingston Euclid (KE).

Although an axiomatization for Euclid was produced [Lon78] (see also [Cra82b)), no
work on support for verification of TE programs has been done.

Concurrent Euclid (CE), was developed by the team at the Computer Systems
Research Group at the University of Toronto that had been involved with the Toronto
Euclid project [Cor81, Hol83). CE can best be explained as a subset of FE, together with
a set of extensions based on monitors to suppon concurrency.

The sequential subset is very similar to the TE variant of the language. One area of
difference is in passing parameters to routines. CE allows the upper bound of an array
index type to be the word JII'Ttlllld#!r thus signifying that any array with the appropriate
element type and an index type with the appropriate lower bound can be passed. CE also
allows the type of a parameter to be ..Z.S._, thus signifying that any type can be passed,
and that the object will be viewed as an array of StorageUnits.

The concurrency features of CE are based .on monitors as described by C.A.R. Hoare
[Hoa74). Each .otlllk can contain any number of processes. A ,.OCI!U is declared like a
parameterless procedure, and begins execution following the initialization of the module.
Processes can alter global variables. The approved way for processes to communicate is
via monitors; a .,;u,. is a special kind of module. A monitor exports procedures and
functions, which are called entries. The implementation guarantees that at most one pro
cess is executing inside a monitor--i.e., is executing one of the monitor's entries--at any

81

time. Thus, a process is guaranteed exclusive access to the monitor's variables when in an
entry, since a monitor cannot export variables. A process attempting to enter the monitor
when another process is already executing inside the monitor, is blocked.

Variables of type t:GWiititJa are provided, along with the operations 1Nit and_..., so
that processes can explicitly block themselves until some logical condition obtains, and can
send notification to other processes that the condition on which they are waiting has been
established.

There is also a flay statement so that a simulated time can be advanced. Programs
run in zero elapsed simulated time. CE also provides support for separate compilations
(via the 6UTIII6l attribute of a unit) and linking of separately compiled units.

A project is currently underway at Andyne Computing to provide a mechanism to
move compiled CE programs into an Ada run-time environment. This provides an alterna
tive to the translation method used in the TE/Ada project.

We are currently able to produce, using a modified CE compiler, a load module that
can be linked and run with Ada programs. (The system in use in an Intellimac 68000
based machine running Telesoft Ada under Unix.) The language interface that we expect
to support is a CE module/Ada package with exported procedures and functions having
only primitive typed parameters: integers, booleans, characters, and strings. We also
expect, in follow-on work, to provide internal concurrency by building on the Ada run
time kernel. That is, the CE module will probably be a monitor providing mutual exclu
sion for its operations. We say more about this issue of concurrency later.

Some preliminary work has been done toward an axiomatization of CE and the con
struction of a verification condition generator (VCG) [Mat82). However, concurrency was
not addressed in this work and it has not been continued beyond the initial prototype. We
are not aware of any effort to pursue support for verification of CE programs.

During the development of CE, I.P. Sharp Associates proceeded in a different direc
tion that resulted in Ottawa Euclid (OE), which can be described as FE with extensions to
support verification [Cro81,Cro82,Cra83a). In particular, an~.,_ mechanism for
specification and a dairy facility were added [Cra83b].

The unit of specification in OE is the Euclid module, represented by an external
module declaration containing routine specifications, invariant specification assertions, and
variable and constant declarations. Functions and constants for proof purposes only can
also be declared.

The theory construct provides linguistic support for the encapsulation of reusable
definitions of mathematical objects and their properties. The need for theories follows
from the necessity to provide, in a program verification, axioms, lemmas, and theorems
about the domain of computation of the program under scrutiny. For example, a program
manipulating tree data structures requires definitions of the meaning of tree operations.
Since tree manipulations are common in many programs it is clearly desirable to define the
required tree properties once and for all in a way that is useful in many different pro
grams. OE theories provide a way to define such domain specific knowledge so that it is
reusable across many programs.

A named theory can be included in a program and referenced in a similar way as is a
Euclid module. Details of the language of external modules and theories are described in
[Cra83b).

A concurrency mechanism was not considered for inclusion among the OE exten
sions for two reasons. First, it was judged that the task of formalizing Euclid satisfactorily
was sufficiently difficult that to attempt to incorporate concurrency would significantly

82

reduce the chances of success. Second, it was not clear what mechanism would be
appropriate and that there was a good chance that the mechanism chosen could very well
end up simply interfering with the specialized kinds of software that were envisioned as
typical for OE applications.

The OE compiler, which is based on the TE compiler structure except for the
replacement of a more machine-independent code generator [Lan82], is expected to be
completed during 1984.

Although the extensions from FE to OE are intended for verification, it is not
intended that full OE be supported with verification tools. Consequently, I.P .Sharp is
currently completing the definition of a set theoretic model to express formally the seman
tics of a subset of OE which will be supported.

Verifitlble OttGWG EKlid

I.P Sharp is currently finalizing the definition of Verifiable Ottawa Euclid (VOE), a
subset of OE suitable for verification [Cra83c,Cra82b]. A set theoretic mathematical for
malism based in part on the notion of state relations is being developed by I.P. Sharp to
define the semantics of VOE. A verification logic and a VCG will be produced for the
analysis of OE programs. It then will be possible to prove the soundness of the logic and
the VCG with respect to the semantic definition of VOE.

VOE is to be a part of the Euclid-based Verification and Evaluation System (EVES)
which will provide, in addition to VOE, a theorem prover, and a variety of programming
support tools [Bon82,Cra84). The VOE subset is expected to be completely defined by the
fall of 1984; the statement semantics are described in [Cra83c) but expression~ and, partic
ularly, data types have not yet been finalized.

An initial application of EVES is to be the formal verification of the LSI Guard
[Cra82a] which has been implemented in TE and specified in OE. The implementation
incorporates a simple run-time kernel with primitives for voluntary context switching of
processes.

The two Euclid/ Ada transporter projects have been based on different variants of
Euclid, TE and CE. Both projects have been successful in the sense that in each we have
accomplished what we set out to do with less difficulty than we were prepared for. It is
now clear that if this approach is to be useful and to be carried further we must consider
what Euclid is appropriate for further development. To do this, we must identify poten
tial target applications and carefully consider the requirements for them. This will accom
plish two things: (a) validate the need for such a mechanism, (b) help in making the
language decision based on these requirements.

After considering several potential circumstances where a verified Euclid module
could be useful, it has been concluded that most useful examples fall squarely into the
reference monitor abstraction. Any application which involves secure access to shared
resources falls into this category. Isolation of subjects (processes) and concurrent access
to resources are ,inherent.

Another potentially useful, and simpler, model is the verified procedure. This is sim
ply a sequential procedure, linked with an application program, which performs some criti
cal computation such as the authentication of a password or a critical user command. This
seems much less useful, however, since the correctness of the calling Ada code is of equal
importance to the procedure.

83

Figure 1 illustrates a plausible structure for the design of a reference monitor written
in Euclid but running in an Ada environment.

controlled
access to
resources

subjects

CE reference

...,..___m_o_n_i-to_r_-1

Ada run-time
kernel

}

Shared Euclid code

Figure 1 A Euclid Reference Monitor

A number of Ada tasks are shown running on the Ada kernel. Each task has been
linked with a Euclid reference monitor (RM). For efficiency, it is assumed that only one
copy of the RM is used so that is implied in the diagram. Conceptually, however, each
task has its own copy of the RM. The procedure call interface is used because that is
what is provided by the CE/Ada system. This structure has some inherent assumptions
that are significant.

Assumption 1: An Ada program and the RM can be linked in a secure way.

This assumption is necessary to ensure the isolation of the tasks from each other and
from the resources. The only interaction of a task with its environment must be via RM
or the Ada kernel.

Assumption 2: The Ada run-time kernel is secure.

This assumption is necessary to ensure that the RM has exclusive control over and
access to the resources. It is also necessary for the isolation of tasks.

Assumption 3: RM has a secure way to authenticate the identity of calling subjects.

For example, certain of the resources may be subject terminals which produce an
authentication (password) message and are then associated with a task.

All of these assumptions require more detailed analysis to define precisely what
"secure" means in each case. Our intent here is not to do that, but to identify the implica
tions of this structure on the Euclid/ Ada transporter mechanisms.

The major implication is that such an RM is a shared concurrent program. Conse
quently, a minimum requirement is for some form of mutual exclusion. Since the RM is
to be verified then this, in time, places requirements on the verification system.

84

111

.~

-·~·~~·~~··

:~::~{~\~~~:5

The most direct approach is to use CE monitors. The CE/Ada system would need
only to use a semaphore-like facility from the Ada kernel to support the monitor con
currency mechanism. The verification system must, of course, be capable of handling
monitors.

The final conclusion, then, is that most useful applications will require concurrency
and so this should be addressed in the design of the Euclid/ Ada system as well as in the
design of a suitable Euclid verification system.

Acknowledgement

Dan Craig en of I.P. Sharp read a draft of this paper and made many helpful sugges
tions and clarifications.

[Bon82)

Bonyun, D., et al.

A Blueprint for a Verification and Evaluation Environment based upon Euclid

IPSA Technical Report FR-5017-82-1, 1982.

[Cor81]

Cordy, J.R., Holt, R.C.

Specification of Concurrent Euclid

Computer Systems Research Group

University of Toronto

Technical Report CSRG-133, August, 1981

[Cra82a)

Craigen, D.

A Formal Specification of the LSI Guard

IPSA Technical Report TR-5031-82-2, August 1982.

[Cra82b)

Craigen, D.

The Euclid Proof Rules: A Critique

IPSA Technical Report FR-5091-82-1, September 1982.

[Cra83a]

Craigen, D.

Towards a Formal Semantics for Ottawa Euclid

IPSA Technical Report FR-5140-83-1, August 1983.

[Cra83b)

Craigen, D.

The Theory Construct in Ottawa Euclid

IPSA Technical Report FR-5146-83-1, September 1983.

[Cra83c)

Craigen, D., Saaltink, M.

A Formal Semantics of VOE: Part 2

IPSA Technical Report FR-5172-83-1, November 1983.

[Cra84)

Craigen, D.

Ottawa Euclid and EVES: A Status Report

IEEE Symposium on Security and Privacy

Oakland, Ca, April, 1984.

85

[Cro81)

Crowe, D. R.

Ottawa Euclid language specification

IPSA Technical Report TR-5613-81-7, November, 1981.

[Cro82)

Crowe, D.

Ottawa Euclid Reference Manual

IPSA Technical Report TR-5163-81-7, December 1982.

[Hoa74)

Hoare, C.A.R.

Monitors: an operating system structuring concept

CACM 17, 10(0ct 74), 549-557.

[Hol78a)

Holt, R., et al

The Euclid Language: A Progress Report

Proceedings of ACM National Conference, December 1978.

[Hol80)

Holt, R.C., et al

The Toronto Euclid Compiler Project Workbook

IPSA Technical Report, March 1980.

[Hol83)

Holt, R.C.

Concurrent Euclid, The Unix System,.and Tunis

Addison-Wesley, 1983.

[Lam77]

Lampson, B.W., et al

Report on the Programming Language Euclid

ACM SIGPLAN Notices 12, 1(Feb 77).

[Lam81)

Lampson, B.W., et al

Report on the Programming Language Euclid

XEROX Pare Technical Report, October 1981.

(Lan82)

Landwehr, R., et al

Experience with an Automatic Code Generator Generator

SIGPLAN Symposium on Compiler Construction

June, 1982.

(Lee84)

Leeson, D.A., Barnard, D.T., MacEwen, G.H.

Issues and Experience in Building a Euclid-to-Ada Translator

in preparation.

(Lon78]

London, R., et al

Proof Rules for the Programming Language Euclid

Acta Informatica 10, 1978.

[Pas80)

Pase, B.

Toronto Euclid Language Specification

IPSA Technical Report TR-3819-80-2, January 1980.

86

[Popn]

Popek, OJ., Horning, JJ., Lampson, B.W., Mitchell, J.G., London, R.L.

Notes on the design of Euclid

Proceedings of ACM Conference on Language Design for Reliable Software

SIGPLAN Notices 12,3 (March 77), 11-18.

(Wor81a]

Wortman, D., et al

Euclid- A Language for Compiling Quality Software

National Computer Conference, Chicago, May 1981.

(Wor81b]

Wortman, D., Cordy, J.

Early Experiences with Euclid

Sth International Conference on Software Engineering, March 1981.

87

A COMPARISON OF FORMAL SECURITY POLICY MODELS

J.T. Haigh

Martin Marietta Aerospace

Denver, Colorado 80201

Abstract

This paper complements the work of Taylor presented at the 1984 IEEE Symposium
on Security and Privacy. It presents a formal analysis of the similarities
and differences among three models and policies for multi-level security
(MLS), the Bell and LaPadula Model, the SRI model developed by Feiertag,
Levitt, and Robinson, and the non-interference model developed by Goguen and
Meseguer•. The major difficulty encountered is in translating one model and
policy into the language of the model with which it is to be compared. The
main result is that the Bell and LaPadula policy is the most restrictive of
the three, while the Goguen and Meseguer policy is the least restrictive.
Under certain conditions the three policies are equivalent.

FOREWORD

This report was prepared by Martin Marietta Denver Aerospace. The effort was
conducted in the Computer System Engineering Section of Systems Engineering,
Space and Electronic Systems Division under Project Authorization D-72R of
calendar year 1983.

88

I. Introduction

In the DoD Computer Security Center's "Trusted Computer System Evaluation

Criteria" the requirements for certification at the B2 or higher level include

the requirement that a formal security policy for the system be maintained and

arguments be given which show the top level specification for the system is

compatible with the formal security policy. These arguments comprise what is

known as the verification of the top level specification with respect to the

security policy. In this paper three different formal models and policies for

multi-level security (MLS), based on informal natural language security

policies which differ in their control objectives, are examined. The models

and policies are those due to Bell and LaPadula [1], Feiertag, Levitt, and

Robinson [4], and Goguen and Meseguer [5] respectively. A natural question.to

ask is: Are these policies equivalent? That is are they really the same

policy in disguise? If they are not, what are the differences among them? If

they are, what are the desirable and undesirable features of each of the

formulations? The first published study of these questions is that of Taylor

[15]. The main result of this paper is that the three policies are, in

general, different. The first policy is most restrictive and the third is

least restrictive. However there are circumstances in which the policies are

equivalent.

Goguen and Meseguer distinguish between a formal security policy and a model

for the system to which the policy should apply. This distinction is

maintained here. The security policy is formally described in terms of the

elements of the model, and normally an attempt is made to prove the model

satisfies the policy. One of the difficulties in comparing the security

policies is that each is formulated in terms of a different model of the

system. It is necessary to translate a policy formulated in terms of one

model into a formulation in terms of another model before the policies can be

compared. In an abstract setting the interpretation is somewhat subjective

since there is no way to prove an interpretation is correct except in the

context of a particular system, when the mappings from the system to each

model can be compared. In a very nice series of draft reports, Rushby [10,

11, 12] develops a set of assumptions for the Bell and LaPadula policy which

he uses to show it implies an instantiation of the Goguen and Meseguer

policy. Similiar assumptions are made, either implicitly or explicitly, in

this paper. These will be indicated in the text.

89

I

http:question.to

EaCh of the models refers to a lattice, K, of security levels. In order to

orient the reader, each security level will be thought of as a DOD

classification level, unclassified to top secret, along with a set of

categories of information. '!he security level of a user, u, will be denoted

by K{u). It indicates u has some sort of rights to information at certain

classification levels, contained in the set of categories of K{u). However it

is important to remerrber some other lattice could be used. In particular the

lattice could be an integrity level lattice as described by Biba [2] or a more

compr~1ensive protection level lattice incorporating both security and

integrity levels. 'Ihe paper by Grohn [7] develops the notion of protection

level very nicely. The formal policies and the results discussed in this

report apply to any lattice of "security" levels. Each of the policies and

the differences among them will be described informally in the l:ody of this

report. 'Ihe apf-endix contains formal descriptions of the models as well as

firoofs of the relationships among them. w"'hile the proofs themselves are quite

simple, the descriptions of the models do require exter1sive notation.

II • The Bell-LaPadula Policy

The Bell and LaPadula policy [1] is based on the notion of access control. It

is essentially a formalization of the OOD r-aper and file cabinet policy

adapted to an autorr.ated environment. 'I'he primitive elements of the model

are:

1) 	 Subjects: Lhe active entities of the system, including users and

processes acting on ~alf of users:

2) 	 Objects: the passive entities of the systems, the high-level data

structures in which information is stored;

3) 	 Observe, modify : the modes of access which sul::; jects may have to objects,

denoted o and~ respectively; and

4) 	 K: the lattice of security levels for the subjects and objects.

90

These elements and relations on them are used to define the state of the

system. For this report the crucial component of the state is the current

access list which consists of the set of all triples of the form (subject,

access mode, object) such that the subject can currently access the object in

the given mode. The multi-level security policy, denoted BL, consists of two

properties of the current access list, the simple security and * (pronounced

star) properties, as well as three properties which essentially keep the

security levels of objects constant from their creation to their deletion and

the levels independent from one creation to the next. For this paper BL is:

Definition: A state is multi-level secure if for each triple

(subject, ~' object) in the current access list, the following properties are

satisfied.

ss) 	 The level of subject is at least the level of object

whenever x = o.

*) 	 The level of object is at least the level of subject

whenever x = m.

T) 	 During each incarnation of a subject or object, its level remains

constant.

The conditions expressed by (ss) and (*) are illustrated in Figure 1. If sub

is any subject, then 0 b and M b are the cones of objects which are su su
respectively observable and modifiable by sub. Since the set K is only

partially ordered, there will presumably be objects outside both cones.

~f ; ~objects modifiable by sub j
SUD

0 . {objec=s observable by su~]
sub

sub

0
sub

FIGURE 1

91

Condition (T) is a slightly stronger version of the Tranquility Principle of

BL. In the absence of (T), certain covert storage channels described by

Rushby [10] are permitted by the model. Essentially (T) implies the cones

Msub and Osub do not change unless sub or an object in one of the cones is

created or deleted.

The model also includes a set of rules for creating/deleting objects,

granting/rescinding access rights of subjects to objects, etc. This set of

rules constitutes the inputs for a finite state machine. The output and next

state (state transition) functions are juxtaposed to form a results function.

A system is said to be multi-level secure if any state which can be reached

from a secure initial state is also secure. The theorem asserting a system is

multi-level secure is known as the Basic Security Theorem [1]. It is proved

by induction on the length of the string of operations performed. The mapping

of an actual computer system to the elements of BL is fairly straight

forward. Perhaps for this reason variations of it have been used in the

design of several systems including MITRE's prototype [3], Ford's KSOS [9],

SDC's KVM/370 [6], and Honeywell's SCOMP [3], the only one being developed as

a commercial product.

III. The Feiertag-Levitt-Robinson Policy

The Bell-LaPadula policy has been criticized as too inflexible. Also, since

it is an access control policy, it is not as amenable to automated

verification techniques or to checks for covert channels as are flow control

policies. The policy developed by Feiertag, Levitt, and Robinson, [4],

denoted FLR, is a more flexible policy based on flow control. It was

formulated to be used with SRI, International's Hierarchical Development

Method (HDM) [8] for the design and verification of software. The components

of the finite state machine are more immediate in FLR than in BL. These are:

1) 	 The set of state variables. These correspond to the objects of BL. The

state of the system consists of a value for each of the state variables.

2) 	 The set of function references, that is, a function along with a set of

parameter references for the function. These are the inputs to the finite

state machine. They include the operations of observe and modify, but

also include state changing rules analagous to those to those in the model

of Part II.

92

I

3) 	 The set of outputs to users which result frorrt function references.

4) 	 The next state and output functions which map a state and function

reference pair to a state and output respectively. And

5) 	 The set of security levels for state variables and function references.

If each function reference is assumed to have a subject which invokes the

function, then the level of the function reference can be equated with the

level of the subject.

The formal definition of multi-level security involves quite a bit of

notation, however an English language version of the policy is stated here.

Definition: 	 A system is multi-level secure if the following statements are

true:

a) 	 The results (output) of each function reference can be inferred from

values of state variables at levels less than or equal to the level of the

function reference.

b) 	 Aftei each function reference the values of all the state variables at a

given level may be inferred from the values before the function reference

of state variables at levels less than or equal to the given level.

c) 	 Each function reference can only affect the values of state variables at

levels at or above the level of the function reference.

It is fairly clear property (a) is the analog of (ss) from BL. Both (b) and

(c) incorporate restrictions akin to (*). In fact (b) is the analog of an

early version (*) [lj.

93

The following example of the differences between BL and FLR is given in

reference 4. Suppose a user (subject) at the confidential level, wished to

modify the value of state variable (object) at the top secret level using the

value of a state variable at the secret level. (See Figure 2.) This would

violate (ss) of BL since the subject would have to observe the contents of the

secret level object. On the other hand this would not violate any of the

s
/!

I

TS

BL.SS prohibi~s ~

m f is allowed by FLR

I'
I' ' ' 0- '
v ~'

FIGURE 2

properties of FLR, if there were a function which would allow a subject to use

one object to modify another object without observing the first object. In

FLR the set of objects which may be used to modify another object is

independent of the function performing the modification. This fact is

illustrated in Figure 3. The cones of objects observable and modifiable by

sub remain the same, but if obj is an object in M b' the cone, M b., of su 0 J
objects which can be used to modify obj may be larger than 0 b" This su
allows an upward flow of information from which no compromise is possible,

since the subject initiating the flow is at a level less than or equal to the

levels of any objects modified. From this discussion it is clear that in

general the two policies, BL and FLR, are not equivalent. It is true that BL

implies FLR. That is, any system which satisfies BL automatically satisfies

FLR. This assertion is proved in the appendix •

•

94

Rushby states the following Object Monitor Axiom [10] which he later

formalizes in the language of Goguen and Meseguer [11].

Definition: A system satisfies the Object Monitor Axiom (OMA) if:

a) 	 The output of an operation may only depend on the values of objects to

which the user who executes the operation has observation rights.

b) 	 The new values assigned to objects as a result of executing an operation

may only depend on the values of objects to which the user who executes

the operation has observation rights.

c) 	 An operation may only change the values of objects to which the user who

executes the operation has modification rights.

He uses this axiom to show BL implies the Goguen and Meseguer version of

MLS. In this paper a similiar set of assumptions are implicit in the proof

that BL implies FLR. In fact, the similarity between OMA and FLR along with

Figure 1, which is a consequence of (ss) and (*), constitutes the proof of the

implication.

M b. {objects that can be used to modify obj}
0 J

I

I ' sub

I 	 "' I

I
 " ' \.I

'\I
I ' '\I

........,....-.-.-----./

H0 b"J

FIGURE 3

95

This policy, FLR, defines multi-level security for the system rather than for

a state of the system. This means an analog of the. Ba~ic Security Theorem is

contained in the statement of the security policy. Hence, one would expect a

proof that a model satisfies FLR to be less obvious than a similar proof that

a model satisfies BL. On the other hand, it is not necessary to state and

prove a separate Basic Security Theorem. The SCOHP, kernel was originally
' '

verified using a variation of FLR [3].

IV. The Goguen-Meseguer Policy

As motivation for the third policy, it is useful to contrast the situation

illustrated by Figure 2 with the one illustrated by Figure 4, in which a user

at the top secret level uses an object at the confidential level to modify an

object at the secret level. This is prohibited by both the previous

policies. In BL (*) prohibits,the user from modifying a lower level object.

In FLR (c) prohibits any function reference which would modify a state

variable at a level which is not greater than or equal to level of the subject

of the function reference. In both examples the overt flow of information is

upward, which one might expect to be permissible. However in the second

example the top secret user could signal information to a secret user with o

access to the secret object by the manner in which the information in the

confidential level object is used to modify the secret level object. Stated

another way the difficulty with the second example is that a high-level user

could potentially interfere with a lo:w-level user. This presents the

potential for a covert channel running from the high-level to the low-level.

+ BL.* .prohibits~/;;:/ TS

m I
/ - I 0 'FLR. c prohibits f

Is
I

~ I
c

FIGURE 4

96

If the response of the syste.n for each user were only dependent on the

activities of users at or below the level of that user, then no information

could flow from.a high to a low-level either overtly or covertly. ~oreover

the mechanisms enforcing security would be essentially transparent to the user.

The policy of Gcguen ahd ~leseguer [5] is based on this notion of

non-inter·ference. Its notation and formalization are simpler than those of

F'LR, and its statement is 100re elegant than either of the previous policies.

The elements of the model are&

1) 	 The set of possible states of the system.

2) 	 'lhe set of users of the system.

3) 	 The set of commands which the users may issue. The set of function

references in FLR corresponds to the cartesian product of the set of users

with the set of commands.

4) 	 ~he set of outputs to the users.

5) 	 ~he next state and output functions.

6) 	 ~he set of security levels for users.

Definition: 	 User 1 is said to be non-interfering with user 2 if for any two

strings of user-command pairs, which are identicial except for

pairs involving user 1, the outputs to user 2 are identicial.

Definition: 	 '!he system with a given initial. state is multi-level secure, if

user 1 is non~interfeting with user 2, unless the level of user

1 is less than or equal to the level of user 2.

97

This policy is very similar to the general MLS policy formulated in reference

4. Any system which satisfies FLR automatically satisfies GM. The proof is

contained in the appendix. Since no counterexample has been produced, it is

possible GM is equivalent to FLR. It would be nice to have either a proof of

their equivalence or a description of the differences between them. With GM

as with FLR, an analog of the Basic Security Theorem is inherent in the

definition of the policy. Since the definition of non-interfering involves

arbitrary finite strings of user-command pairs, one approach to proving one

user is non-interfering with another is to use induction on the length of the

string. This means the mechanics of the Basic Security Theorem have not

disappeared, they have simply been moved. Rushby [12] has developed a series

of unwinding theorems which provide the inductive tools necessary to verify a

model satisfies GM.

V. Conclusions

Three formal policies for multi-level security of a computer system have been

examined and compared. Each policy is stated as a definition in terms of a

finite state machine model of the system. The statements of the policies

differ because the components of the machine are defined differently for each

model and also because the control objectives differ for the three policies.

BL is based on access control. It is the most specific and appears to be

the easiest policy to use in the design of a system. FLR controls information

flows. It allows for greater flexibility in the manipulation of data and

lends itself nicely to verification techniques utilizing automatic theorem

provers. This is not surprising since it was developed for use with SRI's

HDM. GM is based on the control of interference among users. It is the most

general and most elegant of the three. It is relatively new, 1982, and has

not been used for the design or verification of any system. It does provide a

nice language for high-level discussions of formal security policies. It is

possible to interpret the components of one model in terms of the components

of another model. By doing this one can see the policies are not, in general,

equivalent. Rather any system which satisfies BL also satisfies the other

policies, and any system which satisfies any one of the policies also

satisfies GM. All three policies appear to enforce the DOD mandatory security

policy for the control of information accessible to users of the system.

98

Although the fOlicies are generally distinct, there are conditions under which

they are equivalent. These conditions reflect assumptions made on the

behavior of the system or on the level of use being modeled. One such

assumption is that there is no way for a process to use one piece of

information to modify another piece of information without the user on whose

behalf the process is acting acquiring the capability to observe something

about the first piece of information. If the assumption is true, the three

f;Olicies are equivalent. Proofs of this equivalence as well as of the other

implications are contained in the appendix.

Ill

References:

1. 	 Bell, D.E.. and L.J. LaPadula, "Secure Computer Systems:

Mathematical Foundations and .t'roel", MITRE Cbrp, Bedford, 1-:IA (September,

1974).

2. 	 Biba, K.J., "Integrity Considerations for Secure Corr.puter Systems", MITRE '

Oorp., Bedford, ~(April, 1977).

3. 	 Bonneau, C.H., "Secure Communications Processor Kernal Software:

Detailed Specification, Part I, Rev. D.", Honeywell, St. Petersburg, l''L

(1980).

4. 	 Feiertag, R.J ., K. N. Levitt, and L. Robinson, "Proving Nulti-level

Security of a System Design", in Proceedings, Sixth ACN Symposium on

Operating E>ystems Principles, pp. 57-65 (1977).

5. 	 Goguen, J .A. and J. Meseguer, "Security Policies and Security l'bdels", in

Proceeaings, 1982 IEF:F. SymfOsium on Security and Privacy, pp. 11-20

(Af;ril, 1982).

6. 	 Gold, B.D. et.al., "A Security Retrofit of V't-'1/370", in Proceedings of the

AFIPS National Oom_r,uter Conference, Vol. 46, pp. 335-342, Arlington, VA,

AFIPS Press (1979).

7. 	 Grohn, N.J., "A t"Ddel of a Protected Data .t'anagement System" , I .P. Sharp

Associates Ltd., Ottawa, Canada (June, 1976).

8. 	 Levitt, K., L. Robinson, and B. Silverberg, "The HDM Handl:x:XJk", Computer

Science LaOOrtory SRI International, Menlo Park, C'a (1979)

9. 	 Mccauley, E .J. and P .J. Drongowski, "KSOS : The Design of a Secure

Operating System", in Proceedings of the AFIPS National Cbmputer

Conference, Vol. 48, pp. 345-353, Arlington, VA, AFIPS Press (1979).

100

References: (continued)

10. 	 Rushby, J .M., "The Bell and LaPadula Security Model", Draft report,

Computer Science Labo_ratory, SRI International, Nenlo Park, CA (1984).

ll. 	 Rushby, J.M., "Comparison Between the Bell and LaPadula and the SRI

Security Models", Draft report, Computer Science Laboratory, SRI

International, Menlo Park, CA (1984).

12. 	 Rushby, J.M., "The SRI Security Model", Draft report, Computer Science

Laboratory, SRI International, Menlo Park, CA (1984).

13. 	 Schiller, W. L., "The Design and Specification of a Security Kernal for

the PDP ll/45", MITRE Corp., Bedford, MA (March, 1975).

14. 	 Silverman, J.M., "Proving on Operating System Kernal Secure", Honeywell,

Minneapolis, MN (April, 1981).

15. 	 Taylor, Tad, "Comparison Paper Between the Bell and LaPadula Model and

the SRI Model", in Proceedings 1984 IEEE Symposium EE_ Security and

Privacy, PP 195-203, (May, 1984).

101

APPENDIX

F'ormal Descriptions of the Folicies and Prcofs of the Im..r...lications

'Ihroughout this appendix K will refer both to tbe set of security levels of

the security level lattice and to the function associating a security level

with each of the appropriate entities in the model of the system. 'lhus in EL

function, K bas as its domain the union of the sets of subjects and objects of

the system. 'lhe range of function K is always the set K of security levels.

I. 	 Description of BL

The 	primitive elements of the system are:

SUB = the set of subjects.

oBJ· = the set of objects.

A = set of access modes. 'lhese modes are o and m.

These 	are used to define the state of the machine, which consists of

b = the sutset of (sub, x, obj) in SUB x A x OBJ such that sub has x

access to obj.

K = the security level function, and other components irrelevant

to this discussion.

102

Definition 1. 	 A state is secure if both of the following are true.

ss) Whenever 	 (sub, o, obj) is in b, K(sut) ?: K(obj).

*) Whenever (sub, m, obj) is in b, K(sub) S K(cbj).

The inputs to tl1e machine are a set of requests to alter the state of the

system including the creation and deletion of objects. The resp:mse of the

system to eadh of these requests is a next state and a message to the subject,

which made the request, Lased on the security level of the subject and the

current state of the system. One state can be reached from another if there

is a string of requests which transform the first state into the second via

applications of the next state function with successive elemer..ts of the

request string as inputs.

Definition 2. 	 A system is secure if every state which can be reached from a

secure initial state is also secure.

The Basic Security Theorem states that if each operation transforms a secure

state into a secure state, then the system is secure.

II. Description of FLR

The 	elements of the model are

V = the set of 	state variables. These correspond to the objects of BL.

S = 	the set of states. An individual state, s in S, is composed of one

value for each state variable, v in V. The value is denoted v(s).

I = 	the set of function references. A function reference is a function

with a full set of parameter references. The set of function

references, includes the otserve and modify operations as well as the

state changing operations of the model in I.

103

0 = 	the set of outputs which result from the invocation of a function

reference to a particular state. 'Ihese correspond to what an

individual user sees after invoking a function.

N and N , the output and next state functions. 'Ihese map Sxi into 0 and r s
S respectively·. For economy of notation later

sf:= N (s,f).s

In order to state FLR several preliminary definitions are required.

Definition 1. If k is a security level in K, then for each state .s in S,

a) ~ = set of state variables at level k.

b) sL(k) = set of state variables at levels less than or equal to k.

c) sG(k) = set of state variables,at levels greater than or equal to k.

Definition 2. Given a security level k, define the following functions with

domain S:

a) Pk which maps each s in S to sk,

b) ~ which maps each s in S to sL(k), and

c
c) 	 E1. which maps each s in S to (sG(k)) •

Pk and Qk may be thought of as projections of S onto sets Sk and SL(k)

respectively, and ~ may be thought of as filtering SG(k) from S, where

~, Sr.(k), and SG(k) are defined in the obvious manner.

104

The 	FLR policy can now be stated.

Definition 3. A system is secure if each of the following is true.

a) 	 For each f in I and each k in K, there is a function, j, so that if s

is in .S, then

b) 	 For each f in I and each k in K, there is a function, j, so that if s

is in S, then

c) 	 For each f in I and each s in S,

In (a) and (c) the expression A j(B) should be interpreted as A can be

inferred from B.

III. Description of GM

The 	elements of the model are:

S the set of states.

U = the set of users.

C = the set of commands the users can issue. In terms of FLR, UxC I.

0 the set of outputs to the users

do = the next state function, which has domain SxUxC and assumes values

in S.

out = the output function, which has domain SxU and assumes values in

0. Out (s, u) is the value the user u sees when the system i.s

in state s.

105

Several definitions are useful in stating the ~licy.

Definition 1. (UxC)* is the set of finite strings

(u1 ,c) 0 •• ~(u ,C) where eadh (u.,C.) is in UxC.1 n n J J

Definition 2. Do* is defined on Sx(UxC) * inductively by

a) do*(s·,u,c) := do(s,u,c), and

L) do*(s,w (u,c)):= (do*(s,w),(u,c)) if w is in (UxC) *•

Definition 3. If s is the initial state of the system, w is in (UxC) * ,
0

and u is in U, then

a) [w]:= do*(s ,w), and

0

b) [w] := out(do*(s ,w),u).
u 0

Definition 4. If w = (u
1

,c)c· •• o(un,cn) is in (UxC)* and u is in U,
1

then Pu(w) := w1v •• own

where for i = l ••n,

wi = f (~ ,ci) if ui = u.

tiLe null string if u. = u.

1

106

II

Definition 5. User, u', is interfering with user, u, if

[w] = LP (w}]u u u

for some string w in (UxC)*.

With all this notation the security policy can be stated quite simply.

Definition 6. 	 'Ihe SYSTEM "WITH INITIAL STATE S IS SECURE if whenever u' is

interfering with u, K(u'}~ K(u}.

Notice with this definition the system may be secure for some initial states

but not for others. Also, as noted in the text, the mechanics of· the proof of

the Basic Security 'Ihereom are contained in the proof that if K(u'} K(u},

then u' is not interfering with u.

IV. BL Implies 	FLR

Theorem. If a system is secure in the sense of EL, then it is secure in the

sense of FLR.

Before proving the theorem, it is necessary to interpret the model for FLR in

terms of the model for BL.

i} Tt!e state variables of FLR correspond to the objects of BL.

ii) EaCh function reference, f, has a subject, sub, and K(f} = K(suc}.

iii} Nr(s,f} corresponds toano operation by the subject of f on a set

of state variables, vi for i = l ••n.

107

Proof:

a) If Nr(s,f) depends on vi for i = 1 ••n, then for i = 1 ••n

(sub, o, vi) is in b, where sub is the subject off,

and so (ss) implies

K (f) = K (sub);:: K (vi) •

'Iherefore

c) If v is a state variable and f is a function reference for which

v(sf) v(s), tl1en (sub, ~' v) is in b, where sub is the subject of f.

And (*)implies

K(f) = K(sut):S K(v).

Therefore if K(f)$ K(v) then v(sf) = v(s).

~hat is ~(f)(sf) =~(f) (f).

L) If k *K(f), then as a consEquence of (c)

If k K(f), v is in V with K(v} = k, arid v• in V is used by f to

modify v, then,

K(v') S K(f) 5 K(v} by (*).

108

Therefore reyardless of the relation between k and K(f),

It is interesting to notice (c) implies (L) if the following condition is

satisfied.

H) The expression "use v to modify v " means "observe v2 and modify
2 1

V II

1 0

~~is condition will be referred to later. Given this condition (H), (c) and

(*) are equivalent. There is an earlier formulation of (*) which is

equivalent to (L). The two (*) conditions are equivalent [1] if the security

level of a subject is taken to be its current security level, defined as:

K(sub) = max { K(obj)/ (sub~~,obj) is in b}

as Ol:Jf-OSed to its maximum security level. In this report suLjects are

assigned their current security levels. Thus if (H) is satisfied, (*), (b),

and (c) are equivalent, and in figure 3, H ib. = 0 ub whenever K(obj}
0 J s

K(suL).

V. FLR IIrf-lies G~.

Theorem. If a systerr, satisfies FLR, it also satisfies GM for every initial

state.

TI1e correspondence between models is fairly direct.

i) OUt(s,u) corresponds toN (s,f) for f = (u,c) for some c inC, ana
r

ii) Lc(s,u,c) corresponds to ~s(s,f) for f = (u,c) in UxC.

109

Proof:

Sqppose u' is interfering with u. That is, for some w in (UxC)* and some

function invocation f = (u,c) with c in C,

If v is a state variable which affects the output, then

v(sw) :f v(sPu, (w))

and by (a.)

K(v)~ K(f) =K(u).

Sow contains at least one function reference, g, with subject u', which

changes the value of v, hence by (c)

K(u') = K(g) S K(v).

'lhus

K(u').$ K(u).

VI. G1 Implies BL if (H)

Theorem. If (H) is satisfied the three policies are equivalent.

The interpretation here is fairly straight forward

1) 	If the value of obj affects the value of out(s,u), then

(u, ~· obj) is in b, and

110

2) If the value of obj is dhanged by do(s,u,c), then (u, m, obj) is in b.

It must also be assumed that if u creates obj, then

3) K(u) = K(ol:.j) and

4) (u,o, obj) is in b.

P1:oof:

ss) Suppose (sub1 , ~· obj) is in b, and obj was created by sub2 • Then

sub2 is interfering with sub1, so

*) 	 sur-r-ose (sub1 , m, obj) is in b and obj was created by sub2 • Then

(sub2 , o, obj) is in b, so sub1 s interfering sub2 Therefore

Thus if (h) is satisfied, BL irr\}?lies FLR implies Gh imr:-lies BL. So the

three policies are equivalent.

111

EXTENDING THE BELL & LAPADULA SECURITY MODEL

Dr. Ronald A. Gove

DoD Computer Security Center

In this paper we propose an extension of the Bell & LaPadula computer
security model (henceforth referred to as BLP) as presented in [B&LP1,2,3,4]. By ,
enlarging the state space of BLP we will show that the information flow concepts
(non-interference statements) of Feiertag, Goguen and Meseguer, and Rushby
([FeierJ , [GM] , and [Rush1]) can be included in the BLP model. Rushby' s formal
version of the Feiertag model is referred to as the SRI model and will form our
point of reference. We will assume throughout this paper that the BLP model is
secure. That is, the initial state is secure and the rules are in effect. In
order to simplify the presentation we will assume a fixed set of objects at fixed
security levels; i.e. the rule change_object_security_level will not be allowed,
and we will not, in this paper, concern ourselves with the addition or deletion of
objects. We also will not utilized the hierarchy concept of [B&LP4].

Recall the following terms from BLP:

S = set of subjects

0 = set of objects

V = set of states

L = partially ordered set of security levels (order relation <)

A = { .r_, ~' .§;, ~' Q J = set of attributes

F = { fs, fo, fc} = set of clearance functions

Recall that the elements of set A correspond to .r.=read only, ~=read/write,
a=append (write only), e=execute and c=control. The clearance functions are the
subject level fs:S-->L, -the object levels fo:O-->L and the current subject level
fc:S-->L. The BLP states are of the form v=(b,f,M) where b is the current access
set, f F, and M is the access matrix.

In order to formulate non-interference concepts it is necessary to enlarge
the BLP model by introducing the notion of the contents of an object. Let
"values" be an abstract set representing the contents of all objects in 0. The
contents of an object will be identified by means of functions mapping into
"values", e.g. h:0-->values. In order to emphasize the dependence of b, f, and M
on the state v we will use the following notation: If v=(b,f,M) then,

access[v] =b

current_subject_level[v] = f

matrix[v] = M
-.·.\

112

Note that, since our model will not allow the maximum level of subjects and
objects to change, we have assumed that f is just the current subject level
function: fc. Finally, we define a new state space for the extended BLP model,
BLP*:

Note: The 	 contents 'runction is state dependent; different states can havev4different contents. Following tne notation used above, v4 will usually be written
as contents[v].

The BLP model affects state transitions by means of request and rules of
operation. We will reinterpret these concepts through the concept of "commands"
in order to follow the Rushby formulation of the SRI model. The command set,C,
will contain two types of commands: the requests of BLP which act only on the
access portion of the states and the operations which act only on contents(v].
The way the commands act on the states is through the state transition function
next:V*xSxC-->V*. For example, a get read request of BLP would be represented by
a command c=(get read,o). In this case, next(v,s,c) would represent the next
state, when subject s requests read access to object o when the system is in state
v. For reference we will list the applicable requests of BLP and show the effect
when those requests are granted. When requests are not granted, the next state is
always unchanged. We will denote the current state by v and the next state by v*.
State components that are not mentioned are not changed.

Requests 1, 2, 3, 4: get_read, get_append, get_execute, get_write

Semantics: 	 subject s requests ~-access to object o, where ~ is ~' ~' ~' or w.

Effect: access[v*l = access[vlv{(s, o, ~)l.

Request 5: 	 release_read/write/execute/append

Semantics: 	 subject s requests x-access to object o be deleted,

where ~ is~' ~' ~,-!!.

Effect: access[v*l = access[v]~ {<s,o,x)}.

Request 6: 	 give_read/write/execute/append

Semantics: subject s gives subject t x-access to object o,

where ~ = ~' !!' ~' or a.

Effect: for (u,p) & V* x 0,

matrix[v](u,p) if (u,p)#(t,o)
matrix[v*] (u,p) = {

matrix[v] (t,o)u {xj if (u,p)=(t,o).

113

Request 7: rescind_read/write/execute/append

Semantics: 	 subject s removes ~-access to object o from subject t,
where ~ = ,r:, ~' ~' or a

Effect: 	 for (u,p)t v*x 0,

matrix[v](u,p) if (u,p);t(t,o)
matrix[v*](u,p) = {

matrix(v] (t,o)-{~ if (u,p)=(t;o).

Request 8 and 9 of BLP deal with the creation and deletion of objects. Since
we have omitted this aspect of the BLP model in this paper, we have no need
to list them here. Request 11 is also omitted because it deals with changing
object levels which we have also omitted. Request 10,
"change_subject_security_l
our enlarged state space.

evel", requires some modification in order to fit

Request 	10: change_current_subject_level

Semantics: 	 subject t requests that its current clearance level be changed
to L.

If the request is not in the correct form the system responds with ? and
leaves the state unchanged. Otherwise, the following conditions are checked.

(i) fs(t) > L

(ii) 	 the star property will hold in the new state. i.e.

(t,o,a)£access[v] ==> fo(o) > L

(t,o.w)£access[v] ==> fo(o) = L

(t,o,r)£access[v] ==> L > fo(o)

(iii) 	 for any s£S such that ,.,(current subject level[v](t) < fs(s)),
it is the case that - (L < fs(s))-

If any of these conditions fail, the rule give a "no" decision and the state
v is unchanged. If they are all true then the new state is v* where for any s £ S,

current_subject_level[v](s) s#t
current_subject_level[v*J(s) =1[

L if s=t

access[v*] = access[v]

matrix[v*] = matrix[v].

114

It is clear that next preserves the simple security properties and the *
property. Thus V* is secure if V is.

The "operation" or contents altering commands will be left undefined.
Instead we will give an axiom that characterizes their behavior.

AXIOM I

Let v £V*, o tO, s £ S, c £C, and v* = next(v,s,c).

If access[v] does not contain (s,o,w) or (s,o,a) then

contents [v*](o) =contents[v](o).

NOTE: In words this says that if in state v user s does not have write or append
access to object o then no command by s can change the contents of o.

In the SRI model an "output" function is needed in order to talk about
information flows. Its exact formulation really does not matter as long as it
satisfies the following condition: if a user, s, has read or write/read access to
exactly the same set of objects when the system is in state v or in state u then
the outputs must be identical. We need some additional notation to describe this
precisely. Let v £ V*. Given s ~ S we form the local (or subject) contents
function lc[v,s]: 0 -->values by the rule

contents[v] (o) if (s,o,_!:) or (s,o,_!!) £.access [v]
lc[v,s](o) = ,[

otherwise

NOTE: In words, the local contents of o with respect to subject s and state v is
the contents of o if s has read access or write/read access to o and is the null,
an undefined contents, #, if s does not have read or write/read access.

We then characterize the output function as any function out: VxSxC -->
outputs (outputs an arbitrary set) that staisfies the following axiom:

AXIOM II

Let v, u£V, c£.C, s£.8, v* = next(v,s,c), and u* = next(u,s,c).

If lc[v,s] = lc[u,s] then

a. out(v,s,c) =out(u,s,c)

b. contents[v*] =contents[u*].

NOTE: In words, if in states v and u, s has r: or _!! access to exactly the same set
of objects with the same contents then the outputs have to agree, and the contents
function of the next states have to agree.

Now we can define a security policy for BLP* as in the SRI model. Following
[Rush1], we state the policy in terms of non-interference assertions denoted t-f->s
(read:subject t does not interfere with subject s). Informally, t-f->s if nothing
that t does can affect the "view" s has of the system. (This is developed
formally in [Rush1], we omit the details). The security policy for the system is
set, PC.SXS with certain properties. The BLP* system will be secure in the SRI
sense if for each (t,s) e.p it can be shown that t-,L->s.

115

The security policy, P, we want is:

(t,s)tP if

1. t-:/. s

2. "' <fs <t) < fs <s))

and 3. If vo is the initial state thenN(current_subject_level[voJ(t) < fs (s))

In words, (t,s) P if the maximum level of t dominates (or is non-comparable to)
the maximum level of s and in the initial state, vo, the current subject level
of· 't dominates (or is non-comparable to) the maximum level of s.

In order to show that BLP* is secure in the SRI sense, we have to show that
(t,s)£P implies that t-.,l->s. This will be done via Theorem 6 of [Rush1], the
"unwinding theorem". We first need to show that condition 2 above also holds for
all reachable states as well as the initial state vo. (A state w is reachable
from V if there is a sequence Of Commands C1, C2• • oCk and subjects S1, S2•. oSk
such that w =next (.~.next(next(v, s1, C1), s2 C2) ••• , Sk, Ck)).

Lemma.l. If vc.V* and t, seS and if -(current subject level [v](t) < fs (s)),
then for any r LS and ct. C, -

~ (current_subject_level [next (v,r,c)](t) < fg(s)).

Proof. An examination of the rules shows that the only command that affects the
current_subject_level function of a state is command c: change current subject
level to L. If next leaves the state v fixed we are done trivially. If next
changes the state, then from rule 10 above

current_subject_level [v] (t) if t i r
current_subject_level [next(v,r,c)](t) =

{ L if t = r

In the case t I. r we are done as current subject level[next(v,r,c)] =
current_subject_level[v]. If t = r, current subject level- [next(v,r,c)] (t) = L
and by condition iii of rule 10 (which must hold since next was assumed to have
caused a state change) we conclude: ,.J (L < fg(s)).

By induction we have,

Lemma 2. If v LV*, t, s e S and w £.V* is reachable from v and

~<current_subject_level[v](t) < fg(s)) then

~(current_subject_level[w](t) < fg(s)).

In order to apply theorem 6 of [Rush1] we need to specify an interpretation
of the abstract view of the system. Let v £. V* and s e. S. Then the "view" s has of
the system in state vis simply lc[v,s]; just the local contents function for sin
state v. We will use view[v,s] and lc[v,s] interchangebly. It follows trivially
from Axiom II above that the view function is internally consistent. That is, if
view[v,s] =view[u,s] then out(v,s,c) =out(u,s,c).

116

We now state Rushby's

Theorem 6: Let MR= (V*, S, C, P, next, out, view) be an internally consistent
system such that Pis not empty and for all v, u E. V*, s, t, r£S, ci.C

1. (t,s) €P ==> view[next(v,t,c),s] = view[v,s]

2. view[v,t] = view[u,t] => view[next(v,r,c),t] = view[next(u,r,c),t]

then M R is secure (in the SRI sense).

We will show the Rushby-type system that we have constructed out of BLP
satisfies the conditions of Theorem 6. This is done in lemmas 3 and 4.

Lemma 3. If vo~ v £ V*, s, t e. S, (t,s) s. P, c £C and v is reachable from the
initial state vo, then

view[next(v,t,c),s] = view[v,s]

Case 1 c is an operation.

In this case access[v] = access[next(v,t,c)] since operations can only change
the contents function.

Let o E 0 be an arbitrary object

subcase 1.1 (s,o,£) and (s,o,w) 4access(v]

It follows immediately that (s,o,r) and (s,o,w) taccess[next(v,t,c)] and
view[v,s](c) = l[v,s](o) = # = lc[next(v,t,C1,sl = viewGlext(v,t,c),s](o).

subcase 1.2 (s,o,r) or (s,o,w) £ access[v]

Without loss of generality, assume (s,o,r)taccess[v]. Then also,
(s,o,r)4access[next(v,t,c)] and lc[v,s](o) = contents[v](o) and lc[next(v,t,c),s](o)
= contents[next(v,t,c),s](o)

claim: contents[next(v,t,c),s](o) = contents[v](o)

This will follow from Axiom I if we show that access [v] does not contain
(t,o,w) or (t,o,a). Otherwise assume (WLOG) (t,o,w) £ access[v]. As we have
assumed that BLP started in a secure state, v is a secure state and so the *
property holds for v. Thus (t,o,~) e. access[v] implies that fo(o) =
current subject level[v] (t). Since the simple security condition also holds and
(s,o,£)-~ access [v], fg(s) > fo(o). We conclude that fg(s) >
current subject level[v](t). But this contradicts lemma 2 and the claim is
proved.-

From the claim and the definition of view subcase 1.2 is proved.

Case 2 c is a request.

subcase 2.1 cis a request of type 1, 2 or 3. Then access[next(v,t,c)]
is just access[v] with the addition of at most (t,o,x), x A. Thus (s,o,r) or
(s,o,~) are in access[v] if and only if they are in -access[next(v,t,c)] and the

117

local contents is defined by contents in both states. Since requests cannot
change contents the view of o is the same in both states.

subcase 2.2 c is a request 5. Then access [next (v, t, c) 1 is access [v 1
with, at most, the removal of (t,o,_!). As t 'f; s the proof goes through as in
subcase 2.1.

subcase 2.3 c is request 6 or request 10

access[v1 =access[next(v,t,c)1 and the proof is like subcase 2.1

subcase 2.4 c is request 7

similar to 2.2

This concludes the proof of the lemma.

Lemma 4. view[v,s1 = view[u,s1 ==> view[next(v,t,c),s1 = view[next(u,t,c),s1

Proof: The hypothesis is that lc[v,s1 = lc[u,s1. From axiom II we conclude that
contents[next(v,t,c)1 = contents[next(u,t,c)1. The views will be the same if we
show that s has the same access to all objects in both states next(v,t,c) and
next(u,t,c).

Case 1 c is an operation. Then access[v1 = access[next(v,t,c)1 and access[u1 =
access[next(u,t,c)1. Since s has the same access in states u and v, by hypothesis
s has the same access in states next(v,t,c) and next(u,t,c).

Case 2 c is a request. Since the access for s are the same in both states v
and u, each request will be granted or denied the same way in each state and the
next state will have the access changed identically.

Theorem 1. The Rushby MLS policy, P, defined above is secure.

Proof: Lemmas 2 and 3 give the hypothesis of Rushby's theorem 6 and the
conclusion follows.

118

REFERENCES

[B&LP1] Bell, D. Elliott and LaPadula, Leonard J. , "Secure computer Systems:
Mathematical Foundations", MI'R-2547 (ESD-TR-73-278) Vol I, The MITRE Corporation,
Bedford Massachusetts, 1 March 1973.

[B&LP2] Bell, D. Elliott and LaPadula, Leonard J., "Secure Computer Systems: A
Mathematical Model", MI'R-2547 (ESD-TR-73-278) Vol II, The MITRE Corporation,
Bedford Massachusetts, 31 May 1973.

[B&LP3] Bell, D. Elliott, "secure Computer Systems: A Refinement of the Model",
MI'R-2547 (ESD-TR-73-278) Vol III, the MITRE Corporation, Bedford Massachusetts,
December 1973.

[B&LP4] Bell, D. Elliott and LaPadula, Leonard J., "Secure Computer Systems:
Unified Exposition and MULTICS Interpretation", MI'R-2997, The MITRE Corporation,
Bedford Massachusetts, 1 March 1973.

[Feier] Feiertag, R.J., "A Technique for Proving Multilevel Systems Secure", Tech
Report CSL109, SRI International, January 1980.

[GM] Goguen, J.A. and Meseguer, "Security Policies and Security Models", Proc.
1982 Syposium on Security and Privacy, Oakland California, IEEE Computer Society,
April 1982.

[Rush1] Rushby, John, "Mathematical Foundations of the MLS Tool for Revised
SPECIAL", to be published.

[Rush2] Rushby, John, "The Bell and LaPadula Security Model", to be published.

119

--· ...· .·:

The Security Model of Enhanced HDM

John Rushby

Computer Science Laboratory

SRI International

Abstract

The Enhanced HDM Specification and Verification System being developed at SRI

International includes an "MLS Checker" that automatically verifies the security of

a certain class of system specifications.

This paper gives a brief and informal overview of the security model on which the

MLS checker is based and discusses its application and its relationship to other

security models and to the requirements of the DoD Trusted Computer System

Evaluation Criteria.

1. Introduction

SRI's Enhanced HDM Specification and Verification System will include a subsystem

known as "The MLS Checker" that determines whether system specifications are consistent

with the DoD Multilevel Security (MLS) policy. In order to do this, the MLS Checker

embodies certain assumptions about:

• 	The "meaning" of specifications written in Revised Special (this is the specification

language of Enhanced HDM),

• 	The sort of systems whose specifications are to be checked, and

• 	The interpretation of "security" that is appropriate to that class of systems.

The first of these assumptions concerns the semantics of Revised Special and will not be

discussed here; the other two assumptions constitute the security model of Enhanced HDM

and are the subject of this paper. The security model of Enhanced HDM is the same as that of

"Old" HDM, which was developed by Feiertag, Levitt, and Robinson in 1977 [3] and which

provided the basis for the original MLS Checking Tool developed by Feiertag [4]. The

description of the model has been improved over the years (notably by Goguen and

120

Meseguer (5]); the informal presentation · gtven here is based on the current technical

description [11]. It should be stressed that it is only the MLS Checker that has this (or any

other) security model built into it; the rest of the system is a general specification and

verification environment that may be used to state and verify arbitrary system properties

including those derived from other security models.

Security models are abstract descriptions of computer systems that concentrate on matters

relating to the protection and security of information. Such models are helpful in two aspects

of the system design process: synthesis and analysis. By emphasizing just the features

relevant to security, a security model can serve to clarify and guide the design (i.e. synthesis)

of a· secure system; and, by providing a formal basis for the notion of "security", a model can

provide the foundation needed to conduct a rigorous informal analysis, or a formal verification,

of the security of a system design. Because of its application to the design of the MLS
. .

Checker, it is this second aspect that is emphasized in the security model for Enhanced HDM.

As indicated above, a security model has two components: the first embodies assumptions

about the sort of systems that are to be considered, while the second defines a notion of

security that is appropriate to that class of systems. I will call these, respectively, the system

and the security components of the model. The utility of a model is closely related to, the

realism of the assumptions that constitute its system component; the correctness of a model

is a function of its security component.

In order to understand what is meant by the "utility" and "correctness" of a model, it is

necessary to understand how a system is verified with respect to a security model. Essentially,

verification consists of a demonstration that the system is a valid interpretation of the model;

that is to say, one must establish a correspondence between the elements of the system and

those of the model and must show that the elements of the system interact only in ways that

are consistent with the model. A model is of limited utility if few, if any, systems of interest

can be shown to be consistent with it; a model is incorrect if a system that has been shown to

be consistent with the model fails, nonetheless, to meet its security requirements.

Since one of the main purposes of a security model is to capture security requirements

formally and unambiguously, there will generally be no independent formal description of a

121

system's security requirements against which to evaluate the correctness of its model.

Furthermore, testing is ::t notoriously unreliable technique for discovering subtle flaws in a

system, and this is especially true in the case of security - where flaws may become manifest

only under conditions of sophisticated and deliberate abuse. Thus there is no reliable way of

determining whether a system meets its security requirements other than by verifying its

compliance with a formal security model. It follows that incorrect security models cannot be '

countenanced: they just have to be right.

The best way to ensure that a model is correct is to make it so simple that it can be totally

comprehended by suitably skilled persons. In this way, the correctness of a model can be

established by the social process of peer review - just as the correctness of a mathematical

theorem is established. This requirement for simplicity argues for very abstract security

models: ones from which all irrelevant issues, and all details peculiar to a given system, have

been stripped away so that the single issue of security is isolated and exposed to scrutiny.

Unfortunately, the desire for highly abstract security models conflicts with one of the

realities concerning their application. In practice, the demonstration of consistency between a

system and its security model is rarely accomplished in a single step -the "gap'! between them

is just too great to bridged so simply. (The details of the interpretation would be so complex

that they would, themselves, be prone to error). Instead, it is generally an abstract

specification of the system that is verified with respect to a security model. The step of

showing that the actual system is a valid interpretation of its verified specification is generally

performed informally. (Formal techniques do exist, but they are hugely expensive). The

informality, and possible unreliability, of this second step raises the possibility that undetected

security flaws may be introduced during the implementation of a secure specification. In order

to reduce the likelihood of such flaws, it is desirable that the specification should be "close" to

the implementation - so that complexity of the informal verification step is reduced as much as

possible. In particular, the security mechanisms to be employed in the implementation should

be described, in all essential details, in the specification. Formal verification of the

specification with respect to a security model, followed by informal verification of the system

with respect to the verified specification, then gives considerable confidence in the security of

the final system.

122

The desire to verify detailed, concrete, system specifications argues for a detailed, highly

concrete, security model - since otherwise the interpretation from model to specification

becomes complex and error-prone and we will be back where we started. Unfortunately,

however, such concrete security models often raise the very doubts they are meant to allay: if

the model is highly detailed and its definition of security correspondingly so, then one naturally

wonders whether that definition is correct. The discovery of subtle quirks and outright flaws

in certain well established security models shows that these doubts are not idle [9, 15].

Thus we are confronted with a dilemma: in order to be sure that it is itself correGt, a

security model should be simple and highly abstract; but in order that it can be used to verify

usefully detailed system specifications, a model must be detailed and concrete. In my view, the

correct escape from this dilemma is through the horns: rather than argue that abstract models

are superior to concrete ones, or vice versa, we should recognize the need for both. Having said

that, however, I also claim that abstract models should be given primacy. My reason is that

abstract models can be used to verify the correctness of concrete ones - this is

accomplished by showing that the axioms of the abstract model are provable as theorems of

the more concrete one. Furthermore, although abstract models cannot be used directly to

verify the security of a detailed specification of a system's implementation, they have a useful

role to play in verifying an abstract specification of its interface. This is useful in its own

right, since a system may be unsecure for (at least) two reasons: either its specification may

include inherently unsecure operations (i.e., its inter face specification may be unsecure),

or its mechanisms may fail to correctly implement otherwise secure operations. It is somewhat

heavy-handed to detect flaws of the first kind using models intended to detect those of the

second kind. For example, it is surely better to discover immediately if a file system contains

operations that permit unclassified users to read classified files, rather than wait until the

internal mechanisms of the file system are found to be inconsistent with a concrete security

model. An abstract security model can be used to perform the useful task of verifying the

security of system interface specifications before resources are committed to its

implementation.

The security model of Enhanced HDM is a highly abstract one. Its merits are its simplicity

and elegance: it is easy to see that it is correct (as far as it goes - and I will discuss the issue of

its completeness later). Its applications are the verification of system interface specifications

123

(performed automatically using the MLS Checker of Enhanced HDM), and the verification of

more concrete security models (currently performed by hand). An informal description of the

HDM model is given in the next section; technical details may be found in [11].

2. The Model

As explained in the introduction, there are two components to a security model: the system '

and the security components. The system component of the HDM security model is a

conventional finite automaton. That is to say, a computer system is regarded as a "black box"

that consumes input "tokens" one at a time and, with each token consumed, changes its own

internal state in a manner that depends upon its current state and the value of the input token

consumed. At the same time, an output token, whose value is determined in the same way, is

emitted and returned to the user who sent the input token that initiated the activity. The

internal state of the system is not visible outside; all that can be observed is its input/output

behavior.

This automaton model captures the essential characteristics of many types of systems, and

system components, quite accurately. Consider, for example, a file server that receives

requests from users to save and retrieve files and that returns files and status information to

users in response to those requests. The requests sent to the file server can be identified with

the input tokens of the model, while the results that it returns can be identified with the

output tokens. The internal state of the file server consists of the file system that it maintains.

The receipt of a request from a user will cause it to update the file system on the basis of

information sent with the request, and to return a result determined by the contents of the file

system and the nature of the request.

We now need to add a security component to this system model. The first step is simply to

interpret the system model a little differently. Instead of tokens being sent by, and returned

to, human users directly, we now recognize that those users may be supported by untrusted

computer systems or processes. Whereas a human with legitimate access to classified

information may be trusted not to reveal that information to unauthorized persons, a computer

system cannot. , We indicate that the users of the system are now identified with untrusted

computer systems or processes by using the term subject instead of "user". We associate a

sensitivity label with each subject to indicate the clearance of the (human) user identified

124

with that subject. The sensitivity labels are assumed to be partially ordered by a dominates

relation1 that defines the security policy to be enforced by the system. This policy requires

that no information may flow from one subject to another unless the clearance of the recipient

dominates that of the sender. The heart of the security component of the HDM security model

is the way in which it gives a precise definition to what it means for information to "flow"

from one subject to another.

This definition is beautifully simple: an input from one subject causes information to

flow to another subject if the outputs subsequently seen by the second subject are different

from those that he would have seen if the input concerned had not been present. The security

component of the HDM model then simply requires that information may flow, in the sense

just defined, from one subject to another only if the clearance of the recipient dominates that

of the sender.

In the case of the file server example, a request to delete a file obviously causes information

to flow to all those subjects who may subsequently determine that the file has been deleted.

But our definition of information flow is much stronger than this: it says that information

flows to all subjects for whom the file server will subsequently behave differently than it

would have done if the delete-file request had not been issued. Thus, if the delete-file request

causes some disk space to become free and another subject can subsequently discover that the

amount of free space has changed, then information has flowed to that subject from the one

that sent the delete-file request - and this is to be allowed only if the clearance of that subject

dominates that of the subject that sent the delete-file request. It can be seen that this

information-flow characterization of security is very powerful: it embraces covert storage

channels (though not timing channels) as well as direct disclosure.

I claim that this formulation of what is meant by security captures clearly, and correctly,

the intent behind other formulations of the property. There is, however, a serious charge that

can be brought against the model. The charge is that a valid security model should be based

on established government regulations regarding the handling of classified information. This

1security Level s is said to dominate security level s if the hierarchical classification of s is greater than or1 2 1
equal to that of s and the non-hierarchical categories of s 1 include all those of s 2 as a subset [2, pllO].2

125

would suggest the introduction of objects as the repositories of information "within" the

system state and, by analogy with the regulations of the "pen and paper" world, we should

demand that objects be labelled with the sensitivity level of their contents (i.e. their

classification) and that subjects may only read objects whose classifications are dominated

by their own clearances. My objection to this approach is that the regulations that would be

taken as the starting point in the construction of our model are not a statement of the intent

of security procedures, but are a particular set of mechanisms that are appropriate for

safeguarding security in the "pen and paper" world. In effect, they are a security model whose

(unstated) system component is a set of assumptions about the way in which the "pen and

paper" world operates. Computer systems do not correspond to these assumptions (they are

not passive entities like paper and vaults) and this invalidates the security component of the

"pen and paper" model. That this is true is manifest by the need to introduce additional

axioms (e.g. the "*-property" [1]) into those computer security models that follow this

approach.

The attempt to base computer security models closely on established regulations is a

laudable one; my objection is to taking this approa:ch as a starting point - for then we have no

"higher-level" notion of security to appeal to in cases where these mechanisms prove

inadequate. The "trusted processes" of the Bell and La Padula model [1] are a case in point.

These processes are not constrained by the *-property because they are trusted not to violate

the intent of that model property. The problem is then to establish the security of these

processes in the absence of a precise description of just what the "intent" of the model is:

because the Bell and La Padula model describes a particular set of security mechanisms, it

provides no guidance in cases where its mechanisms prove inadequate.

Instead of identifying security with a particular set of mechanisms, I argue that it is

preferable to first enunciate a principle of security that attempts to get at the intent behind

such mechanisms. Once this has been done, we can introduce particular security mechanisms

into our model - mechanisms based on government regulations - and attempt to verify them

with respect to our more abstract model. If this attempt succeeds, then we have the

satisfaction of knowing that ·two fairly independent efforts to formalize the same set of

concerns have converged on the same (and therefore presumably correct) point; if it fails, then

investigation of the discrepancy between the models will sharpen our understanding of the

126

issues concerned and may lead to the discovery, and subsequent correction, of errors in one or

both of them. I will describe an experiment of this kind later.

Although I claim that the HDM security model, as formulated so far, provides a useful

definition of security, it is too abstract to give much practical guidance in the construction or

analysis of secure systems. The treatment of a computer system as a "black box" with no

internal structure is not helpful to those who must design or analyze the internal mechanisms

of a computer system. Furthermore, the definition of information flow is quantified over all

sequences of future state transitions: that is, information is considered to flow from one subject

to another if the presence of an input from the first subject can cause any change whatever in

the subsequent behavior of the system as perceived by the second. What we would really like

is a characterization of security that applies to single state transitions, rather than to

sequences of transitions.

Both these deficiencies in the-most abstract formulation of the model can be remedied by

adding more structure to its system component. Instead of treating the system state as a

"black box" with no internal structure, we will now assume that the system state is a record of

the values held in objects. We will further assume that each object is assigned a fixed

sensitivity label called its classification. We also need a little more terminology: we will

say that the individual steps performed by the system are called operations. An operation

consumes an input token, causes a state change, and produces an output token. The

sensitivity level of an operation is taken to be that of the subject that sent the input token that

invoked it.

Given these elaborations to the basic model, it is possible to prove the following result.

Theorem: A system is secure if each of its operations satisfy the following three conditions.

1. The output produced by an operation at sensitivity level I depends only on the

values of objects whose classifications are dominated by I.

2. 	An operation at sensitivity level I changes only the values of objects whose

classifications dominate I.

127

3. If an operation changes the value of an object at classification I, then the new value

assigned to the object depends only on the prior values of objects whose

classifications are dominated by l.

This result is the one on which the MLS Checker is built. I will discuss its interpretation

and application in the next section.

3. Applications

The theorem quoted at the end of the previous section provides the basis for the MLS

Checker of Enhanced HDM, and for a similar tool developed earlier by Feiertag [4). These

tools process system specifications that have been augmented with information concerning the

sensitivity labels associated with the objects and operations defined in the specifications and

then check the specifications of the operations to see that they comply with the three

conditions stated in the theorem. This checking involves the generation and proof of putative

theorems (called verification conditions) concerning relationships among the sensitivity

labels of the operations and objects defined in the specification. The Checker also ensures that

the specifications are sufficiently complete that they define the behavior of the system under

all conditions. Individually, the conditions that need to be checked are conceptually simple,

but they are so numerous and detailed that it is unreliable and uneconomic to attempt the

process by hand - it is the existence of automatic MLS Checkers that make this a viable

method of security analysis. SRI's original MLS Tool [4] has been used in the analysis of

several operational systems, including Honeywell's SCOMP [14]. This section considers what is

accomplished by such analysis.

The first point to note is that, as stated earlier, it is only the interface specification of the

system that can be verified in this way. Because the model requires all objects to be assigned

fixed classifications, it does not address one of the major problems faced in the development of

secure systems: the design and verification of mechanisms that permit system resources to be

multiplexed securely among entities belonging to different security classifications. In effect, the

HDM model assumes that each security classification operates in its own virtual system. It is

possible to modify the security model so that the security classifications of objects are not fixed

(the Mitre Corporation has built flow analyzers that do this) but this does not completely solve

the problem. Instead, the correct solution to the problem is, in my view, to deny that there is

128

one! Checking interface specifications for security is an important process in its own right.

Ensuring that those interface specifications are implemented correctly is an equally important,

but different, problem that is best approached as a separate issue using techniques (based on

more concrete security models) that are specialized to that problem.

The next point to note is that the system component of the HDM security model assumes

that input tokens (i.e. requests for operations to be performed) are "tagged" with their correct

sensitivity label. As I have explained earlier, this is a reasonable assumption for certain

"application level" systems, or system components, such as file servers. It is not a valid

assumption, however, for really basic system components such as an operating system nucleus ..

This is the component at the heart of a security kernel that establishes and maintains "process

isolation through the provision of distinct address spaces" as required by the DoD Trusted

Computer System Evaluation Criteria (2] for Evaluation Classes Bl and above. Requests

arriving at the interface of the operating system nucleus are not associated with sensitivity

labels provided by some outside agency: it is the task of the nucleus to establish this

association. Also, operations do not arrive at the nucleus in an orderly, one at a time, fashion.

Instead, it is the responsibility of the nucleus to respond to asynchronous interrupts and to

establish the orderly transmission of operation requests to the processes that it supports. In

short, the nucleus creates an environment for its client processes that is consistent with the

HDM security model, while it itself operates in a far more complex and demanding

environment. Once again, I do not see it as a weakness of the HDM model that it does not

address these issues - that is the task of other, specialized security models [6, 10].

Just as it does not address the issue of the secure implementation of verified interface

specifications, nor the security problems of an operating system nucleus, so the HDM security

model does not confront security issues other than disclosure through information flow. In

particular, the discretionary aspects of security policy are not addressed, nor those of

inference and aggregation. Neither are the problems of specialized systems and components

such as databases and downgraders considered. Specialized models are needed in all these

cases.

In summary, the HDM security model focuses on just one aspect of the general security

problem - but within that limited domain, it does a pretty good job. For the rest, let us have

129

lots of specialized security models that each focus on an individual problem with comparable

clarity and precision, and let us lear~ how to combine these different models in ways that give

comprehensive guidance and assurance to the developers of trusted computer systems.

4. Comparison with other Models

One of the most influential of security models is the one developed by Bell and La,

Padula [1]. Recently, some security flaws have been found in the model [9, 15] - some of its

rules have been found to admit covert storage channels. In this section, I will show how the

attempt to verify the Bell and La Padula model with respect to the HDM model provides a

systematic technique for detecting such flaws.

In order to verify the Bell and La Padula model, we must demonstrate that it is a valid

interpretation of the HDM model. The details of this demonstration are quite complex, since

the two models use different mathematical formalisms. The following is a very informal,

outline description of the process; those who desire the technical detail are referred to the

appropriate reports [12, 13].

The Bell and La Padula security model is a concrete one, in that it describes explicit

security mechanisms. Basically, the system state is partitioned into two components: the

value state and the protection state. The first of these is the (usual) record of the values

stored in objects, while the second records the current and maximum security level of each

subject, the classification of each object, and the type of access each subject is allowed to each

object. In the simplest case, only two types of access need be distinguished: read and write.

If a subject has read access to an object, then it may use the value of that object when

computing the output of an operation or the value to be stored in an object; it may only

change the value of an object if it has write access to that object. These mechanisms are

assumed to be provided by the system's "hardware".

The operations of the system are divided into two classes: the (regular) operations, and

the rules. Operations access only the value state and are constrained by the "hardware" in

the manner described above; operations correspond to the ordinary functions like "add",

"load" and "store" etc. Rules, on the other hand, access only the protection state; they

perform functions such as "give this subject read access to that object", and "change the

classification of this object to that level".

130

The security component of the The Bell and La Padula model identifies security with the

following two (slightly simplified) conditions:

simple security property: a subject may have read access only to objects whose

classifications are dominated by its own clearance, and

*-property: 	 an untrusted subject may have write access only to objects whose

classifications dominate its own clearance.

It is quite easy to prove that these two conditions imply those of the theorem given earlier

- the simple security property (henceforth abbreviated to ss-property) guarantees the first and

third conditions in the statement of the theorem, while the *-property guarantees the second.

Thus we deduce that the Bell and La Padula model is consistent with the HDM model in the

case of the regular operations. The rules are a different matter, however.

Bell and La Padula gave a representative set of rules (based on those found in Multics) and

argued that they were secure because they preserved the ss- and the *-properties. However,

covert storage channels have subsequently been discovered in some of these rules. (A channel

in the rule change-subject-current-security-level is described in [9], channels in the rule

change-object-security-level are described in [12, 15)). These channels arise because the ss- and

•-properties only consider the problem of information flow through the value component of the

system state - the possibility of information flow through the protection state is not considered

explicitly.2 If one attempts to prove that the rules of the Bell and La Padula model are secure

with respect to the HDM model, then the system state of the HDM model must be identified

with the conjunction of both the value and the protection states from the Bell and La Padula

model and the proof fails because certain of the rules permit unsecure information flows

through the protection state. Although I have described this process as one performed by

hand, it is possible (though I haven't tried it, nor thought through all the details) that it could

be accomplished mechanically by constructing a specification of the Bell and La Padula model

in Revised Special and then submitting it to the MLS Checker.

2In fact, many of the rules perform checks additional to those necessary to preserve the ss- and *-properties.

The effect of these checks is to prevent covert storage channels that would otherwise have arisen, but the model

does not explain why these checks are necessary, nor how to construct them systematically. It is the inadequacy

of the checks in the two rules named above that admit the covert storage channels.

131

The lesson to be learned from this exerctse is that the construction of concrete security

models is a difficult and error-prone task and that informal review may not be an effective

technique for uncovering subtle problems or oversights in such models. (The Bell and La

Padula model is nearly ten years old, yet Millen and Cerniglia, who attribute the discovery of

the covert storage channel in the rule change-subject-current-security-level to P.S. Tasker of

the Mitre Corporation, observe that this channel was found only "recently".)

As I noted earlier, the rules present in the Bell and La Padula model were based on

functions found in Multics. In order to model other systems, it may be necessary to introduce

different rules that correspond more closely to those present in the systems of interest. For

some application areas, completely specialized security models have been developed (see [7, 9]

for examples), and this trend is likely to continue as novel applications are contemplated. In

all these cases, whether they are new variations on established models, or completely new

models, it is highly desirable that some objective, formal analysis of their correctness should be

undertaken. In many cases, it seems that part of this analysis can be accomplished by

verifying these new models with respect to the HDM model.

In comparison with other security models, the HDM model is much more abstract: it has no

security mechanisms built in. However, these other security models can often be viewed as

more detailed elaborations of the HDM model. Establishing this connection formally is a good

way to evaluate some aspects of the correctness of these other models.

5. Relation to the DoD Trusted Computer System Evaluation Criteria

The DoD Trusted Computer System Evaluation Criteria [2] require the use of a formal

security model for Evaluation Class B2 and above. For Evaluation Class AI and beyond,

formal methods are required in the analysis of covert channels (Paragraph 4.1.3.1.3) and a

combination of informal and formal techniques must be used to demonstrate consistency

between the Formal Top-Level Specification (FTLS) and the model (Paragraph 4.1.3.2.2). The

Glossary to (2] provides some guidance on what constitutes an acceptable security model:

"... to be adequately precise, such a model must represent the initial state of a

system, the way in which the system progresses from one state to another, and a

definition of a "secure" state of the system.

" ... the model must be supported by a formal proof that if the initial state of the

132

system satisfies the definition of a "secure" state and if all the assumptions required

by the model hold, then all future states of the system will be secure."

A theorem satisfying the requirement of the second paragraph in this quotation is often called

a Ba-sic Security Theorem after a theorem of that name due to Bell and La Padula. A

. significant criticism of this requirement is that a Basic Security Theorem says essentially

nothing about security - as McLean (8) demonstrated by proving just such a theorem for a

model that clearly violates any reasonable notion of "security" .3 In fact, it should be clear that

if tP is any effectively decidable property of the system state, then an analog to the Basic

Security Theorem can be constructed for that tP. As McLean observed, a Basic Security

Theorem is really a property of the finite-state system model employed (in that states can be

indexed to support proof by induction), rather than of the particular definition given for

security.

Bell and La Padula actually made very modest claims for their Basic Security Theorem

(and made no subsequent use of it after they had proved it). They observed merely that it

established [1, p21)

"the relative simplicity of maintaining security: the mm1mum check that the

proposed new state is "secure" is both necessary and sufficient for full maintenance

of security".

In my view, the intent behind the requirements stated in the DoD Criteria is sound, but the

particular requirement for a Basic Security Theorem is poorly chosen. If I may be permitted

to interpret the intentions of the authors of that document, I would say that their real

requirement was for a concrete security model. A concrete model is one, such as that of Bell

and La Padula, that describes particular security mechanisms, as opposed to the HDM model,

which describes only security policy. A security mechanism must obviously maintain some

state information (recording who may access what, and in what way), and not all states will be

equally "secure". Thus, it is natural (indeed, necessary) for a concrete model to prescribe a set

of "secure states" and a set of rules which are proven (by a Basic Security Theorem) to be

sufficient to guarantee that all state transitions are secure-state-preserving.

3Basically, McLean turned the *-property around, so that subjects may transfer information from higher to

lower classification levels.

133

The identification of a set of secure states and the proof of a Basic Security Theorem do

fill

not, however, guarantee that a model enforces a useful form of security- they simply establish

the internal consistency of a set of security mechanisms. A separate (preferably formal)

justification is required in order to establish that those mechanisms enforce a more abstract

statement of required security policy. As I have already observed, the HDM_ security model

will serve well in this latter capacity.

Given that the verification of compliance between an actual system and its FTLS will be

performed only informally, the requirement that a concrete security model be used for the

verification of the FTLS is entirely reasonable - for we certainly wish to be sure that the

security mechanisms of . the system are included in the formal stage of its analysis.

Nonetheless, and as noted earlier, the security verification of interface specifications provided

by the MLS Checker of Enhanced HDM can also make an important contribution to overall

security assurance, especially since it is the only formal technique able to detect covert storage

channels. It would seem that the· DoD Computer Security Center accepts this view since the

verification of the Honeywell SCOMP kernel was,largely accomplished with· the aid of the ~fLS

Checker of "Old" HDM. Also, the HDM security model continues to apply in those cases

where the mechanisms of a concrete model prove inadequate, and trusted process_ are found to

be required. Clarification of the Center's requirements and guidelines on all these topics would

be welcome.

6. Summary

I have given an informal description of the security model employed by the MLS Checker

of Enhanced HDM. This model is a highly abstract one that has no particular security

mechanisms built in. The model gives a precise, formal definition of an information-flow

interpretation of security that covers covert storage channels as well as direct disclosure. The

model is so simple that there can be no doubt about its correctness. The applications of the

model are the verification of system interface specifications and the analysis of more concrete

security models.

134

References

1. 	 D.E. Bell and L.J. La Padula, "Secure Computer System: Unified Exposition and
Multics Interpretation," Technical Report ESD-TR-75-306, Mitre Corporation, Bedford,
MA., March Hl76.

2. 	 Department of Defense, Computer Security Center, Department of Defense Trusted
Computer System Evaluation Criteria, 1983, CSC-STD-001-83.

3. 	 R.J. Feiertag, K.N. Levitt and L. Robinson, "Proving Multilevel Security of a System
Design," Proc. 6th ACM Symposium on Operating System Principles, pp. 57-65,
November 1977.

4. 	 R.J. Feiertag, "A .Technique for Proving Specifications are Multilevel Secure,"
Technical Report CSL109, Computer Science Laboratory, SRI International, Men·lo
Park, CA., January 1980.

5. 	 J.A. Goguen and J. Meseguer, "Security Policies and Security Models," Proc. 1982
Symposium on Security and Privacy, Oakland, CA., pp. 11-20, IEEE Computer
Society, April1982.

6. 	 B.A. Hartman, "A Gypsy-Based Kernel," Proc. 1984 Symposium on Security and
Privacy, Oakland, CA., pp. 219-225, IEEE Computer Society, April1984.

7. 	 C.E. Landwehr, "A Survey of Formal Models for Computer Security," Computing
Surveys, Vol. 13, No. 3, pp. 247-278, September 1981.

8. 	 J. McLean, "A Comment on the "Basic Security Theorem" of Bell and La Padula,"
Informal Note, Naval Research Laboratory, 1983.

9. 	 J.K. Millen and C.M. Cerniglia, "Computer Security Models," Working
Paper WP25068, Mitre Corporation, Bedford, MA., September 1983.

10. 	 J.M. Rushby, "Proof of Separability - a Verification Technique for a Class of Security
Kernels," Proc. 5th International Symposium on Programming, Turin, Italy, pp.
352-367, M. Dezani-Cianaglini and U. Montanari, eds., Springer-Verlag Lecture Notes in
Computer Science, Vol. 137, April1982.

11. 	 J.M. Rushby, "The SRI Security Model," Draft Report, Computer Science Laboratory,
SRI International, Menlo Park, CA., July 1984.

12. 	 J.M. Rushby, "The Bell and La Padula Security Model," Draft Report, Computer
Science Laboratory, SRI International, Menlo Park, CA., February 1984.

13. 	 J.M. Rushby, "Comparison between the Bell and La Padula and the SRI Security
Models," Draft Report, Computer Science Laboratory, SRI International, Menlo Park,
CA., February 1984.

14. 	 J.M. Silverman, "Reflections on the Verification of the Security of an Operating
System," Proc. 9th ACM Symposium on Operating System Principles, pp. 143-154,
October 1983.

135

15. 	 T. Taylor, "Comparison Paper between the Bell and LaPadula Model and the SRI

Model," Proc. 1984 Symposium on Security and Privacy, Oakland, CA., pp. 195-202,

IEEE Computer Society, April1984.

136

Al POLICY MODELING

Jonathan K. Millen

The MITRE Corporation

Bedford, MA

INTRODUCTION

Many formal models of security policy and secure systems have been created over
the last ten years. Some were aimed at expressing the DoD security policy, so that
a formal specification of a planned system could be shown to support that policy.
Others were aimed at investigating more fundamental issues such as information flow
and the propagation of discretionary access rights.

Recently, the question of the proper function and design of a model has come
under intense scrutiny, largely because of the publication of the Department of
Defense Trusted Computer System Evaluation Criteria [CSC83]. A formal model of the
applicable DoD security policy is required for systems to be rated in the higher
protection classes.

It has been recognized that no one model will serve the needs of all
applications. Modifications and extensions in policy are necessitated by
differences in the type of system, e.g., a general purpose operating system as
opposed to a network, and by differences in the operating environment or
classification system used.

Nevertheless, it is felt to be beneficial to have a model that addresses the
policy stated for Al systems, the highest class included in the Criteria. It is
anticipated that such a model could be used in two ways. It could be the model of
the security policy supported by a proposed TCB (Trusted Computing Base), as
required in the Criteria. It could also serve as a "kernel" around which more
elaborate models can be built.

A model with those objectives ~s necessarily constrained in style and
applicability. First, its subject matter and content are constrained to express the
Al security policy as stated in the Criteria. Hence, it deals with subjects,
objects, security classifications and categories, and must include a particular
restriction on the ability of subjects to read or write objects on the basis of
their respective security levels. Like the Criteria document itself, the model will
be limited in application to general purpose operating systems. While it is
possible to build a secure message system, data management system, guard system, or
network switch on top of a secure general purpose operating system, one would expect
the security policy ~n each case to have various unique features. In some cases
they could be added to the Al model in the form of a superstructure or concrete
interpretation, but ~n other cases it may be more practical to construct a different
model altogether.

The Criteria document suggests that the Bell-LaPadula model [BLP75] would be
acceptable as a formal model. It is doubtful, however, that it is the best choice
for a model for a new TCB to be submitted for Al certification. One reason is that
it is unnecessarily restrictive - it includes specific "rules" for system functions,
which may be incompatible with the desired TCB functions, and it includes a
Multics-directory-like object hierarchy. The set of rules " ••• is in no sense
Work supported by the Department of Defense under contract no. F19628-84-C-0001.

137

unique, but has been specifically tailorep for use with a Multics-based information
system design" [BLP75, p. 19].

To the extent that rules determine functionality, they can suffer from the
kinds of security problems that crop up in formal specifications. In fact, one of
the rules in [BLP75] has a built-in covert storage channel for compromising
information. This channel, a variation of a well-known one, will be discussed in
detail as an example of one of the more subtle pitfalls that model designers should
look for.

The Change-Subject-Current-Security-Level Channel

There is a rule in [BLP75] called "change-subject-current-security-level" by
which a subject can change its current security level to any value that will satisfy
the simple security property and *-property. In particular, it is possible for a
subject to downgrade itself, as long as its read accesses are only to objects at or
below the new, lower level.

The channel works as follows. When the subject is at the initial, higher
level, it can read one bit of classified information at that level, and then decide
to get read access to a fixed lower-level object or not, depending on the value of
that bit. After releasing read access to the higher-level object, it can then
downgrade itself to the lower level. At this point, the subject is not supposed to
know any higher-level information; yet, it can determine the value of the higher
level bit by testing whether it does or does not have read access to the lower-level
object. The result can then be written into some lower-level object.

The problem is more serious than its single-bit version suggests. First, it
might be possible to repeat it rapidly, perhaps hundreds of times per second, with
successive bits. One can also devise more complex versions involving several
lower-level objects, to transmit larger words at a time.

This channel works despite the assumption that the subject is "memoryless",
i.e., it has no implicit memory of its own. The information has not been stored 1n
the subject, but rather in the state of the system.

Of course, one could prevent this channel by requiring that the subject forget
its accesses when it is downgraded. This is quite correct, but it is unfortunately
excluded by the rule, which states that the access set "b" is unchanged.

Technically, a system can still avoid the channel and obey the model if it
never permits a change-subject-current-security-level call by itself, but only
allows the call in a compound request in which the subject first releases its
accesses. But this device defeats what is probably the best argument in favor of
having specific rules, namely, that they might act as design guidance to avoid
security problems. ·

AN Al MODEL

In designing a new model to address Al security policy, the initial objective
was to create a "minimum model", one that covered the Criteria requirements and
nothing more. Consequently, the suggested Al model below, while it resembles the
Bell-LaPadula model in having subjects, objects, accesses, and a form of the *
property, does not have rules for specific functions or an object hierarchy.

138

As other authors have discovered, however, there is an overwhelming temptation
for a model designer to add new features in response to perceived deficiencies in
other models. The model described below has two innovations. One expands the
treatment of trusted subjects in a way intended to be more flexible and effective;
the other incorporates discretionary security into the mandatory security level.

Trustedness of subjects is dissected into a collection of separate privileges
which must be inherited by the subject from the objects to which it has execute
access. Objects possessing such privileges are required to have high integrity,
enforced by a component of the security level.

Discretionary security is handled by adding user-list components into the
security level. Since security levels can be changed only by privileged software,
the effect is to prevent individual access control from being subverted by Trojan
horses.

INFORMAL STRUCTURAL DESCRIPTION

System State

The system state consists of a set of subjects, a set of objects, and some
functions defining their current status. Each subject and each object has a
security level and a (possibly empty) set of privileges. Associated with each
subject is a set of objects to which it has read access, a set to which it has write
access, and another set to which it has execute access.

A security level has the following components: classification, category set,
integrity class, integrity category set, distribution list, and contribution list.
The partial ordering "dominates" of security levels is based on the ordering of each
of the components. The third through fifth components are ordered inversely, i.e.,
a greater level has a smaller value in those components.

Transitions

A transition is a state change in response to a request from some subject,
called the requestor. There will be security conditions defining restrictions on
secure transitions as well as on secure states.

Some transitions create subjects or objects. Mathematical entities are never
really "created", of course; this just means that the set of subjects or objects
associated with the next state is larger. Subjects or object~ can also be deleted.
Note that, since every "existent" subject and object has a security level and other
attributes, any creations or deletions imply a change in those components of the
state as well.

SECURITY CONDITIONS

Several ofF the security conditions given below are waived for subjects having
an appropriate privilege; those conditions are starred (*). Subjects inherit their
privileges from the objects they execute. Privileged subjects and objects must have
a particular integrity category, called "Trusted", in order that their
trustworthiness may be preserved.

139

A subject can grant a privilege p to an object only if it has a special
privilege (Create-p) to do so. In an effort to control the propagation of
privileges, we require that no privilege can create itself, either directly or
indirectly. (To ensure this, define a function "Create" such that Create(p) =
Create-p, satisfying the restriction that, for any set A of privileges, Create(A)
cannot be a subset of A.)

Secure State Conditions

The Read and Write conditions below are derived from [CSC83, section 4.1.1.4,
P• 45].

* Read: The level of a subject dominates the level of any object to which it
currently has read or execute access.

* Write: The level of a subject is dominated by the level of any object to which
it has write access.

Privilege: The privilege set of a subject is included in the privilege set of
any object to which it has exec·ute access.

Trust: If a subject or object has any privilege, The integrity category
component of its security level includes the Trusted category.

Secure Transition Conditions

Transition conditions are waived only when the requestor (rather than any other
subject mentioned) has the appropriate privilege.

* Tranquility: The security level of a subject or object can not change.
Note that a change has different effects on different components of the security
level. Separate privileges may be required for changes in different components of
the security level.

* Creation: The security level of a new subject or object dominates that of the
requestor.

* Access change: Only the accesses of the requestor can be changed.

Privilege change: A privilege p can be entered into the privilege set of an
object only if the requestor has the privilege Create-p.

SECURITY LEVEL COMPONENTS AND ORDERING

A security level has five components, the first two having to do with
information sensitivity, the next two with integrity, and the last two with
individual access control. A security level dominates another if its sensitivity
and contribution list components are greater (or equal) and its other components are
less (or equal). The general principle is that a higher security level implies a
greater restriction on access.

The partial ordering for each component is given below with the component
description •

. !

140

Classification

Usually one of the following: Unclassified, Confidential, Secret, and Top
Secret. However, eight classifications are required for some National Security
applications, according to guidance in [CSC83). The classifications given above are
linearly ordered, Unclassified being the least and Top Secret the greatest.

Category Set

Individual categories vary with the community, but a given system should
support at least 29 categories to represent document compartment markings, according
to guidance in [CSC83). Furthermore, some additional categories may be needed to
represent dissemination controls and other distribution limiters. Category sets are
ordered by set inclusion, the empty set being the least and the set of all
categories the greatest •.

Integrity Class

Because the integrity class is an inversely ordered component, a subject can
only read from a higher or equal-integrity object and write into a lower or equal
integrity object, so copying and computational operations cannot increase integrity.
This form of integrity control, using the Read and Write conditions on a "dual" or
inversely ordered integrity classification, comes from Biba's "strict integrity"
model [Bib77). Incorporating an integrity component into the security level was
done first 1n the I.P. Sharp Protected Data Management System Model [Gro76).

There is some support for the idea that security classifications also carry a
connotation of integrity. This idea can be implemented by having integrity classes
Unclassified through Top Secret, with the understanding that the integrity class is
not necessarily equal to the security classification. Typically one would expect
that the security classification dominates the integrity class.

Integrity Category Set

Integrity category sets are ordered by set inclusion just like (sensitivity)
category sets. Because it is an inversely ordered component, copying and
transformation operations can only reduce the set of integrity categories.

In this model, there is a "Trusted" integrity category, which is intended to be
used for objects containing software that will be executed by privileged subjects.

It might be asked why the individual privileges could not be implemented as
integrity categories. The Read condition would then require that subject could not
have a privilege unless the object to which it had execute access also had that
privilege. The problem is that all the objects to which the subject had read access
would have to have that privilege as well.

Distribution List

This is the set of names of users who are permitted to read an object.
Distribution lists are ordered by inclusion, the empty set being the least and the
set of all users being the greatest.

Because the distribution list is one of the inversely ordered components of the
security level, it follows from the Read and Write conditions that an object can be
copied or transformed only into another object with a smaller or equal distribution

141

list. This prevents information from receiving a wider distribution than originally
intended.

It may be surpr1s1ng that a subject has a distribution list. The intent here
is that the subject's distribution list represents a mode of operation during a
temporary session, and it places an upper limit on the distribution of information
it is currently handling.

There is no notion within this model of a particular user on whose behalf a
subject is operating. In order for the distribution list to have the desired effect '
of limiting the users who can receive information, there is an assumption we have to
make about how the system being modeled is interfaced with the outside world. We
assume that an output device being operated by a user is an object (or more than one
object); and its distribution list should include that user. This assumption would
be included in the security requirements for a trusted login process. The role of
users is explained further below in a separate subsection.

In view of the fact that the distribution list is part of the security level,
and the security level cannot be decreased by an unprivileged or untrusted subject,
there may be some question whether this mechanism satisfies the intent of
"discretionary" security.

The guidance for discretionary security in [CSC83], which is extracted in turn
from DoD regulations, mentions two points: access control on an individual basis,
and need-to-know. The distribution list mechanism clearly qualifies on the first
point. As far as need-to-know is concerned, one thing is certain: authorization of
need-to-know cannot be left to a Trojan horse. We know that Trojan horses are a
concern, because they were the rationale for introducing the *-property, which
reappears in this model in the form of the Read and Write conditions. Only a
trusted, specifically privileged process can be expected to reflect the intent of an
appropriate user when the distribution list is expanded.

The difference between a mandatory label like classification and a
discretionary one like the distribution list is that a specific system administrator
or operator must be consulted to change the former, while the custodian or owner of
the object has sufficient authority to change the latter. This security policy
should be embodied in the specifications for the privileged software for each of
those tasks. It is not embodied in the model because of the difficulty of capturing
the intent of a user. In the model, a user could be identified as an owner of each
object, but this was not done because there is no formal axiom that explains the
meaning of the relationship.

The term "discretionary" is confusing here, because changes in the security
level are normally the province of "mandatory" or "non-discretionary" control.
Perhaps the distribution list mechanism should be referred to as "individual"
control instead.

Another possible objection is the apparent need to specify users one-by-one on
the distribution list; The Al security policy calls for the ability to specify
access for whole groups at a time. The apparent discrepancy is due merely to the
level of abstraction of the model. A system implementing this model can specify
sets of users symbolically in any desired way, as long as it is clear which
individual users are included.

142

Contribution List

The contribution list is a set of users, like the distribution list, ordered by
set inclusion. It is intended to implement individual control on write access. As
in the case of the distribution list, we need an assumption about the external
interface: the name of any user operating an input device must be on the
contribution list of the object representing that device.

The Read and Write conditions imply that the contribution list of any object
contains all users who may have influenced it, or will be permitted to influence it
in the future.

INPUT, OUTPUT, AND USERS

Users were previously mentioned in the context of individual access control as
elements of distribution lists and contribution lists. They have a role in modeling
the external interfaces to a system, to explain the source of input and the
destination of output.

When a model like this is considered in a larger context of network security,
it becomes important to have a more precise notion how input and output are handled.
For this reason, we will now give more detail on how users may be incorporated
formally into the model.

Let us say that users are actually special subjects. They are exceptional
because they cannot have execute accesses, and because they cannot have both read
and write accesses. This split between a user as an output sink and as an input
source reflects the lack of a deterministic circuit between the outputs to a user
and its subsequent inputs to the system. A human operator would be modeled as a
pair of users (eyes and hands respectively). A full duplex network connection is a
pair of simplex connections.

Naturally, the distribution list of an output user consists only of that user;
the contribution list of an input user is also just that user. The distribution
list of an input user and the contribution list of an output user are, by
convention, all-inclusive, so as not to interfere with users' source and sink roles.

Users are also exceptional in that they cannot directly request changes in the
system state, such as access or level changes. Requests of this kind do not really
come from users; they come from processes running software that has interpreted the
user's keystrokes. This is why we cannot say, for example, that any user, as a
subject, has the privilege to change the individual access components of any object
it owns.

INFORMATION FLOW AND ACCESS

The comment is often heard that "read" and "write" access. are meaningless terms
in security models; one could exchange them systematically, or rename them "Brenda"
and "Charlie", and the resulting model is logically equivalent to the first. Behind
the comment is the fear that one could misinterpret the model and implement an
insecure system.

Another problem with formal models is that, if they are at all complex, their
consequences are not obvious in terms understandable to the user community. They

143

may even be internally inconsistent.

In partial response to these concerns, one can prove theorems about the model.
For example, the Criteria document requires that a model be "proven consistent with
its axioms:." and it mentions in the Glossary, as part of the entry for "Formal
Security Policy Model", that the transitions of an acceptable model must be proved
to preserve the security of system states. These requirements address the potential
internal inconsistency of a model possessing both general axioms and specific rules.

There are other kinds of general properties one might wish to prove about a
formal security policy model. If the model has capabilities, i.e., access tickets
that can be passed from one subject to another, one might ask whether it is possible
to determine which subjects could eventually receive a particular capability
originally in the possession of some given subject. A similar question could be
asked about the propagation of privileges in the Al model above.

One might also wish to prove that information cannot be compromised. That is,
there should be no "information flow" from a high-level source to a lower-level
destination. The,simplest formal expression of this requirement is given in an SRI
model [FLR77]. Looking only at the inputs and outputs of a system, it says that
lower-level outputs do not depend on higher-level inputs. If all inputs that are
not below a given level were eliminated from a system history, the outputs at that
level should be unchanged. This is an example of a non-interference assertion, and
it is referred to as the multilevel security property [GoM84]. An attempt to prove
the multilevel security property for a system is referred to as information flow
analysis.

Information flow analysis is usually applied only to formal specifications or
programs, in an effort to detect covert channels. It is contended that there are at
least some models that could also benefit from information flow analysis. It seems
likely, for example, that the change-subject-current-security-level channel could
have been caught this way.

For an access control model, that is, one in which subjects have read and write
access to objects, information flow analysis clarifies the meaning of the access
modes. Write access means that the data content of an object can change; read
access means that changes in another object can depend on the data content of one
read.

Multilevel Security for the Al Model

The formal statement of the Al model, with the appropriate information flow
assumptions, and the proof of a multilevel security property, are beyond the scope
of this paper. At the time of writing this paper, the multilevel security property
for the Al model has been proved under some simplifying assumptions, e.g., that no
privileges are invoked and that no changes occur in subject or object security
levels.

The information flow analysis affected the design of the model by adding
several new ingredients, such as object values, but it also had the retroactive
effect of forcing the inclusion of the Creation and Access Change conditions for
secure transitions. These latter additions are expressed without reference to the
new ingredients, so they could be retained in a simplified version of the model from
which those new ingredients had been deleted.

144

CONCLUSIONS

The model described in this paper is too complex to qualify as a "minimum Al
policy model", but it embodies some suggestions about what is needed in models and
leads to some conclusions about what is still missing.

A minimum Al policy model could be obtained from the one given, by leaving out
all security conditions except Read, Write, and Tranquility; and dropping the
integrity components of the security level. The result would still have an
unusually restrictive interpretation of discretionary security.

The requirements for proving the model "consistent with its axioms", and for
proving that state security is preserved, are not believed to be relevant for models
not having specific transition rules. Specific transition rules were omitted
because they would restrict the applicability of the model unnecessarily to an even
smaller class of TCB's than that implied by the access control approach. The design
guidance afforded by specific rules can be left to the formal specification of a
system.

What modeling needs is the formal expression of high-level policies, which can
be used to evaluate concrete models aimed at more specific policies, like that for
Al-class TCB's, or military message systems [MLH84]. The simple requirement for
internal consistency is a good example. Another is the SRI multilevel security
property, though it is not quite right because it does not reflect various
privileged actions, such as downgrading by appropriate authorization, that are
permissible under DoD policy.

It is hoped that the ideas presented here for handling individual access
control and privilege will be useful in future modeling efforts. At the same time,
it is important to push forward in the development of new models in areas not
covered by the Criteria: applications, new system architectures, and networks.

REFERENCES

[Bib77] 	K.J. Biba, "Integrity Considerations for Secure Computer Systems,"
ESD-TR-76-372, The MITRE Corporation, Bedford, MA, April 1977.

[BLP75] 	 D.E. Bell and L.J. LaPadula, "Secure Computer System: Unified
Exposition and Multics Interpretation," ESD-TR-75-306, The MITRE
Corporation, Bedford, MA, July, 1975.

[CSC83] 	 "Department of Defense Trusted System Evaluation Criteria,"
CSC-STD-001-83, 15 August 1983.

[GoM84] 	 J.A. Goguen and J. Meseguer, "Unwinding and Inference Control,"
Proceedi~of the 198~~~Q§-~~~-~~ecurity and Privacy,
84CH2013-1, IEEE Computer Society, pp. 75-87.

[Gro76] 	 M.J. Grohn, "A Model of a Protected Data Hanagement System,"
I.P. Sharp Associates, Ltd., Ottawa, Canada, June, 1976.

[MLH84] 	 J. McLean, C.E. Landwehr, and C.L. Heitmeyer, "A Formal Statement of
the MMS Security Model," Proceeding&. of the 1984 Symposium on Security
and Privacy, 84CH2013-1, IEEE Computer Society, pp. 188-194.

145

An Overview of the Kernelized Secure Operating System (KSOS)

Tom Perrine

John Codd

Brian Hardy

Logicon - Operating Systems Division

INTRODUCTION

This paper will present the Kernelized Secure Operating System (KSOS) as it
exists today, with emphasis on its security policy, architecture, and its ability
to support secure applications, specifically the ACCAT GUARD multi-level-secure
application. A discussion of plans for its future development and qualitative per
formance information are also included.

Description of KSOS

KSOS is a multi-level-secure (MLS) computer operating system consisting of a
security kernel, Non-Kernel Security-Related (NKSR) utility programs, and an
optional UNIX application support environment. A KSOS software development environ
ment will also be provided.

KSOS was designed to be a-provably secure replacement for the UNIX operating
system, Version 6. The system runs on an unmodified Digital Equipment Corporation
PDP-11/70. The KSOS system enforces a formally specified security policy, encom
passing mandatory access, integrity, and discretionary access models. Application
programs that have been developed for the non-secure UNIX operating system may be
ported to the highly-secure KSOS environment with minimal effort.

The KSOS system has been informally evaluated by the DoD Computer Security
Center (CSC) and has been characterized as "an excellent base for developing into
anAl system."[!] This is especially significant, as KSOS was designed many years
before the DoD CSC Trusted Computing System Evaluation Criteria [2] was published.

KSOS Functional Architecture

The KSOS system is made up of the following functional areas: the Kernel, the
Non-Kernel-Security-Related (NKSR) software, and the Kernel Interface Package
(KIP). The security kernel provides the basic operating system functions of the
system and enforces the security policy. The NKSR programs provide additional
operating system functions and utility operations. The KIP is a UNIX-compatible
run-time environment for running UNIX application programs. In the future, KSOS
will include a fourth area: the KSOS development environment.

This work was sponsored by Naval Electronics System Command (NAVELEX) contract
number N00039-83-0144. UNIX is a trademark of AT&T Bell Laboratories. DEC, PDP,
and VAX are trademarks of Digital Equipment Corporation.

~
. I

146

History of the KSOS project

KSOS was originally intended to be the first production-quality multi-level
secure operating system and to provide a secure UNIX replacement.[3] It was based
on the results of the UCLA Data Secure UNIX [4] and MITRE security kernel experi
ments. [5][6]

The KSOS project began in 1977 at Ford Aerospace and Communications Corpora
tion (FACC). Since 1981, Logicon has continued to support and develop KSOS.

While KSOS was being developed to prove the concept of a buildable security
kernel, the Advanced Command and Control Architectural Testbed (ACCAT) GUARD appli
cation was developed to prove the concept of a multi-level-secure "guard" program
to provide a verifiably secure access to multi-level all-source databases distri
buted on ARPANET-like networks. [7] Initially, a UNIX prototype of ACCAT GUARD was
developed in anticipation of a secure UNIX replacement, to serve as the base
operating system for GUARD.

The KSOS Kernel Interface Package (KIP) was developed to allow the migration
of the UNIX-based GUARD prototype to KSOS with minimal software changes. This
package has since been used to port other UNIX software to KSOS, and has demon
strated significant performance improvement over the previous UNIX compatibility
supported by the original KSOS UNIX Emulator.

ACCAT GUARD, using the KIP, is currently undergoing accreditation review as a
multi-level-secure system. It has shown that KSOS is robust and capable of sup
porting a rigorous Security Test and Evaluation (ST&E).

KSOS also served as a testbed for many (then advanced) features of secure
systems. KSOS has helped to prove many of the concepts embodied in the DoD Trusted
Computer Evaluation Criteria.

KSOS SECURITY POLICY

The KSOS security policy encompasses three orthogonal policy models, one for
mandatory security, one for integrity and one for discretionary access protection.
These models are defined in terms of objects (data containers) and subjects
(processes acting on behalf of a user) and the rules under which subjects may
access objects. If any of the three models would deny access to an object, the
access is denied, i.e. all of the assertions of all of the models must be main
tained at all times. All accesses to objects are mediated by the Kernel, ensuring
mandatory access controls. It is not possible for a subject to access an object
without Kernel intervention.

Every object in the system is marked with trusted labels, which consist of a
security level, an integrity level and discretionary access permissions. Every
object is labeled (marked) by the Kernel when it is created. These labels are used
by the implementations of the security policy, within the Kernel, to permit or
prevent accesses, as specified below.

Mandatory Security Model

The KSOS mandatory security model is the Bell-LaPadula model [8], which is in
turn based on Department of Defense policies for the handling and dissemination of
classified material. It is described in terms of the "simple security property,"

147

which determines what information a user may see, and the "security *-property,"
which prevents a user from lowering the classification of information (downgrad
ing). The KSOS
"SECRET" or "TOP
"NO CONTRACTOR".

model
SEC

includes
RET", and

both
"need-

security
cto-know"

classification
ategories, such as

levels,
"NO FOREIGN"

such as
or

Integrity Model

In this model, integrity is defined as the mathematical dual of security, and
the intent of the model is to protect the system's information from modification,
while allowing it to be read by any process.

As the mandatory security model controls who may obtain data stored in the
system, the integrity model controls who may place data into the system, and how
that data may be combined with other data.

There are two integrity properties which control object accesses: the "simple
integrity property" and the "integrity *-property". The simple integrity property
prevents a high-integrity process from reading low integrity data, which might then
be written into a high integrity object. [9] The integrity *-property prevents a
low integrity process from writing into a high integrity object. These properties
keep low integrity ("less trusted") information from propagating into high
integrity ("more trusted") objects.

An example is the KSOS mount table. Every process in the system may need to
read this database, but only the operator or system administrator may change it.
This database is assigned an integrity level of OPERATOR, which prevents user
processes (running at the lower integrity level USER) from writing to the database
file.

Discretionary Access Model

The KSOS system also includes a discretionary access model, which is derived
from the UNIX discretionary model. [10] As in UNIX, every person using the system
is assigned a user identifier, and every user is a member of at least one group of
users. Every object has a permission set for the objects' owner, other members of
the owner's group, and other users of the system. There are i:Chree permissions;
"read", "write" and "execute", indicating the ability to extraWt: information from,
send information to, and (for files) the permission to load the file into memory ·as
an executable program. These permissions are established at the discretion of the
objects' owner.

KSOS KERNEL

The heart of the system is the KSOS Security Kernel. The Kernel is a com
plete operating system which provides a secure environment for the execution of
user programs. It supports multiple isolated processes, a file system and a set of
"supervisor" services. The Kernel is based on a reference monitor concept, wherein
every access to every object is mediated by the Kernel according to its security
policy.

148

Kernel objects and subsystems

The Kernel supports the following objects: processes, memory segments, dev
ices, disk extents, files, and file subtypes. These objects are created and des
troyed only by the Kernel, and all accesses of the objects are controlled by the
Kernel in accordance with its security policy. Each object is the responsiblity of
one of the major subsystems of the Kernel, described below. All Kernel objects are
labeled with their security and integrity levels and discretionary access informa
tion. All Kernel objects are assigned a unique identifier called a Secure Entity
IDentifier (SEID, pronounced "seed") which is a binary quantity. The SEID can be
thought of as the Kernel's "name" for an object. A SEID is not a capability, and
having the SEID does not imply any access privileges to the object. The only way
to manipulate the Kernel objects is through the use of Kernel calls, identifying
the object by its SEID.

The KSOS Kernel is split into four major functional areas: Process Manage
ment, Memory Management, Input/Output, and the Reference Monitor. Each of these
areas are responsible for maintaining internal Kernel databases reflecting the
state of all objects under the control of the Kernel.

Processes

All KSOS processes are managed by the Kernel Process Management Subsy~?tem.
This subsystem creates and deletes processes from the system, schedules them for
execution and controls all interprocess communication. The real-time clock is also
implemented in this subsystem, as are pseudo-interrupts and software trap handlers.
Some of these sub-subsystems are visible to a user process by means of Kernel
calls, others, such as the scheduler, are acting "behind the scenes," and are
invisible to the user process.

The Kernel process is the only active object (subject) in the KSOS object
space. Processes are the means by which programs are executed on the machine. A
process performs its work by manipulating KSOS objects, i.e. reading and writing
to and from files or devices, or communicating with other processes. A process
consists of a program image, process context information, a memory address space,
an:d a processor state.

New processes ~me into being at the request of other processes through use
of Kernel calls.

A process may execute with special privileges. Such a process is a "trusted"
process and may violate the KSOS Kernel security policy or use system control func
tions. These processes can become privileged only through the actions of the Sys
tem Administrator.

Memory Segments

The Kernel Segment Management Subsystem is responsible for allocating, deal
locating, swapping and controlling access to the segments of the primary memory of
the system. The details of physical memory management and swapping are typical of
many operating systems, and will not be discussed here. We will concentrate on the
novel features of the KSOS segmentation subsystem.

149

Memory segments are an abstraction of the virtual memory visible to a pro
cess. Memory is made up of segments, each of which resides in either the Kernel,
Supervisor, or User domains. (The domain structure is provided by the PDP-11
memory management hardware.) The KSOS Kernel resides in Kernel domain, NKSR pro
grams typically reside in Supervisor domain and user application programs reside in
User domain. A process program image and its data reside in a single domain, but
transfers of control may span domain boundaries (under Kernel supervision).

User memory is organized into named segments. Like processes, segments are,
named by their SEIDs. A user process can have up to 16 segments resident in memory
at any time, eight of which are allocated by the hardware architecture for instruc
tions (!-Space) and eight of which can contain only data (D-Space). Each segment
is limited in size to 8K bytes. Therefore, there is a limitation of 64K bytes of
instructions and 64K bytes of data per memory management domain, per process. The
maximum of 64K bytes address space can be spanned by the memory management system
only if every segment is of the maximum size.

The Kernel permits a process to manage its data segments in a manner that can
be used to best fit the application. For example, a process can dynamically create
and destroy data segments, as well as determine which of its known segments are to
be resident in main memory, and where, at any given time.

One of the more novel (and useful) features of the KSOS segmentation subsys
tem involves the use of shared segments. A process may create a segment, specify
ing that- it is to be "sharable". Any other process may then "rendezvous" with the
segment, under Kernel mediation. At this point, both processes have the same phy
sical memory mapped into their virtual address spaces. This feature permits a very
high bandwidth communication path for cooperating processes.

Input/Output Management

The KSOS I/O Subsystem is responsible for managing devices, disk extents,
files and file subtypes. Devices, disk extents and files are increasingly abstract
representations of physical input/output devices. File subtypes provide an exten
sion of the Kernel defined object types.

Devices

Devices under KSOS are handled by the low-level device drivers within the
Kernel I/O Management Subsystem. It is at this level that interrupts are handled,
device commands and data are sent to and from the devices, and data buffers and
device status registers are examined. Storage device contents are addressed by
logical block number. Non-kernel programs are unable to perform I/O directly, but
must make requests to the Kernel to have it perform I/O on their behalf.

Devices have minimum and maximum security levels that indicate what classifi
cations of data may be sent to or received from it.

User terminal devices are handled in a novel fashion. There are several
"virtual paths" to each terminal, each of which can be at a different
security/integrity level. One of these paths is reserved for use by the system and
is called the "Secure Path." This path provides a trusted communications path from
the user to the Kernel, for use in invoking trusted functions. When the user uses
the "secure attention" key, it is guaranteed that he is communicating with trusted
software, and not a program that may have been left executing at the terminal by

150

another user. This
user must be commu

secure path is used during login, logout and any time
nicating with trusted NKSR software.

that the

Disk Extents

Disk extents are the next higher level of abstraction of devices, specifi
cally mass-storage devices such as disks. An extent is a named set of contiguous
blocks on a given disk device, which can be used as a private, logical storage dev
ice. As a "device" (and an object), an extent has security and integrity informa
tion governing information flows to and from the extent. The contents are selected
by relative block number from the beginning of the extent. Disk extents are
intended for use by programs that wish to manage their own storage space, without
the imposition of any file structure by the Kernel. They might be used, for exam
ple, by a relational database, which uses its own special internal "file" format on
top of an extent.

Files

The KSOS Kernel provi,-les a "flat" file system. There are no directories or
links and files are named only by their SEIDs. All of the security and integrity
information is checked and maintained at the Kernel level. A file system resides
in an extent on a disk, and may be "mounted" (made known to the system) or
"unmounted". Files are allocated in 512 byte blocks, the blocks of which need not
be contiguous. Both random and sequential access are supported. As files are
created, they are marked by the Kernel with the security and integrity levels of
the process that created it. Files may be opened, closed, read or written only by
making requests to the Kernel.

File Subtypes

File subtypes allow a System Administrator to define a special type, or fla
vor, of file for special handling by the system. These are called "file subtypes,"
and may be thought of as a private object. They can be used in support of object
oriented programming, to implement special-use reference monitors on top of the
Kernel.

File subtypes are a special object in KSOS. They have security, integrity
and discretionary access information, just like other objects. They also have an
owner. In practice, the discretionary access allows write access to the owner
only. This becomes a "private type" of the type manager (the owner). Only the
owner may open the subtype for writing.

When a file is created, a subtype may be specified. At this point, the sub
type is entered into the Kernel's information about the file. Later, when a pro
cess attempts to open the file, it must have already successfully "opened" the sub
type with the same mode, or the file open will fail. As the owner is the only pro
cess which may open the subtype for writing, only the owner may open the "subtyped"
file for writing.

For example, the UNIX Directory Manager (UDM) implements the hierarchical
UNIX-like file system from the more primitive Kernel file system. The UDM creates
Kernel files with a subtype that only it may write. These files are then used by
UDM as UNIX directories.

151

Later, any process that attempts to open the directory file, for writing,
must have already opened the subtype for writing. As the UDM is the only process
which may open the subtype for writing, no other process may open the directory
file for writing. This ensures the integrity of the information in the directory
file. However, any process may open the directory file for reading (subject to
other access constraints, of course). Subtyped files can be thought of as a "non
discretionary, discretionary access model", where there are permissions for read
ing, writing and executing, but the permissions are set and maintained by the Ker
nel, and may not be changed at the discretion of a user program.

This feature of KSOS is very useful for implementing special-purpose data
bases where only a single process which "owns" the database is to be allowed to
update it. It has also been used for the TCP/IP network daemon, to protect files
used by the network manager, and will be used to implement multi-level-secure mail
boxes for the Secure Mail Facility.

Reference Monitor

The KSOS reference monitor has been mentioned in passing in the discussions
of the other Kernel functional areas. The reference monitor ensures that all
accesses to the objects protected by the Kernel are permissible under the KSOS
Security Model. This module is invoked by the other functional areas to determine
the validity of the attempted accesses (or information flows).

NON-KERNEL SECURITY-RELATED (NKSR) SOFTWARE

The NKSR software that is part of the KSOS system falls into four functional
areas: Secure User Services, System Operation Services, System Maintenance Ser
vices, and System Administration Services.

Secure User Services

The Secure User Services NKSR programs are responsible for initializing the
KSOS system and providing a secure path from the user to all of the trusted NKSR
services. Programs in this area include:

* Initial Process

This program is responsible for initializing the security levels of the
KSOS system objects. It is the first process to execute after the
bootstrap process.

* Secure Server Process

This is the command processor of the system. It manages the different
virtual paths to the user's terminal and invokes other NKSR services at
the request of the user.

* Login and Logout

Login is responsible for performing user authentication functions and
creating the initial user environment. Logout destroys the user's pro
cess and makes the terminal available to other users.

152

.. ;1

System 	Operation Services

These programs contain functions that are necessary to support a general pur
pose operating system. Such functions include:

* 	 Line Printer Daemon

This is the "daemon" process that performs line printer spooling.

* 	 Mount/Unmount

These facilities control the mounting and unmounting of file systems.

* 	 Network Daemon

This daemon process handles the TCP/IP DDN or ARPANET connections.

* 	 UNIX Directory Manager (UDM)

UDM implements a hierarchical, UNIX-like file system from the more
primitive Kernel "flat" file system. Text string names and directories
are implemented by this program.

System 	Maintenance Services

These programs provide the necessary functions to maintain the KSOS file sys
tems in a usable state, such as:

* 	 Storage Consistency Check (STC)

STC checks the consistency of the Kernel file system, reporting any
lost blocks, duplicated blocks, etc.

* 	 Directory Consistency Check (DCC)

DCC checks the consistency of the UNIX file system maintained by the
UNIX Directory Manager, reporting directories that are in an incon
sistent state, etc.

* 	 File System Dump/Restore

These ll~~lities provide backup and restore of KSOS file systems.

System 	Administration Services

This class of programs provides the functions needed to assist the System
Administrator in easily managing a multi-user, multi-level system. These functions
include:

153

* User Registration and Removal

This program allows the System Administrator to add new users, remove
users and identify the clearances of the users to the system.

* System Profile Maintenance

This program maintains the system profile database, which describes the
particular KSOS installation in terms of software versions, site name,
etc.

* Audit Capture Process (ACP)

The Kernel and NKSR software generate audit events for several reasons,
including user login, logout, object creation, access failures,
activity on possible covert channels, etc. The Audit Capture Process
receives these messages and writes them to an audit file.

KERNEL INTERFACE PACKAGE (KIP)

The Kernel Interface Package (KIP) provides a UNIX Version 6 system-call com
patible interface, except for those system ~alls which have been identified as
security flaws of UNIX. (The functions of the latter system calls have been sub
sumed into the NKSR software.)

The KIP is a library of subroutines and functions, one for every supported
UNIX system call, which are linked with the user program. These library functions
invoke KSOS Kernel calls to carry out their functions. Very little data is main
tained by the KIP from call to call. The KIP can be vie~ed as a UNIX to KSOS call
translator.

The KSOS KIP allows the easy migration of existing software written for the
UNIX environment to the multi-level-secure environment of KSOS. This method of
providing a UNIX environment allows source-level compatibility, and better perfor
mance than the original UNIX Emulator.

KSOS DEVELOPMENT ENVIRONMENT

At the present time, the KSOS software development environment requires a
PWB/UNIX system. All programs are prepared using the UNIX development tools.

There are plans to provide a full KSOS development environment running on
KSOS. This will give the KSOS system the ability to maintain itself. Initially, a
minimum set of software development tools will be installed on KSOS. As a prelim
inary feasibility study, the "ed" editor was ported with very few changes, making
use of the KIP.

The next phase is to select the set of tools that will be ported from UNIX.
Some candidates for UNIX software to be ported are the UNIX "shell", the "C" com
piler, the UNIX assembler, the loader and the Source Code Control System. A screen
editor will also be chosen and ported.

'154

ACCAT GUARD on KSOS

The Advanced Command and Control Architectural Testbed (ACCAT) GUARD applica
tion is a multi-level-secure application developed for the Naval Electronic Systems
Command (NAVELEX).

ACCAT GUARD will provide a certifiably secure interface between two computers
or subnets on the Defense Data Network (DDN) which are operating at different secu
rity levels.

The GUARD system is responsible for secure exchange of information between
HIGH level and LOW level network connections. The boundary between these HIGH and
LOW levels is guaranteed through the KSOS multi-level security protection mechan
isms in accordance with the DoD security policies.

ACCAT GUARD allows the passing of information from the LOW to the HIGH net
work automatically, but ensures that all information passing from the HIGH network
to the LOW network is subjected to manual sanitization and manual review for down
grade. The downgrade is performed by a formally specified, trusted program, the
Downgrade Trusted Process (DGTP), which is the only component of the GUARD applica
tion software which is trusted (or privileged) to perform the downgrade (by the
KSOS security mechanisms).

The ACCAT GUARD system has passed Security Test and Evaluation (ST&E), and is
under accreditation review by the Defense Intelligence Agency. The ST&E has shown
the robustness of the Kernel and the application, by executing under a wide variety
of load conditions for extended periods of time. Most importantly, no security
weaknesses were discovered during the ST&E.

ACCAT GUARD was developed with several goals in mind. Its primary goal is to
validate the concept of a guard as a buildable multi-level-secure application. But
in addition it validates the concept of KSOS as a production-quality security ker
nel, and demonstrates the capability of KSOS to host an application which was ori
ginally written for execution on UNIX, using the KIP.

KSOS - FUTURE PLANS

KSOS development is continuing at Logicon, in support of the ACCAT GUARD sys
tem. Additional areas of research include developing KSOS into
tifiable system, porting KSOS to alternate hardware architectures,
performance and functional enhancements to the existing system.

a DoD CSC Al
and prov

cer
iding

DOD CSC Al Certification

KSOS was designed to be a secure system before the DoD CSC published the
Trusted Computer System Evaluation Criteria. The security policy was not an add
on, and security was the prime design goal. The KSOS Kernel is described by a For
mal Top Level Specification (FTLS), expressed in SPECIAL. An informal review of
correspondence between the FTLS and the KSOS implementation has been performed, but
the formal document has not yet been produced. KSOS has been characterized as an
excellent base from which to build a secure system.

Over the lifetime of KSOS, several verification efforts have been performed
by the MITRE corporation. The results of these efforts are available from MITRE.
The most recent effort [11] involved the Kernel FTLS, which was examined using the

155

·.'
~

:.1

Hierarchical Design Methodology (HDM) [12] tools.

This effort produced 1638 theorems, 939 of which were proven trivially and
431 of which were eliminated as duplicates. This left 268 theorems, of which the
theorem prover was able to prove 47, leaving 221 unproven theorems. The number of
unproven theorems can be further reduced to a minimum by several methods, including
adding additional assertions to the specification. Any remaining unproven theorems
which are shown to indicate covert channels may be handled by limiting the
bandwidth of the channel, or auditing the use of the channels.

Since this verification effort, however, the Kernel has had minor changes.
The current FTLS correctly reflects the state of the KSOS implementation, but needs
additional work.in the area of specifying more assertions, to allow more of the
theorem proving to be performed automatically.

Although Logicon is not currently under contract to develop KSOS to the Al
level, we expect this effort to proceed in parallel with further development of the
system, i.e. all changes that are made will be designed with eventual Al certifi
cation in mind. According to the Computer Security Center, "KSOS is an excellent
base for developing into anAl system." All of the areas in which KSOS is deficient
have been identified, and the necessary development activities have been specified.

New hardware architectures

One of the original design goals of KSOS was to provide an easily portable
system that could be moved across machine architectures with minimal re-design
effort.

We are currently investigating the migration of the KSOS system to other
hardware architectures, specifically, the Digital Equipment Corporation VAX. Most
limits of KSOS performance are imposed by the architecture of the PDP-11. Migra
tion to a VAX will provide many benefits, especially allowing KSOS to reside on a
wide price/performance range of machines, all running functionally identical Kernel
software, with only minor changes to support different central processors.

It is expected that we will be able to move KSOS to the new PDP-11/73
hardware which is a less-expensive, single-board implementation of the full PDP-11
architecture. This could be accomplished with little or no effort providing a
low-cost hardware base for the current PDP-11 kernel.

Other architectures which may be examined in the future include the Motorola
68000 family, National Semiconductor NS32000 series and other high-performance
microprocessor families.

Performance and Functional Enhancements

Several opportunities for performance and functional improvements have been
identified within the KSOS system. In particular, there are plans to improve the
Kernel Input/Output Subsystem, specifically in the areas of terminal handling,
asynchronous I/O and device request handling.

The current KSOS design allows multiple processes to share a single copy of
read/execute-only instruction spaces. However, the implementation of shared
instruction segments is incomplete. Shared instruction space will also decrease
the swapping load on the system and increase throughput dramatically.

156

I

The current KSOS KIP supports a UNIX Version 6 environment within the MLS
environment of KSOS. Other system call translators will be written for other UNIX
versions. For example, interface packages could be written to support the 4.2BSD
or AT&T System V system call interfaces. Once the system calls are available,
application software can be ported with minimal effort.

PERFORMANCE

This section reports the results of some informal, qualitative performance
measurements which were performed recently. The figures are not intended to state
absolutely the performance differences between the environments, but to give a feel
for the performance of a security kernel and point out that applications that are
intended to run on a kernel will benefit if written to use the native environment
of the kernel. Applications can be ported directly, using the KIP, but performance
will be traded for ease of migration.

These programs use the following environments: the KSOS Kernel native-mode
run-time environment, the UNIX Version 6 environment as provided by the Kernel
Interface Package on top of the Kernel, and the PWB/UNIX environment. All systems
were run on the same PDP-11/70 at Logicon.

Tasks

The following types of programs were identified as being "interesting",
because they exercise various parts of the different environments and are typical
of the tasks of application programs.

* 	 CPU intensive

This task is to repeatedly compute the prime numbers less than 10000,
using a relatively inefficient algorithm (Sieve of Eratosthenes).

* 	 Interprocess Communication (small messages)

This task is to pass many 10-byte messages from one process to another.

* 	 Interprocess Communication (large message)

This task is to repeatedly pass a single large (1000-byte) message from
one process to another and back again.

* 	 File Input/Output Intensive

This task is to open an existing file, write 64 blocks of data, rewind
the file and read the data.

* 	 Process Creation

This task times the various process creation mechanisms. A process is
loaded into the system. This process starts off a child process, and
then exits. The child does the same thing. This continues for 100 pro
cess creations.

157

Experimental Results

The selected test cases have been chosen to correspond to the types of opera
tions typically performed by application software. Test programs were written in c
for execution under UNIX. These UNIX-based programs were executed under KSOS/KIP
environment with no changes to the software. Finally, each program was modified to
execute directly with the KSOS Kernel. For each test case, the total elapsed time
required to complete the test was measured. The test results were normalized with
respect to the time required to complete the same functional test under the UNIX
operating system. These results are summarized in the following table.

Performance Characteristics Ratio - KSOS vs UNIX

Test Scenario UNIX KSOS (KIP) KSOS (Kernel)

CPU-bound 1.0 1.0 1.0

IPC (10 bytes/msg) 1.0 25.0 3.9

IPC (1000 bytes/msg) 1.0 65.0 1.7

IPC (5000 bytes/msg) 1.0 325.0 0.3

I/O-bound 1.0 1.6 1.4

File Creation 1.0 139.0 13.9

Process Creation 1.0 67.6 30.8

Software portability versus desired performance characteristics continues to
be the topic of intense debate and trade-off analyses. This issue is especially
significant when developing application software which will operate under a secure
system such as KSOS. As shown in the table, rather significant gains in perfor
mance can be achieved by tailoring the application to the features provided by the
kernel. In particular, the ACCAT GUARD system performance was improved by approxi
mately a factor of three by applying this concept to a small set of carefully
chosen application modules.

It is interesting to note that for CPU-bound application software, the KSOS
Security Kernel does not impose any performance penalties when compared to UNIX.
As for the CPU-bound software, I/O-bound software only has a marginal decrease
in performance. This result was anticipated due to the differences in the I/O
design philosophy between UNIX and KSOS. Furthermore, the version of the test that
executed directly under the KSOS Kernel was only slightly improved over the perfor
mance of the similar test which executed under the KSOS/KIP environment. There
fore, for this case of application processing, the UNIX-based software can be
migrated to KSOS with relatively small performance penalties.

158

I

In applications which required a high degree of interprocess communication,
the tests clearly indicate that using the features of the kernel will provide
rather significant increases in performance, particularly when rather large mes
sages must be exchanged. It is interesting to note that as the message size
inceases, the interprocess communication features provided by the KSOS Kernel will
permit a higher effective throughput rate than UNIX.

Finally, new object creations, particularly processes and UNIX file systems
managed outside the KSOS Kernel, will require considerably more computational
resources than non-security kernel-based operating systems such as UNIX. Again,
this result was anticipated due to significant differences in the design between
UNIX and KSOS.

CONCLUSION

KSOS is a demonstratedl full-featured operating system built according to th~
latest philosophies in computer security. It runs on commercially available
hardware and holds the promise of providing secure processing on a family of
hardware that spans the spectrum of computers from micro to mainframe. With KSOS,
a system implementer may easily port existing operational software to a secure
environment and not necessarily pay a great performance penalty. KSOS is an ongo
ing software project that offers a solution to the MLS problem while continuing to
improve its features and performance.

159

REFERENCES

[1] 	 Letter to Commander, NAVELEX, 25 June 1984, subject: KSOS-11
Security Assessment

[2] 	 CSC-STD-001-83, "Department of Defense Trusted Computer
System Evaluation Criteria," 15 August 1983.

[3] 	 E.J. McCauley and P.J. Drongowski, '~SOS: The Design of a Secure
Operating System," in Proceedings, AFIPS National Computer Conference,
AFIPS Press, Arlington, Va., 1979, Vol 48, pp. 345-353.

[4] 	 G.J. Popek, M. Kampe, C.S. Kline, A. Stoughton, M. Urban, and E.J.
Walton, "UCLA Secure UNIX," in Proceedings, AFIPS National Computer
Conference, AFIPS Press, Arlington, Va., Vol 48, pp. 355-364.

[5] 	 W.L. Schiller, "Design of a Security Kernel for the PDP-11/45," MITRE
MTR-2709, MITRE Corp., Bedford, Mass., June 1973.

[6] 	 K. Biba, J. Woodward, and G. Nibaldi, "A Kernel Based Secure UNIX
Design," MITRE ESD-TR-79-134, MITRE Corp., Bedford, Mass., May 1979

[7] 	 D. Baldauf, "ACCAT GUARD Overview, 11 MITRE MTR-3861, MITRE Corp. ,
Bedford, Mass., Nov. 1979

[8] 	 D.E. Bell and L.J. LaPadula, "Secure Computer System: Unified
Exposition and Multics Interpretation," MITRE MTR-2997, MITRE Corp,
Bedford, Mass., July 1975.

[9] 	 Biba, K.J. "Integrity Considerations for Secure Computer Systems,"
MITRE MTR-3153, MITRE Corp., Bedford, Mass., June 1975.

[10] 	D.M. Richie and K. Thompson, "The UNIX Timesharing System," in
Communications of the ACM, Vol. 17, No. 5, pp. 365-375. (May 1974)

[11] K.E. 	Kirkpatrick, '~SOS Verification Part I: Analysis of the
Specifications and Use of the Verification Tools," (working paper),
MITRE Corp., Bedford, Mass., February 1982

[12] 	 B.A. Silverberg, "The HDM Handbook, Volume II: The languages and
tools of HDM," SRI International, 1979.

I

I

160

FUTURE DIRECTIONS OF SECURITY FOR

SPERRY SERIES 1100 COMPUTERS

T.M.P. Lee

Program Manager, Systems Security

Sperry Corporation

Computer Systems

Roseville, Mn.

ABSTRACT

At the third of these seminars -- four years ago we
discussed the evolution of computer security features in our
past and present products. With the first delivery this last
April of the large-scale 1100/90 computer, which includes a
new addressing and protection architecture especially enhanced
for security and integrity, we can now discuss the direction
the Series 1100 Operating System will be taking over the next
half-decade or so. As in the past many improvemen~s will be
made in direct response to specific marketplace requests -- in
this case, both individual customer recommendations and the
various steps needed to progress up the levels of the DoD
Trusted Computer System Evaluation Criteria.

INTRODUCTION

I am pleased to be able to make an announcement. Two months ago
Sperry computer systems began a multi-million dollar research and
development program in computer security. This program will result in
OS/1100, the operating system for our Series 1100 family of computers,
being certifiable at the B1 level in early 1987, and B2 as quickly as
possible thereafter.

The purpose of this report is to describe the changes and
enhancements we will be making to the system as part of this program.
To a large extent the report has been prepared for an audience not
familiar with our systems and terminology; many details of interest
only to people such as system analysts (or our evaluation team> will
not be covered. It does cover four topics:

1) the functional software changes to meet B1 requirements
2) a number of additional changes recommended by our users
3) the new hardware architecture just delivered in our 1100/90

that will make it possible to do a B2 and B3-level
restructuring without suffering unacceptable performance
penalties

4> how we intend to use that architecture.

Those of you familiar with other systems will recognize a number of
the features discussed here as similar to those in other systems or in
the literature. This report will not attempt to make a comparative
analysis, but we do of course freely acknowledge our debt to the

161

accumulated wisdom of others.

The two-year estimate for attaining B1 is real, for the three most
important reasons we know fairly accurately from a detailed
technical plan how many man-years of work it is going to take, we have
the funding in place to get that much work done by that date, ,and we
have just about completed getting the right number of people in place
to do the work.

To further emphasize our commitment to trusted computer systems, ,
and our faith in the underlying approach, as soon as a certified
B1-level system is released we plan to institute a new policy towards
the handling of user reports dealing with potential security defects.
Any properly documented and reported design or implementation flaw
that permits a credible breach of security will be handled at the
highest possible 'level of priority within our software maintenance
organization. For those familiar with our procedures, this means
that a fi}: to eliminate, repair, or render the flaw une}:ploitable will
be developed in response to a Priority 4 SUR (Software User Report.>

During the interval of responding to the flaw report, knowledge of
the flaw will be carefully controlled and limited. It might be
appropriate, in fact, to notify all users as quickly as possible of
the existence of the flaw, even before we have a fi>: for it, but we
need to think that through a bit more. At the least we would
certainly notify the DoD Computer Security Center, and would hope it
would reciprocate by telling us about the vulnerabilities reported to
it through its procedures.

CURRENT IMPROVEMENTS

We have to walk before we can run. Those of you who have been to
several of these seminars before, and certainly that includes our
competitors, are well-aware, even though it has never been publicly
announced, that we have been involved in what used to be called an
"informal evaluation" of OS/1100 by the DoD Computer Security Center.
The draft report of that evaluation carried no surprises -- anyone who
knows our system can compare it against the Orange Book -- but it did
make mutually clear a few things that needed to be done to reach level
C2. Our user's meetings have also recommended to us a number of other
desirable enhancements in roughly the C2 area, most of which will be
implemented.

The main thing missing from the C2 requirements wa·s an approach to
discretionary access controls that clearly met the spirit of the
Orange Book. What had been in our system could have been successfully
argued as having met the requirements, but it would have been a tour
de force. Software is now being integrated into the system that
associates with each file (and eventually other classes of protected
objects) the identity of its owner; previously the closest notion of
ownership we had was that of the project or account the file belonged
to. The owner of a file will have the ability to explicitly give a
list, which he, and only he, can later change, of which other users
are able to access that file, and in which ways. If no list is given,
the file can only be accessed by its owner. <By the way these

162

access control lists are named entities and thus the same list can be
easily attached to several files at once.>

Another major change necessary for even C1 level accreditation
arises in our transaction processing system. For many years OS/110@
has supported what one might think of as a special-purpose
high-performance sub-operating system designed primarily to handle
applications like airline reservations or customer inquiries. This
sub-operating system <called TIP, for Transaction Interface Processor>
does not fit the computer science model of one process per user, but
in fact much better fits the model of one process per kind of
transaction. The TIP system itself has no notion of the identity of a
user, although application programs under TIP may choose to identify
and authenticate their users.

It is clear that for a clean accreditation at the C levels, and
even more so at the B levels, this way of doing business is
unsatisfactory, since it forces part of the TCB to be in applications
programs. Accordingly we have in the works a number of changes to
ensure that all users must logon (uniquely identify and authenticate
themselves) in an effective and uniform manner, no matter what kind of
application <time-sharing, transaction, or real-time> they are
connecting to. This ensures that any security-relevant activity -
recorded in an audit trail -- can be traced to the paricular person
responsible. Other changes in the TIP environment will also occur as
part of the level B1 enhancements.

B 1 ENHANCEt1ENTS

Most of what we have to do to meet the level B1 requirements can
be easily stated: files and other protected objects need to have
security levels and compartments associated with them, and hard-copy
output needs to be labelled with human-readable security labels. Our
present mechanisms, which have a notion of security level and a kind
of compartmentation, will be modified to conform strictly to the
lattice policy outlined in the Orange Book and elsewhere. At this
time we are not sure about how many compartments to support; a number
in the range of 32 to 64 can be done easily, but we also have under
consideration an alternate, less straight-forward approach that could
handle thousands of compartments, provided no single user or file
deals with too many at once.

As part of the task of implementing and enforcing security
labelling of files we are also extending the concepts to objects other
than files. Tape and disk volumes will be able to bear over-all
security labels. A terminal and communication line will be able to be
marked as to the highest security level and set of compartments
accessible from it. Messages over communications media will be marked
with the appropriate security labels, either by treating an entire
session as being at a given level or by tagging each message,
whichever is appropriate to the protocol involved.

As mentioned earlier, the TIP environment will also be modified to
enforce access controls based on security labels, in addition to the
current mechanisms.

163

At this point it is appropriate to mention that all our
enhancements -- including those to be discussed below as part of the
path to B2 and beyond -- are being done in a way that is upward
compatible with existing user applications. This is not easy and has
on occasion forced us to make uncomfortable design and implementation
choices. In particular, under the new hardware architecture described
below it will be necessary for quite some time to run a machine that
has code operating in both the old and the new architectures.

OTHER SHORT-TERM ENHANCEMENTS

Although all are not strictly necessary to meet the letter of the
Orange Book requirements, over the two-years or so it will take to do
the primary level-Bl enhancements we will also be making a number of
other changes and improvements in the security features of the system.

One set of enhancements and changes are associated with password
management. The password file will be encrypted as a further
protection against unauthorized access to it. We recognize in addition
the need to provide further tools that encourage proper password use
and discourage improper use. Tentatively it looks like we will
support e>:piration times on passwords <to force users to change them>
and system-generated passwords <to discourage users from picking
easily-guessable passwords.) Unfortunately this is an area that
seems to be fraught with emotion: we have customers with very
firmly-held views on the right way to manage passwords, and, as ought
to be expected, a number of those views are incompatible.

One requirement (initially at the Bl level, but now at the C2
level> of the evaluation criteria (and of common sense> is that
residue in storage media be erased before the space it occupies is
allocated for a different purpose. The most efficient way to do this
would be to ensure that a block of storage must by written by the user
before it is read; an alternative is to scrub storage when it is
de-allocated. A third alternative would be to allocate storage in
pools, each pool of a single security level and compartment set. We

.haven"t decided which approach to use for each of the various kinds of
storage media concerned, but in each case not yet covered at least one
acceptable approach has been identified.

Finally, to make the list complete, we are integrating the various
parts of system administration, including security administration,
into a common, system-wide interface.

TOWARDS B2 AND BEYOND -- NEW HARDWARE

Those of you who have studied the Orange Book know that the main
feature that distinguishes the B2 and higher levels from Bl and the
lower levels is the need to remove as much non-security relevant code
and data from the Trusted Computing Base as possible, and, structuring
what is left into independent modules. The strong implication of
these requirements -- and even more so at the B3 level -- is that the
separate modules of the TCB be isolated from each other by hardware

164

mechanisms, not just software engineering.

To meet this requirement -- although at the time it was only
intuitively felt to be one, the Criteria not yet firm -- as well as
other integrity and reliability needs, a number of significant changes
were made to the hardware architecture of the 1100 series of
computers; the first model of the series incorporating these changes
was the 1100/90, which was first shipped to a customer last April.

Without going into a lot of detail, which you can read in the
hardware manuals, I will outline the main changes relevant to this
discussion. There are many other changes that make all this work
efficiently, such as instructions to rapidly change addressing and
protection conte>: t •.

Base Registers

The 1100 series is a base-register machine, although those of you
who have only a casual assembly-language reading knowledge of it may
not be aware of that. The address space visible to a program is
defined by four "bank" registers. A storage-referencing instruction,
possibly after indexing, results in a "relative" address. Each bank
register describes a region of the entire possible relative address
space and a translation of that space into real, physical memory
space. The relative address generated by an instruction is translated
into a physical address by finding the bank register that includes
that relative address; there are some subtleties to the algorithm that
are exploited and some that are possible points of confusion, but the
details are not important here.

What is important is that in the new architecture, called
"extended mode", the user's addressing environment is now described by
16 base registers. <There is also a separate set of 16 base registers
for use by the kernel of the operating system.> Storage referencing
instructions operating in extended mode now contain a four-bit field
explicitly selecting which base register to use. The physical address
is formed by adding the relative address to a base value contained in
the base register (after a limits check.)

Bank Descriptor Tables

In both the old architecture (called basic mode> and the new, the
contents of base registers are protected. The operating system
provides the user with a set of "bank descriptor tables" that describe
all the possible banks it is legal for him to access. <Obviously,
only the operating system can change the contents of a bank descriptor
table.) The user has a set· of instructions that load base registers
from bank descriptor tables. One can think of the base registers as
defining the user's current window into storage; the bank descriptor
tables define everything he could potentially be allowed to see at any
moment, and the load-bank instructions allow him to move his window
around the visible portion, but only the visible portion.

165

··.. ·'1
. . 1

J

In extended mode there are four bank descriptor tables that a user
can load base registers from. <Incidentally, the four tables are in
fact defined by four of the kernel~s 16 registers.> Kernel software
will structure the use of these to shape the entire virtual address
space into a four-level tree. The top level contains banks which any
user in the system can potentially see; the second level contains
banks private to a single application, where an airline reservation
system is an example of an application; the third level contains the
banks for a program; and the fourth is private to a single proce$S.
The intention is that if a bank is to ever be shared by more than one
part of the system, there will only be one copy of its descriptor, and
that of course must reside high enough up in the tree for all
potential users to be able to reference it.

Domains

The astute reader at this point will ask, "what about banks, such
as those in the operating system, that must be accessible to all
processes, but only when those processes are running in the operating
system?" Associated with each bank <contained in its bank descriptor)
is an access-control lock and two access permission fields, called
general access permission and special access permission. Part of
process state is an access-control key. Each access permission field
encodes whether no access, read access, write access, or enter access
is allowed. <Enter access is described below.) If the access-control
key matches the lock, the access granted by the special access
permission field is allowed, otherwise the general field applies.
Thus the access to any bank can be differentiated into two kinds
that allowed anyone who can reference the bank (which might be no
access at all>, and that allowed only when the process is running with
the proper access key. The access lock and key are composed of a
two-bit ring field and a seven-bit domain field. The two match if
either the ring of the key is strictly less than the ring of the lock
or if the two domain fields are equal. <If the domain field of the
key is all zero, all forms of access regardless of the settings of the
permission fields are granted.)

Gates

Obviously, control over when and how the access key can be changed
is important. The key can only be changed by a Call or Jump
instruction whose address is not an instruction itself, but rather a
special construct called a Gate. The hardware knows the target of a
Call is a Gate because contained in a bank descriptor is a field to
indicate what type of bank is being described; for our purpose here,
the main distinction is between gate banks and all other kinds. A
Gate then is the means for making a controlled transition between
domains of different privilege; one cannot enter a different domain
without going through a gate, and one can only go through the gates
for which one currently has Enter access permission. <Note that a
Gate contains in addition to the access key to be used the instruction
location to start at as well as bits controlling other parts of
processor state.>

166

I

The hardware also supports a Return Control Stack, protected from
any direct access by ordinary programs, on which is saved the
privilege state, instruction location, and other information needed to
return to the proper environment after a Call.

TOWARDS B2 AND BEYOND -- NEW SOFTWARE

To reach B2 and higher the main concept that we will be
implementing beyond those needed for Bl is that of the software
subsystem. Software subsystems are the means for structuring software
into separate domains. A software subsystem is very much like a user:
it has an identity, can be the owner and sole accessor of files and
banks, and has security properties. It has its own dynamic linking
environment and its own set of routines to respond to error conditions
and software interrupts. When a process running in one subsystem
attempts to link to another, the appropriate security rules are
checked to see if the link is permitted; if so, and only if so, a gate
only accessible to the calling subsystem is built that permits it to
call into the second subsystem. Each subsystem is assigned a domain
number, which is used to keep separate the banks belonging to the
different subsystems.

The proper coupling between the software concept and the hardware
mechanisms is being done very carefully. Just as an example, one
would think that 7 bits of domain number would severely restrict the
number of domains possible. In practice this is not true because it
must also be remembered that in order for a bank to be accessed its
descriptor must be in the part of the address tree that is
addressable; in effect, each domain number is qualified by the node in
the address tree it belongs to. There can thus be some fraction of
the possible domain numbers that are shared across all parts of the
system, a different fraction by each application, another by each
program, and yet another by each process.

Ordinary users can write and use software subsystems, but those
subsystems cannot have any special privileges-- i.e., they can access
no more than their creator. Security administrators, however, can
designate particular subsystems as being trusted, with the specific
kind and degree of trust carefully controllable, ranging from merely
permitting the subsystem to downgrade information to allowing it to
execute with privileged hardware instructions.

With these software constructs we will be able to gradually
restructure the system. More importantly, perhaps, users will be able
to easily create their own protected subsystems and write multi-level
applications. In both cases, whether or not the facilities are needed
for and used for enforcing a security policy, they will certainly
improve the integrity of the system and make software maintenance
easier. Some parts of the software subsystem concepts will in fact be
available long before the major B2-level restructuring.

167

CLOSING COMMENTS

There are two obvious omissions in the above: there is no
discussion of security in our data management system,. and there is no
clear indication of when the B2 or higher level systems will be ready.
Those omissions are deliberate.

We have some ideas on how to do data management security, but so
far it is clear that our customers don't really know what they want or
need above and beyond what is currently available. The National
Academy of Sciences Summer Study on Secure Data Management Systems has
been some help, but there is a lot of conceptual work yet to be done.
As an interim step, we are considering having a single 1100 system
support several data bases, each managed by one of our data management
systems <we have both a relational and a CODASYL data management
system>, with each data base at its own security level separated from
all the rest by the application-level nodes of the address tree.

We are getting a feel for what it is going to take to restructure
the system to meet level B2 and above, but are not yet completely
confident about it, nor about what priority we should place on it.

We are committed to continuously enhancing the trustworthiness of
our systems. This report has covered the first few steps, in some
detail. As you can see, we still have some choices to make and some
priorities to set. We particularly welcome and solicit comments and
advice in these areas and thank you for the advice we have already
received, whether you think we have heeded it or not.

168

LIFE CYCLE ASSURANCE FOR TRUSTED COMPUTER SYSTEMS:

A CONFIGURATION MANAGEMENT STRATEGY FOR MULTICS

Maria M. Pozzo

Honeywell Information Systems, Inc.

1 ABSTRACT

The goal of this paper is to discuss the control objective
outlined in the Department of Defense Trusted Computer System
Evaluation Criteria for the area of Life-Cycle Assurance in
particular, Configuration Management. In addition, this paper
will describe the Configuration Management Strategy for the
development and maintenance of the Multics Operating System, and
how it evolves over the life of the system, as the need for
assurance of security mechanisms (documentation, source code,
test procedures, etc.) becomes more prevalent.

2 INTRODUCTION

According to the Department of Defense Trusted Computer System
Evaluation Criteria(1), six fundamental requirements are specified in
the definition of a secure computer system. Of the six, four deal
with the mechanisms needed to control access to information, while the
remaining two discuss a means for obtaining assurances that these
control mechanisms are provided and remain consistent throughout the
life of the trusted computer system.

A control objective is a statement of intent with respect to control
over some aspect of an organization's resources, or processes, or both
[D 0D 8 3] , [F IPS P 80] • The Cr iter i a o u t l in e s control o b j e c t i v e s in
three basic areas: security policy, accountability, and assurance.
The intent of these control objectives is to provide a set of
guidelines for developing a strategy for a specific system in order to
meet the requirements of the Criteria.

Section 3 provides an overview of computer security and discusses the
need for and definition of control objectives. Section 4 defines the
control objective for Configuration Management, and discusses the
various areas which must be covered in any such plan. Section 5
presents the current Configuration Management Plan for Multics and
describes statistics that are gathered throughout this process. The
gathering of statistics can help to identify success or failure of
specific aspects of the plan so that they can be improved. It is in

(1) Order number esc -STD-00 1-83, referred to as the "Orange Book" or
" Cr i t e r i a " •

169

this way that the Multics Configuration Management Strategy evolves,
as does the system itself, in order to continue to meet the
requirements of both the Criteria and the expanding user community.
Section 6 discusses the on-going evolution process for Multics
Configuration Managment.

] COMPUTER SECURITY

.1:1 	Background

Because the availability of computers has greatly increase·d in both
the public and private sector, computer security is needed to protect
against events that have adverse effects during computer processing.
Towards this effort, the DoD Computer Security Center was founded to
provide guidance and encouragement to vendors who develop and maintain
commercially available secure computer systems. According to the
Criteria, a secure system is one that provides specfic mechanisms,
both automated and manual(1), which control access to information such
that only authorized individuals, or processes running on behalf of
individuals, have access to read, write, create or delete such
information. In a broader sense, computer security also includes
assurances that the system functions properly and is maintained in
such a way as to prevent harmful side-effects [FIPSP 80].

3.2 	Security Objectives

During the initial planning stages for any system, it is necessary to
first define the objectives of the system. For a secure computer
system, the Criteria defines three such objectives: security policy,
accountability and assurance. Each objective defines a set of one or
more controls which must be present in a system in order to achieve a
particular security objective. The first area, security policy
control objective, defines four such controls. To achieve this
objective, a system must provide controls with respect to the system's
security policy in general, the system's mandatory access controls,
the discretionary access controls, and the system's policy on marking
information. Each of these controls is identified as a control
objective. The accountability and assurance objectives each have one
such control to achieve the respective objective. Therefore, acording
to the Criteria, there are six control objectives: Security Policy,
Mandatory Security, Discretionary Security, Marking, Accountability,
and Assurance.

Each control objective defines a set of requirements which provide a
framework for meeting the security control objective. For example,
the Criteria defines an accountability objective for secure systems.

(1) 	Manual mechanisms are those procedures recommended by system
documentation in order to maintain a trusted environment in which
the system must be operated in order to provide a specific level
of security •

. : :!.

170

There are several requirements, 1) individual user identification,
2) authentication of the user identification, and 3) dependable audit
capabilities. The accountability control objective as defined in
Section 5.3.2 of the Criteria provides a framework that is flexible
enough to encourage a variety of mechanisms that will meet this
security control objective.

Section 4 will provide an in-depth discussion of the Assurance Control
Objective as defined by the Criteria.

4 LIFE CYCLE ASSURANCE

The control objective as stated by the Criteria for assurance is
stated below. The Criteria specifies two requirements for the
assurance control objective: operational and life-cycle assurance.
This paper deals only with life-cycle assurance.

ASSURANCE CONTROL OBJECTIVE

Systems that are used to process or handle classified or other
sensitive information must be designed to guarantee correct and
accurate interpretation of the security policy. Assurance must
be provided that correct implementation and operation of the
policy exists throughout the system's life-cycle.

The life-cycle of a computer system has three phases: initiation,
development, and operation (that phase at which the system is accepted
and used as intended). After some period of operation, the system
will be expanded or revised and the life-cycle begins again [BRAND
82]. Security must be considered at each phase of the computer
system's life-cycle [FIPSP 80].

~ Configuration Management Strategy

Configuration Management is a policy statement which controls an
organization's resources and procedures during a computer system's
life-cycle. In order to meet the requirements of the Criteria, a
Configuration Management Plan must cover all aspects of the computer
system's life-cycle from initiation to operation. Specifically, a
Configuration Management Plan applies to expansions or revisions of a
computer system. The following section describes the areas that must
be covered under such a plan and provides possible suggestions for
developing a Configuration Management Strategy.

4. 1.1 INITIATION PHASE

During the initiation stage, a variety of alternatives must be
considered with respect to the intended rev1s1on or expansion.
Feasibility studies and cost-benefit analysis should be conducted.
The impact on the computer system's security mechansims must be
evaluated during this phase [FIPSP 80]. For example, suppose a
revision is needed due to a system bug, customer request, or general
enhancement. The initiation phase should first perform a feasibility

171

,: :,:: :j
- . :

' '
_.:f

study to determine a set of alternatives for making the change (one of
which might be not to make the change). Each alternative includes its
cost and hardware, software and security implications. It is then
possible to perform a cost-benefit analysis. The set of alternatives
will be larger for a new system than for one already in existance,
which will be restricted by its current implementation. See [FIPSP
80] for more details on the initiation phase.

4. 1.2 DEVELOPMENT PHASE

Once a commitment has been made to revise a system, the development
phase can begin. This phase has the following stages: definition of
the high-level description, detailed design, implementation and
testing. A Configuration Management Plan defines procedures for all
stages of this phase from high-level description to testing.

4.1.2.1 High-Level Description

As a first step, the developer provides a high-level description of
the revision, documents it and submits it to management and peers for
review. This description includes any relevant security issues and
their implications as well as areas of the system that could be
affected by the change. Since this is a high-level description,
details of interfaces are not necessary. This stage should be
completed prior to any prototyping.

4. 1.2.2 Detailed Design

Subsequ9nt to the high-level description, it may be necessary to
perform some initial prototyping. A prototype is a skeletal
implementation which aids the developer in building the design and may
greatly impact it. The prototype is not part of the implementation
and is usually discarded once the design is completed.. With the aid
of prototype results, the high-level description, and a thorough
knowledge of the area of the system being revised, the developer
proceeds with the detailed design. A detailed design document
describes the current state of the area to be revised, the reason it
is being changed (such as known problems), and a detailed description
of the change. All interfaces should be specified, particularly those
interfaces external to the area being changed. If the change is for a
part of the system which involves the security mechanisms or may have
some impact on overall system security, these issues should be
described in detail. Testing procedures should also be included.
Lastly, a
plan should

plan
in

for
clude

completing
the eff

the
ort

change
required

should
for

be
each

specified.
phase

This
of the

revision.

4. 1.2.3 Design Review

Once the design document has been completed, a design review is
conducted. The design should be reviewed by several different groups
of individuals. One or more persons knowledgeable in security issues

172

should conduct a review geared towards the security implications. A
peer review should consider the technical aspects of the design.
Finally, a management review should determine if the design is
acceptable. This stage is complete when the design document has been
updated to reflect the results of the design review.

4. 1.2.4 Implementation and Testing

Implementation should adhere to the organization's programming
standards. Programming standards specify the language(s) which can be
used, correct programming formats and conventions, and development
tools which are recommened. Programmers should be sure to implement
only that which is specified in the design document. If this is not
the case, the design document must be updated and reviewed as stated
in the previous paragraph. Finally, complex or overly sophisticated
code may cause more problems than are justified by the efficiency they
are intended to achieve. In most cases, simple, straightforward code
provides the best implementation.

Testing should proceed as specified in the design document. There are
many ways to accomplish testing. One example is to test at the
interface level. When a system is tested through its-interface, its
behavior is tested to insure that it performs those functions and only
those functions that it is intended to perform. Testing can be
accomplished manually or automatically. However testing is conducted,
a test plan should be provided which states the tests to be made and
their expected results.

There must be a set of procedures for exposure. One thing that must
be considered is where in the file system the development work is to
be accomplished. Depending on the nature of the work, it may be
necessary to provide security mechanisms so the code under development
cannot be tampered with. If modifications must be exposed, there must
be a standard place in the system where such experimental code can
reside. The length of time for exposing such code must also be
specified.

4.1.2.5 Audit

When testing and implementation have been completed, the code should
be audited. For security-related areas of the system, it may be
necessary to have the code audited by a security expert initially,
followed by a technical audit. The auditor should consider
programming standards to insure that the developer has followed the
organization's conventions and recommended procedures during
implementation. The auditor should understand what has been changed,
compare it to the design document, run the tests, etc. Part of the
Programming Standards document should state the procedure to follow
during audit.

173

4. 1.2.6 Completion of the Development Phase

Before the development phase can be completed, documentation must be
provided or updated as appropriate. The developer must insure that
any design documentation clearly reflects the implementation. All
user documentation must also be written or updated.

Lastly, a set of procedures must be provided for installation of the
new code as well as release to customers. Installation may be
different depending on the reason for making the change. It is ,
important, however, to keep records of installations so future
modifications to the same area of code can be performed correctly.

4. 1.3 OPERATION PHASE

During normal operation, there are many reasons for rev1s1ng or
expanding a computer system. The Configuration Management Plan must
provide procedures for the different types of changes. For example,
if the modification is emergency in nature, there may not be time to
follow all the above-outlined steps to the same level of detail as for
an enhancement. The strategy must clearly identify the procedures to
follow for all such cases.

5 MULTICS CONFIGURATION MANAGEMENT

During the early days of Multics, various parts of the Configuration
Management procedures were documented in separate Multics
Administrative Bulletins (MABs)(1). Over the years, the MABs have
been updated, revised and new ones written. In more recent times,
these MABs have been consolidated into one definitive document and
published internally as a Multics Technical Bulletin (MTB)(2).
Currently, this MTB is being expanded and revised for eventual release
as an official Multics Administrative Bulletin on Configuration
Management Procedures and Policies.

5.1 	 Initiation Phase

Individual members of the Multics community (contributors) start
changes for one of several different reasons: 1) they have an idea
for an improvement to the system, 2) they respond to a requirement
formally presented through management channels, 3) they respond to a
reported bug or suggestion.

Upon receipt of a change request, management determines its
feasibility and assigns the change to a particular developer. The

(1) 	Multics Administrative Bulletins contain Honeywell proprietary
information and are not available to the public.

(2) 	Multics Technical Bulletins contain Honeywell proprietary
information and are not available to the public.

174

developer's responsibility is to perform any research necessary to
produce the appropriate design documentation.

5.2 Development Phase

5.2. 1 DESIGN DOCUMENTATION

To propose a change a developer produces an MTB, which is a detailed
description of the proposed design, or a Multics Change Request (MCR),
which formally requests technical approval of a change. An MCR must
always be written while an MTB need only be written under certain
conditions: 1) the modification will cause a change to the central
design philosophy of the system, data structures, or security policy
of the system or one of its subsystems, 2) the change will add a new
subsystem to the system(1), 3) the documentation required will be more
than several pages, 4) the change involves design issues where the
developer is unsure of the correct solution, or where others are
likely to disagree.

In either case, the design document must describe any new or changed
user interfaces to the system; any new or changed internal interfaces
that are usable outside of the subsystem; any significant new or
changed data structures, design philosophies, in particular
security-related issues. The level of detail supplied by an MTB is
often dependent on how crucial the changed area is to the system, for
example, MTBs for areas of the system where a problem exists often
provide a description of the current state and reasons for the
intended change.

As described above, some implementation, in the form of a prototype,
is often done prior to completion of the design.

5.2.2 DESIGN REVIEW

A draft of the MTB is made available to peers for technical review,
and to an individual knowledgeable in security for security issues.
When all resulting questions, complaints, and suggestions have been
resolved by the developer, the MTB is updated to reflect the results
of the design review and published internally.

The next step is to fill out the standard MCR form and submit it for
approval. In the event that the change did not meet the criteria
outlined above for writing an MTB, this would be the first document
specifying the design for the change. Changes that only require an
MCR are usually small and do not effect a large portion of the system.
The MCR form requires the signatures of two individuals, the
developer's manager and a sponsor. The sponsor checks that the MCR is

:.--.·--~·

(1) 	A subsystem is a significant body of code that provides a set of
related functions, and has a clear modularization that separates
it from the rest of the system.

175

I

complete and takes responsibility for its technical plausibility. If
the change has security implications, the sponser is usually an
individual with knowledge of security issues.

When the MCR has been completed and approved according to the above
steps, the MCR is submitted to the General MCR Board (GMCRB) on which
all developers in the Multics organization can participate. The GMCRB
discusses, reviews and votes on the MCR. If the vote indicates a lack
of consensus, the MCR is submitted to the Executive MCR Board (EMCRB),
which is a much smaller group, appointed by management, and has the
final authority to resolve technical issues.

5.2.3 IMPLEMENTATION

Once the MCR Board approves the MCR, the developer can begin
implementation being careful to implement only that which is specified
by the design documentation. Because of the nature of the Multics
Trusted Computing .Base (TCB), that portion of the system which
implements and protects the security-relevant code, it is imperative
that developers follow proper programming practices. The Multics
Programming Standards System Designers' Notebook (SDN) (Order Number
AN-82) provides guidelines for writing efficient, readable Multics
PL/I(1) programs. Currently, this document is undergoing revision,
since guidelines for writing ALM programs, and programs that run in
special environments, are not included in the SDN.

The implementation phase includes testing and limited exposure.
Generally, developers can expose their code on the CISL Multics
System, or in experimental libraries on MIT (Cambridge, MA), CISL
(Cambridge, MA), ACTC (Calgary, AB), or System-M (Phoenix, AZ).

5.2.4 AUDIT

The audit verifies that the implementation meets its requirements as
specified in the design document. An auditor must first review the
MTB and/or MCR provided by the developer. The auditor then insures
that the code conforms to the design and proper programming practices,
has no apparent bugs and has been adequately tested. If the change
has security implications, the code may also be audited by a security
expert. Prior to installation, the developer must fix any problems
found by the auditor.

5.2.5 INSTALLATION

Multics Administrative Bulletins are available which provide a set of
standards and procedures for preparing installations to be made by the
Installation Group in Phoenix. The developer must first fill out the
proper installation forms which contain the changed or new modules,

(1) 	Most of Multics is written in the high-level language PL/I while
the remainder is written in Multics Assembler (ALM).

176

the approved MTBs and/or MCRs, and the signatures of the developer,
auditor, and the developer's manager. All new or changed
documentation must be sent to the Documentation Group and, where
appropriate, the installation forms must include a signature from the
Documentation Unit manager.

The installers examine the forms for completeness, verify that all
affected modules have been included and recompile the source code
provided by the developer. Tests provided by the developer as well as
any other appropriate tests are run prior to installation into the
System-M libraries.

5.3 Operation Phase

A new release of Multics occurs approximately once every 12 month~.
During the release cycle, a number of problems can arise that warrant
changes to the system prior to the next formal release.

5.3. 1 EMERGENCY PROCEDURES

Emergency Change Requests (MECRs) are used to submit emergency changes
to exposure sites while Critical Fixes are used to make emergency
changes available to the field. MABs are available internally which
specify the procedures to follow for emergency changes.

Fixes of the above nature are generally done without any design phase
since rapid response is often imperative, however, an audit is
performed prior to installation on System-M in Phoenix. Once the
change has been installed, the developer must provide an MCR, conduct
a design review and resubmit the change as a normal installation.

5.3.2 STATISTICS

Gathering statistics during the life-cycle of a system can help to
identify areas of the Configuration Management where there are
weaknesses. One such measure is to examine the number of MTBs and
MCRs that are rejected or submitted to the EMCRB due to controversial
issues. If this number is large, it can be an indication that a
high-level description was not provided or thoroughly reviewed prior
to any prototyping and formal design work. Another measure is the
number of times emergency procedures must be invoked. If emergency
procedures are used often, testing procedures may be inadequate, and
more stringent policies for testing changes must be developed.

If the available documentation is largely out of date, this is a sure
indicator that the procedures for supplying sufficient, up-to-date
documentation are inadequate~

If auditors are continually rejecting code there may not be a
consistent understanding among developers of proper programming
practices. Overall, managers must keep a close watch for indications
that there are problems in any of these and other areas.

177

- . ~

6 GROWTH OF THE MULTICS CONFIGURATION MANAGEMENT PLAN

Multics is currently under evaluation by the DoDCSC; as of this
writing, the evaluation is not yet complete. In order to provide a
system according to the Criteria, and to meet the needs of the growing
Multics community, several areas of the Multics Configuration
Management Plan are under consideration for revision and addition.

For Multics, adequate documentation for code within the TCB is an
important addition. For future design documentation, the format of '
Program Logic Manuals (PLMs) has been modified contain a chapter
describing the overall subsystem, how it interfaces both internally
and externally; and a chapter that discusses the security policies and
implications of the subsystem.

The Criteria requirements specify that testing must be performed at
the interface to the TCB and provide adequate assurance that the
system performs those functions that it is intended to perform.
Multics Configuration Managment Policies are being expanded to include
a set of procedures for providing tests which satisfy the requirements
of the Criteria more adequately than current testing procedures.

Currently, a proposal is under consideration that would require
developers to submit a high-level description of the proposed change
prior to generating a detailed design. A review of the high-level
description would provide developers with input as to the technical
feasiblity and possible acceptance of the future MTB and/or MCR before
a substantial amount of work has been done.

l CONCLUSION

This paper has attempted to show areas that must be considered when
developing a Configuration Management Plan. Such a plan for Mul tics
has been presented as an example. Any such plan must be open to
modification as the needs of the organization and its user community
change. For Multics, the evaluation process conducted by the DoDCSC,
has helped to point out areas for improvement. "Much of what needs to
be done to improve security is not clearly separable from what is
needed to improve usefulness, reliability, effectiveness, and
efficiency of the computer ••• [system]". [FIPSP 80]

178

REFERENCES

[BRAND 82] Brand, 	 S. L. "An Approach to Identification and Audit
of Vulnerabilities and Control in Application
Systems," in Audit and Evaluation of Computer
Security II: System Vulnerabilities and
Controls, Z. Ruthberg, ed., NBS Special Publi.
#500-57, MD78733, April 1980.

[DOD 83] Do DCSC 	 "Trusted Computer System Evaluation Criteria" ,
CSC-STD-001-83, August 1983.

[FIPSP 80] Federal Information Processing Standards Publication,
(FIPS PUB) 73, Guidelines for Security
of Computer Applications, 30 June 1980.

179

GOULD SOFTWARE DIVISION"S SECURITY PROGRAM

Gary Grossman

Vice President.. Researeh and Development

Gould Software Division

Urbana.. Illinois

INTRODUCTION

Gould Software Division (GSWD) began as Digital Technology Incorporated (DTI) in 1977. It
became Campion Corporation in 1982, and was acquired by Gould, Inc. in 1983. As DTI and
Campion, GSWD pr.imQrily produced network front ends for the U.S. Defense
Communications Agency. This work formed the basis for the Secure HUB"' Executive, a
formally verified multi-level secure operating system, and the Communications Operating
System Network Front End (COS/NFE), a formally verified multi-level secure network
front end. The experience gained through participation in verifying the HUB"' and the
COS/NFE was applied in producing the VERUS"' formal verification system.

GSWD has a continued commitment to security technology and security products. VERus- is
a fully supported product with an aggressive enhancement program. The Protector"', the
first in a series of security products aimed at the commercial computer and communication
security market, will be released late this year. Enhancements to the Secure HUB"'
Executive are being investigated. GSWD has expanded the security properties of UNIX"' for
use in the DoD and in the commercial market. A further security-enhanced version of
UNIX1N is scheduled for release in 1985. And GSWD is developing a formally verified
multi-level secure version of UNIX"'.

HISTORY

Non-Secure Network Front Ends

As DTI, GSWO's business was primarily producing network front ends for the Defense
Communications Agency. A network front end (NFE) is a computer system interposed
between a mainframe computer and a resource sharing network (see Figure 1). The NFE may
also support terminals that can connect to both the mainframe and the network. DTI
personnel were involved in three non-secure NFE projects intended to connect World Wide
Military Command and Control System (WWMCCS) Honeywell H6000 hosts to various
networks:

1. 	 The Experimental Network Front End1 was developed at the University of Illinois to
connect an H6000 with the ARPANET. Its hardware base was a Digital Equipment

1 Corporation PDP-11170; its software base was the UNix- time-sharing operating
... ,

. ;

.·.,

. ·.· .
")
'

·.. ·. I

180

Network Front End

Figure 1.

system2, with software added to implement the ARPANET protocols and to augment
the UNIX- interprocess communication faci I ities.

2. 	 The Interim Network Front End3 (INFE) was a prototype developed at DTI to connect
an H6000 with the AUTODIN II network. It was also based on the PDP-11 and on
UNIX-, with the DoD standard TCPIIP protocols and with a new interprocess
communication mechanism called Attach 1/04.

3. 	 The WWMCCS Network Front En(jS (WNFE), also produced at DTI, was designed to be
fielded as an NFE that connects an H6000 with the WWMCCS lntercomputer
Network. It used the same hardware and software bases as the INFE.

GSWD's network front end projects are summarized in Figure 2.

Security Projects

fl.s DTI and Campion, GSWD completed two formally verified secure software projects: the
Secure HUB- Executive and the COS/NFE; Campion also developed the VERus- verification
system.

Secure HUB- Executive. The Secure HUB- Executive6 was developed by DTI in 1980 as a
formally verified secure operating system oriented toward supporting communications and
other real-time applications. The HUB- was designed to support DoD multi-level security
while providing better performance than had been avai Iable through performance-enhanced
versions of UNtx-. HUB- interprocess comilrful:lication was twice as fast as that of UNIX-;
overall system performance was 20% better with the HUB-. The HUB- was designed to be
portable; it was first implemented on the INFE hardware base and also on a Motorola
M68000 microprocessor.

II

181

Project Org. 0/S Network Goal

ENFE CAC UNIX ARPANET Prove concept

INFE DTI UNIX AUTODIN II Interim

WNFE DTI UNIX WIN Deployable

COS/NFE DTI HUB AUTOOIN II Secure

GSWD Network Front End Projects

Figure 2.

COS/NFE. The COS/NFE7 was completed by Campion in 1983. It was designed to provide
the same functions as the INFE, but with formally verified multi -level security based on the
Secure HUB... Executive. These goals were met, with increased performance, on the INFE
hardware base.

VERus-. The VERus- formal verification system8 was developed by Compion in 1982. It
then consisted of a parser for a specification language that was based on the first order
predicate calculus with types, and a theorem prover. VERus- was used to respecify and
reprove the Secure HUB- Executive and the COS/NFE.

STATUS

GSWD has built on the technology it has developed to produce products that are now on the
market or are soon to be released. These include the Secure HUB- Executive, the
Protector-, VERus-, and security-enhanced UNIX-.

Secure HUB- Executive

The Hue- is a product that is avai Iable under Iicense as a bui Iding block for secure systems.
It has been Implemented on a variety of supermini-, mini-, and micro-computers.

. i

182

The Protector-

The Protector- is a communications and security product that is based on the technology
developed for the COS/NFE. It provides a tamper-proof audit of computer use to deter
abuse through threat of exposure.

The Protector- Concept

Figure 3.

Conceptually, the Protector- is interposed between a host and its terminals, much like a
network front end (see Figure 3). The Protector- provides a tamper-proof audit trail of
user input based on positive user authentication. The audit trail for each user is captured
according to data patterns entered by a site administrator or security officer. The audit
trail is stored on disk, where it can be selectively examined on-line by the security officer.
The security officer can also copy the audit trai I, or selected portions of it, to a printing
device. The Protector- controls access to the host by individual user and by other criteria
such as time of day and physical location of the user terminal.

In actual implementation, a Protector- system consists of a set of access nodes and a
security server, all interconnected by a local area network (LAN) (see Figure 4). The access
nodes are connected to hosts and terminals via standard interfaces and protocols. They
interconnect the terminals with the hosts via logical connections over the LAN. The security
server makes all security-relevant decisions regarding user authentication and access
control, and provides storage for access control information and the audit trail itself.

VEAus- is a fully-supported product with complete documentation, maintenance, and a
newsletter. Integers have been added to the specification language as a type, and theorems
about them are handled by the prover. A specification checker has been added to ensure that
all requisite theorems for a given specification are stated and proven.

183

. i

.•. i

AIN: Access Node

S/S: Security Server

The Protector• Implementation

Figure 4.

UNIX- Security Enhancements

Substantial enhancements have been made to the security support provided by Gould's
UTX-32 operating system, which is based on Berkeley 4.2 BSD UNIX- with additional
features of AT&T's System V. These enhancements include

1. security labels on files, directories, directories, devices, users, and processes;

2. additional rules controlling access of processes to files;

3. expanded user authentication procedures; and

4. expanded accountabi I ity faci I ities .

184

FUTURE PLANS

GSWD has planned an aggressive program of enhancement of its current security-related
products, as well as introduction of new products.

Secure HUB- Executive

The HUB- security policy and verification evidence will be re-examined in the light of the
security evaluation criteria that have been developed since the HUB- was completed.

Protector-

The Protector- wi II be enhanced -to prevent user input from entering the host if the data
matches patterns specified by the security officer on a per-user basis. Traffic on the
Protector- LAN will be encrypted to further secure communication within the Protector
system. Additional communications media such as long-haul networks will be supported.
Provision will be made for securing individual remote terminals.

Expert system technology will be employed to enhance the ease of specification and proof,
possibly extending as far as automatic proof construction. Extension of VEAus- to source
code proofs will be investigated.

UNIX- Partitions and Capabilities

UNIX- security will be further enhanced through two features, partitions and capabilities,
now under development at GSWD (see Figure 5).

A partition encloses a portion of the UNIX- hierarchical directory tree; it appears to a user
as if the enclosed portion were the entire UNIX- file system. The highest node in the
hierarchy within the partition appears to be the root ("/") of the file system. It is not
possible for the user to access anything outside the partition because all file pathnames are
interpreted relative to the apparent root within the partition. This is true even for users
with "superuser" privileges. The partition facility is currently used at GSWD to permit
outside users to dial in to company UNIX- systems that contain sensitive corporate data.
Each outside user group is given its own partition; data and programs that are to be shared
with these users must be copied into the appropriate group's partition by a privileged
company user.

If every user of a system were given a unique partition, then users could not share data at all.
In fact, each user's partition would have to con'ra'in a copy of all the command programs and
system data files that the user was to access. This would consume a large amount of disk
storage space to support even a moderate number of users.

185

/'~

BIN MNT

:~::~\~f.-:~~:~

~t~~~~~~

/7'1, /'

MAIL CC VI NROFF GAG SRBr ., ...:;:__, //"
~~........~~·=~BI(M~} I

Capabilities GR~
/I'Partition __.,

UNIX Partitions and Capabilities

Figure 5.

The capability facility provides a solution to these problems by providing a controlled means
of accessing directories and files outside a user's partition. A capability is an object in the
directory tree within a partition that names a directory or file outside the partition.
Capabilities would be placed in each user's partition that name only those files and
directories that the user is to access. This would permit a privileged user such as a security
officer to selectively grant individual user access to certain system files while denying access
to other files. For example, a user could be given access only to programs that provide text
editing and mail facilities, but no access to program creation facilities such as compilers or
Iink editors.

A capabi Iity provides a separate access control specification that may be more restrictive
than the access control that is directly associated with the directory or file itself. For
example, a log file that is specified to be readable and writeable by anyone on the system
might have to be accessed by a particular user via a capability that permits only writing.
This would permit the user's activities to be logged without giving the user access to log
information about other users.

Multi-level Secure "UNIX-"

GSWD is studying the problem of developing a UNIX--based system that would be governed
by the full Bell and LaPadula security modeJ9. This system would be intended for evaluation
by the DoD Computer Security Center 10 initially as a candidate for Class B2, and eventually
as a Class A 1 system.

Developing a system of this kind involves more than formal specification, careful
implementation, and formal verification. UNIX- contains many mechanisms that are
antithetical to features of the full Bell and LaPadula model, particularly the "•-property".

186

Discussion of these issues is beyond the intended scope of this paper, but it appears that a
fully multi-level secure system would retain many basic paradigms and features of UNIX-..
but would differ significantly in visible mechanisms and in the details of use.

GSWD intends to aggressively seek solutions to these problems and to pursue a program
leading to a multi-level secure UNIX--like system.

REFERENCES

1. Holmgren, S.f ., et. at., Experimental Network front End Functional Description, 7502 ..
Command and Control Technical Center, WWMCCS AOP Directorate, Defense
Communications Agency.. Washington, DC, January 1977.

2. Ritchie.. D.M. and K. Thompson, "The UNIX Time-Sharing System", Communications of
theACM.. Vol. 17, No.7, July 1974, pp. 365-375.

3. Grossman, G.R., S.F. Holmgren, and R.H. Howe, INFE Functional Description Overview,
Document 2 .. Digital Technology Incorporated .. Champaign.. IL.. March 1978.

4. Attach 1/0 User Manual. 78019.C-INFE.12, Digital Technology Incorporated, Champaign,
I L, October 1 978.

5. Allen, E.R. and R.H. Howe, WNFE Functional Description, 81 045.C-WNFE.19,
Champaign.. IL.. April 1982.

6. Grossman, G.R., "A Practical Executive for Secure Communications", Proceedings of the
1982 Symposium on Security and Privacy, IEEE Cat. No. 82CH1753-3, Oakland, CA, April
1982, pp. 144-155.

7. Grossman.. G.R. "COS/NFE- A Multi-Level Secure Network Front End".. Proceedings of
the Digital Equipment Users Society, Atlanta, GA, May 1982, pp. 1205-1221.

8. Marick, B., "The VERus- Design Verification System", Proceedings of the 1983
Symposium on Security and Privacy, IEEE'Cat. No. 83CH1882-0, Oakland, CA, April 1983,
pp. 150-157.

9. Bell, D.E., and L.J. LaPadula, Secure Computer Systems: Mathematical Foundations and
Model, M74-244, The MITRE Corp., Bedford, MA, May 1973.

10. Department of Defense Trusted Computer System Evaluation Criteria,
CSC-STD-001-83, DoD Computer Security Center, Ft. Meade, MD, August 1983.

187

http:045.C-WNFE.19
http:78019.C-INFE.12

ELECTRONIC FUNDS TRANSFER SECURITY

Dick Bauder
U.S. Treasury

Securing Government Electronic Funds Transfers

Current payment systems

Current EFT security

Treasury Directive 81-80

Impact on current systems

EFT security implementation

Current Payment Systems

Standard payments

- SF 1166

- payment distribution - check/ACH

Treasury Financial Communications System (TFCS)

- host-to-host interface - FRBNY

host/slave with federal agencies,

- DLA host-to-host pilot

Current EFT Security

ID and password

ID restricted to individual terminal ID

ID restricted by functions

Automatic disconnect

Encryption

Treasury Directive 81-80

II 	 all EFT's must be properly authenticated."

- ANSI X9.9 - financial institution message authentication

- equivalent authentication techniques

Who does directive apply to?

II 	 All systems which originate, transmit, relay, receive or process,
federal government EFT transactions ••• "

Equipment guidelines

"Equipment designed and used to perform the authentication function must
comply with Federal Standard 1027 ••• "

Effective Date

- all current systems by June 1, 1988
- all systems implemented after August 16, 1984 must comply immediately

188

EFT SYSTEMS

Federal Payments Systems Impacted by the Policy

Treasury Financial Communications System (TFCS)

Automated Clearing House (ACH)

Direct Deposit (DD/EFT)

Checks

Electronic certification program

Army ATM pilot

Federal collections systems impacted by the policy

Treasury general account cash concentration system

Farmers home administration cash concentration system

Treasury tax and loan account system

Treasury lockbox system

Treasury financial communications system (TFCS)

Automated clearing house (ACH)

- preauthorized debits

- corporate to corporate

- home banking

Federal securities systems impacted by the policy

Commercial book entry systems at Federal Reserve Banks

Treasury direct access book entry systems

Other payments systems that may elect to adopt the policy

Federal Reserve Communications System after 1980 (FRCS-80)

Clearing House Interbank Payments System (CHIPS)

The Society for Worldwide Interbank Financial Telecommunications (SWIFT)

Bankwire

Bankers Automated Clearing Services (BACS)

Clearing House Automated Payments System (CHAPS)

Postal money transfer system (GIRO)

Impact on Current Systems

ACH

- electronic certification

- message authentication

TFCS

initial implementation - point-to-point

enhanced implementation - end-to-end, center

189

ELECTRONIC CERTIFICATION SYSTEM CONFIGURATION

USING MESSAGE AUTHENTICATION AND ENCRYPTION

Program Agency Disbursing Center

DATA encrypt/ ~---------• encrypt/
decrypt decrypt

BASE data transmission device **device **

-----, r--------,

I

authentication

device *
 I

authentication
device *

under
control of

I disbursing
I officer

DATA

BASE

I

I
L _J

I under
bontrol of
Fertifying
rfficer

I
L- -- ---- _..

* This component may or may not be an integral component of the Data Terminal

** Required if data is sensitive and must be protected from a monitoring threat

EFT Security Implementation

Equipment certification - Treasury/NBS/NSA

Certification guidelines

Implementation task force - Treasury/NBS/NSA/FRB/GAO

BGFO is executive agent

Implementation schedule

190

1;:;·;~. ~;:; .':7>.:(:•; ::o I :.· • :: •." •

;>_:·' ,.

EFT SECURITY IMPLEMENTATION

1-'
U)

1-'

Proj. No. and/or Description
work

-

to do; action to take

Memorandum of understanding
1. between Treasurv/NSA/NBS

2 . Certification Guidelines

3. Treasury Task Force

4. Certification of Equipment

l· BGFO System Implementation

0 System Design
6. 0 Systems Develooment

0 Install Initial System Pilot
7. 0 Test and Evaluation

o Production System Plan
8.

9 .

10.

11.

12.

13.

14.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

•

·- f-- - -·
·- f-- - •

·- f.--
,_ __ --r-- - -- ------- --- -- -- --

.- -- f-- ---.· - - -- - -· · --- --· · -- --

A.UTIIENTICATION

of

ELECTRONIC FUNDS TRANSFERS

Richard Y. Yen

The Chase Manhattan Bank, N.A.

' ' ~ ..

TESTKEY SYSTEM

',.

TESTKEY
MATERIALS

~
ALGORITHM

,.

TESTKEY/
TESTWORD

v
DATA

Present Testkey System Provides:

o 	 redundancy check on value(dollar amount)

o 	 information on message loss or duplicate message(if sequence number
is used)

o 	 limited security

Operationally it is Difficult to Exchange Testkey Materials
often to Ensure Security

What are the Alternatives?

.·.· ·j

192

MESSAGE AUTHENTICATION

DATA KEY

.~
/

DATA

DEA MAC

o 	 A data key is selected

o 	 Text editing rules are applied for the entire message text or
selected authentication elements

o 	 Edited data are processed by the DEA algorithm

o 	 The resultant MAC is added to the message before transmission

o 	 The recipient selects the same data key and repeats the extraction
and computation processes, and accepts the message as authentic if
the MAC is identical to that in the received message

THE ANSI FINANCIAL INSTITUTION MESSAGE

AUTHENTICATION STANDARD (FIMA)

o 	 FIMA can protect either selected fields or entire messages

o 	 FIMA can be used for funds transfers or textual messages (such as
syndicated loan agreements)

o 	 FIMA can be used with any data communication system

Within an institution

- branch-to-branch

- customer cash management services

- programs(including downline load and audit)

Inter-institution

- fedwire

- bankwire

- swift

- common carriers

- packet netwo~ks, etc.

193

o 	 FIMA provides very high security against message modification and
message insertion for those message elements protected

o 	 FIMA uses the NBS Data Encryption Standard(DES) to compute a message
authentication code(MAC). The MAC replaces the testkey function.

MAJOR CONTROLS FOR IMPLEMENTATION

Key Management

o 	 Security is provided by keeping key secret

o 	 Key management is the most difficult problem for users of authentication
and encryption systems

o 	 This problem is especially difficult for geographically widespread
computer communications networks

Physical Security of the Equipment

The equipment shall be protected against

- unauthorized access to keys

- unauthorized operation· of the equipment

- unauthorized modification of the equipment

194

INFORMATION SYSTEMS SECURITY AT SECURITY PACIFIC NATIONAL BANK

Ed Zeitler
Security Pacific National Bank

Information Systems Security Division

0 	 Organization
0 	 Scope
0 	 Authority
0 	 Strategy
0 	 Responsibilities
0 	 Policy Documentation

and User Awareness

Organization

0 Major Data Processing Capabilities are Centralized

o 	 Security Pacific Automation Company

0 	 Information Systems Security Division (ISSD)

o 	 Staff Function: must not be responsible to a line
organization

o 	 Line Function: must have some operational
responsibilities

o 	 Three Functional Groups

o 	 Software Security
o 	 Security Management Services
o 	 Contingency Planning

o Staff of 20

195

SECURITY PACIFIC AUTOMATION COMPANY

PRESIDENT

PERSONNEL.-----------------~---------------1 FINANCIAL

TELECOMMUNICATIONS

r -r -y

BANKING COMPUTER ELECTRONIC.
&

OFFICE TECHNICAL BANKING

SERVICES SERVICES SERVICES

MANAGEMENT
&

CONTROL

INFORMATION

SYSTEMS

SECURITY

DIVISION

WORLD

BANKING

SERVICES

INFORMATION
SYSTEMS
SECURITY
DIVISION

ED ZEITLER

I

SOFTWARE SECURITY

SECURITY MANAGEMENT

SERVICES

I

CONTINGENCY

PLANNING

:'·J

!

196

I

Scope

0 	 Policy Maker For Bank

o 	 All Information Systems Issues

o 	 Information Systems Security Manual (ISSM}
o 	 User Guides For RACF, IMS, CICS, etc.
o Specific Procedures

0 Control of Access to Mainframes

o 	 4 MVS Centers, 1 VM Center
o 	 Issuance of Userids and Passwords
o 	 Access to Resources

o 	 RACF (MVS}
o 	 DIRMAINT (VM}

o On-call with Home Terminals

0 Control of Cryptographic Materials

o 	 Key Generation and Distribution
o Key Management Procedures

0 Direct Support

o 	 SPAC Organizations

o 	 Contingency Plans
o 	 Provide Implementation Recommendations or

Specific Products for Line Organizations
o 	 Represent SPAC in Disagreements with Audit

Department

o 	 Consulting

o 	 Bank Departments
o 	 Corporate Subsidiaries

0 	 Industry Involvement

o 	 Industry Committees: BAI, ABA, ANSI, CBCHA,
CCTF, etc.

o 	 Consulting Services

197

II

Authority

0 	 Data Processing Security Committee (DPSC}

o 	 Official Bank Committee
o 	 Charter

o 	 Responsible for establishing Policy,
Standards, and Guidelines on all matters
relevant to the security and privacy of the
information processing of customer, employee
and corporate information and data.

o 	 Simple majority required to pass voting
issues

o 	 Membership

o 	 Audit Department
o 	 Banking Office
o 	 Corporate Security
o 	 SPAC

o 	 Banking Office Services
o 	 Computer & Technical Services
o 	 Electronic Banking Services
o 	 World Banking Services
o 	 Telecommunications
o 	 Information Systems Security Division

o 	 Authority to Establish Standing Subcommittees

o 	 Monthly Meetings

o 	 Provide Avenue for Organizations to Obtain Waivers
to Security Policies

0 	 Information Systems Security Division

o 	 control of critical functions

o 	 Issuance of Userids and Passwords to
Mainframes

o 	 Control of Cryptographic Materials

o 	 Limited Formal Authority

o 	 No Directives: always a business case
o 	 Prudent, Responsible and Effective

Organization

••• 1

-- '

.·-.)

198

i

Strategy

0 	 Line Management is responsible for security (each
operating center & application).

0 Audit Department provides enforcement.

0 ISSD provides value added support.

o 	 Responsible to SPAC Management for the
development of sound security policies.

o 	 Support to Line Management in meeting security
policies.

Major Responsibilities

Security Management Services

0 Establish Security Policies, Standards, Procedures and
Training

0 Develop Network Security Measures, including Encryption
and Message Authentication

0 Manage Cryptographic Keying Materials
0 Coordinate Personnel Security Programs
0 Perform Physical Security Reviews
0 Perform Risk Analyses on Application Development

Projects and Recommend Security Measures
0 Coordinate Proper Data Processing Insurance Coverage
0 Provide Audit Report Tracking and Analyses for Internal

and External Audits

Software Security

0 Develop Data and Software Security Policies and
Procedures

0 Develop Access Controls for SPAC Data and Software
Resources

199

0 	 Administer MVS and VM Access Controls

0 	 Evaluate and Test New Security Packages

0 	 Support System and Application Programmers with
Security Issues

Contingency Planning

0 	 Provide direct support to each data center by
developing contingency plans which ensure the
continuous processing of SPAC's critical applications
in the event of a major catastrophe at one of the data
centers.

0 	 Provide assistance with the planning, coordination and
evaluation of the testing of contingency plans.

0 	 Ensure that SPAC Contingency Plans are current by
scheduling periodic reviews and plan updates.

0 	 Provide a consulting service for any bank organization
or bank subsidiary requiring expertise or support for
data processing contingency planning.

Policy Documentation and User Awareness

0 	 Primary Documents

o 	 Information Systems Security Manual (!SSM)
o 	 Contingency Plans
o 	 User Guides

0 	 Information Systems Security Manual

o 	 Bank Policy Manual

o 	 ISSD writes
o 	 DPSC approves
o 	 Central Services publishes

o 	 Active Document

o 	 First publication September 1982
o 	 Updates, Additions, and Revisions every Six

Months

o Contents

o 	 General Information and Policies
o 	 Responsibilities of Employees and Specific

Organizations
o 	 Risk Analysis Program

200

o Personnel Security

o 	 Sensitive Information Systems positions
o 	 Personnel Practices
o 	 Security Education and Training
o 	 Contractor Personnel

o 	 Physical Security

o 	 Access Control
o 	 Fire Protection
o 	 Electrical Power
o 	 Air Conditioning
o 	 Facility Design and Construction
o 	 Remote Terminals
o 	 Training, Drills, Maintenance and Testing
o 	 Data Storage and Media Protection
o 	 Security of documentation, blank instrument

stocks, and other sensitive forms

o 	 Data and Software Security

o 	 Resource Classification and Ownership
o 	 Access Control
o 	 Specific Policies for Online Access Controls

in the MVS environment
o 	 Logging and Audit Trails
o 	 Violation Reporting and Follow-up

o 	 Network Security

o 	 Configuration Management
o 	 Dial-up Controls
o 	 Message Authentication
o 	 Encryption
o 	 Network Contingency Planning

o 	 Contingency Planning

o 	 Contingency Planning Activities
o 	 Contingency Plan Maintenance Activities
o 	 Contingency Plan Activation and Recovery

o 	 Computer Insurance

o 	 Purchased and Leased Equipment
o 	 Information Processing Media Insurance
o 	 Business Interruption Insurance
o 	 Staff Member Dishonesty
o 	 Insurance for Errors and Omissions

201

o Outside Data Processing Services

o 	 Microcomputer Security

o 	 Glossary

o 	 Guidelines & Procedures

o 	 Waiver Procedures
o 	 ADP Security Indicent Reporting Procedure
o 	 Access Control Guidelines
o 	 Etc.

Contingency Plan

0 Introduction and Organization

o 	 Policy Statement
o 	 Assumptions
o 	 Contingency Phases (Notification, Mobilization,

Emergency Operations, Recovery)
o 	 Contingency Organization (list of teams and org.

chart)
o 	 List of Critical Applications
o 	 Control Group Responsibilities

o 	 Contingency Manager
o 	 Management Coordination
o 	 Damage Assessment
o 	 Personnel
o 	 Public Relations

o 	 User Liaison Coordinator

o 	 Computer Operations Group Responsibilities

0 Data Entry
0 Computer Operations
0 Offsite Storage
0 Backup Site

0 	 MICR Operations Group Responsibilities

0 Check Processing
0 Transportation and Logistics
0 Micrographics
0 Printing

o 	 Technical Support Group Responsibilities

o 	 Systems Software
o 	 Applications
o 	 Data and Voice Communications
o 	 Data Security
o 	 Physical Security

.,
.. ··. ·.

202

Contingency Plan (cont.)

0 	 Notification

o 	 Notification Procedures
o 	 Notification Task List
o 	 Emergency Telephone Numbers (Security, Medica

Services, Badge Reader, etc.)

0 	 Mobilization

o 	 Mobilization Procedures
o 	 Mobilization Task List

0 	 Emergency Operations

o 	 Backup Site Preparation
o 	 Emergency Operations Considerations (Work in

Progress, File Reconstruction, etc.)
o 	 Emergency Operations Task List
o 	 Emergency Communications

0 	 Recovery

o 	 Recovery and Restoration Guidelines
o 	 Recovery Planning Task List
o 	 Return to Normal Processing Task List

0 	 Appendix

o 	 Notification List
o 	 Team Member List
o 	 Call Sequence
o 	 Vendor Contact List
o 	 Contingency Supply Requirements
o 	 Contingency Kit Guidelines
o 	 Backup Site Agreements or Contracts

RACF Users Guide .

0 	 Overview

o 	 RACF Environment
o 	 Verification of Users

o 	 Profile Structures: Userid and Group

o 	 Resource Access Protection

o 	 Data Set Profile
o 	 General Resource Profile

203

RACF 	 Users Guide (cont.)

o 	 RACF Password Rules

o 	 RACF Access Authorities

6 RACF Data Set Access Authorities
o. RACF Group Authorities

o RACF Validation During "OPEN"

0 Resources to be Protected

o 	 Production Data

o Environmental Data
o Control Group Data

o Non-Production Data

o RACF Terminal Protection

o 	 How to Protect Data

o 	 Production Data

o 	 RACF Profile Modeling
o 	 RACF GOG-Profile Modeling

o Non-Production Data

o 	 Protecting User Data Sets
o 	 Permitting Access to User Data Se,ts
o 	 Listing RACF User Data Set Profile
o 	 Function of RACF Commands
o 	 Protecting VSAM and Non-VSAM Catalogs
o 	 Non-VSAM Data Base Data'Sets
o 	 VSAM Data Sets

o 	 Accessing Production Data in Batch

o 	 Access by Production Jobs
o 	 Access by Non-Production Jobs
o 	 Userids in Batch
o 	 Jobs Submitted From: Local Batch Reader, VM,

RJE, TSO
o 	 Group Structure

o Accessing Online Data

o. 	Obtaining TSO/IMS/CICS Userids
o 	 Program Control Facility II (PCF II)

204

II

RACF Users Guide (cont.)

o 	 Revoking and Resuming TSO/IMS/CICS Userids
o 	 Changing RACF Passwords

o 	 TSO Logon
o 	 RACF PASSWORD Command
o 	 Password Changes in Batch

o 	 Trouble Calls

0 	 S913 Trouble Calls

0 Procedure
0 Responsibilities
0 Documentation

0 	 Non-S913 Trouble Calls

o 	 Procedure

User Guide to Online Security for IMS and CICS

0 	 Production IMS/CICS Security Policies

0 	 Online Access Control Facilities

o 	 Preventive Controls
o 	 Detective Controls

0 	 Transaction Categories and Required Controls

o 	 Transactiqn Categories
o 	 Generic Transaction Types
o 	 Controls Required by Risk Level

0 	 Procedures for Resource Protection

o 	 IMS/CICS Transactions & Transaction Groups
o 	 CICS DL/I-PSBs and PSB Groups
o 	 Physical Terminals
o 	 IMS Logical Terminals
o 	 IMS Transaction Passwords
o 	 Non-VSAM Data Base Data Sets
o 	 VSAM Data Sets

0 	 Procedures for Online Userid Administration

o 	 Security Administrators
o 	 User Profiles
o 	 Obtaining, Revoking and Resuming Production IMS &

CICS Userids

205

0 User Terminal Operation

0 IMS & CICS Sign On

0 New and Normal User Sign On
0 Changing Passwords

0 Forms Instructions

206

. <·; ,::~: '·' ··:·:\i; :

DEFINITION

''COMPUTER-RELATED FRAUD''

" ... ANY INTENTIONAL ACT OR SERIES., I

OF_ACTS DESIGNED TO DECEIVE OR l ~~

MISLEAD OTHERS. SUCH ACT MUST §~ Q~

~ 	 IMPACT OR POTENTIALLY IMPACT THE H ~~
FINANCIAL STATEMENTS AND A ~ ~;
COMPUTER SYSTEM MUST BE INVOLVED~ i
IN THE PERPETRATION OR COVER-UP OF ~
THE SCHEME."

(SOURCE: AICPA EDP FRAUD REVIEW TASK FORCE)

:~ ~ - }i\1!11@![1

DEFINITION

''COMPUTER-RELATED FRAUD''

COMPUTER SYSTEM MIGHT BE INVOLVED

TH-ROUGH IMPROPER MANIPULATION OF:
,

- INPUT OR TRANSACTION DATA,

N
0 - Ol)TPUT ·OR RESULTS,
(X)

- APPLICATION PROGRAMS,
- DATA FILES,

· - COMPUTER OPERATIONS,
- COMMUNICATIONS, OR
- COMPUTER HARDWARE, SYSTEMS

SOFTWARE, OR FIRMWARE.

(SOURCE: AICPA EDP FRAUD REVIEW TASK FORCE)

.. ,., .. ,, ..,,. •'·' ..• ;-: t;.;·t -:.·. ·,:.

APPLICATION SYSTEMS AFFECTED

FREQUENCY

HIGH

N
0
\0

MEDIUM

LOW

BANKING

DEMAND DEPOSITS

PROOF AND TRANSIT

INSTALLfv1ENT LOANS

CREDIT CARD LOANS

SAVINGS ACCOUNTS

COMMERCIAL LOANS

AUTOMATED TELLER
MACHINES

CHECK CREDIT

CASH CONTROL

MORTGAGE LOANS

WIRE TRANSFER

INSURANCE

ACCIDENT &- HEALTH CLAIM

LIFE INSU_RAt~CE (PREMIUMS,
DIVIDENDS, AND
SURRENDERS)

PROPERTY & CASUALTY
PREMIUMS

LIFE INSURANCE LOANS

PROPERTY & CASUALTY
CLAIMS

SCHEMES

FREQUENCY BANKING INSURANCE

HIGH CREATION OF FICTITIOUS LOANS CREATION OF FICTITIOUS
CLAIMS

DIVERSION OF CUSTOMER
DEPOSITS

DEFERRAL OF POSTING OF
CHECKS AND CHARGES

'MEDIUM EXTENSION OF CREDIT LIMITS UNAUTHORIZED REFUND
IV OR REDUCTION OF 1-'
0

EXTENSION OF LOAN DUE DATES POLICY PREMIUMS

INTERNAL TRANSFERS BETWEEN
CUSTOMER ACCOUNTS

·LOW FORGERY OF CHECKS CREATION OF FICTITIOUS
LOANS

EXTRACTIONS FROM ATMS
UNAUTHORI.ZED DIVIDEND

ADJUSTMENTS TO DEPOSITS WITHDRAV\IAL

DIVERSION OF LOAN PAYMENTS

SEVERAL OTHERS
~

.. "' ., .. ,..". -,

>ili!Ill::i:::l!l/ : · . . .:::r:::~:i·::::~i\!!L : .

PERPETRATORS

FREQUENCY BANKING INSURANCE

HIGH CLERKS (DATA ENTRY, CLERI<S (CLAII\t1S
PROOF, OPERATORS, ·PROCESSOR, POLICY
OTHER) SERVICE, OTHER)

MEDIUM MJ\NAGERS (LOAN SUPERVI~ORS (CLAIMS,
OFFICERS) POLICY SERVICE,

N
....... OTHER)

.......
 DATA 'PROCESSORS

(OPERATORS, SYSTEMS
AND APPLICATION
PROGRA~JIMERS)

LOW ITEM PROCESSORS INSURANCE AGENT

TELLERS SVSTEr\t1S PROGRAI\.qMER
0

•::·I:\l\1:.::;:\Ii> . : •·. 	 ·:\\\1\\~\\\\\l\\1;\~\:.:. ·• •·• • ·

DOLLAR SIZE VS PERPETRATOR
I I

NUI\~BER OF CASES BY DOLLAR RANGE
(THOUSANDS)

PERPETRATOR 	 UNDER $25 $26-100 $101+ TOTAL
-

BANKING CASES

CLERICAL 37 0 1 38
MANAGERS 7 4 6 17

"-> 	 DATA PROCESSORS 9 2 2 13
.....
"-> 	 "TELLERS 5 2 1 8

OTHERS 5 2 2 9

INSURANCE CASES

CLERICAL 17 3 1 21

SUPERVISORS 2 2 5 9
OTHERS 1 2 1 4

TOTAL 	 83 17 19 119

•.. i!l!ii01i:11!!lii:: .. ••·•·•·.

METHOD OF DETECTION
METHOD BANKING INSURANCE TOTAL

CONTROL AND AUDIT

INTERNAL CONTROLS 12 10 22

ROUTINE AUDIT 17 4 21

CUSTOMER
COMPLAINT/INQUIRY 24 4' 28

UNUSUAL OR. NON-ROUTINE
EVENTS

N
1-'
w

ACCIDENT, TIP-OFF,
UNUSUAL ACTIVITY .OF
PERPETRATOR 11 15 26

NON-ROUTINE STUDY 8 1 9

CHANGE IN OPERATIONS,
EDP, OR FINANCIAL
STATEMENTS 7 -I

UNIDENTIFIED 6 6

TOTALS 85 34 1'19

'·
.·;

COMPUTER SECURITY IN PRACTICE

Robert S. Roussey

Arthur Andersen & Co.

The planning committee for the conference has asked me to describe our
firm's approach to security and to discuss several case situations. In doing
this, I will be using a fairly new medium, computer generated graphics, to help
in the presentation.

I will be talking about paths for authorized access to computer assets, as
well as discussing unauthorized access. I only wish stopping unauthorized
access were as easy as I have now depicted on the screen.

You're all aware of the recent destruction of the log-in and log-out files
at the NASA Marshall Space Flight Center and how a hacker was able to penetrate
the systems at Sloan Kettering and Los Alamos National Laboratories.

These are just illustrations of some of the key symptoms of the security
problem.

And they're symptoms that will grow in importance. For instance, business
is placing an increasing dependence on the use of computers for vital operations
(sometimes referred to as survival or critical systems); on the use of micros
for end-user systems (for communications and for access to the central
mainframe); and on the linking of computers with customers and vendors.

This proliferation of micros in business is starting to have an effect on
the centralized data center, where information once was generated and stored on
a mainframe and was accessible only to a handful of authorized personnel. Now
hundreds -- and in some companies even thousands -- of microcomputers are used
everywhere. This is the start of the end-user system revolution -- where
information, once under centralized control, is now being made available to
users, management and others. At Arthur Andersen, we have as many as 2,000
microcomputers in our worldwide organization, and that number will probably
double over the next year or so as we implement new worldwide distributed
accounting, office automation and professional work station systems. Within
five to eight years, we expect that most professional and clerical personnel in
our organization will be working in automated environments. Security is,
indeed, a concern to us.

The micro is fast becoming a key path to mountains of confidential data.
This path needs to be protected in this changing business environment.

While the number of microcomputers now in use is causing concerns, so LS

the increased power of each new generation of these machines. Over the past few
years, phenomenal increases in computer power and decreases in its cost have
made it possible for even the smallest company to have computer power that
wasn't even in existance only 30 years ago.

As you may know, the classic definition of "balance" in this context is
that the cost of security should be less than an expected loss. This expected
loss is usually quantified as the Annual Loss Expectancy, or A.L.E. It is
calculated as the likelihood of a potential risk occurrence, multiplied by the
expected loss from such an occurrence.

214

Ideally, the annualized cost of security would be less than the A.L.E. by
exactly the amount that an organization is willing to accept as a "self
insurance" risk. Practically speaking, however, as you know, both the cost of
security and the A.L.E. are difficult to quantify and measure.

For these reasons, the classical approach to using A.L.E. to define the
balance point requires considerable tempering and good management judgment
whenever quantifiable estimates are not reliable or are subject to change.

We also recognize that there are situations in which "balance" may be a
meaningless concept. In many areas of our national defense, for example, there
is no price tag for the potential loss in the event of a compromise to security.
Also in business, a company may have assets -- trade secret formulas, an
industrial process or proposal cost information, for instance, -- that have such
great value or importance to the survival of the organization, that even a small
probability of loss is difficult to accept. In such situations, the "balance
point" may be defined by management edict rather than by attempts to quantify
benefits.

Although computer security is a large and complex problem, steps can be
taken to approach and maintain proximity to the balance point keeping an
entity free from unacceptable loss. Such reasonable security is both attainable
and desirable.

In our security practice, we seek this balance and address the complexity
of computer security in a structured, organized approach to security management.

We have carefully distinguished, for example, this security practice from .
the normal reviews of security performed on our clients' controls in connection
with an audit. The work we do in our security practice is much more extensive
and gets more into an analysis of access paths and threat analysis. And we do
this work with a practice methodology we refer to as ISSEM. This stands for
Infqrmation and Systems Security Evaluation Methodology. It is an approach
using the concept of an access model, which I will discuss in a moment. The
methodology is straightforward and relatively simple, but very powerful. It was
developed several years ago. And since then, it has proven to be an excellent
analytic tool and has become the basis for our Firmwide Information and Systems
Security Practice.

ISSEM is an analytic tool for identifying and evaluating the access paths
to an prganization's most critical assets. Let me give you a brief overview of
this approach.

Consider the data base that contains critical information of some nature -
say, geological and geophysical data of an oil company. Usually you would have
at least one program (and often more) that provides access to this information.
Let's say that the one shown here is an online update program. You can call up
any record on the data base, inspect it and enter changes as .needed.

Obviously, any approach to security evaluation would look closely at this
process and ask what it can do and who can use it. But there is more. The
update process represents the execution of a program or programs that reside in
a static form on some program library. There is always some mechanism, a
program library maintenance process shown as PLM, for example, that can modify
what the program can do. Our evaluation must examine this process.

215

I

.. ·' j

I
1

Also, there is (or at least should be) some reference source that the
system can refer to, to determine whether the person using the program is
authorized to inspect and make changes to the data base information. Here,
have shown that this may be a file of user ID's and passwords, indicating what
access privileges each user has. Again, there must be some mechanism to
maintain this information. Thus, both the password file and the maintenence of
it are critical parts of our security evaluation.

But don't stop here. The password maintenance process is a program which
resides in some library, and which could be modified to compromise the password
file. There must be a list of persons who are au.thorized to enter password
maintenance transactions. And anyone who is able to change this list can,
thereby, give himself carte blanche access to the critical data base. Likewise,
the program library maintenance process has an authorization reference and a
static image of the maintenance program, both of which offer potential
opportunities to gain unauthorized access to the critical data base.

With ISSEM, an access model of the paths to an asset is prepared. The
important points about the ISSEM model are these:

1. The completed model should identify all of the known access paths to
the critical data base, which we call the object, at least to the extent
this is humanly possible.

2. Each path consists of a series of processes, which may be computer or
manual activities, and objects, which may be program code, procedures or
data files, and each of these must be addressed in our security evaluation.

3. We must never forget that there will always be unknown access paths to
any of the objects. And we must consider the consequence of this at each
level in the model.

Now, let's see how the access model concept is applied.

Our ISSEM methodology consists of the following six major tasks:

o Building an access model for each key object we evaluate,

o Determining the control objectives for each process and object,

o Identifying the potential risks,

o Identifying the existing control techniques that may mitigate the risks,

o Rating each risk on a scale of one to ten, and

o Developing scenarios showing how each risk may be exploited.

Let's go back through those six steps and look at them in detail.

The access model begins with a key object to be protected, for example the
data base of critical information mentioned earlier. Since that data base is
passive, we contend that all access to it must be through some process.
Therefore, our key is to find all the processes that can access that particular
object.

216

For each process, for example as shown for Process A, we identify several
additional objects; here we have labeled those as the subject, the resource and
the authority reference.

The subject, at the bottom, may be a source transaction or transactions
passed from another process. The term "transaction" is used in its broadest
sense -- meaning any event that initiates the process. This may be a
transaction entered at a terminal, or it may be a data file from another system.

The resource is typically a program or procedure used in the execution of a
process. One way to gain access to the data base is to modify one of the
resources used by the process.

The authority reference represents any measures that may be in place to
determine if the subject is permitted to use the resource to access the object.
It also determines the conditions and type of access that are authorized. For
example, the time of day access is permitted, the areas of the data base that
can be accessed, and what can be done to the contents of the data base --modify,
destroy, etc.

While the access model may seem relatively simple as I've described it, it
can become quite complicated. Each process may have multiple subjects,
resources and authority references. And each of these new objects can be
accessed by one or more other processes. The result is a repeating pattern in
the access model. Authority reference A is accessed by process B. Process B
has a subject, authority reference and resource. Similarly, resource A is
accessed by process c, which also has an authority reference, resources and
subjects.

This repetition continues until we reach a trusted object, which usually
includes people, policy documents and objects that are controlled by systems
beyond the scope of our evaluation.

The purpose of drawing this access model is to identify each access path,
which is simply the route from an entry point at the bottom of the access model
up to the key object. In reviewing the paths, the key evaluation question is:
"Are there ways to use each path in an unauthorized manner?" We want to be
certain that all of the risks identified along the path are also controlled. We
also want to remember the possibility someone will find access paths that we
don't know about. Thus, we consider the implications of this for each object ~n
the model.

The second major task of ISSEM is applying control objectives to the
process. Control objectives are our way of expressing management's decisions on
how the business and systems should operate, and they become the basis for our
evaluation of the actual system.

Typical control objectives might be that:

o The program library will be modified only by the librarian with approval
of the acceptance test group supervisor, and

o Salary information will be disclosed only to the head of the department
and the assigned personnel manager.

217

When we have identified and applied management's control objectives, we
begin the third step, identifying the potential risks. We define a potential
risk, by the way, as a violation of a control objective and not as a business
consequence. For example, a risk exists if the program library can be modified
by the librarian without the authorization to do so, or if it can be modified by
someone other than the librarian, or if authorized changes are not applied.

Our fourth step, then, is to identify the existing control techniques that
may mitigate the risks we have identified. Control techniques -- sometimes
~alled safeguards -- are mechanisms that deter, prevent or detect and recover
from risks. They may be passive or active, manual or automated.

In step five, we rate the risks on a scale of one to ten. We do this by
relating these control techniques to risks through a matrix. This matrix
primarily serves as a way of double-checking that all risks and controls have
been identified.

Risks are listed as row headings on the matrix, and control techniques as
column headings. When a control is related to a risk, an X is placed in the
intersecting box. This is not a control evaluation, only the identification of
some relationship. · A row with no X indicates an uncontrolled risk, or a control
technique that has been overlooked. A column with no X indicates an unneeded
control, or a risk that has been overlooked, which tells us we have more work to
do.

Each risk is then assigned a rating, with ten being a high risk. Risks
rated above the threshold ~- usually set at four -- are called exposures.

For each exposure, we develop a scenario showing how it may be exploited.
This is the sixth step in our ISSEM methodology. The purpose of these scenarios
is to communicate the exposures to management and provide other information that
will assist management in making judgments on the additional means of confirming
that the referenced exposures are, in fact, not under control.

Information provided in a scenario includes:

o The exposure or exposures upon which the scenario 1s based,

o Resources required to exploit the exposure,

o The number of people who are potential perpetrators. An exposure that
can be exploited by 200 people is obviously of greater concern than one
that can be exploited by one, two or three.

o The motive, which is usually personal gain or gain to the organization,

o The procedures the perpetrator would need to follow,

o Existing controls that might catch the execution of this scenario, and
finally,

. -~ 	 o The extent of damage to the organization that would occur before the
scenario would be stopped.

As you can see from these steps I've just talked about, ISSEM takes a much
more rigorous approach than many "checklist-based" types of evaluation; ISSEM

218

not only identifies what controls are in place, but also focuses on how a
knowledgeable person could circumvent these controls. And the evaluation
project team usually feels that ISSEM has identified potential risks that they
might otherwise have missed.

ISSEM also improves management's understanding of computer security. In
doing so, it helps them understand where they stand in relation to the ideal
balance between over-control and under-control ••• between spending too much for
security and not enough to assure the protection they need.

Now, let's look at two specific cases in which we've used ISSEM to evaluate
the effectiveness of clients' security procedures.

The first one is a medium-sized European bank that is heavily involved in
international currency markets. The bank was extending the scope and features
of its recently computerized transaction processing and reporting functions. We
were asked to evaluate the security of the bank's information systems.

First, we conducted a general risk analysis in which we reviewed the
overall operations of the computer system and identified areas of high potential
exposure. Then, using ISSEM, we performed a detailed evaluation of selected
exposure areas.

In the general risk analysis, which took about two weeks to complete, we
identified some of the key exposures as follows:

o The computer files relating to the bank's international currency trades
represents a high potential exposure. There were indications that the bank
could be subject to serious disruption and financial loss from potential
violation of the system by knowledgeable individuals.

o Systems documentation deficiencies resulted in undue reliance on one
data processing manager. This situation made the data processing
department potentially susceptible to disruption if this manager were to
resign. And it was further aggravated by the fact that an adequate set of
data processing standards and procedures had not been established.

o Next, we found that a disaster recovery plan needed to be formalized and
parts of it tested as appropriate. Although not likely to occur, a major
disruption to the computer facility would have had a significant effect on
the bank if such a plan were not available at the time of disruption.

o On the positive side, however, we discovered that the bank's overall
controls over the computer system were good. We also found that the
computer environment and access to it appeared well controlled.

After identifying these gener~l risks, we started the more detailed ISSEM
review, which took about 15 weeks for completion, and included an evaluation of
the bank's currency trading data base ~ystem, the accounts file and the
back-up files in the computer systems. In performing the work, we developed and
documented ways that these key ass;;s could be compromised by a (hypothetical)
person who might know the bank an~ its systems. We reviewed and documented
management controls over these files, and evaluated the resulting levels of
security. We classified the resulting security exposures according to potential
materiality, potential for occurrence and effectiveness of the controls.

219

Among our findings and recommendations were two that we thought were most
important:

o Improve password administration, which we found was weak. The bank was
conscious of the need for adequate segregation of duties in structuring
their organization and assigning responsibilities, but had not recognized
that this important control had been compromised when they assigned user
ID's and access privileges based on functions rather than individuals.
They also lost some employee accountability because of the sharing of user
ID's and passwords. Other related problems were also identified.

o Restrict the programmers' access to production programs and
documentation. Programmers were in a position to learn about details of
the system's user interfaces and controls, could access and modify the
production programs, and had opportunities to operate the computer.

The other assignment I want to look at briefly is a major commercial bank
that has on-line systems serving 4,000 terminals and automatic teller machines.
The officers of the bank felt that security was good because thay had always
maintained a strong emphasis on security. However, they had some concerns that
the checklist reviews they were using might not be providing a high enough level
of security assurance. Thus, they wanted an independent firm to take a very
exhaustive look at security over key assets. Specifically, they were concerned
that their checklist reviews didn't provide the desired level of assurance.

We did not conduct a general risk analysis because bank management had
identified the customer account data bases as the critical assets to be
evaluated.

Our assignment was to apply our ISSEM methodology to these data bases.
During our evaluation, we found a number of major security problems and
suggested procedures for eliminating them. Some of these were:

o The bank had implemented effective controls over transactions
originating in the branch offices. These controls included access control
software, segregation of duties, dual authorization for high dollar
transactions, extensive control logging and exception reporting, and review
requirements. Their systems and operations group, however, could enter
transactions without proper authorization, and the logging and review of
their on-line activities were weak. In particular, the lack of adequate
segregation of duties between systems programming and the data base
administration function created a material vulnerability for the entry of
unauthorized transactions.

o Certain functional areas of the systems and operations group also had an
unwarranted degree of free access to system-level command transactions that
could permit them to reassign terminals authorized for specific locations,
or even to modify entries in the security software authorization tables.
The bank's auditing procedures would probably detect such unauthorized
activities, but not until some days after it occurred. This time period
might be critical to a fraudulent scheme.

o Computer employees generally operated under "carte blanche" procedures
in the computer room. Operators had free access to all production and
systems program libraries and to input/output control areas. Controls
originally established to provide segregation of duties and access

220

authorization controls in this department had deteriorated to an extent
that operations represented a significant security exposure.

What have we learned from the application of ISSEM in a wide variety of
environments, such as those I've just described? First, we've learned that
there are about five significant exposures that we frequently encounter.

The "emergency quick-fix" typically provides a procedure for operators or
programmers to apply "patches on the fly" to expedite a production run, often on
the third shift late at night. The weakness with this exposure is the company's
dependence on the operator/programmer to report the "fix." Usually he doesn't.

The rapid growth of microprocessors has resulted in micros being connected
directly to the mainframe for the convenience of vendor maintenance and systems
or application programmers. These units have, in some cases we have seen, been
set up as if they were operator consoles. They were in effect privileged
terminals with ready access to production processing and files. In addition,
remote access using microcomputers is a growing concern.

The use of passwords is one of the most misunderstood control techniques.
Without question, the most frequent exposure we've found has been the improper
use and control over passwords. Segregation of duties normally found outside
the use of computers is often compromised by allowing certain users to perform
all functions with their passwords, thus compromising what appears to be a well
controlled environment.

Having no real contingency plans is a problem familiar to most of us. Even
when contingency plans have been developed, we find in many cases that they are
not maintained and, therefore, are likely to be useless if and when they're
needed.

Programmer access is also a familiar problem. There continues to be the
feeling that programmers need access to everything in the system to get their
jobs done. But, in fact, there's no good reason not to implement the normal
segregation of duties between the systems programmers, payroll programmers,
financial reporting programmers and so on through the security features of the
system.

We've also learned that any organization that has seriously addressed its
security needs is still likely to have a risk profile that includes both high
level and low-level risks. In each engagement, we attempt to determine the
level of risk by applying the risk rating procedure I described earlier to
evaluate the materiality of loss and the likelihood of an occurrence. The chart
on the screen was developed from a composite of about 2,000 risks taken from
about 20 engagements. First, it shows that a company is likely to have a large
number of exposures that are regarded as low-level risks. It also shows that a
company is likely to have a few high-level exposures but were not adequately
controlled. In effect, about 16% of all risks identified fall into the high
level exposure area.

Thus, we've learned that a few risks at the high end of the scale may go
undetected and their potential exposure unrecognized unless a rigorous, analytic
approach to security management is used. Even then there will be some risks
that are not found. Such an approach, however, provides greater confidence that
most of the risks are known and that security measures are in place to prevent
their occurrence.

221

A COMMERCIAL USER'S PERSPECTIVE
(With A Proposal)

James A. Schweitzer

INTRODUCTION

Current computer uses are usually driven by economics. That is, computers
provide ways to accomplish tasks at an overall cost significantly less than those
for completely manual methods. The people using the computers are not, ,
typically, computer literate. They view the computer as a tool (like a
typewriter). The security for these applications is not a constant, but relies on
the risk-acceptance posture of business management, expressed in terms of
security funding.

Security vulnerabilities are created, in large part, because the human-system
interface protocol is infinitely variable across applications, and considering the
users' motivations actually discourages good security practices. Since a very
large portion of the abusers are authorized users, the failure to provide an
effective, supportive interface protocol is a direct cause of many, if not most,
computer abuses.

A solution, in part, appears to lie in improved administration, and in provision
of high quality, standardized user-machine interface protocols. These are
described in detail.

222

I. Background

Almost all commercial computer applications are driven by economics.
That is, the fast-reducing cost of a MIPS is increasingly attractive against
the total wage costs of administrative or other knowledge workers.
Computers are used as a cost-beneficial replacement for manual work
(consider word processing as an example).

In many instances observed, a non-computer literate employee is using
more than one system. A general clerical employee in a "branch" or
"store", for example, may use several systems with unique protocols:

• word processor
• network communications
• customer administration
• inventory/order status
• service request control.

A wide and perplexing variety of user interface protocols may occur
across such a mix of applications. For example:

User/system Application (illustration only)

Process 1 2 3 4 5

sign on i.d. only org. & i.d. funct. key password none
identification acct. no. acct. no. i.d. password* none
authentication file nameX password none file namex* file name*
expiry reminder no yes no no no
expiry cut off no yes no yes* no
monitor/log no yes* no yes* no
password const. none 1-6 a/n none 4-8 n none
lock word const. none 1-8 a/n none 1-8 a/n 1-8 a/n*
pw encrypted n/a yes n/a no n/a
error recovery user local s.o. user central s.o. user

*optional
x file name is lockword if that security feature is used

The selection of hardware/software is usually application relevant. That
is, the management selects from the system components offered those
which best interface with existing data structures, communications
networks, and/or practical use requirements. Security is (seems to be)
always a subordinate requirement. The current array of product (hard
ware and software) offerings provides a staggering variety of user
interfaces, even within a single manufacturer's line.

223

Complicating the issue is the tendency of profit.,oriented (properly so!)
managers to state a security policy and then display a risk acceptance
posture at wide variance with the policy. This display consists of spending
authority decisions. Usually, the security elements provided by the
computer/software supplier are accepted per se; seldom, if ever, is
supplementary funding available for providing a security supportive user
interface for an application. The bewildering variety of interface
protocols thus find their way into the business operational situation.

II. 	 Vulnerabilities

Current systems applications present two general categories of vulner
abilities, convenient for our purposes. These are:

1. 	 Hands-on vulnerabilities, or those which involve direct access to a
component of the application system, e.g., a single purpose
terminal, an application-directed microcomputer, a specialized
device (a card-reader or mark-sense reader?) or the mainframe
computer supporting the application.

2. 	 Network connected vulnerabilities, or those occurring through
accesses via general purpose, connected devices. Note that these
connections may be authorized or ,unauthorized (penetrations).

Under Category 1 (Hands..,on), experience in a commercial environment
indicates that almost all security violations are committed by employees
or recently discharged employees who have (had) authorized system
access. In some cases the violations involve collusion with persons inside
or in related (e.g., suppliers, consultants) outside positions.

Under Category 2 (Network connected) the violations are mostly
authorized employees. The other cases authorized "outsiders" (e.g.,
supplier people given access rights for special purposes such as supplied
parts quality control). Also in that grouping are unauthorized outsiders
("penetrators") who gain access through clandestine means. Still another
category of increasing concern, as network interconnects grow, e.g.,
ARPA, are the "gray users"; these people may have access for apparently
innocuous purposes, but may develop into sources for proprietary
information.

Some cases, based on actual experience or professional contacts (names
changed to protect the guilty), will serve to illustrate the vulnerabilities.

a. 	 A discharged senior programmer was allowed to return,
unaccompanied, to the work place where the programmer secretly
changed the passwords for programmer's system access.
Analysis: Administrative failure.

·.·'.·,
·I

224

b. 	 A data entry clerk arranged with an accomplice at a supplier to
falsely process, and then destroy, evidence of purchase/payment
transactions. ·
Analysis: inadequate system audit trails, failure to. review trans
actions.

c. 	 A hackers' network provided information for access to a 'business
computer system. The information was correct although only
partially complete.
Analysis: Perception of administrative difficulty in coping with
change of password made "old" data still useable.

d. 	 An engineer was able to re-create proprietary product design data
by "browsing" through network-connected files. Normal security
identification for the data summary was not present in such a bits
and-pieces compilation. ·
Analysis: System failed to establish protection; assigning
restrictions during normal use was inconvenient. Security
mechanisms inadequate. ·

e. 	 A scientist reported that files had been erased.

Analysis: Password had not been changed for years.

An analysis of these and many other cases, publicly announced and
privately told, indicates that the causes of security failure are (in order of
frequencyIeffect):

1. 	 Administrative/user carelessness
2. 	 Inadequate system support for security
3. 	 Weak or irrelevant system security elements

III. Recommendations

The tertiary cause of the security failures noted above is being actively
addressed by computing professionals, as witness the symposia of the IEEE
Technical Committee on Security and Privacy, the DoD Computer
Security Center, and the ACM Special Interest Group - Security, Audit
and Control.

.,.,>, 	 ' • ·.,

This paper addresses the primary and secondary causes, {1) Administrative
Controls and User Motivation and (2) System User Interface· Protocols.

225

Administrative Control and User Motivation

Beautifully constructed and artfully programmed systems, implemented
through hardware of breathtaking performance, are commonplace. Un
fortunately, the traditional control elements are often omitted. These
elements should include:

• 	 effective audit trails to allow proving of the authenticity and
correctness of system activities. Note: this is true of any system,
as the integrity of data relies upon proper (read "authorized" or '
"responsible") system use.

• redundant checks where fiscal elements are involved, e.g.,
procurement, payment, personnel/payroll, etc. Before automation
these typical "accounting" separation of duty practices were taken
for granted.

• 	 management control of user authorizations for system use. This
includes a monitoring function which reviews system activity logs.
The concept of information resource management (IRM) is essential
to provide authoritative decisions on data values (classification)
and/or system user rights (to see, move, modify, write, run, etc.).
This is a frequent failure; many functional managers believe the
"data belongs to the data center manager."

• 	 Security control over access rights and the timely implementation
of IRM decisions on access privileges (usually job related).
Cancellation of rights and motivation of security discipline and
practice fall within this responsibility.

System Support for Security

A recommendation for systems support is provided in the paper "A
Proposal for an Automated Logical Access Control Standard" (January,
1984) which follows.

LOGICAL ACCESS CONTROL EFFECTIVENESS

Standard commercial logical access control software designed to protect
business data normally puts three steps in the way of the User who wants
to sign-on to the computer and perform certain tasks. These· are:

(a) 	 Identification. The User is required to enter a valid and uniquely
identifying code, or "UseriD." This could be, for example, a
personnel number; it commonly doubles as an account code.

(b) 	 Authentication. Having been identified, the User is required to
provide some code or token which is privately known or personally

226

held, to authenticate that the User is really who he or she claims to
be. This could be a plastic card, fingerprint, or recognizable voice
pattern. However, by far the most common authentication means is
for the User to enter a private password. From here on we shall
consider only passwords as authentication means. Other· forms ot
token may become common in the future, but that will not change
the validity of our position on passwords.

(c) 	 Authorization. The authenticated User is then permitted to perform
only those actions, e.g., access and update certain files, execute
certain programs or transactions, read certain documents, etc.,
which have been pre-authorized.

To examine the security effectiveness of logical access control
mechanisms in preventing unauthorized access, we must again consider
these three logical steps independently.

Firstly, the UseriD has a limited security role. If a personnel code such as
Employee Number is chosen to be used for the UseriD, then such codes
may be general knowledge within the organization. UseriD's are often
required to be entered in clear text and can therefore be seen by passers
by, or obtained from printout. If doubling as an account code they will
appear on invoices for computer usage which may pass through many
hands. UserlD's which become known to employees who leave the business
with the knowledge, as well as contract staff, visitors, etc., effectively
become public knowledge. Thus, although it serves to distinguish each
individual who may use "-the computer, a UseriD may have no security
value at all; it represents (only) a "claim to be" a certain person.

The authenticating password is a different matter. If the password is
properly constructed, and if the User keeps it secret and private, not
easily guessable, and changes it periodically, then a password can provide
a highly effective security mechanism. The crucial word, of course, is
"if". It is a matter of common knowledge within large data processing
installations, confirmed by published articles in computer journals (Ref.
11), and by newspaper stories of computer "break-ins" (Ref. 2), that User
password discipline is often poor. Passwords are written down, easily
gues~able strings or names associated with the User are chosen.
Passwords are seldom changed, and then only as a result of enforcement
exercises by the security or data processing management.

The third logical element, authorization processes, are usually well
designed and enforceable. Time-sharing systems, for example, will
commonly allow an authenticated User to access only "public" program
libraries, or data or programs which he/she has personally ent~red or
created. Extension of access rights to other Users requires some positive

227

action on the part of the data owner, or of a security administrator.
Likewise, properly designed transaction-processing systems can be made
completely inaccessible to a given UseriD unless that UseriD has been
specifically authorized to execute certain transactions by a security
administrator. Authorization mechanisms have received the greatest
attention by designers of security systems. For example, the U.S.
Department of Defense "Trusted Computer System Evaluation Criteria"
(Ref. 3) concentrates very heavily on authorization mechanisms.
Generally speaking, therefore, at reasonably low administrative overhead
cost, authorization rights to access data can be automatically enforced, ,
and do not interfere unduly with business data processing needs.

It is obvious from the foregoing that the weak link in the chain of logical
access security is the password. Users of business data processing
services are motivated much more by their desire to get on with their
computing, than by a concern for data security (generally users have a low
perception of risk consistent with management views); password discipline
is not normally enforced, and hence password discipline is poor.

Attempting to enforce password discipline by exhortation or supervisory
methods is ineffective. In today's business conditions the policing of a
large population of Users with terminals at home and elsewhere is not
practicable. Such effort is in any case unpopular - it smacks of
bureaucracy.

Conclusion: This analysis and train of reasoning lead to the idea of
developing a specification which would require the computer itself to
enforce logical access security, automatically as fas as possible, at each
stage of use from sign-on to sign-off. The specification should pay
particular attention to enforcing password discipline.

ALACS - AUTOMATED LOGICAL ACCESS CONTROL STANDARD

ALACS has as its objective to specify an optimum set of logical access
controls in order to provide adequate security for typical confidential
business data; these controls are to be automatically enforced by the
computer's operating system, and if necessary, supplemented by the
application system. Where not automatically enforceable, because of
system limitations, ALACS should provide maximum computer assistance
for the manual administration of security.

A full specification of ALACS is given in the Appendix to this paper, and
the security objective for each requirement is explained. ALACS suggests
a standard iterative sequence of steps as a "log-on" process. The process
occurs each time a user attempts computer activity.

228

A set of security design principles was defined by Hoffman (Ref. 5). The
ALACS proposal meets these principles, especially those marked *.

1. Default to access denial

*2. Non Secret design

*3. User Acceptability

4. . Complete mediation
5. Least privilege

*6. Economy of mechanism

7. 	 Separation of privilege
8. 	 Least common mechanism

It should be emphasized that ALACS contains no new security features
which have not at some time been proposed and/or implemented by some
computer supplier. Many of the requirements for passwords are described
in a FIPS publication (Ref. 4). However, a survey of the logical access
controls of 12 software systems from 7 unique combinations of leading
hardware/software suppliers showed that none met ALACS completely,
and most had several significant weaknesses.

The novelty of ALACS is only that it covers all aspects of logical access control
requirements for typical business data in one statement, and that it specifies a
sign-on protocol which maximizes automatic enforcement of password
discipline in a User-friendly way. The parts of ALACS concerned with access
authorization mechanisms are already standard practice on many suppliers'
computer systems.

Publishing ALACS as a proposed standard serves two goals:

1. 	 In the short term, an organization can compare its existing
computer logical access control mechanisms with ALACS as a
means of identifying weaknesses in security effectiveness. These
weaknesses can then be rectified by in-house software modifications
and/or brought to the computer supplier's attention; alternatively
the risk of the weakness can be consciously accepted. At best,
security is improved; at worst, awareness of security vulnerability is
heightened.

2. 	 In the longer-term, ALACS should stimulate debate in the business
data processing community, and especially standardization bodies.
The debate will no doubt produce suggestions for improvements to
ALACS. With increased customer pressure and public concern
ansmg from the computer trespassing threat, computer
manufacturers and suppliers of security packages should find it
worthwhile to implement ALACS fully.

229

A full and uniform implementation of ALACS would not only bring a
great improvement in computer security over the current level, it
would generally help make computers easier to use. Today each
business computer system has its own unique sign-on procedures and
security mechanism. Imagine the parallel if every time you took a
hire car it was necessary to get out a manual to work out how to
start the engine and drive off. Car manufacturers have evolved a
standard user-friendly man-machine interface, and increasingly that
interface incorporates safety-enforcement mechanisms (such as
reminders about seat-belt wearing),- analogous to ALACS' requiring
computers to enforce security. Although' "standard" in a conceptual
sense however, each car's interface is realized in practice in a
unique way as far as detailed presentation and aesthetics is
concerned. Likewise, ALACS is a conceptual specification. Details
of presentation are left to the implementor.

A standard such as ALACS, therefore, has wider implications than
security. The improvements in computer-user acceptability and
productivity which- would follow widescale implementation of
ALACS, especially for large organizations using computers from
many suppliers, will in the long-term be as valuable as its security
benefit. · '

Reference

1. 	 "Password Security: A Case History", Morris R., and Thompson K.,
~ommunications of ACM, 22, no. 11, November, 1979.

2. 	 "Trial and Error by Intruders Led to Entry into Computers", New York
Times, August 23rd, 1983.

3. 	 "Trusted Computer System Evaluation Criteria", US Department of
Defense Security Centre, May 24th, 1982.

4. 	 "Guideline on User Authentication Techniques for Computer Network
Access Control", FIPS (Federal Information Processing Standards)
Publication, PUB 83, 1980 September 29.

5. 	 MODERN METHODS FOR COMPUTER SECURITY AND PRIVACY, Lana
J. Hoffman; Prentice Hall, 1977; pp. 3 and 4.

6. 	 ALACS Proposal, attached. Charles R. Symons and James A. Schweitzer.

... :~ "

230

Appendix: Automated Logical Access Control Standard (ALACS)

Charles R. Symons

Nolan, Norton &. Co., London

James A. Schweitzer

Xerox Corporation

c. 1984 North Holland Publishing Co.
Used with permission.

Objective

To specify an optimum set of logical processes which can be implemented on a
computer to control access to confidential data and text held on the computer
for the purposes of maintaining adequate security.

Scope

• 	 Any computer whose use is shared by a closed community of Users, any of
whom may use the computer and/or access files via terminals,
microcomputers, etc., for certain pre-authorized purposes,

• 	 Where the data or text which are held are either

confidential to the organization or part of the organization using the
computer and/or

subject to other need-to-know restrictions, e.g., for internal control
reasons, personal privacy, etc.

Terminology

In this standard the word "computer" is used to encompass any computer,
system or sub-system, shared intelligent workstation, or group or network
thereof, with which a User communicates, in interactive or batch mode, and
which is a separate entity from a security control viewpoint. The controls
described within ALACS may be distributed over various processors within the
"computer", as appropriate to its configuration and security needs.

Requirements

The following minimum requirements must be met. For each requirement the
corresponding security objective is given alongside.

·---· ·

231

11

Requirement

A 	 UseriD. A UseriD, mtmmum six
characters, must be assigned to each
individual User, which is unique to
that computer. The computer will not
allow two or more terminals to be
signed on simultaneously with the
same UseriD.

Although assigned to an individual
person, a UseriD may belong to one or
more recognized groups of UseriD's
which share common access
authorizations. (See para. C.2.a
below.)

B 	 Passwords. Each individual UseriD
must have an associated password
which the User is instructed to keep
private with the following character
istics:

Length. Minimum of . 6 •
alpha-numeric or special
characters, excluding blanks.

Frequency of change. The com•
puter will force a password to be
changed within D days of the last
change, where D is an installation
parameter with maximum 99
days, default 30 days.

Repeatability. The computer will•
maintain a list of the last P pass
words used by the UseriD and will
not accept an attempt to change
to a password already used and
still in the list. P is an
installation parameter with a
minimum of 10 passwords.

Initialization. When a new UseriD•
is established it will be given an
"expired" password (see C.l.c
below), that is one which must be
changed at the first attempted
sign-on by the UseriD.

Security Objective

Inhibits sharing of UseriD's, and em
phasizes individual accountability for
usage and security.

Helps simplify administration of access
authorizations.

Password is the key to authenticating
that the User is indeed the individual
identified by the UseriD.

Makes password harder to guess by
trial-and-error or to discover from
systematic testing.

Forced password changing reduces the
security exposure if an existing
password has become known to other
persons than the password-owner.
Forced changing also heightens general
User security consciousness.

Inhibits the User trying to beat the
enforced password changing control.

Prevents the person allocating UseriD's
from knowing the password which will
be used by the User concerned.

232

C

• 	 Encryption. All passwords will be
stored in the computer in one-way
encrypted form. A password
entered during an interactive
sign-on, or a batch job submission
will be immediately encrypted at
the time of entry, and thereafter
never displayed in clear text.

Logical Access Control

1. 	 Sign-on (Identification/Authen
tication) Phase
Sign-on will follow the procedure
below, from the point where the
computer is ready to accept
identification of the User via a
UseriD.

a. 	 Computer invites sign-on by
requesting entry of the
UseriD, in an indicated field.
If accepted the computer
proceeds with step b. If hot
accepted the computer
allows up to two more
attempted entries, and then
if still unsuccessful:

logs al~ unsuccessfully
tried UseriD's,
- alerts Operator or System
Security Administrator
- (if appropriate) disconnects
the terminal.

b. 	 Computer invites entry of
password, in an indicated
field, but provides a "blot"
(or inhibits display or
printing) for that field so
that the entered password
cannot be read. User enters
password, and if successful,
the computer proceeds with
step c. If unsuccessful the
computer allows up to two
more attempted entries, and.
if still unsuccessful:

logs all unsuccessfully
tried passwords
- alerts Operator or System
Security Administrator
- (if appropriate) disconnects
the terminal.

233

Prevents a system programmer or
someone working in "privileged" mode
(see C.3 below) from obtaining pass
words and thereby being able to
impersonate any UseriD.

Procedure is designed to help the
genuine User, but inhibit someone
trying to find an acceptab.le UseriD by
trial-and-error.

Procedure is designed to help the
genuine User, but inhibit a casual
observer from seeing the password, or
someone trying to guess a password by
trial-and-error.

http:acceptab.le

N.B. The computer should
enforce a time delay of
minimum two seconds
between repeated attempted
entries of a password.

c. 	 The computer checks if today
the password is more than E
days from the date of expiry
(E is an installation para
meter, usually set to 20% of
the forced change period D).
If the password is still more
than E days from the expiry,
the computer proceeds with
step f.

d. 	 If the password is within E
days of expiry, but still
unexpired, the computer
issues a warning giving the
number of days remammg
before the password must be
changed. Alternatively, if
the password expires today,
or is already expired, the
computer informs the User
that the password must be
changed immediately.

e. 	 The computer issues an
invitation to change the
password, indicating the
format, and supplying a
"blot" (or inhibiting display or
printing). The User may
ignore the invitation to
change by pressing "Return"
unless the password is
already expired, or expires
today. If the User enters a
new password, the computer
invites a repeat entry to
validate the first entry
(similarly concealed), and
continues until two
successive identical
passwords are entered.

Inhibits someone successfully using a
computer to generate passwords
systematically to gain entry.

To be as helpful as possible the
computer gives advance warning to a
User whose password is due to expire
imminently.

The computer helps the User change
password, and enforces change of an
expired password. A changed password
is requested a second time to avoid
problems which would be caused by a
typing error during the first entry, and
to reinforce the new password in the
User's memory.

234

f. 	 The computer issues a
message stating the date and
time when the last successful
sign-on was made.

Batch Job or message submission
from an interactive terminal
or workstation

g. 	 The computer will only allow
a batch job or message to be
submitted for execution, or
sent from an interactive
terminal or workstation if
the batch job or message is
associated with the same
UseriD/password combination
used for initial sign-on.

h. 	 Sign-on proceeds essentially
as in Interactive mode,
except that the computer
does not provide guiding
messages, and if any step is
unsuccessful the job is
cancelled, with the
appropriate explanation

2. 	 Processing (Authorization) Phase

a. 	 Any computer to which the
UseriD may gain access will
control, using information
provided by the owner of the
"object" concerned:

• 	 The list of "objects"
(programs, transactions,
files, etc.) to which the
UseriD is allowed access
either individually or by
virtue of membership of
a recognized group, or of
pre-registered
attributes.

The "level" of access•
(read, copy, update,
create/delete, execute)
allowed to the objects.

Provides a check for the User that his
UseriD has not been used without the
User's knowledge.

Prevents a user signing on under one
UseriD with associated authorizations
and then creating and submitting a job
with a different authorization.

Each UseriD should be limited in what
use can be made of the computer by
pre-agreed "need-to-know"
considerations.

235

·t\dditionally, the computer
will warn the User
(interactive mode) or cancel
the. job (batch· mode), if the
User.· tries to access beyond
the .authorized range or
.levels.

b. 	 The ·list of UseriD's, or
recognized groups of
UseriD's, which may access
any object, and the
associated level of access
may only be changed by

• 	 the UseriD . which
. individually created the
object, or

• 	 the. object's "owner" (if
such is established), or

• 	 the System Security
Administrator working in
"Privileged Access"
mode (see below).

c. 	 Any major sub-system
executing on the computer
which is shared by Users with
different "need.:.to-know" re
quirements, and which is
treated 'as' a' single "object"
by· the ·computer's security
system, must itself provide
its own authorization scheme
alongthe lines of a. above.

d. 	 If a terminaJ or workstation
is inactive for more than T
minutes, the associated
UseriD will be automatically
signed-off. .T will be an in
stalla.tion parameter with a
default ·of 15 minutes.

As an alternative to sign-off,
the computer blanks the ter
minal screen . and requires
re-entry of the User's pass
word to resume the session.

The rulesand mechanisms for changing
access authorizations must be clearly ,
and coherently established; they will
vary depending on the type of
Computing service. Time-sharing and
offiCe systems usually allow only the
creator of an object to change the
access authorizations. In contrast, a
community of Users sharing a common
data base is better regulated via a
System Security Administrator acting
on behalf of the data base "owner."

The computer's security system may
not be able to cope with incompatible
security conventions of a "foreign"
subsystem. The latter must therefore
provide its own authorization
mechanisms.

Pr~vents someone using a terminal
which has been left by a User who
forgot to sign....off.

Alternative caters for the case where
the overhead due to sign-on/sign-off is
unacceptable.

236

3. 	 Privileged Access

A privileged access mode will be
available to a· System Security
Administrator for maintenance of
all security and logical access
control parameters, but only for
those purposes. Privileged access
will not be needed f()r any appli
cation programming, or use of an
application or utility program.

4. 	 Logging

All unsuccessful sign-on attempts,
and all unsuccessful access
attempts during ·processing (both
of "range" and "levels") will be
recorded in a log in the computer
concerned, available only in
privileged access mode. All log
message-types will be uniquely
coded, and date and time stamped
to enable analysis. Analysis pro
grams will be provided which
highlight suspicious repeatedly
unsuccessful sign-on or access
attempts.

5. 	 Authorization Maintenance

Administrative Procedures will be
established for each computer
such that

• 	 if an individual leaves the
organization any individual
UseriD is immediately
cancelled.

if 	 an individual's job is•
changed, then any conse
quential changes of the
individual's authorization to
access programs,
transactions, data, etc., are
immediately effected.

A privileged access mode is essential
for security administration, such as
establishing and
changing certain
authorizations, etc.
access mode must
from unauthorized
ALACS standard.

deleting UserlD's,
types of access

Such a privileged
itself be protected
use to at least the

A log of attempted security violations
is an essential defense mechanism to
help a System Security Administrator
discover apparent deliberate attempted
violations.

Sound procedures to administer
UseriD's are an essential counterpart to
the computer-enforceable security
measures.

237

D 	 Optional Refinements

1. 	 Physical Terminal constrained to
certain UseriD's. The computer
may allow only certain UserlD's
to sign-on to certain physical ter
minals.

2. 	 Dial-up. An indication of whether
or not access via a dial-up port is
allowed wi11 be associated with
each UseriD. An attempt to use
dial-up when not authorized wiH
result in failure to sign-on.

3. 	 Unused UseriD's. If a UseriD is
unused for more than say 90 days,
the computer logs that fact so
that the System Security
Administrator can ascertain if the
UseriD is sti11 needed.

·)

. ·'

This is a valuable option for situations
where specific computer processing
should be possible only from certain
terminals which could be at a specific
secure location, equipped with certain
security features, etc., due to the need
to handle particularly sensitive data.

Anyone wanting to try and obtain a
UseriD/password combination · by
trial-and-error will probably need the
privacy of a remote dial-up link to
make the attempt. Therefore, limiting
dial-up access to know UseriD's who
have valid reasons for dial-up, can limit
this security risk.

A valuable aid for the System Security
Administrator in isolating potentially
defunct UseriD's.

238

ACCESS MANAGEMENT

USER INTERFACE SYSTEM

USERID------------~

AUTHENTICATOR
REQUEST

USER PASSWORD--~

+t DENY

I

I CONFIRM

I

L-- _REMINDER/

CHANGE

ACTION REQUEST------~

DENY

CONFIRM
OR

REQUEST

LOCKWORD

LOCKWORD- - - - - ..,..

~
fe

RECORD

RECORD

I ,.. ____ ..J

RECORD

...---------+-------~ PROCESS I
OR

FILE
\

___ .:._ __ .J

239

USER ID TABLE

USE LOG

AUTHENTICATOR
TABLE

AUTH. LOG
X=log and

counter

AUTHORITY

TABLE

ACCESS LOG

Computer Viruses

Theory and Experiments

Fred Cohen

Univusity of Southern California

31 August 1984

1 Introduction nnd Abstract

This paper defines a major computer security problem called a virus. The virus is
interesting because of its ability to attach itself to other programs and cause them to
become viruses1 as well. Given the wide spread use of sharing in current computer
systems, the threat of a· virus carrying a Trojan horse [Anderson 72) [Linde 75] is
significant. Although a considerable amount of work has been done in implementing
policies to protect from the illicit dissemination of information [Bell 73] [Denning 82), and
many systems have been implemented to provide protection from this sort of attack
[McCauley 79] [Popek 79] [Gold 79) [Landwehr 83), little work has been done in tLe area

of keeping information entering an area from causing damage [Lampson 73) [Biba 77).
There are many types of information paths possible in systems, some legitimate and
authorized, and others that may be covert [Lampson 73), the most commonly ignored
one being through the user. We will ignore covert information paths throughout this
paper.

The general facilities exist for providing provably correct protection schemes [Feiertag
79], but they depend on a security policy that is effective against the types of attacks
being carried out. Even some quite simple protection systems cannot be proven 'safe'
(Harrison 76]. Protection from denial of services requires the detection of halting

programs which is well known to be undecidable [Garey 79). The problem of precisely
marking information flow within a system [Fenton 73] has been shown to be I\1>
complete. The use of gl1ards for the passing of untrustworthy information [\Voodward
79] between users has been examined, but in general depends on the ability to prove
program correctness which is well known to be ~1>-complete.

The Xerox worm program [Shoch 82] has demonstrated the ability to propagate
through a network, and has even accidentally caused denial of services. In a later
variation, the game of 'core wars' [Dewdney 84] was invented to allow two programs to
do battle with one another. Other variatiorrs on this theme have been reported by many

.. ,- .. unpublisheJ authors, mostly in the context of night time games played between
;

programmers. The term virus has also been used in conjunction with an augmentation
to APL in which the author places ~ '·:eneric call at the btginTJ.ing of each function which
in turn invokes a preproce~sot ~v augment the default APL interpreter [Gunn 7 4).

1There ar~ two ~pE>IIin!':c: for the plural or virus; 'virusses', and 'viruses'. We use the one found i~
Webster's 3•d lnternatinnal l.Jnabridged Dictionary

240

The potential threat of a widespread security problem has been examined [Hoffman
82] and the potential damage to government, financial, business, and academic
institutions is extreme. In addition, these institutions tend to use ad hoc protection
mechanisms in response to specific threats rather than sound theoretical techniques
(Kaplan 82]·. Current military protection systems depend to a large degree on

isolationism [Baker 83], however new systems are being developed to allow 'multilevel'
usage [Klein 83]. None of the published proposed systems defines or implements a policy
which could stop a virus.

In this paper, we open the new problem of protection from computer viruses. First we
examine the infection property or a virus and show that the transitive closure or shared
information could potentially become infected. When used in conjunction with a Trojan
horse, it is clear that this could cause widespread denial of services and/or unauthorized
manipulation of data. The results of several experin,~::::uts with computer viruses are used
to demonstrate that viruses are a formidable threat in both normal and high security
operating systems. The paths or sharing~ transitivity of information flow, and generalit/
of informatioP. interpretation are identified as the key properties in the protection from
computer viruses, and a case by case a.nalysis of these properties is shown. Analysis
shows that the only systems with potential for protection from a viral attack are systems
with limited transitivity and limited sharing, systems with no sharing, and systerr: ~
without general interpretation of information (Turing capability). Only the first c~e
appears to be of practical interest to current society. In general, detection of a virus is
shown to be undecidable both by a-priori and runtime analysis. and without detection,
cure is likely to be difficult or impossible.

Several proposed countermeasures are examined and shown to correspond to special
cases of the case by case analysis of viral properties. Limited transitivity systems are
considered hopeful, but it is shown that precise implementation is intractable, and
imprecise policies are shown in general to lead to less and less usable systems with time.
The use of system wide viral antibodies is examined, and shown to depend in general on
the solutions to intractable problems.

It is concluded that the the study of computer viruses is an important research area
with potential applications to other fields, that current systems offer little or no
protection from viral attack, and that the only provably 'safe' policy as of this time is
isolationism.

2 A Computer Virus

\Ve define a comp11ter 'virus' as a program that can 'infect' other programs by
modifying them to include a possibly evolved copy of itself. \Vith the infection property,
a virus can spread throughout a computer system or network using the authorizations of
every user using it to infect their programs. Every program that gets infected may also
act as a virus and thus the infection grov·iS.

241

The foliowiug ;:.s~udo-program shows bow a virus might be written in a pseudo
eomputer hnguage. The • := symbol is used for definition, the •: • symbol labels a
sta k.tlen t, the •; • separates statements, the • = • symbol is used Cor assignment or

·comparison, the •-..• symbol stands for not, the • {- and •} • symbols group sequences
of statements together, and the • ... • symbol is used to indicate that an irrelevent
portion of code has been left implicit.

prograa viru•: =

{1234567;

•ubroutine 	infect-executable:=

{loop:file = get-randoa-executable-file;

if fir•t-line-of-file = 12346e7 then goto loop;

prepend vira• to file;

}

•ubroutine 	do-daaace:=

{whatever daaage i• to be done}

•ubroutin~ trigger-pulled:=

{return true if •oae condition hold•}

aain-prograa:=
{infect-executable;
if trigger-pulled then do-daaage;
goto next;}

next:}

A Staple Viru• •v•

This example Yirus (V) searches for an uninfected execubble file (E) by looking for
executable files without the •1234557• in the beginning, and prepends V to E, turning it
into an infected file (I). V tbt:r>. checks to see if some trigg~ring condition is true, and
does damage. Finally, V execui~s the rest of the program it v:as prepended to. When the
user attempts to execute E, \ is executed in its place; it i~:ects another file and then
executes as if it were E. With the exception of a slight delay t.Jr infection, I appears to be
E until the triggering condition causes damage.

A common misconception of a virus relat2s it to programs that simply propagate
through networks. The worm program, 'core wars', and ether similar programs have
done this, but none of them actually involve infection. The key property of a virus is its
ability to infect other prograro..s, thus reaching the transitiv('· closure of sharing between
users. As an example, if V infected one of user A's executables (E), and user B then ran
E, V could spread to user B's ftles as well.

It should be pointed out that a virus need not be used fo evil purposes or be a trojan
horse. As an example, a compression virus could be written to find uninfected
executables, compress them upon the user's permission, and prepend itself to them. Upon
execution, the infected program decompresses itself and executes normally. Since it
always asks permission before performing services, it is not a Trojan horse, but sine~ it

242

has the infection property, it is still a virus. Studies indicate that such a virus could save
over 50% of the space taken up by executable files in an average system. The
performance of infected programs would decrease slightly as they are decompressed, and
thus the compression virus implements a particular time space tradeoff. A sample
compression virus could be written as follows:

prograa co•pre••ion-viru•:=
{01234567;

1ubroutine infect-executable:=
{loop:file = &et-rando•-executable-file;
if first-line-of-file = 01234567 thea coto loop;
co•pre11 file;
prepend co•prellioa-viru• to file;
}

:aain-progru:=
{if ask-perwd••ioa thea infect-executable;
unco•press the-rest-of-this-file iato t.pfile;
run t.pfile;}

}

This program (C) finds an uninfected executable (E), compresses it, and prepends C to
form an infected executable (1). It then uncompresses the rest of itself into a temporary
file and executes normally. When I is run, it will seek out a!lrl compress another
executable before decompressing E into a temporary file and executing it. The effect is to
spread through the system compressin6 executable files, and decompress them as they
are to be executed. Users will experience significant delays as their executables are
decompressed before being run .

..A.B a more threatening example, let us suppose that we modify the program V by
specifying trigger-pulled as true after a given date and time, and specifying do-damage as
an infinite loop. With the level of sharing in most modern systems, the entire system
would likely become unusable as of the specified date and time. A great deal of work
might be required to undo the damage of such a virus. This modification is shown here:

subroutine do-daaage:=

{loop: soto loop;}

subroutine trigger-pulled:=

{if Jear>1984 then return true otherwise return false;}

A· Deni.al of Services Virus

As an analogy to a computer virus, consider a biological disease that is 100%
infectious, spreads whenever animals communicate, kills all infected animals instantly at
a given moment, and has no detectable side effects until that moment. If a delay of even
one week were used between the introduction of the disease and its effect, it would be
very likely to leave only a few remote villages alive, and would --certainly wipe out the

243

vast majority of modern society. If a computer virus of this type could spread
throughout the computers of the world, it would likely stop most computer usage for a
significant period of time, and wreak havoc on modern government, fmancial, business,
and academic institutions.

3 Experime~ts with Computer Viruses

To demonstrate the feasibility of viral attack and the degree to which it is a threat, '
several experiments were performed. In each ease, experiments were performed with the
knowledge and consent of systems administrators. In the process of performing
experiments, implementation fiaws were meticulously avoided. It was critical that these
experiments not be based on implementation lapses, but only on fundamental flaws in
security policies.

The First Virus

On November 3, 1Q83, the first virus was conceived of as an experiment to be
presented at a weekly seminar on computer security. The concept was first introduced in
this seminar by the author, and the name 'virus' was thought of by Len Adleman. After
8 hours of expert work on a heavily loaded VAX 11/750 system running Unix, the first
virus was completed and ready for demonstration. Within a week, permission was
obtained to perform experiments, and 5 experiments were performed. On November 10,
the virus was demonstrated to the security seminar.

The initial infection was implanted in 'vd', a program that displays Unix file structures
graphically, and introduced to users via the system bulletin board. Since vd was a new
program on the system, no performance characteristics or other details of its operation
were known. The virus was implanted at the beginning of the program so that it was
performed before any other processing.

In order to keep the attack under control several precautions were taken. All infections
were performed manually by the attacker, and no damage was done, only reporting.
Traces were included to assure that the virus would not spread without detection, access
controls were used for the infection process, and the code required for the attack was
kept in segments, each encrypted and protected to prevent illicit use.

In each of five attacks, all system rights were granted to the attacker in under an hour.
The shortest time was under 5 minutes, and the average under 30 minutes. Even those
wh(. knew the attack was taking place were infected. In each case, files were 'disinfected'
after experimentation to assure that no user's privacy would be violated. It was expected
that the attack would be successful, but the very short takeover times were quite
surprising. In addition, the virus was fast enough (under 1/2 second) that the delay to
infected programs went unnoticed.

Once the results of the experiments were announced, administrators decided that no

244

further computer security experiments would be permitted on their system. This ban
included the planned addition of traces which could track potential viruses and password
augmentation experiments which could potentially have improved security to a great
extent. This apparent fear reaction is typical, rather than try to solve technical problems
technically, policy solutions are often chosen.

After successful experiments had been performed on a Unix system, it was quite
apparent that the same techniques would work on many other systems. In particular,
experiments were planned for a Tops-20 system, a VMS system, a VM/370 system, and a
network containing several of these systems. In the process of negotiating with
administrators, feasibility was demonstrated by developing and testing prototypes.
Prototype attacks for the Tops-20 system were developed by an experienced Tops-20
user in 6 hours, a novice VM./370 user with the help of an experienced programmer in 30
hours, and a novice VMS user without assistance in 20 hours. These programs
demonstrated the ability to fmd files to be infected, infect them, and cross user
boundaries.

After several months of negotiation and administrative changes, it was decided that the
experiments would not be permitted. The security officer at the facility was in constant
opposition to security experiments, and would not even read any proposals. This is
particularly interesting in light of the fact that it was offered to allow systems
programmers and security officers to observe and oversee all aspects of all experiments.
In addition, systems administrators were unwilling to allow sanitized versions of log tapes
to be used to perform offline analysis of the potential threat of viruses, and were
unwilling to have additional traces added to their systeniS by their programmers to help
detect viral attacks. Although there is no apparent threat posed by these activities, and
they require little time, money, and effort, administrators were unwilling to allow
investigations. It appears that their reaction was the same as the fear reaction of the
Unix administrators.

A Bell-LaPadula Based System

In March of 1Q84, negotiations began over the performance of experiments on a Bell
LaPadula [Bell 73] based system implemented on a Univac 1108. The experiment was
agreed upon in principal in a matter of hours, but took several months to become
solidified. In July of 1984, a two week period was arranged for experimentation. The
purpose of this experiment was merely to demonstrate the feasibility of a virus on a Bell
LaPadula based system by implementing a prototype.

· . .-··::'

Because of the extremely limited time allowed for development (26 hours of computer
usage by a user who haJ never used an 1108, with the assistance of a programmer who
hadn't used an 1108 in 5 years), many i$gues were ignored in the implementation. In
particular, performance and generality of the attack were completely ignored. As a
result, each infection took about 20 seconds, even though they could easily have been
done in under a second. T~aces of the virus were-left on the system although they could

245

- I

.·· .· I

have been eliminated to a large degree with little effort. Rather than infecting many fileS
at once, only one file at a time was infected. This allowed the progress of a virus to be
demonstrated very clearly without involving a large number of users or programs. As a
security precaution, the system was used in a dedicated mode with only a. system disk,
one terminal, one printer, and accounts dedicated to the experiment.

Alter 18 hours of connect time, the 1108 virus performed its first infection. The host
provided a fairly complete set of user manuals, use of the system, ·and the assistance of a '
competent past user of the system. Alter 26 hours of use, the virus was demonstrated tQ
a group of about 10 people including administrators, programmers, and security officers.
The virus demonstrated the ability to cross user boundaries and move from a. given
security level to a higher security level. Again it should be emphasized that no system
bugs were involved in this activity, but rather that the Bell-LaPadula model allows this
sort of activity to legitimately take place.

All in all, the attack was not difficult to perform. The code for the virus consisted of 5
lines of asse:nbly code, about 200 lines of Fortran code, and about 50 lines of command
files. It is estimated that a competent systems programmer could write a much better
virus for this system in under 2 weeks. In addition, once the nature of a viral attack is
understood, developing a specific attack is not difficult. Each of the programmers present
was convinced that they could have built a better virus in the same amount of time.
(This is believable since this attacker had no previous 1108 experience.)

Instrumentation

In early August of 1984, permission was granted to instrument a VAX Unix system to
measure sharing and analyze viral spreading. Data at this time is quite limited, but
several trends have appeared. The degree of sharing appears to vary greatly between
systems, and many systems may have to be instrumented before these deviations are well
understood. A small number of users appear to account for the vast majority of sharing,
and a virus could be greatly slowed by protecting them. The protection of a few 'social'
individuals might also slow biological diseases. The instrumentation was conservative in
the sense that infection could happen without the instrumentation picking it up, so
estimated attack times are unrealistically slow.

As a result of the instrumentation of these systems, a set of 'social' users were
identified. Several of these surprised the main systems administrator. The number of
systems administrators was quite high, and if any of them were infected, the entire
system would likely fall within an hour. Some simple procedural changes were suggested
to slow this attack by several orders of magnituce without reducing functionality.

246

---------------------------- ----------------------------

Su.aarJ of Spreadins
·--"' 171tea 1 •J•te• 2., --~

cl&ul .. I spread I tiae I clan I ., Ispread I tiae I

s 3 22 0 s 6 160 I 1

A 1 1 0 A 7 78 I 120

u 4 6 18 u .T 24 1 eoo

' Two systems are shown, with three classes of users (S for "system, A for system
a:d'ministrator, and U for normal user). '##' indicates the number of users in each
eatagory, 'spread' is the average number of users a virus would spread to, and 'time' is
the average time taken to spread them once they logged in, rounded up to the nearest
minute. Average· times are misleading because once an infection has reaches the 'root'
account on Unix, all access is granted. Taking this into account leads to takeover times
on the order of one minute which is so Cast that infection time becomes a limiting factor
in how quickly infections can spread. This coincides with previous experimental results
using an actual virus.

Users who were not shared with are ignored in these calculations, but other
experiments indicate that any user can get shared with by offering a program on the
system bulletin board. Detailed analysis demonstrated that systems administrators tend
to try these programs as soon as they are announced. This allows normal users to infect
system files within minutes. Administrators used their accounts for running other users'
programs and storing commonly executed system files, and several normal users owned
very commonly used files. These conditions make viral attack very quick. The use of
seperate accounts for systems administrators during normal use was immediately
suggested, and the systematic movement (after verification) of commonly used programs
into the system domain was also considered.

, Summary and Conclusions

The following table summarizes the results of the experiments to date. The three
systems are across the horizontal axis (Unix, Bell-LaPadula, and Instrumentation), while
the vertical axis indicates the measure of performance (time to program, infection time,
number of lines of code, number of experiments performed, minimum time to takeover,
average time to takeover, and maximum time to takeover) where time to takeover
indicates that all privilages would be granted to the attacker within that delay from
introducing the virus.

247

Su.aarr of Attack•
I UDix I 8-L ! In1tr I

Tiae I 8 hn 118 hr. I 1/A I

Iuf t 1.6 •ec 120 •ec I 1/1 I

Code I 200 1 I 280 1 I 1/1 I

Tria.ll I 6 I 1/1 I 1/J. I

IliA t I 6 ab I 1/1 I!O •ec I

Avg t 130 aiD I · 1/1 I!O aill I

Kax t 160 aiD I 1/1 148 hn I

Viral attacks appear to be easy to develop in a very short time, can be designed to
leave few if any traces in most current systems, are effective against modern security
policies for multilevel usage, and require only minimal expertise to implement. Their
potential threat is severe, and they can spread very quickly through a computer system.
It appears that they can spread through computer networks in the same way as they
spread through computers, and thus present a widespread and fairly immediate threat to
many current systems.

The problems with policies that prevent controlled security experimen~ are clear;
denying users the ability to continue their work promotes illicit attacks; and if one user
can launch an attack without using system bugs or special knowledge, other users will
also be able to. By simply telling users not to launch attacks, little is accomplished; users
who can be trusted will not launch attacks; but users who would do damage cannot be
trusted, so only legitimate work is blocked. The perspective that every attack allowed to
take place reduces security is in the author's opinion a fallacy. The idea of using attacks
to learn of problems is even required by government policies for trusted systems [Klein
83] (Kaplan 82). It would be more rational to use open and controlled experiments as a
resource to improve security.

4 Prevention of Computer Viruses

\Ye have introduced the concept of viruses to the reader, and actual viruses to systems.
Having planted the seeds of a potentially devastating attack, it is appropriate to examine
protection mechanisms which might help defend against it. \Ve examine here prevention
of computer viruses.

Basic Limitations

In order for users of a system to be able to share information, there must be a path
through which information can flo-...: from one user to another. Given a general purpose

248

system in which users are capable of using information in their possession as they wish, it
should be clear that the ability to share information is transitive. That is, if there is a
path from user A to user B, and there is a path from user B to user C, then there is a
path from user A to user C with the witting or unwitting cooperation of user B. Finally,
there is no fundamental distinction between information that can be used as data, and
information that can be used as program. This can be clearly seen in the case of an
interpreter that takes information edited as data, and interprets it as a program. In
effect, information only has meaning in that it is subject to interpretation. Sharing,
transitivity of information now' and generality of interpretation allow a virus to spread
to the transitive closure of information now starting at any given source.

Clearly, if there is no sharing, there can be no infection or illicit dissemination of
information. This is called 'isolationism'. Just as clearly, a system in which no program
can be altered, and information cannot be used to make decisions, cannot be infected.
We call this a 'fixed first order functionality' system. We should note that virtually any
system with real usefulness in P.. scientific or development environment will require
generality of interpretation, and that isolationism is unacceptable if we wish to benefit /
from the work of others. Nevertheless, these are solutions to the problem of viruses
which may be applicable in limited situations.

Two limits on the paths of information now can be distinguished, those that partition
users into closed proper subsets under transitivity, and those that don't. Flow restrictions
that result in closed subsets can be viewed 3.$1 partitions of a system into isolated
subsystems. These limit each infection to one partition. This is a viable means of
preventing complete viral takeover at the expense of limited isolationism. It is equivalent
to giving each isolated subset of users their own computer, and can be simplified to
independent analysis of each subsystem.

The Integrity Model

The integrity model [Biba 77) is an example of a policy that partitions systems into
closes subsets under transitivity. In the Biba model, an integrity level is associated with
all information. The strict integrity properties are the dual of the Bell-LaPadula
properties; no user at a given integrity level can read an obiect of lower integrity or
write an object of higher integrity. In Biba's original model, a distinction was made
between read and execute access, but this cannot be enforced without restricting the
g:enerality of information interpretation. Since a high integrity program can write a low
integrity object, it can make low integrity copies of itself, and then read low integrity
input and produce low integrity output.

If the integrity model and the Bell-LaPadula model coexist, a form of limited
isolationism results which divides the space into closed subsets under transitivity. If the
same divisions are used for both mechanisms (higher integrity corresponds to higher
security), isolationism results since information moving up security levels also moves up
integrity levels, and this is not permitted. This is shown graphically below:

249

. ·- ·:
i

. '
I

..,
. ·}

Sue Dividou liba wit.laia 8-L 8-L withia Biba

-------------- --------------
Bib& B-L Re1ult Biba 8-L llenlt. Biba 8-L llel1llt.

1\\1
1\\1
I I •

1//1 IDI
1//1 lUI
I I = I I

1\\1 II/I
1\\1 I I
I I • I I -=

lUI
1\\1
I I

1\\1 II/I
I I II/I
I I • I I -=

lUI
II/I
I I

II/I
II/I

1\\1
1\\1

IDI
IDI

II/I
II/I

I I
1\\1

II/I
lUI

I I
II/I

1\\1
1\\1

I\\ I
lUI

\\ = cu't. writ.e II =cu 't. read II -= ao acce11 \ • I= X

Biba's work also included two other integrity policies, the 'low water mark' policy
which makes output the lowest integrity of any input, and the 'ring' policy in which
users cannot invoke everything they can read. The former policy tends to move all
information towards lower integrity levels, while the latter attempts to make a
distinction that cannot be made with generalized information· interpretation.

Just as systems based on the Bell-LaPa.dula model tend to cause all information to
move towards higher levels of security by always increasing the level to meet the highest
·level user, the Bib a model tends to move all information towards lower integrity levels
by always reducing the integrity of results to that of the lowest incoming integrity. We
also know that a precise system for integrity is !\'P-complete (just as its dual is NP
complete).

The most trusted programmer is (by defmition) the programmer that can write
programs executable by the most users. In order to maintain the the Bell-LaPadula
policy, high level users cannot write p:-ograms used by lower level users. This means that
the most trusted programmers must be those at the lowest security level. Thus the
highest integrity programs must come from the lowest security level users. This seems
contradictory.

Flow Models

In policies that don't partition systems into closed proper subsets under transitivity, it
is possible to limit the extent over which a virus can spread. The 'flow distance' policy
implements a distance metric by keeping track of the distance (number of sharings) over
which da.ta has flowed. The rules are; the distance of output information is the maximum
of the distances of input information, and the distance of shared information is one more
than the distance of the same information before sharing. Protection is provided by
enforcing a threshold above which information becomes unusable. Thus a file with
distance 8 shared into a process with distance 2 increases the process to distance 9, and
any further output will be at at least that distance.

As an example, we show the access allowed to three different users in a distance metric
system with the threshold set at 1 and each user (represented by a dot) able to
communicate with only the 6 nearest neighbors. Notice that each user can access their

250

neighbors information, but that any information their neighbor has that is shared from a
user at a distance of more than 1 is not accessible.

Rules:

• D(output) = max(D(input))

• D(shared input}=l+D(unshared input)

• Information is accessible iff D < eonst

~-.-~ ;--.-.r---...---......--r-...---..- ·----.--.- -~- ·-~----
l ; • . i

'

----- ..

A Distance Metric with a Threshold of 1
The 'Oow list' policy maintains a list or all users who have had an effect on each

object. 't'he rule for maintaining this list is; the Dow list of output is the union of the
Oow lists of all inputs (including the user who causes the action). Protection takes the
form of an arbitrary boolean expression on fiow lists which determines accessibility. This
is a. very general policy, and ca.n be used to represent any of the above policies by
selecting proper boolean expressions. A mechanism has been designed for now lists under
Unix, but has not been implemented as of this writing.

The following figure shows an example of a now list system implementing different
restrictions for different users. Notice that there is a user that could be accessed if there
were a path from that user to the second user, but that since there is no path, no sharing
can actually take place. In addition, as in the distance metric system, ·information
accessed by the flfSt user cannot necessarily be accessed by the second user even th.:mgh
the second user can access information of the flfSt user not shared from other users.

251

• F(output)=Union(F(inputs))

• Information is accessible iff B(F)=l

· .. - "j

. 1

' A Sample Flow List System
In a system with unlimited information paths, limited transitivity may have an effect if

users don't use all available paths, but since there is always a direct path between any
two users, there is always the possibility or infection. ~ an example, in a system with
transitivity limited to a distance or 1 it is 'safe' to share information with any user you
'trust' without having to worry about whether that user has incorrectly trusted another
user.

Limited Interpretation

With limits on the generality of interpretation less restrictive than fixed fl.rst order
interpretation, the ability to infect is an open question because infection depends on the
functions permitted. Certain functions are required for infection. The ability to write is
required, but any useful program must have output. It is possible to design a set of
operations that don't allow infection in even the most general case of sharing and
transitivity, but it is not known whether any such set includes non fLxed .r~t order
functions. Although no fi.Xed interpretation scheme can itself be infected, a ~igh order
fixed interpretation scheme can be used to infect programs written to be interpreted by
it. .As an example, the microcode of a computer may be fixed, but the machine language
it interprets can still be infected. Systems with limited interpretation will not be able to
spread infections any further than those with general interpretation, so the previous
results provide upper bounds on the spread of a virus in systems with limited sharing.

Precision Problems

Although isolationism and limited transitivity offer solutions to the infection problem,
they are not ideal in the sense that widespread sharing is generally considered a valuable
tool in computing. or these policies, only isolationism can be precisely implemented in
practice because tracing exact information flow requires NP-complete time, and

252

maintainiug markings requires large amounts of space [Denning 82]. This lea·;es us with
imprecise techniques. The problem with imprecise techniques is that they tend to move
systems towards isolationism. This is because they use conservative estimates of effects
in order to prevent potential damage. The philosophy behind this is that it is better to
be safe than sorry.

The problem is that when information ha.s been unjustly deemed unreadable by a given
user, the system becomes less usable for that user. This is a form "of denial of services in
that access to information that should be accessible is denied. Such a system always
tends to make itself less and less usable for sharing until it either becomes completely
isolationist or reaches a stability point where all estimates are precise. If such a stability
point existed, we would have a precise system for that stability point. Since we know
that any precise stability point besides isolationism requires the solution to an NP
complete problem, we know that any non NP-complete solution must tend towards
isolationism.

Summary and Conclusions

The following table summarizes the preventative protection from computer viruses just
examined.

Liait• of Yiral iafectioa

seaeral iaterpretatioa liaited interpretatioa

\!ransitiYity

Sharing\ liaited reaeral liaited reneral

1-----------1-----------1 1-----------J-----------1
general I unliaited I unliaited I I unbon I unbon I

1-----------1-----------1 1-----------1-----------1
liaited I arbitrary I clo•ure I I arbitrary I clo•ure I

1-----------1-----------1 1-----------1-----------1

5 Cure of Computer Viruses

Since prevention of computer viruses may be infeasible if widespread sharing is desir~d,
the biological analogy leads us to the possibility of cure a.s a means of protection. Cure in
biological systems depends on the ability to detect a virus and find a way to overcome it.
A similar possibility exists for computer viruses. We now examine the potential for
detection and removal of a computer virus.

Detection or Viruses

In order to determine that a given program 'P' is a virus, it must be determined that P
infects other programs. This is undecidable since P could invoke the decision procedure
'D' and infect otl:.er programs if aud only if D determines that P is not a virus. \Ve
conclude that a program that precisely discerns a virus from any· other program by
examining its appearance is infeasible. In the following modification to program V, we

253

II

use the hypothetical decision procedure D which returns •true• iff its argument is a
vir:;.s, to exemplify the undecidability or D.

prosraa coatradictorJ•Yiru•:•
{ ...
uia-prosraa:=

{if 1D(coatradictorJ-Yiru•) thea
{iafect-executable;
it triJier-pulled thea do-daaace;

-)
coto aext.:
}

}

Coatr&dictioa of the Decidabilit7 of a firu• •cv•

By modifying the main-program or V, we have assured that if the decision procedure D
determines CV to be a virus, CV will not infect other programs, and thus will not act as
a virus. Contrapositively, if D determines that CV is not a virus, CV will infect other
programs, and thus be avirus. Therefore, the hypothetical decision procedure D is made
self contradictory, and precise determination or a virus by its appearance is undecidable.

Evolutions or a Virus

In our experiments, the virus took less than 4000 bytes to implement on a general
purpose computer. Since we could interleave any program that doesn't halt, terminates
in finite time, and doesn't overwrite the virus or any of its state variables, and still have
a virus, the number of possible variations on a single virus is clearly very large. In this
example of an evolutionary virus EV, we augment V by allowing it to add random
statements between any two necessary statements.

254

prograa evolution&rJ-Yirue:=

{ ...

eubroutine print-randoa-ttateaent:=

{print randoa-variahle-n~. 1 • •. randoa-variahle-aaae;
loop:if 	randoa-bit • 0 thea

{print randoa-operator, randoa-variable~aaae;
coto loop;}

print eeaicolon;

}

eubroutine copy-virue-with-randoa-iaeertione:•

{loop: cop7 evolutionary-virue to virae till eeaicoloa-found;

if randoa-bit • 1 then priat-raadoa-ttateaent;

if ·end-of-input-file coto loop;

}

aain-prograa:=

{copJ-Virns-with-randoa-ineertione;

infect-executable;

if trisger-pulled do-daaace;

coto Jaext; }

next:}

In general, proof of the equivalence of two evolutions of a program 'P' ('Pl' and 'P2')
is undecidable because any decision procedure 'D' capable of fmding their equivalence
could be invoked by Pl and P2. U found equivalent they perform different operations,
and if found different they act the same, and are thus equivalent. This is exemplified by
the following modification to program EV in which the C:ecision procedure D returns
•true• 	iff two input programs are equivalent.

prograa undecidable-evolution&rJ-virua:=
{ ...
1ubroutine copy-with-undecidable-assertion:=

{copy undecidable-evolution&rJ-virua to file till line-starta-with-zzz;
if file= Pl then print 'if D(P1,P2) thea print 1;';
if file= P2 then print 1 if D(Pl,P2) thea print 0; 1 ;

copJ undecidable-evolution&rJ-virua to file till end-of-input-file;
}

aain-prograa:=

{if randoa-bit =0 then file = Pl otherwise file =P2;

copy-with-undecidable-assertion;

zn::

infect-executable;

if trigger-pulled do-daaage;

coto next;}

next:}

Undecidable Equivalence of Evolutions of a Virus •UEV•

The program UEV evolves into one of two types of programs Pl or P2. If the program
type is P 1, the statement labeled • zzz • will become:

255

if D(PI,P2) then print 1;
while if the program type is P2, the statement labeled • zzz• will become:

if D(PI,P2) then print 0;
The two evolutions each call decision procedure D to decide whether they are equivalent.
If D indiCates that they are equivalent, then PI will print a I while P2 will print a 0, and
D will be contradicted. If D indicates that they are different, neither prints anything.
Since they are otherwise equal, D is again contradicted. Therefore, the hypothetical
decision procedure D is self contradictory, and the precise determination of the'
equivalence of these two programs by their appearance is undecidable.

Since both PI and P2 are evolutions or the same program, the equivalence or
evolutions of a program is undecidable, and since they are both viruses, the equivalence
of evolutions of a virus is undecidable. Program UEV also demonstrates that two
unequivalent evolutions can both be viruses. The evolutions are equivalent in terms of
their viral effects, but may have slightly different side effects.

An alternative to detection by appearance, is detection by behavior. A virus, just as
any other program, acts as a surrogate for the user in requesting services, and the
services used by a virus are legitimate in legitimate uses. The behavioral detection
question then becomes one of defining what is and is not a legitimate use of a system
service, and fmding a means of detecting the difference.

As an example of a legitimate virus, a compiler that compiles a new version of itself is
in fact a virus by the defmition given here. It is a program that 'infects' another program
by modifying it to include an evolved version of itself. Since the viral capability is in
most compilers, every use of a compiler is a potential viral attack. The viral activity of a
compiler is only triggered by particular inputs, and thus in order to detect triggering,
one must be able to detect a virus by its appearance. Since precise detection by
behavior in this case depends on precise detection by the appearance of the inputs, and
since we have already shown that precise detection by appearance is undecidable, it
follows that precise detection by behavior is also undecidable.

Limited., Viral Protection

A limited form of virus has been designed (Thompson 84] in the form of a special
version of the C compiler that can detect the compilation of the login program and add a
Trojan horse that lets the author login. Thus the author could access any Unix system
with this compiler. In addition, the compiler can detect compilations of new versions of
itselr and infect them with the same Trojan horse. Whether or not this has actually been
implemented is unknown (although many say the NSA has a working version of it).

As a countermeasure, we can devise a new login program (and C compiler) sufficiently
different from the original as to make its equivalence very difficult to determine. If the
'best AI program of the day' would be incapable of detecting their equivalence in a given
amount of time, and the compiler performed its task in less than that much time, it

256

could be reasonably assumed that the virus could not have detected the equivalence, and
therefore would not have propagated itself. H the exact nature of the detection were
known, it would likely be quite simple to work around it. ·

Although we have shown that in general it is impossible to deteCt viruses, any
particular virus can be detected by a particular detection scheme. For example, virus V
could easily be detected by looking for 1234567 as the fust line of an executable. H the
executable were found to be infected, it would not be run, and would therefore not be
able to spread. The following program is used in place of the normal run command, and
refuses to execute programs infected by virus V:

prograa new-run-cod:=
{file = naae-of-procraa-to-be-executed;
if first-line-of-file =1234687 thea

{print •the procraa ka• a Yiru••:
exit;}

otherwise run file;
}

Similarly, any particular detection scheme can circumvented by a particular virus. As
an example, if an attacker knew that a user was using the program PV as protection
from viral attack, the virus V could easily be substituted with a virus V' where the fust
line was 123456 instead of 1234567. Much more complex dP.!ense schemes and viruses can
be examined. What becomes quite evident is analogous to the old western saying: •ain't
a horse that can't be rode, ain't a man that can't be throwed•. No infection can exist
that cannot be detected, and no detection mechanism can exist that can't be infected.

This result leads to the idea that a balance of coexistent viruses and defenses could
exist, such that a given virus could only do damage to a given portion of the system,
while a given protection scheme could only protect against a given set of viruses. U each
user and attacker used identical defenses and viruses, there could be an ultimate virus or
defense. It makes sense from both the attacker's point of view and the defender's point
of view to have a set of (perhaps incompatible) viruses and defenses.

In the ca.Se where viruses and protection schemes didn't evolve, this would likely lead
to some set of fixed survivors, but since programs can be written to evolve, the program
that evolved into a difficult to attack program would more likely survive as would a
virus that was more difficult to detect. As evolution takes place, balances tend to
change, with the eventual result being unclear in all but the simplest circumstances. This
has very strong analogies to biological theories of evolution [Dawkins 78), and might
relate well to genetic theories of disP.ases. Similarly, the spread of viruses through
systems might well be analyzed by using mathematical models used in the study of
infectious diseases [Baily 57).

Since we cannot precisely detect a virus, we are left with· the problem of defining
potentially illegitimate use in a decidable and easily computable way. \Ve might be

257

willing to detect many programs that are not viruses and even not detect some viruses in
order to detect a large number or viruses. U an event is relatively rare in 'normal' use, it
has high information content when it occurs, and w~ can defme a threshold at which
reporting is done. U sufficient instrumentation is available, flow lists can be kept which
track all users who have effected any given file. Users that appear in many incoming
flow lists could be considered suspicious. The rate at which users enter incoming flow
lists might also be a good indicator of a virus.

This type of measure could be of value if the services used by viruses are rarely used
by other programs, but presents several problems. U the threshold is known to the
attacker, the virus can be made to work within it. An intelligent thresholding scheme
could adapt so the threshold could not be easily determined by the attacker. Although
this 'game' can clearly be played back and forth, the frequency of dangerous requests
might be kept low enough to slow the undetected virus without interfering significantly
with legitimate use.

Several systems were examined for their abilities to detect viral attacks. Surprisingly,
none of these systems even include traces of the owner of a program run by other users.
Marking of this sort must almost certainly be used if even the simplest of viral attacks
are to be detected.

Once a virus is implanted, it may not be easy to fully remove. If the system •s kept
running during removal, a disinfected program could be reinfected. This presents the
potential for infinite tail chasing. Without some denial of services, removal is likely to
be impossible unless the program performing removal is faster at spreading than the
virus being removed. Even in cases where the removal is slower tLa.n the virus, it may be
possible to allow most activities to continue during removal without having the removal
process be very fast. For example, one could isolate a user or subset of users and cure
them without denying services to other users.

In general, precise removal depends on precise detection, because without precise
detection, it is impossible to know precisely whether or not to remove a given object. In
special cases, it may be possible to perform removal with an inexact algorithm. As an
example, every file written after a given date could be removed in order to remove any
virus started after that date.

Spontaneous Generation or a Virus

One concern that can be easily laid to rest is the chance that a virus could be
spontaneously generated from some error in the hardware or on the part of a
programmer. As a simple example, let us suppose that we start with a memory
containing no error detection or correction, with a length of only 1000 bits, prepared
ahead of time with a program that requires only a single bit change to turn it into a
virus. If random bit changes are allowed, then the chances of the desired bit changing is
about 1 in 1000.

258

If we assume that one or the other ggg bits changed instead, the chances or the
program becoming the virus are now significantly reduced since two events must both
happen. The chances of the rust are 2 in 1000, and the chances of the second are 1 in
1000, so the resulting probability is 2 in 1,000,000. It is clear that the chances of
spontaneous generation from a program that is very nearly a virus decrease with time,
and thus the major threat of such a mutation is very short run. This may relate to the
reason that a mutant fetus will often die early in pregnancy, but once it has survived for
several months, its chances of birth a.re significantly increased. ·

If we start with a randomly prepared memory, the chances are that 50% of the bits
would have to change for it to become a specific virus, and the probability or
spontaneous generati~n becomes astronomically small. Since 500 bit changes would be
required in the example case to mutate into a virus from this condition, the chances a.re
on the order of 500!/1000500 which is indeed astronomically smaa.

We now note that the simple virus is less likely to succeed in the long run than the
more advanced viruses because it is not so sophisticated that it cannot be easily detected
with simple techniques. In order to write evolutionary viruses, considerably more effort
was required, and a correspondingly ionger virus resulted. In order to have these viruses
general purpose enough to infect many types of programs, they would likely have to be
still more complex. Since the probability of spontaneous generation goes down so quickly
with increasing lengths, the chances o.l a spontaneously generated difficult to detect virus
is still smaller.

If we examine most modern computers, the probability of a random set of bit errors
going undetected is very small. In many systems, the chances are less than 1 such error
per million hours of operation with a memory size of many million bytes. In order to
have a spontaneous generation or this sort, we would have to have the correct set or bit
errors happen. The number of possible resulting combinations is approximately
exponential in the length of the desired result, and the chances of any given set of bits
resulting from such a bit error a.re inversely proportional to the number of possible
results. We conclude that the chances of spontaneous generation from random errors is
ignorable.

Perhaps a much more realistic concern is that a programmer will accidentally create a
virus in the process of trying to create an evolutionary program or a compiler. This too
is probably unlikely in comparison to the chances th'at an attacker would try to
intentionally create a virus.

6 Summary, Conclusions, and Further \\rork

To quickly summarize, absolute protection can be easily attained by absolute
isolationism, but that is usually an unacceptable solution. Other forms of protection all
seem to depend on the use or extremely complex and/or resource intensive analytical
techniques, or imprecise solutions that tend to make systems less usable with time.

259

.·_.·:l
..."•)

. 'I

Prevention appears to involve restricting legitimate activities, while cure may be
arbitrarily difficult without some denial of services. Precise detection is undecidable,
however statistical methods may be used to limit undetected spreading either in time or
in extent. Behavior of typical usage must be well understood in order to use statistical
methods, and this behavior is liable to vary from system to system. Limited forms or
detection and prevention could be used in order to offer limited protection from viruses.

It bas been demonstrated that a virus has the potential to spread throughout any
system which allows sharing. Every general purpose system cui rently in use is open to
viral attack. In current 'secure' systems, viruses tend to spread further when created by
less trusted users. Experiments show the viability of viral attack, and indic.ate that
viruses spread quickly and are easily created on a variety of operating systems. Further
experimentation is still underway.

The results presented are not operating system or implementation specific,. but are
based on the fundamental properties of systems. More importantly, they reflect realistic
assumptions about systems currently in use. Further, nearly every 'secure' system
currently under development is based on the Bell-LaPadula or lattice policy alone, and
this work has clearly demonstrated that these models are insufficient to prevent viral
attack.

Several undecidable problems have been identified with respect to viruses and
countermeasures. The are summarized here:

Undecidable Detection Probleii1.5

Detection of a virus by its appearance

Detection of a virus by its behavior

Detection of an evolution of a known virus

Detection of a triggering mechanism by its appearance

Detection of a triggering mechanism by its behavior

Detection of an evolution of a known triggering mechanism

Detection of a vir'lS detector by its appearance

Detection of a viral detector by its behavior

Detection of an evolution of a known viral detector

Several potential countermeasures were examined in some depth, and none appear to
offer ideal solu~ions. Several of the techniques suggested in this paper which could offer
limited viral protection are designed and being considered for implementation. To be
perfectly secure against viral attacks, a system must protect against incoming
information flow, while to be secure against leakage of information a system must
protect against outgoing information flow. In order for systems to allow sharing, there
must be some information flow. It is therefore the major conclusion of this paper that the
goals of sharing in a general purpose multilevel security system may be in such direct
opposition to the goals of viral security as to make their reconciliation and coexistence
impossible.

260

The most important ongoing research involves determ}Ilil!g how quickly a virus could
spread to a large percentage of the computers in the world. This is being done through
simplified mathematical models and studies of viral spreading in 'typical' computer
networks. Significant examples of evolutionary programs have been developed at the
source level for producing many evolutions of a given pr~gram. A simple evolving virus
has been developed, and a simple evolving antibody is also under development. A genetic
theory of computer viruses is under consideration, but ao solid progress has been made
in this area. A fiow list mechanism for Unix will be implemented when the necessary
hardware is available, and the instrumentation of networks is expected to continue as
long as facilities and funding permit. Statistical detection techniques based on the
results of instrumentation are also in the planning stages.

7 Acknowledgement.

Because of the sensitive nature of much of this research and the experiments performed
in its course, many of the people to whom I am greatly indebted cannot be explicitly
thanked. Rather than ignoring anyone's help, I have decided to give only fll'St names.
Len and David have provided a lot of good advice in both the research and writing of
this paper, and without them I likely would never have gotten it to this point. John,
Frank, Connie, Chris, Peter, Terry, Dick, Jerome, Mike, Marv, Steve, Lou, Steve, Andy,
and Loraine all put their noses on the line more than just a little bit in their efforts to
help perform experiments, publicize results, and lend covert support to the work.
Martin, John, Magdy, Xi-an, Satish, Chris, Steve, JR, Jay, Bill, Fadi, lrv, Saul, and
Frank all listened and suggested, and their patience and friendship were invaluable.
Alice, John, Mel, Ann, a.nd Ed providE:.d better blocking than the USC front 4 ever has.

261

References

(Anderson 72} J. P. Anderson. Computer Security Technology Planning Study. .
Technical Report ESD-TR-73-51, USAF Electronic Systems Division, Oct, 1972. Cited·
in Denning.

(Baily 57) Norman T. J. Baily. The A-fathematical Theory of Epidemics. Hafner
Publishing Co., N.Y., 1957.

[Baker 83} D. B. Baker. Department of Defense Trusted Computer System
Evaluation Criteria (Final Draft). private communication, The Aerospace Corporation,
1983.

[Bell 73) D. E. Bell and L. j_ LaPadula. Secure Computer Systems:
Afathematical Foundations and A-lode/. The Mitre Corporation, 1973. cited in many
papers.

(Biba 77) K. J. Biba. Integrity Considerations for Secure Computer Systems.
USAF Electronic Systems Division, 1977. cited in Denning.

[Dawkins 78) Richard Dawkins. The Selfish Gene. Oxford Press, N.Y., N.Y., 1978.

(Denning 82} D. E. Denning. Cryptography and Data Security. Addison Wesley,
1982.

[Dewdney 84] A.K.Dewdney. Computer Recreations. Scientific Amen"can
250(5):14-22, May, 84.

(Feiertag 79) R. J. Feiertag and P.G. Neumann. The foundations of a Provable
Secure Operating System (PSOS). In National Computer Conference, pages 329-334.
AIFIPS, 1979.

[Fenton 73} J. S. Fenton. Information Protection Systems. PhD thesis, U. of
Cambridge, 1973. Cited in Denning.

[Garey 79] M. R. Garey and D. S. Johnson. Computers and Intractability.
Freeman, 1979.

[Gold 79j B. D. Gold, R. R. Linde, R. J. Peeler, M. Schaefer, J.F. Scheid, and
P.D. \Vard. A Security Retrofit of ~f/370. In !\rational Computer

Conference, pages 335-344. AIFIPS, 1979.

(Gunn 74) ACM. Use of "Virus Functions to Provide a "Virtual APL Interpreter
l/nder User Control, 1974.

(Harrison 76] M.A. Harrison, \V.L._Ruzzo, and J.D. Ullman. Protection in Operating
Systems. In Proceedings. ACM, 1976.

[Hoffman 82] L. J. Hoffman. Impacts of information system vulnerabilities on
society. In 1\·ational Computer Conference, pages 461-467. AIFIPS, 1982.

262

[Kaplan 82] U.S. Dept. of Justice, Bureau of Justice Statistics. Computer Crime-
Computer Security Techniques. U.S. Government Printing Office, Washington, DC,
1982.

(Klein 83) M. H. Klein. Department of Defense Trusted Computer System
Evaluation Criteria. Department of Defense, Fort Meade, Md. 20755, 1983.

(Lampson 73) B. W. Lampson. A note on the Confinement Proplem. In
Communications. ACM, Oct, 1973.

[Landwehr 83) C. E. Landwehr. The Best Available Technologies for Computer
Security. Computer 16(7), July, 1983.

(Linde 75] R. R. Linde. Operating System Penetration. In National Computer
Conference, pages 361-368. AIFIPS, 1975.

(McCauley 79) E. J. McCauley and P. J. Drongowski. KSOS- The Design of a Secure
Operating System. In National Computer Conference, pages 345-353. AIFIPS, 1979.

(Popek 79) G.J. Popek, M. Kampe, C.S. Kline, A. Stoughton, M. Urb.an, and E.J.
Walton. UCLA Secure Unix. In National Computer Conference. AIFIPS, 1Q79.

(Shoch 82) ACM. The Worm' Programs - Early Experience with a Distributed
Computation, 1982.

(Thompson 84) ACM. Reflections on Trusting Trust, 1984.

{Woodward 79] J.P. L. Woodward. Applications for Multilevel Secure Operating
Systems. In National Computer Conference, pages 319-328. .AIFIPS, 1979.

263

PASSWORD MANAGEMENT

IN PRACTICE

Sheila L. Brand
and

Mary E. Flaherty

DoD Computer Security Center

1.0 Introduction

The requirement to protect data from being accessed by
unauthorized users has been evident for quite some time. Recent
publicity describing situations where unauthorized accesses have
occurred has made large numbers of people aware of the preble~.
The relative ease with which these accesses have been
accomplished has emphasized the need to implement procedures
which will minimize, if not eliminate, these occurrences.

Key to preventing unauthorized access is the ability to provide
reliable and relatively uncircuntventable user identification and
authentication mechanisms in the computer system charged with
protection of that data. Several techniques have been advanced
as "fool proof" authentication methods (e.g. signature,
handprint, fingerprint verification, etc). However, to date, the
most common system in use is that of the password. Therefore,
implementation of a secure password management system would go
far towards raising the deterrent level against unauthorized
access attempts.

The DoD Computer Security Center, recognizing the need for
guidance in this area, has developed a guideline to address
issues related to password management. Salient features of this
guideline, titled: A Guideline on Password Management, are
described in this paper.

2.0 Scope

Specific areas addressed in this guideline include the
responsibilities of the System Security Officer and of users,
functionality of the authentication mechanism, and password
generation. Major features advocated in this guideline are:

* Users should be able to change their own passwords

':-· * Passwords should be machine generated rather than user-supplied
·I

·J

264

l

* 	Audit reports such as date and time of last login should
be provided by the system directly to the user

3.0 Control Objectives

These advocated features and other prescribed safeguards are
derived from the following Control Objectives for password
systems.

3.1 Personal Identification

Password systems used to control access to ADP systems that
process or handle classified or other sensitive information must
assure the capability to uniquely identify each individual user
of the system.

3.2 Authentication

Password systems used to control access to ADP systems that
process or handle classified or other sensitive information must
result in unequivocal authentication of the user's claimed
identity.

3.3 Password Privacy

Password systems must assure, to the extent possible, compromise
protection of the password database consistent with protection
afforded the classified or other sensitive information processed
or handled by the ADP system in which the password systems
operate.

3.4 Auditing

Password systems used to control access to ADP systems that
process or handle classified or other sensitive information must
be able to assist in the detection of password compromise.

The remainder of the paper will briefly describe the major
features of the guideline.

4.0 System Security Officer Responsibilities

System Security Officer (SSO} responsibilities are concerned with
functions that relate to both the System and to Security. Many
of the responsibilities of the SSO require that the individual
have a working knowledge of the operating system and be
designated as a privileged user. In this combined capacity as
system administrator/security officer, this individual must:

* 	Prior to allowing any other user access to the system,
change all the standard ID/passwords when a new operating
system is installed.

265

* 	Generate and distribute initial passwords to users. This
requires entering a unique user ID and (if necessary)
clearance level to indicate the highest classification of
data that may be accessed by this user ID/password
combination. Distribution of a password by the sso to the
user should be done in a convenient manner yet one that
accords the password the same degree of protection given
to the data it provides access to.

* On occasion, change a user's password. The distribution
procedure followed here is the same as that for an initial
password assignment. (Examples of reasons for making the
change could be that a user has forgotten a password or a
password compromise is suspected.)

* 	Maintain a current user ID/password database. Users
having no current need to use the system should be removed
as soon as possible.

5.0 User Responsibilities

The key to effective data protection via a password system is the
user. The user must be properly educated on its use and on the
need for "password privacy". Some steps users are advised to
take include:

* 	Telling the password to no one

* 	Remembering the password and not writing it down

* 	Changing the password when required or when suspected
password compromise has occurred

* 	Protecting the password from view if it is displayed on a
screen upon entry

* 	Informing the SSO when no longer using the system

5.1 Password Lifetime

The guideline advises that passwords be changed on a periodic
basis in order to avoid increasing the probability of its
compromise to an unacceptably high level. Though users should be
able, at any time, to change their own password without SSO
intervention or assistance, the proposal is made that no password
be allowed a lifetime of longer than one year. Further, it is
recommended that a system-triggered mechanism be incorporated
that forces the user to change the password at the end of this
maximum period. If the password is not changed at the end of
this period it is considered "expired" and no longer recognizable
by the system at login time.

266

6.0 Internal Storage

A system must maintain a password database and provide the
capability to create, read, add, change or delete entries. Only
those portions of the system that perform these functions should
have access to this database. Access controls to prevent
unauthorized use of the database should be implemented.
Additional protection can be afforded to the password database by
maintaining entries in encrypted form.

7.0 Login Attempt Rate and Auditing

By controlling the rate at which login attempts can be made,
(where each attempt constitutes a guess of a password), the
number of guesses a penetrator can make during a password's
lifetime is limited to a known upper bound. The guideline
recommends that the system include a control that limits the rate
at which login attempts can be made from any one port. It is
also recommended that a control be implemented that would set a
limit on the number of consecutive unsuccessful login attempts
that can be made by a user. When the limit is reached (the
guideline recommends a limit of 5 consecutive unsuccessful login
attempts) a real time notification should be sent to the SSO or
the ADP system operator. In addition, an audit trail mechanism
should also record this security-relevant event and provide it to
the user upon successful login.

8.0 Password Generation

As mentioned above, this guideline recommends machine-generated
passwords. Experience has shown that user-created passwords are
quite guessable and therefore do not always provide the needed
security. Passwords created from randomly generated character
sets may be so secure that even the owner cannot remember how to
access the system. The goal is to use an algorithm that creates
"user-friendly" (or pronounceable) passwords i.e., passwords that
can be remembered, but that will still provide a sufficient
degree of security.

An algorithm for generating "pronounceable" passwords could be
one that uses a dictionary of a significant number of 4, 5 or 6
character words and randomly concatenates several of these words
to form a "pass-phrase" (i.e. a "user-friendly" password). The
algorithm should accept as input "seeds" that will ensure that
the algorithm will not regenerate the same· series of passwords
each time the generation algorithm is used.

9.0 Password Encryption

Access control mechanisms, such as discretionary and mandatory
access controls, afford some protection to the password database
by allowing only specific processes (e.g., login, etc.) to access
it. In order to provide additional protection, the guideline
provides the suggestion that passwords be maintained in the
database in an encrypted form. The encryption algorithm used for

267

this 	purpose should be sufficiently complex so that analysis of
it would fail to discover any computationally feasible means of
inverting the encryption function.

10.0 	The Relationship Between Lifetime, Guess Rate, and Password
Space

The probability that a user's pas~word will be guessed sometime
during its lifetime is a major concern for syste*s requiring some
degree of password security. The lower the value of this '' probability, the higher the security of the password. Other
parameters that affect password security are the password
lifetime, the rate at which guesses can be made and the password
space.

The guideline provides a discussion of the mathematical inter
~elationship of these factors and provides suggestions on how to
arrive at, say, the appropriate password length given the
characteristics of the password space and alphabet size.

11.0 	Conclusion

In conclusion A Guideline On Password Management provides a set
of good practices for the design, us~ and maintenance of an
effective password system. Suggested ingredients include:

* An 	 algorithm to generate user-friendl~ passwords.

* 	An encryption algorithm and/or •ccess control mechanisms
to protect the passwords while in storage, during
transmission, and while in use.

* 	Options to permit the System Security Officer to enter new
user passwords and to change any user password.

* 	Users' capability to allow them to change their own
passwords, but no one else's. · ·

* 	System checks to ensure that a changed password is not the
same as the password being changed.

* 	System checks on the entered user ID/password combination
to ensure that it is the identification/authentication of
a valid user.

* 	System accounting of login attempts and control over the
time interval and tally of incorrect logins.

* 	System maintained audit capability.

* 	Where required, system retention of user clearance level
for each password entered by the SSO.

268

* A maximum lifetime for passwords - established and used by
the system to ensure that a password can not be used
beyond a predetermined period of time.

269

COMPUTER SECURITY FOR TODAY

Bernard Peters

It is my pleasure to talk to the makers and shakers of computer security.
At times, you seem a little slow delivering the security ·products that I need.
But at other times, you are brilliant and very supportive. I will tell you
about a lot of detailed wishes, which I believe will increase security without
increasing your costs.

Let me propose a trip into the future for you. Let us suppose that all the
efforts discussed at this conference are a complete success. We have a true
TCB, at the Al level. It is available for purchase, it has been purchased and
it is installed at your site.

What do you need in addition to the TCB? Of course you need a system
security officer. The security officer should be well-trained, knowledgeable
about the work of your enterprise, and equipped to keep your system secure.
This will include a terminal with a trusted path, an audit trail with tools to
analyze it, and the administrative tools to keep the list of authorized access
authorities and the lists of users accurate and complete.

You will also have a secure space for the system. It will be appropriately
protected against intrusion, theft, fire, and other detracting activities. The
communication lines will be suitably protected or judged to be sufficiently
secure.

The security officer will have available some on-line tests to verify that
the hardware and software mechanisms which provide security are working. These
tests may be run at will or off the clock.

The executive level of your enterprise will have determined what
information is to be protected and will have promulgated the policy needed to
_protect the data. Everyone working in the enterprise will be expected to
support the protection efforts. It will also include the training and education
of the users in the doctrine for correct and secure use of the system.

All users will have a personal identification, and a pass phrase known only
to themselves. There will be appropriate means to share data without losing the
identity of each user. Passwords will be changed at some period not exceeding
90 days, with the user free to change at will. Failure to change a password
when outdated will be brought to the attention of the security officer.

The name of the security officer will be known to all users. Users will be
encouraged to report all security incidents such as unusual use or mis-delivered
data. Yes, it will still be possible for users to missend data. There will be
someone to call to report security problems or concerns during all hours of use
for the system.

Tapes, disc packs, floppy disks and any other media will be properly
labeled with external labels as well as machine readable internal labels. The
software will respect the labels to assist in avoiding error.

External connections to the system shall be made carefully. Where
reasonable, the links shall be encrypted. In other instances, strong management
of the connection will assure that the user is most probably legitimate. Of

270

course, the full power of the pass phra'se and login machanism shall be employed
to additionally screen the external user. The external user may be restricted
in the available activities. In any case, the external user will receive
special attention in the audit trail.

Maintenance will be done by trusted persons. The security officer will
have available independent tests to assure the configuration is unchanged with
respect to security.

With all this in place, you have a secure system. You can feel
comfortable. Except for the inevitable human errors your system will operate
securely.

WE CAN HAVE THIS TODAY!

If all the above were available today, if would significantly enhance
security. These mechanisms are possible without the existance of an Al system.
And it is criminal that they are not in place. The current users of computers
have paid for the industry. They deserve the best possible security for the
information and processes they have entrusted to the computers.

Let us now examine what can be done today, or soon, to obtain a secure
computer system.

The terminal is the interface to the user. The terminal should present a
secure and security conscious interface to the user. For instance, do not
invite vandalism. The terminal should not say login, but should announce, "This
terminal secured at 00:00:00 by mruser. Push panic twice for service." This
will lead the user to execute a non-interceptable procedure to call for the
login procedure. This defeats certain potential threats such as the false login
program. This is useful even if the terminal does not possess a non
interceptable key. It helps those in the area to manage access to the terminal.
It complicates the efforts of anyone attempting to build a false login program.
The login program should have a timeout feature. If there is no typing for as
little as one minute, then the terminal should be returned to the secured state.

Of course the terminal should be timed out for non-use. At five minutes of
non-use, defined as not a single character typed, with no output either, then a
one minute warning with bell should be issued. If there is no response, then
the terminal should be secured, with the event logged into the security log.
Timeout should be as non-destructive as can be. It should permit background
tasks to complete, and if feasible, it should push the foreground task into a
sleep state for possible recovery and continued use. But, it should definitely
shut the terminal down.

What should the user of a terminal see and do before receiving service? As
mentioned, the user should ordinarily find the terminal in the secured state.
The user should review the information on the screen. The identity of the last
user and the time of use should be reasonable. Service is called for by hitting
panic of another non-interceptable key. All other keys are ignored until the
selected panic key is pressed. The system then asks login. The user should
furnish an identification of some length. I recommend seven alphabetics made up
of the initials and first five letters of the last name. I recommend that each
user use the same personal identification on all computers at the enterprise.
This will require a mechanism to resolve duplication for the larger enterprises.

27J

Under no conditions should anyone depend upon the identification of anyone being
kept secret. The pass phrase or password must be the secret element.

The login program should give no hint to the entering user as to whether
the supplied identity is acceptable. The login program should however permit
the entering user to correct mistypes or even cancel the line already typed.
Under some UNIX implementations, if the first letter is capitalized, then the
whole session is considered to be capitals. This makes passwords with lower
case in them not work. But there is no way to cancel the login except submit
enough bad logins to cause termination for excessive bad logins or else ignore
the terminal until it times out and secures itself.

After the identification is received, the terminal should request the
password. Pass phrase might be a better description. The user should type to a
non-echoing screen. If echo cannot be suppressed, then perhaps the echo can be
a non-useful character such as a dot or question mark. If the character typed
must be echoed, then added effort is requited, I will get to that case shortly.
As the entering user types in the password, the system should encrypt each
character into a binary password. The characters that make up the password
should not be collected as·a plain password. It is not necessary and it
constitutes a minor insecurity. It is sufficient to encrypt them into the
binary password as submitted. Only upon getting the character designated as the
end of line, new line, or carriage return, should the binary password be used.

The number of characters typed should be counted. If the number exceeds
forty, then the terminal should be·secured, with a security log entry being
made. This is to deal with the inevitable sending of data to a login sequence.

Every user, without exception, should enter the system through one approved
login sequence; This includes superusers and operators. After appropriate
identification, any privilege may be granted, but until identified, any entering
user must be viewed as a hacker or vandal to be kept out of the system. ·
Identification is not complete until the authentication is accomplished.

On some systems, if a user fails to authenticate after three tries, the
system locks up, disables the terminal until it is restored by the system
security officer or an operator. I dislike such denial of service. I recommend
the following strategy. When opening the login activity set a value to zero.
Upon failure to authenticate set the value to one if zero, otherwise double it.
This represents the number of seconds to delay before asking the login series
again. Announce on the screen that there is a security delay, and how long it
is. As you may know there are foolish people in the world who disable terminals
to annoy others. Using this scheme, a vandal must attempt to login for 59
minutes to disable the terminal for an hour. The need to sit at the terminal
will be a strong deterrent.

Occasionally one hears of systems where the systems programmers or
superusers have short login sequences. In my opinion, such systems are subject
to well-deserved disaster.

If the terminal cannot blank or block the password as it is being typed,
then the system should ask for the password to be typed into a screenful of
random characters. If possible the screen should be filled with characters of
mixed video to include blinking characters. If the terminal provides for
automatic stepping from field to field, then such features should be used to
scatter the password throughout the screen. The screen should be erased as soon

272

as possible after transmission. Paper oriented terminals, which cannot suppress
echo, should not be used.

What should the user be told by the system as he signs on? After the user
has identified and authenticated, the system should identify itself and tell the
user which terminal the system believes the user is entering from. Sometimes
users forget which terminal they are using. The system should then tell the
user if he is logged on at any other terminal. The user has the highest
interest in preventing improper use of his identity and will call for inquiry
into any unusual use. This assumes that group identity and group passwords, or
sharing of passwords is prohibited, as it should be. On ocassion, a user will
use more than one terminal located together in a group. This is acceptable.

Next the user should be told of the date amd time of this account's last
login. This gives the user an opportunity to consider whether the recent usage
is reasonable. If the user has been on vacation or travel, and there has been
use of the account then there is a basis for concern. If recent usage is not
shown, then there may have been unacceptable system restoration and the user
must be concerned about the timeliness of the data. There is a lot of punch in
this idea. The user is concerned about his account. He will watch the date and
time of last use to safeguard his billing and accountability. The system should
provide as much information as can be found. This could also include the last
terminal of use, pages printed, connection to other computers, or other
interesting usage.

The user should be told his security level and privilege level. This will
remind him of his responsibility. It may also lead him to request more
appropriate security levels. We don't need users who are stopped because their
security level was wrong. If the user knows his security level, he can respect
the restrictions thereon.

Persons authorized superuser or special privilege should obtain such
privilege with a specific overt act, after signing on. Such authority should
not be given or obtainable by the first act of signing on. On some systems, in
addition to having the users identity on a list, the user must know the current
superuser password to acquire privilege. In any case, any attempt to obtain
privilege, whether successful or not, should be logged to the security log.

After the user has been told of duplicate sign-on, last sign-on, and
current security and privilege level, then an appropriate notice to change
password, if due, should be given. Some systems force immediate password change
if due. Other systems permit the user to continue, but remind on every sign-on.
I find the forced change now to be unfriendly and not necessarily more secure.
The strategy to be used is site dependent, but a friendly call by the security
officer will also get the password changed. The system can report who i'B
overdue by an unacceptable time or number of sign-ons.

The system should be generated to put all users in the mode of least
privilege. Whenever a user generates a file, such file should be restricted to
the user only, unless the user takes specific action to make it available to
others. Some systems are configured to make all files public unless the user
takes specific action to restrict access. I denounce such systems and those who
configure them.

The user may make some errors that might be security significant, such as
seeking privilege not authorized, or access to data not authorized. The user

273

should receive an appropriate error reply, and the attempt should be logged in
the security log. The attempt should not be simply forgotten. Nor should the
terminal and user be locked out. Denial of service is appropriate in only the
most grave circumstances. There will be many errors prior to any genuine
espionage.

The system should be able to restrict the user to a non-programming mode.
This would permit the user to make use of existing programs to make inquiry and
even updates to a data base, but would not permit programming attacks on the
system. Such a system resriction of use should be carefully checked to make
sure that it is complete. Under UNIX, it is sometimes possible to escape from
the restricted shell. Such escape must be prevented, if unacceptable. The
decision to allow users to access data bases should be made by the user and
owner of the data base. It should not require the intervention of the security
officer. The security officer must not be looked on as a conscientious clerk.

The security officer has one principal duty, to review the audit trail and
security log. The security officer must detect and pursue misuse of the system.
The security officer may give advice and admonishment to users, but is not
responsible for training them. The security officer represents management and
should have access to an effective level of management.

I have mentioned UNIX several times. It is a system of some importance,
and you should be concerned with the security of your implementation. It is
possible to have a secure UNIX, but it takes some effort. I recommend that you
make the effort.

There are some security features which UNIX does not have in most
implementations. Some features are called for by the TCB Criteria, and some are
a good idea anyway. First, let the clock be a hardware feature. I find it
amazing that I can buy a personal computer that knows the date and time even
after power down, but that a large computer system can have its data base
damaged because the operator typed in the wrong date! Please provide a clock
and calendar card. It makes the security log more valid and valuable.

I prefer that the above mentioned label and CRC be part of the data,
prepended to the actual data. This would permit variable length data items. Of
course it is possible to create conventions to append the label and CRC, but I
prefer prepending. Most sorts can readily ignore the first n characters of each
data item. It is hard to deal with data items that are short and might have the
label and CRC in the sort field. Creating the label and CRC apart from the data
item seems dangerous. Don't do it.

You should furnish the label conventions and CRC generating routine. You
should provide supporting routines to check the CRC and label. Your
documentation should help the user decide on four or eight byte CRC's,
explaining the confidence levels to be attained. Recommended methods for
dealing with CRC failure should be presented. I hope some standards group will
get on this so that we can apply a CRC at first creation of a data item, to be
used until the data item is destroyed, on every system that handles it. That is
a big wish.

It has always been possible for a computer vendor to offer a secure
computer system. I find it amazing that not all vendors do. Security is as
important as accuracy, as reliability, as ease of use, and as economy. The
computer vendors have been requiring the users of their systems to hire saints

274

to do their work. How dare they? They certainly have not hired only saints to
do their software. Improved security is in everybody's interest.

But, you say, there has been no method to prove that a system is secure,
until the Evaluated Products List process was created. If a system is on the
Evaluated Products List, every user will consider the system because it may meet
the user's security needs. But the system must meet performance and fiscal
criteria. Then the user will want to test it. Yes, test it! And the user will
expect the vendor to provide the security tests, just as the vendor now provides
performance demonstrations.

Vendors can provide security tests that are independent of the software
that provides the operating system and security relevant utilities. Such tests,
if well documented, will provide the customers with the ability to choose secure
systems. They will permit the user or security officer to test the system as
needed. Such tests should be available on an on-line mode. If the system is to
be used seven days a week, 24 hours a day, it should not be necessary to bring
it down for security tests.

What are such tests to demonstrate? That every security assertion is
supported by software and hardware? It is easy enough to submit a batch of bad
login attempts, bad file references, attempts to reach out of bounds, etc. It
is hard to do this, and to keep the reaction correct. Log such failures and
security relevant attempts, but please log as submitted by "SECTEST" so that the
security log analyzer can easily dismiss them.

Give the security officer some tests, to run as.he sees fit, either off the
clock, or as needed. There are some security features that cannot be reasonably
tested on-line such as secure start-up and secure power-fail. All reasonable
tests should be performable on-line.

A fair number of security tests should be available to each user. The user
deserves to have confidence in the system also. We have implemented a program
on UNIX called "Expose." Expose tells the user which files of his are readable
or writeable by the public, or by his group. Many times when we have given this
to a user, the user was unhappy with the report. Quite often, the user felt the
need to change some of the permissions. Such tools help the user protect his
data and thus the system is more secure.

Why not provide the user with good residue management? It is not a big
deal to assign released file and memory space to a list to-be-freed. The
movement of such data from the to-be-freed list to the free list can occur when
the operating system gets around to erasing such areas. Worried about
performance on the real-time level? Give real-time activities the right to have
error free real-time activities.

The audit trail, as well as the security log, must be reviewed by a
competent security officer on a daily basis. There must be tools to condense
the mountains of detail to items of interest. It is unreasonable to expect the
security officer to read masses of detail and recognize security significant
events without aid. The vendor should furnish such tools. The scan for
security items is no harder than the scan for performance items.

Using the computer to scan the audit trail has advantages. The computer
will be consistent. It will work any relationships regardless how tiresome the
work, or how seldom it has produced a result. The computer can study cross

275

. . ·. ~

relationships that bore humans to tears or sleep. The computer has no friends,
it will turn anyone in. Some sites have installed some automated audit trail
review. It is quite successful and useful. It is important that the results go
to a security officer and are not used to generate automatic messages of rebuke.
Only humans may admonish humans.

Vendors, please put some security on your software. Give the user an
independent means to check the source and object code for validity. This could
be an overall CRC. There. is in the literature a number of security attacks that
are based on false issuance of fixes. You can easily prevent this. Do it. It
is embarrassing if not dangerous, in a sales sense, to be named as the system
which suffered a major loss. If you or your best people don't know how to do
this, call the Computer Security Center or myself.

Under UNIX, as well as some other systems, there is a tendency to permit
the superuser umlimited power. I suppose that it can be argued that such
unlimited power is required in certain cases. It is not, however, required in
most of the cases where such authority is given. For good computer security,
the users must have the superuser disassembled. There can be serious damage
inflicted on a system and its users by an errant use of superuser powers. Let
us have some breakdown into more reasonable partitions. An operator partition,
a librarian partition, a source code manager partition, a system administrator
partition, and a security officer partition are a minimal prudent set.

The lack of item and file locking in UNIX is a bit of a scandal, but I am
sure it will soon be fixed.

SUMMARY

I assert that many of the system usage features and operating procedures
needed to successfully use an Al TCB are already known. Further, these features
if implemented today would give a large measure of needed security. Some sites
have been depending on some or many of these features for years. Much is known
about these measures. We need to implement them on most of our systems as soon
as is practical. There is a lot of hard grubby work to be done, even if a TCB
were available right now. Let us get on with it, such work can give us a lot of
security very soon•

276

JM!:U:C:~OCOHPliD'I'JK!Il-lmASJKJID Tl!UJS'I'JKJID SYS'I'JKH S

FO!Il COJM!OOliD~:U:CA'I':U:O~ A~JID VO~~SYA'I':U:O~ APPL:U:CA'I'IO~S

Dr. Roger R. Schell
Dr. Tien F. Tao

Gemini Computers, Incorporated

P. 0. Box 222417

Carmel, California 93922

Gemini Computers, Inc., is developing a family of high-per
formance secure computer products that provide reliable security for
both military and commercial users while providing the utility and
effectiveness needed for advanced applications. The hardware, based
on the Intel iAPX286 processor, has been designed and pre-production
units constructed and tested. The Gemini Multiprocessing Secure
Operating System (GEMSOS) is designed to the Class B3 security
requirements and a developmental evaluation by the DoD Computer
Security Center has been initiated. The implementation, almost
entirely in Pascal, uses strictly-layered modules that are increment
ally integrated to form a running subset. As of the writing of this
paper, the capabilities for multiprogramming, multiprocessing, core
management, secondary storage management and device management are
integrated and running several demonstrations.

We believe that we will in the future see a dramatic increase in
the need on a wide spread basis for trusted computer systems. The
required ~~hnQl£RL exists and action now by users, government and
industry will insure that adequate~££~£!~ are available and are
used.

Until recently there was not a pressing widespread need for a
high degree of trust in the hardware and software internal to the
computer itself because adequate security could be provided by
severely limiting which individuals had physical or electrical access
to the machine. However, the proliferation of computers and the
networks to interconnect them means that in the future the potential
users of many computers will include individuals not authorized access
to much of the growing amount of valuable and sensitive information
they contain. The exploits of the hackers serve to illustrate that
they are in fact potential "users" of many computers whose owners
failed to recognize them as such. At the same time the experience of
both the hackers popularized by the press and the sanctioned "tiger
teams" illustrate what most computer professionals already know-
that the hardware and software of many of the popular systems are
highly vulnerable.

Fortunately more than a decade ago some very powerful research
results were produced by (mostly government-sponsored) computer
security work in universities and research centers. In particular the

277

8

GEMSOS that locates readable data and code segments in the local
memory of each microcomputer.

The Gemini system supports a variety of storage and I/O devices
through interface boards directly connected onto the Multibus. Under
GEMSOS control, microcomputers share all devices interfaced on the
Multibus. The system supports any combination of up to four disk
drives which include 85 Mbyte fixed Winchester disks, 11 Mbyte remov
able Winchester disks, and 1 Mbyte double-density double-sided floppy
diskettes. Non-volatile memory is available for "core resident"'
applications. Each RS-232 serial I/O interface board handles
ports.

The system includes the Gemini bus controller, a real-time clock
with battery, data encryption device using the standard NBS-DES
algorithm, and a unique system identifier. The system also contains a
non-volatile memory for storing system passwords and encryption keys.

Both hardware and GEMSOS security kernel software support
security, integrity and privacy to meet the Class B3 requirements of
the DoD Criteria. The iAPX286 microprocessor provides hardware
support of memory management, combining the CPU and MMU on the same
chip. The iAPX286 supports four hierarchical pr·ivilege levels (com
monly called protection rings) for protection and mediation of all
memory and I/O references.

GEMSOS takes full advantage of these hardware security and pro
tection features. All information stored in a Gemini system is con
tained in discrete logical objects called "segments." Every segment
posesses attributes such as security access class and access mode.
GEMSOS supports both sensitivity and integrity access classes, each
with 8 levels and 24 compartments, to enforce non-discretionary (man
datory) security policies. GEMSOS also provides an environment for
enforcing application-specific discretionary security (need to know).

Additional security support is provided by the hardware encryp
tion device for the standard NBS-DES algorithm. Each hardware unit
has a unique master key and system identifer. This is used to insure
the trusted distribution of GEMSOS releases, to control software
piracy from removable media by limiting execution to specific hardware
units, and to encrypt the information stored on removable media such
as floppy diskettes. Encryption can also be used by applications to
prevent unauthorized access to transmitted data and authenticate the
integrity of received data.

Concurrent Computing

The multiple microcomputers in a Gemini system are capable of
multiprocessing as well as multiprogramming. Depending on the
requirements of a particular application, the GEMSOS can multiplex
processes onto a single processor or distribute them on several
processors to support combinations of parallel and pipelined pro

278

cessing. The emphasis is on performance and throughput for the appli
cation, not just the theoretical "efficiency" in the use of the
individual hardware module.

Gemini's approach to concurrent computing does not depend on the
availability of concurrent programming languages. Concurrent comput
ing is based on the combined support of well-developed sequential
programming languages, the concurrent GEMSOS, and the Gemini homogen
eous multiple microcomputer hardware architecture. GEMSOS synchroni
zation primitives manipulate objects called eventcounts and sequencers
to support communication and synchronization among processes.
Sequential progamming languages can use these GEMSOS primitives in
concurrent computing application programs. GEMSOS also provides
priority scheduling, access to a real-time clock, and application
controlled processor allocation, allowing programmers great flex
ibility when designing and developing concurrent and/or real-time
applications.

The Gemini multiple microcomputer system is a self-hosting
environment for software development using the popular CP/M-86. Any
programming language that runs on CP/M-86 potentially can be used to
develop concurrent computing and multilevel secure application soft
ware. Gemini is currently supporting the following languages: Pascal
MT+, JANUS/Ada, PL/1, C and Fortran. Additional software development
tools are provided by several utility programs supplied as a part of
the Gemini system.

The Gemini system is built on the IEEE 796 standard Multibus and
can therefore use literally hundreds of different products developed
for Multibus systems. For those products already supported by GEMSOS,
expansion and growth of a Gemini system can be as easy as inserting a
new board into an empty Multibus slot. Gemini configurations include
up to 26 slots. The GEMSOS software has been developed to support
modular expansion and configuration independence. The system automa
tically adapts to the available microcomputers and memory on power-up.

In addition to the suppported products, Gemini Computers, Inc.,
is prepared to respond to requirements for special applications.
Graphics controllers, image processors, voice processing boards, array
processors, communication interfaces, data acquisition boards are just
some of the special purpose Multibus boards potentially supportable in
a Gemini system. The GEMSOS is highly modular and coded in Pascal MT+
to simplify adaptation. GEMSOS has already provided the "hooks" for
several extensions. The ser.ial I/O can be adapted to support RS232,
RS422, RS423, and current loop physical interface standards. Parallel
I/O interface boards can be used which supports the standard IEEE 488
GPIB protocol. For packet switching, multiple Gemini nodes can be
connected in a 10 Mbps Ethernet local area network with GEMSOS adapted
to support the DoD standard IP/TCP protocols. For circuit switching,
the serial I/0 ports can be adapted to support a wide range of data

279

communication protocols: Async, Bisync, Bitsync, HDLC, SDLC, ADCCP;
etc. Gemini will continue to evaluate additional languages and
develop special software interfaces to support languages compatible
with Gemini systems.

The Gemini security architecture draws from and builds on the
positive experiences and results of previous research and develop-'
ments. For example, the architecture is deliberately designed to be
"entensible with respect to security" as described by Schaefer [3].
In particular we demonstrate h~s conclusion that,

"Given strict hierarchical layering ••. along with a strict
integrity policy mechanism such as the ring mechanism, it should
be possible to extend a system through the addition of new
adjacent domains. The mandatory policy and its implementation is
essential; most of the other capabilities, including discretion
ary security and selective audit, can definitely be added on to
such a base."

Sec1mri1ty lDoimailllls

The iAPX286 hardware supports four protection levels [4] that
GEMSOS uses as classical protection rings to create the dominance
domains to enforce the security critical layering of the system; as in
Multics, these will be referred to as Ring 0 through Ring 3, with Ring
0 the most priviledged ring.

Rings 2 and 3 are outside the security_ perimeter, and their use
is left largely to the customer. We would anticipate that Ring 2
would be used for common services employed by many users, e.g., a data
base managemant system. Ring 3 would typically be used as purely an
applications layer for programs and datB provided by individual users.

Rings 0 and 1 contain the implementation of the formal security
policy model-- in particular the_Bell-LaPadula Model [5] is used.
However the nature of the split between the two rings provides
extensibility. Ring 0 contains a distributed kernel that implements
the essential foundation for non-discretionary (viz., mandatory)
policy for which the model provides a strong set of provable proper
ties. The kernel must provide extended virtual machine that speci
fically support both asynchronous processes and segmented address
spaces. The kernel virtualizes processors, all levels of storage, and
I/0, as well as creating virtualized objects -- processes, segments,
and devices. Ring 1 contains a supervisor that implements the discre
tionary policy and other security capabilities that can be added to
the mandatory controls. The supervisor is designed to be built on the
kernel, using the virtualized objects to provide the usual functions
of an operating system, such as a file system.

280

security kernel technology [1] for engineering secure systems, with
the associated formal mathematical security policy models as a defini
tive basis for their evaluation, provided a clear foundation for
a c hi e v i n g s y s t e m s w h e r e t he h a r d w a r e a n d s o f t w a r e c on t r o 1 s c an b e
trusted to protect computed information from unauthorized modification
or dissemination. Today this still remains the only available tech
no 1 o gy for demons tra bl y secure computer systems of practical prop or
tions. During the past decade the maturation of this technology and
the improvements in software engineering and microelectronics have
made the security kernel technology practical and affordable, although
not yet widely assimilated.

The future of trusted systems depends on vendors offering suit
able trusted products, on (probably) government providing objective
standards of trust and on customers recognizing the need and employing
the available products. Several security kernel-based commercial
products are or will soon be available for systems ranging from large
scale, general-purpose mainframes to microcomputers such as the Gemini
system. The U.S. Department of Defense (DoD) has recently published
an objective set of Trusted Computer Systems Evaluation Criteria [2]
with seven distinct levels of trustworthiness and is expected to
publish the results of its evaluation against these criteria of
selected products. It is not yet clear how widely these criteria will
be embraced, especially in view of the risk that some popular products
may not fare well. Furthermore, with virtually no laws, regulations,
policy or practice to mandate or even encourage meaningful hardware
and software controls, some believe there is little incentive for
management to buy the trusted products that are available until there
is a disastrous "three-mile island" of computer security.

However, we are persuaded that as products become available that
are both practical and secure, users will step up to their responsi
bility to protect the information entrusted to the~r machines. This
paper will describe the capabilities and structure of a new family of
products that responds to this need. Our contribution is not one of
fundamentally new ideas, bu.t rather of bringing together into an
integrated whole the available hardware components, software engineer
ing techniques, and trusted systems technology, making the result
available as an off-the-shelf product.

THE G~I~I FAHILW HIGHLIGHTS

The Gemini family of microcomputer systems provides a powerful
combination of multilevel security and multiprocessing capabilities.
The adaptability of the Gemini Multiprocessing Secure Operating System
(GEMSOS) makes the Gemini systems attractive as a trusted base for a
wide range of concurrent and real-time computing applications such as
command, con tro 1, communication, intelligence, weapons, net works, and
office automation.

Tightly coupled multiple microcomputers communicate through
shared memory segments to provide high throughput performance. Up to
8 powerful Intel iAPX286-based microcomputers are modularly connected
on the same Multibus to increase processing power. Processor and
memory modules are interchangable. Bus contention is minimized by the

281

The Swperwisor: Rimg !

The functionality of the supervisor will in practice vary
substantially for Gemini configurations. For example, when used as a
trusted net~ork interface unit that serves as a controller for end-to
end encryption as proposed by Rushby [6] the supervisor has minimal
security responibility.

On the other hand, in a configuration as a workstation discre
tionary security is provided in the supervisor ring. A supervisor can'
implement a file structure out of segments with a file made up of many
segments. The discretionary security attributes and other attributes
of a file can be stored in a separate segment. The non-discretionary
security of the files is guaranteed by the underlying GEMSOS kernel.
While our first file system is an emulation to support the CPM-86
software development environment, we expect that several different
supervisors will be developed both to provide an interface to other
existing application software and to support the specialized discre
tionary polici~s of some users.

User authentication, system security officer and audit functions
are also provided in the supervisor ring. Distinct trusted subjects
(processes) are used to support those supervisor functions related to
the non-discretionary policy. The Gemini hardware includes non
volatile memory specifically to store passwords and other authentica
tion data. Each user must log on to the system with his name and
password for authentication. In a floppy disk environment, eack disk
used in the system has an access class associated with it. The
relationship between the user's access class and the disk's access
class is checked at log in time. A user will not be allowed in the
system unless his access class is compatible with the disk's access
class. This security cannot be bypassed by changing to different
disk. Any attempts to use an unacceptable access class will be
detected and recorded for audit purposes.

Similarly, when appropriate to a given application, the use of
the DES encryption hardware will typically be controlled by a trusted
process in the supervison ring. This process has access to the master
key and system identifier for features such as encryption of removable
media and limiting the execution of imported software to only
legitimate hardware units.

The Distribwted ~erme1: Rimg 0

The interface to the GEMSOS non-dicretionary kernel impl ementa
tion is a set of "virtual instructions" in the classical extended
machine sense -- these consist of (1) hardware instructions (2) calls
to the distributed kernel and (3) interprocess communication to the
non-distributed kernel, viz., Ring 1 trusted subjects, if any. Now
what is meant by a distributed operating system or distributed kernel
is one that is distributed in the address space of the user processes.
In practice, this means that the distributed kernel is a distinct
domain in the process; it is invoked by the mechanism to "enter" a
domain-- for the iAPX286 either a "cross-ring" procedure call or a
"trap". In contrast, the non-distributed kernel is invoked by inter

282

process communication to the distinct process that may execute simul
taneously with the sending (viz., invoking) process.

There is a very strong property of the distributed kernel that
significantly simplifies assuring its correct behavior at the inter
face: it forms what can be thought of as logically a critical section
with respect to the invoking domain. This property derives from the
fact that a process has only a single execution point, and when it is
executing in the kernel domain there is absolutely no way it can be
simultaneously executing in the user domain. Thus many o·f the
difficult issues of concurrency can be avoided merely by using the
strong notion of a process. This notion permits the kernel to be both
interruptable and reentrant so that it does not form an intrinsic
performance bottleneck.

The kernel is responsible for enforcing mandatory access limita
tions; that is, the kernel provides the mechanism for supporting the
non-discretionary security policy. The kernel can support any policy
that can be expressed by a lattice of access classes. Every object-
process, segment, or device -- has a nonforgeable label that denotes
its access class. This non-discretionary security label has been
assigned parameters such that exactly one module _knows the interpreta
tion of this label in terms of a specific policy. Thus, not only does
the kernel support a broad range of security policies but only a
single module has to be tailored to support a particular policy.

The mandatory policy constrains not only the interface but also
the detailed design and implementation of internal state variables.
One significant problem is preventing indirect information channels
between pLocesses with different access classes. For evaluation
internal state variables, such as shared resource tables, are assigned
an access class, and it is confirmed that the design ensures that
values will not be reflected to processes with an inconsistent access
class. The most apparent result is that the success code (returned in
response to the invocation of kernel interface primitives) reflects
the state of the per-process virtual resources, not the shared
physical resources. The same confinement problem requires a non
exclusionary approach to provide secure synchronization between
processes of different access classes. The interprocess communication
provided by Reed's event counts and sequencers r 7] provides the
solution to this "secure reader-writer problem".

The design goal for GEMSOS was to meet the Class Al DoD criteria.
An in it i a 1 v e r s i on of t.1 e to p 1 e v e 1 s p e c if i c at i o n w a s p r e p a r e d i n a
variant of the GYPSY formal specifcation language. However, the lack
of access to the required formal verification tools led us to design
the current verfion of the product specifically to meet the Class B3
requirements. However, we have continued to be alert to the Class Al
requirements and believe that the current architecture canbe extended
to meet these requirements.

283

The implementation of the non-discretionary, distributed kernel
has applied lessons learned from previous security kernel develop
ments, and especially the previous experience with the iAPX286 micro
computer [8]~ One significant change was the use of the Pascal MT+
1 a n g u a g e • T h is s e 1 e c t i on was d r i v e n b y t he d e s i r e f o r a s t r o ng 1 y
typed language to ease systematic evaluation and by the need for
certain features essential for engineering a distributed kernel, e.g.,
reentrant code, stack oriented procedure invocation, ability to
reference separate per-process and shared data segments, controlled
interface to assembly language routines, and a production-quality
compiler and linker. There were few acceptable choices, and the
performance price of the Pascal MT+ choice is still being assessed.
There was inadequate support for inter-segment calls; we have (rel uc
tantly) designed our own intersegment linkage mechanism.

The implementation is proceeding as a rapid prototype to permit
empirical measurement of performance bottlenecks. This prototype has
substantial design documentation to allow detailed examination of the
internal security structure as well. It is our intent that this will
permit us to be responsive to suggestions during the developmental
evaluation by the DoD Computer Security Center while providing an
early and stable interface for users of the system followed by a
smooth transition to the fully evaluated product.

A significant feature is the in;itialization approach to enhance
configuration independence. The system's first response to the hard
ware boatload signal from an operator or at power-up is to determine
dynamically the available processors and local and global memory.
This configuration information is then used to complete what in many
other systems is a static system generation procedure. This initiali
zation places the system in its "secure initial state" required by the
policy model and thus is properly regarded as part of system genera
tion and not part of the security kernel, per se.

As noted previously, the GEMSOS Ring 0 rigorously enforces the
non-discretionary security policy and is the distributed kernel that
provides the fundamental, extensible foundation for all configurations
of the systems. Therefore, it is of paramount importance that its
implementation provide a high degree of assurance in its correctness.
A principle design property that has helped to keep the security
kernel simple and understandable is the loop-free structure of the
modules. The loop-free design supports the software engineering
concept of "information hiding" [9]. As a result, GEMSOS does not
functionally have any global data structures. The kernel is
internally organized into eleven distinct layers that will be
described below.

In practice we have been quite doctrinaire in enforcing the loop
free structure for the layers. While many operating systems claim to
be modular or well-structured, our testing and integration approach
empirically validates this claim. The modules are integrated and
tested from the bottom up. As each module is completed, an accom
panying controlled and reproducible test set is prepared. In the
GEMSOS prototype implementation the major functions and error condi

284

tions visible external to the module are tested, and a careful audit
and accounting is maintained of which sequences of code are tested; as
the production version is integrated, the test will be reviewed and
augmented to insure that each sequential code sequence is executed by
some test. For the actual execution of its tests each module is
integrated with those modules below it that it invokes. This
integrated unit is loaded and run as a functionally intact, but
obviously limited, operating system subset.

Each module is effectively in its own dominance domain, although
there is no supplemental domain enforcement from the hardware. The
f o 1 1 o w in g b r i e f 1 y d e s c r i b e s e a c h m o d u 1 e i n t h e or d e r i n w h i c h t h .e
layers occur, from the bottom up.

Core JPII!allllager

The core manager provides the interface to and "hides" the
information about the details of several unique charteristics of the
processor. This module manages the local and global description table
that control the memory management functions of the processor chip.
It also provides a controlled interface for interrupt processing.

Inner Traffic Controller

Processor multiplexing has two layers, similar to those proposed
for Multics [10]. The bottom layer provides essentially what some
have termed a "separation kernel" [6]. Each physical processor has a
fixed number of "virtual processors" that are multiplexed onto it by
the bottom layer that we call the inner traffic controller. Two of
these virtual processors are dedicated to system services: an idle
virtual processor and a memory manager virtual processor to manage the
asynchronous access to secondary storage devices. The remaining
virtual processors are available to the (upper level) traffic
controller. The inner traffic controller provides primitives for
synchronization between virtual processors. In terms of traditional
jargon, this means that the inner traffic controller provides multi
programming by scheduling virtual processors to run on the processor
with which they are (permanently) associated.

Note that this structure implies that the security kernel can be
(and is) interruptible, viz., is not a critical section; however, the
inner traffic controller itself is not totally interruptible. In
addition, this layer provides all the multiprocessing interactions
between individual physical processors, using a hardware "preempt"
interrupt. An additional benefit of the strict layering in the design
is that the existence of multiple processors is visible only at this
lowest level. Thus, the multiprocessing adds no difficulty to the
design of the rest of the kernel.

285

This module provide the hardware specific drivers for the user
accessible devices. The devices include the serial I/O ports, the DES
encryption hardware, the unique system identifier, the real-time
calendar clock and the non-volatile memory for the system password and
encryption key storage.

Non-Discretionary Security Manager

This is the only module that interprets the stored access classes
in terms of a specific security policy. Subjects and objects in the
system have b~th a sensitivity and integrity access class. The
default version supports 8 hierarchical levels and up to 24 compart
ments. However this module is designed so it can be easily adapted to
alternate policies, for example, to support community of interest
separation for hundreds of distinct categories.

Secondary Storage Manager

This module provides the interface to and manages the use of the
fixed Winchester, removable Winchester and floppy disks used for
permanent storage of segments. It makes the non-discretionary
security checks for removable volumes. This module interfaces to the
Gemini disk format that provides an access class label for each
segment on disk and a range of allowable access classes for each
volume.

MeDIIOJrf MalDlager

This layer manages the multiplexing of the physical primary
storage resources. This layer also manages the segment descriptors in
the iAPX286 descriptor tables for ,each process. Several of the
functions of this layer are executed by the per-CPU memory manager
virtual processors, with synchronization provided by inner traffic
controller primitives. Each processor has local memory that is
addressable by only that processor. There is also additional global
memory that is addressable by all processes running on any processor.
The choice of the memory used has significant performance
implications.

Bus contention is a major performance concern in the multipro
cessor configurations, since all processors share a single bus.
However, in reality only shared, writable segments need be in a global
memory. Our use of a purely virtual, segmented memory permits the
kernel to determine exactly which are the shared, writable segments.
The memory manager layer totally controls the allocation to global
memory to insure that only the required segments are in global memory.
This policy can require some transfer between local and global memory;
however, this structure markedly controls bus contention by allocating
segments to the processor-local memory whenever possible. Our
experience with sample applications is encouraging in that typically

286

less than 10% of the references of a processor are to a global memory.
Thus, a number of processors can be effectively used on a single,
shared bus.

~pper Traffic Cowtroller

The variable number of processes (the "subjects" of the system)
are multiplexed onto virtual processors defined by the inner traffic
controller. Each process has an affinity to the physical processor
whose local memory contains a portion of its address space at the time
of the process scheduling decision. As indicated earlier, the traffic
controller layer uses Reed's advance and await mechanism to provide
secure interprocess communication.

Segment and Event Managers

All entries into the kernel from outside Ring 0 that refer to
segments pass through the segment/event manager layer. The explicit
non-discretionary security checks are made by invoking the non-discre
tionary security module to compare the access class labels of subjects
and objects. This layer uses a per-process known segment table to
convert process local names (viz., segment number) for objects into
unique system-wide names. Each segment has associated with it an
eventcount and sequencer; the segment numbers also serve as the names
used with the interprocess communication primitives.

Seg1111ewtatiow. In GEMSOS, all information, both code and data, is
stored in segments. A segment is a block of storage ranging in size
from 0 to 64k bytes. All segments have an associated access class
label that defines the sensitivity of the information and is the basis
for determining the classes of processes that can access the segment
and the kind of access they can obtain. Segments are typically stored
on disk along with descriptive information, e.g., access class. The
GEMSOS kernel interface provides six functions for segment management.

These allow application processes to dynamically create and
delete segments, specifying their size and access class.

llllake_kwovn_seg1111ent and svapiw_seg1111ent

T h e s e c a 1 1 s a r e u s e d t o g a i n a cc e s s t o s e g m e n t s wit h a d e s i r e d
mode, e.g., read, write, or execute. Makeknown allows the
segments to be introduced in the process address space. This
allows access to any segment in secondary sto;rage, provided of
course, that the process meets security restrictions. Swapin
moves a segment into the primary storage allocation of a process.

These two complementary calls are used to remove a segment from a
process's address space and primary storage allocation.

287

Srmt~cl!nronn:iza1ti«»nn vi1tl!n JEwenn1tcoliD.nn1ts annd SeqliD.ennc~rs. Inter~process
synchronization is accomplished through the use of eventcounts and
sequencers [7], that allow asynchronous control of cooperating
processes. Communication between processes is provided by the use of
shared segments. Any type of synchronization can be implemented
through the use of eventcounts and sequencers. Inter-process
synchronization and mutual exclusion are easily done with these
operations, as well as other more complicated synchronization schemes.
The GEMSOS kernel interface provides four ~rimitives for process
synchronization:

An eventcount has a name and a value. The GEMSOS associates an
eventcount with each segment and identifies it by a segment number.
The eventcount value is initially zero at segment creation and can
only be incremented by a positive value of one. Therefore, it has
only positive non-decreasing values. Ev~ntcounts are us~d for process
synchronization and to control the relative order of execution of
processes. They are incremented by the kernel call "advance", and a
specified value is waited on by the kernel call "await". The event
count value can be read by the kernel call "read eve".

A sequencer also has a segment number as a name and has a value.
It is used to assign an order to events occurring in the system. A
sequencer, like an eventcount, is a non-decreasing integer variable
that is initially zero. "Ticket" is the only kernel operation allowed
on a sequencer. A ticket call returns a unique value which is the
current value of the sequencer for the specified segment and then
increments it by one. A sequencer can be used with an eventcount to
effect mutual exclusion.

Upper Device Manager

This is the module for the interface to I/0 devices from outside
Ring 0. This module checks the non-discretionary security attributes
for the devices. The GEMSOS kernel provides four functions for device
management.

They are used by application processes to gain and terminate
access to devices.

read_s1trinng and vri1te_s1tr:inng

They are used to transfer data to and from the serial I/0 ports
as well as Gemini devices such as the encryption hardware.

Process Kannager

This module provides the interface from outside Ring 0 for the
management of the application process structure. The GEMSOS kernel
provides two functions to dynamically create and delete processes:

288

c:re;artte_process and· delet:e_process

Gate Keeper

A process in the application or the supervisor ring invokes a
security kernel function using the hardware supported functions for
changing the execution domain to Ring 0. In effect, this is a "system
call" instruction that causes a trap, and the gate keeper is merely a
trap handler. Most parameters and re·turn values are "passed by
value"; this simplifies security validation. The protection parameter
verification instruction of the iAPX286 provides further assistance in
the passing of parameters to the kernel. The gate keeper merely calls
the particular module that corresponds to the requested function.

The Gemini trusted multiple microcomputer base supports a wide
range of security and concurrent processing applications. We believe
it is a particularly attractive and cost effective base on which
customers can develop a variety of advanced capablilities.

In modern communications system a dedicated, "core-resident"
configuration is well-suited as a secure front-end or interface
processor. The flexible multiprocessor support provides a low risk
for at the same time meeting demanding throughput requirements such as
those encountered in hLgh speed packet switching or end-to-end encryp
tion control. The integral DES encryption hardware makes it also
attractive for "guard" interfaces where encrypted checksums or digital
signatures are used to establish the authenticity of received
information.

In workstation environments the disk-based configurations are
well-suited for distributing the processing of sensitive information,
especially when the worksta.tion is part of a n~twork. The highly
reliable security is applicable to both Governm~nt and commercial
message and data handling systems to counter many of the security
vulnerabilities of contemporary small computers. At the same time,
the fact that the iAPX286 was designed for upward compatibility with
the popular 8086 and 8088 processors used in the IBM PC and similar
machines offers substantial opportunities to adapt e~isting applica
tion software. In addition the high-performance avail~ble from multi
processor configurations offer unique opportunities for specialized
systems such as concurrent LISP implementations for decision support
and other artifical intelligence application or high-capacity
multiuser data base management systems.

In short, the Gemini family of high-performance, secure computer
products is a significant st~p towatds the easy availability of useful
trusted computer systems for Government and industry.

289

lill:lFJERil:lliCJES

1. S.R. Ames, M. Gasser, amd R.R. Schell, "An Introduction to the
Principles of Security Kernel Design and Implementation," Co.!!!.£_.!!.!_~,
Vol. 16, No.7, July 1983, pp. 14-22.

2. DoD Trusted Computer System Evaluation Criteria, CSC-STD-001
83, 15 August 1983, DoD Computer Security Center, Ft. Meade, Md.

3. M. Schaefer and R.R. Schell, "Towards an Understanding of
Extensible Architectures for Evaluated Trusted Computer System
Pro duets," Proceedings of the 1984 Symposi urn on Security and Privacy,
April 1984, pp. 42-49.

4. R.E. Childs, et. al., "Processor Family for Personal
Computers", Pr_££~diE..B...@.. .2..i. !_he IEEE, Vol. 72, No. 3, March 1984, pp.
363-376.

5. D.E. Bell and L.J. LaPadula, "Computer Security Model:
Unified Exposition a·nd Multics Interpretation," Tech. report ESD-TR
75-306, AD A023588, The Mitre Corporation, Bedford, Mass., June 1975.

6. J. Rushby and B. Randell, "A Distributed Secure System,"
Computer, Vol. 16, No. 7, July 1983, pp. 55-67.

7. D.P. Reed, and R.K. Kanodia, "Synchronization with Event-
counts and Sequencers," Communications of the ACM, Vol. 22, No. 2,
February 1979, pp. 115-12~--------~-- -- --- --

8. R. R. Schell, "A Security Kernel for a Multiprocessor
Microcomputer," Computer, Vol. 16, July 1983, pp. 47-53.

9. D.L. Parnas, "On the Criteria to be Used in Decomposing
Systems into Modules," Communi~tion .2..i. .!.!::!.!::. ACM, Vol. 15, No. 12,
December 1972, pp. 1053-1058.

10. M.D. Schroeder, et. al., "The Multics Kernel Design Project,"
Proc. Sixth ACM Symposium on Operating Systems Principles, November
1977, pp. 43-56.

290

ON THE INABILITY OF AN UNMODIFIED CAPABILITY MACHINE

TO ENFORCE THE *-PROPERTY

W. E. Boebert

Honeywell Systems and Research Center

Minneapolis,·MN

ABSTRACT

It is shown that, in.the absence of additional mechanisms, a machine
based on capability addressing is incapable of enforcing a common class of
security policies. This circumstance results from an intrinsic property of
such machines: the right to exercise access carries with it the right to
grant access. This result was, to the author's best knowledge, discovered
by the PSOS ~] design team circa 1979, and is summarized here owing to
increased interest in capability machines and the enforcement of this particular
class of security policies.

UNMODIFIED CAPABILITY MACHINES

A "capability machine" I?] is one in which there exist distinguished
objects of the form (Name, Mode), where Name is the name of a storage object
such as a segment, and Mode is an access mode such as Read or Write. Capabilities
are protected from tampering and are passed between programs in order to provide
controlled sharing of storage objects. In order for a program to exercise access
to a storage object, the program must possess a capability granting the desired
access. "Possess" in this sense means that the program has access to the storage
object which contains the capability. An "unmodified capability machine," in
the sense used here, is one in which capabilities are the sole mechanism for
controlling access by programs to storage objects.

SECURITY POLICIES

The Simple Security Property and the *-Property

The Simple Security Property and the *-Property are components of a
commonly encountered class of mandatory security policies. Such policies
define restrictions on the flow of information within a computer system. The
restrictions are based on attributes associated with programs in execution
(often called subjects) and storage objects (often called objects). A simplified
version of these properties is presented below; the interested reader is referred
to ~] .and [4] for more deta i 1 s.

The attribute associated with a subject is its "clearance," a value which
expresses the trustworthiness of the user on whose behalf the program is executing.
The attribute associated with a ·storage object is its "classification," a value
which expresses the sensitivity of the information it contains.

291

The Simple Security Property states that Read access is permitted if
and only if clearance is greater than or equal to classification. The
*-Property states that Write access is permitted if and only if classification
is greater than or equal to clearance.

Trojan Horse Attacks

These restrictions are imposed to prevent what are called 11 Trojan
Horse attacks, .. in which a malicious program abuses the clearance it
temporarily possesses (as the consequence of executing on behalf of a
trusted user) in order to compromise the information to which that user has
a legitimate right of access. In the typical Trojan Horse attack, a program
written by a malicious party is made publicly available. An unwitting user
invokes the program, bestowing upon it (for the period of the invocation)
the clearance level of the user. The program then performs, in addition
to its publicly known function, a clandestine examination and transfer of
information to which its author does not have legitimate access.

The appropriateness of the Simple Security Property is obvious, since
it states that no program may access information whose sensitivity exceeds
the trustworthiness of the user on whose behalf the program is executing.
The *-Property is less obvious; it exists to prevent the trivial circum
vention of the Simple Security Property by means of Write access. Without
the *-Property, it would be possible for a malicious program to write
sensitive information (to which it temporarily has legitimate access, as a
consequence of being invoked unwittingly by a trustworthy user) into a
storage object of low classification. Such information could then be read
later by a program executing on behalf of a user of low trustworthiness,
thereby compromising the sensitive information. The restriction imposed
by the *-Property prevents this 11 de facto declassification ...

POLICY ENFORCEMENT ON AN UNMODIFIED CAPABILITY MACHINE

Consider an omniscient oracle which executes on a pure capability
machine for the purpose of enforcing a security policy consisting of the
Simple Security Property and the *-Property. Any program wishing access
to a storage object must appeal to the oracle, which compares the clearance
of the program to the classification of the storage object and grants or
denies access accordingly, by setting the Mode value of the capability
which is returned as the response to the appeal. Thus a program executing
on behalf of a user with a high clearance which requests access to a storage
object of low classification would receive a capability with only the Read
access set, in accordance with the *-Property.

SUBVERSION OF THE ENFORCEMENT MECHANISM

In a pure capability machine, the intentions of such an oracle can be
subverted by the following attack: A malicious program executing on behalf
of a user with a low clearance requests a capability which grants Read and
Write access to a storage object of equally low classification. We will
call this object low object and the capability RW low object. Such a
request is naturally-granted by the oracle. The program places RW_low_object
in low object. At some later time, a user with a high clearance unwittingly
invokes a Trojan Horse program. The Trojan Horse program requests a capability

292

granting read access to a storage object of high classification. We will call
the object high object and the capability R high object. This request will
also naturally be granted. Finally, the Trojan Horse program requests a
capability granting Read access to low object. This request will be granted
by the oracle, in accordance with the Simple Security Property. We will
ca11 this last capabi 1ity R_l ow_object.

The Trojan Horse program then uses R low object to fetch RW low object
from low object. A malicious program now-simultaneously possesses R-high
object and RW low object, and is therefore able to transfer information in
violation of the *_Property.

Note that this attack succeeds even if the *-Property is further
restricted to state that writing can only occur if clearance equals classifica
tion. The attack can be stopped only if both reading and writing are
restricted to cases where clearance equals classification, which is of course
the trivial case of no flow whatever.

CONCLUDING OBSERVATIONS

The attack is made possible by an inherent attribute of pure capability
machines: the right to exercise access carries with it the right to
propagate that access. Thus ev~n if an omniscient oracle correctly creates
capabilities, it-cannot control 'their further propagation. If extra
mechanisms are imposed to impose this control, the machine is no longer an
unmodified capability machine.

REFERENCES

~] Neuman, P.G., et al, A Provably Secure Operating System: The System,
Its Applications, and Proofs, Computer Science Laboratory Report CSL-116,
SRI International, Menlo Park, CA, 7 May 1980.

[2] Dennis, J.B. and Van Horn, E.C., 11 Programming Semantics for Multiprogrammed
Computations, .. CACM, IX, 3, March 1966, pp. 143-155.

mLandwehr' c. E. ' II Forma1 Mode1s for Computer Security' II ACM Comp. Surv.
XIII, 3, Sept. 1981, pp. 247-248.

~] Department of Defense Trusted Computer System Evaluation Criteria,
Department of Defense Computer Security Center, 15 Aug. 1983.

293

A Trusted Computing Base
for Embedded Systems

John Rushby

Computer Science Laboratory

SRI International

Abstract

The structure of many secure systems has been based on the idea of a security kernel

- an operating system nucleus that performs all trusted functions. The difficulty

with this approach is that the security kernel tends to be rather large, complex, and

unstructured.

This paper proposes an alternative structure for secure embedded systems. The

structure comprises three layers. At the bottom is a Domain Separation

Mechanism which is responsible for maintaining isolated "domains" (also known as

"processes" or "virtual machines") and for providing controlled channels for their

intercommunication. The other resources of the system (for example, devices and

the more abstract entities, such as file systems, built upon them) are each controlled

by independent resource managers which comprise the second layer of the system.

The applications code provides the third layer. Components in both the resource

management and applications layers are protected from each other by the domain

separation mechanism. The Trusted Computing Base is composed of the domain

separation mechanism and a reference validation mechanism associated with each

resource.

The benefit of this approach is that it leads to a separation of concerns: each

component of the embedded system performs a single, well-defined activity and can

be understood (and verified) in relative isolation from all other components.

Implementation and language issues are also discussed.

294

1. Introduction

This paper is concerned with the design of secure computer systems. The DoD Computer

Security Center has established criteria which such systems should satisfy and has structured

these criteria into several divisions according to the degree of assurance of security that they

confer [6]. Although some of the criteria are quite specific, the document in which they are

described (the "Orange Book" [6]) falls (intentionally) short of being a "how to" manual on

secure systems design. Furthermore, although the document includes a section on the rationale

underlying the criteria, many readers continue to find their motivation obscure and their

interpretation difficult. In this paper, I will present my understanding of the motivation

behind some of the criteria (specifically, those applying to evaluation classes B3 and Al) and I

will provide my interpretation of how they should influence the design of secure embedded

systems - by which I mean systems dedicated to the support of a single application (I wish to

exclude the more complex case of general purpose systems, although many of my observations

will apply to that class of systems as well).

It is important to stress that these are my personal opinions and interpretations concerning

the DoD Evaluation Criteria; they have not yet been presented to, much less sanctioned by,

the DoD Computer Security Center.

2. What's in a TCB?

There is considerable experimental evidence that conventional computer systems are not

secure. Furthermore, repairing security flaws as they are discovered has proved an inadequate

approach to the provision of truly secure systems. Firstly, many of the flaws in conventional

systems reflect fundamental inadequacies in their design and their complete repair is infeasible.

Secondly, there is no technique for demonstrating that all the security flaws have been

eliminated from a system not designed with that aim in mind; penetration testing only reveals

the presence of flaws, not their absence. The only sound approach to the provision of secure

computer systems is to design security into those systems right from the start. Furthermore,

the primary evidence that a system is secure must be based on the analysis of its design and

implementation. The Evaluation Criteria express this as follows:

295

"Systems representative of higher classes in division B and division A derive their

security attributes from their design and implementation structure. Assurance that

the· required features are operative, correct, and tamper proof under all

circumstances is gained through progressively more rigorous analysis during the

design process" [6, p5].

Thus, a secure computer system must contain mechanisms that are sufficient to guarantee

its security in all circumstances, and it must be possible to provide compelling evidence that

those mechanisms are entirely adequate to their task; it is not enough for the mechanisms to be

be correct, they must be seen to be so. Generally speaking, small, simple, and localized

mechanisms are easier to get correct, and more easily shown to be correct, than large, complex;

or diffuse ones. The first task in the design of a secure system, therefore, is to find a way of

structuring it so that its security mechanisms are localized as much as possible, and are as

small and as simple as possible. In addition, since the evidence for the security of a system is

to be provided by analysis of its security mechanisms, those mechanisms must be based on

some overall concept of what constitutes security and the evaluation of those mechanisms must

be performed with reference to that concept.

The Evaluation Criteria refer to the totality of security mechanisms within a secure system

as its Trusted Computing Base (TCB). For Evaluation Class B3 and above, it is required that

" ... The TCB shall be internally structured into well-defined largely independent

modules.

" ... The TCB modules shall be designed such that the principle of least privilege is

enforced.

" ... The TCB shall be designed and structured to use a complete, conceptually simple

protection mechanism with precisely defined semantics. 1 This mechanism shall play a

1This is an incorrect use of the word "semantics" (which refers to the association of meaning with language).

The word "behavior" seems to be intended.

296

central role in enforcing2 the internal structuring of the TCB and the system. The

TCB shall incorporate significant use of layering, abstraction, and data hiding.

Significant system engineering shall be directed toward minimizing the complexity of

the TCB and excluding from the TCB modules that are not

protection-critical" [6, p37].

The "complete, conceptually simple protection mechanism" endorsed by the Evaluation

Criteria is that of a Reference Validation Mechanism (RVM), which is the name given to a

mechanism that implements the concept of a reference mom'tor. Unfortunately, the definitions

given for these notions in the Evaluation Criteria are not particularly helpful. We are told

that a reference monitor is

"an access control concept that refers to an abstract machine that mediates all

accesses by subjects to objects" [6, pl12],

and that a reference validation mechanism

"validates each reference to data or programs by any user (program) against a list of

authorized types of reference for that user" [6, p64].

In order to understand what is intended by these terms, an analogy with the human world

will be helpful. Imagine a bureaucracy that uses untrusted clerks to process classified

information. Each clerk is assigned a level which is the most highly classified information that

he may process: for example, a Secret level clerk may process information classified as Secret,

Confidential, or Unclassified. The clerks are assigned to offices according to their levels: all

the Unclassified clerks occupy one office, the Confidential ones another, and so on. The

information processed by the clerks is recorded in folders stored in vaults. There is a separate

vault for each sec~rity classification: one contains only Unclassified folders, another contains

the Confidential folders etc. Periodically, a clerk will need to retrieve a folder from a vault, or

to return one. The exits from the clerks' offices all lead into a central hallway containing the

vaults and patrolled by a guard. A clerk who leaves his office in order to retrieve information

2This also seems an inappropriate choice of words. Structure is a property of a design and cannot be

"enforced" by a mechanism which is an artifact of that same design. A better choice of words would be

"influencing" or "determining".

t~:t:''

~fWJ~~

297

from a vault will be intercepted by the guard and allowed only to enter a vault with a

cla.Ssification less than or equal to his own level. Once he has obtained the information

required, the clerk will leave the vault and the guard will escort him back to his office. A

clerk who wishes to deposit information in a vault will be treated similarly, except that the

guard will allow him to enter only a vault with classification greater than or equal to his own

level. The clerks have no memory of their own, everything they process must be written down

on paper; the guard ensures that clerks are empty-handed when they enter a vault classified

below their own level, and also when they leave a vault classified above their own level.

It seems clear that this arrangement provides security in the sense that no information

derived from a folder in a highly classified vault can ever wind up in a folder stored in a vault

of lower classification. The interesting question here is to enquire what it is about the

arrangement that makes it secure.

Clearly, the guard plays an important role in the security of this system - he is, in fact, its

reference validation mechanism in that he "validates each reference to data (i.e. folders) by

any program (i.e. clerk) against the type of reference authorized for that

program" [6, p64 paraphrased]. But is the guard the only characteristic of this system that is

necessary to its security? Clearly not - certain properties of the environment in which he

operates are crucial to his ability to perform his task correctly. Suppose, for example, that the

different offices were not isolated from one another, but had interconnecting doors. The

system would then provide no security at all since Unclassified clerks could enter the Secret

office and could there observe and record information classified as Secret. Similar problems

would arise if the vaults had interconnecting doors, or if clerks could slip by the guard and

evade his supervision. The Evaluation Criteria address these problems by citing the following

three design requirements which must be met by a RVM [6, p64].

• 	The RVM must be tamper-proof,

• 	The RVM must always be invoked, and

• 	The RVM must be small enough to be subject to analysis and tests, the

completeness of which can be assured.

These requirements are often referred to as the isolation, completeness and correctness of an

RVM, respectively.

298

Of these three requirements, only the last (correctness) is really a property of the RVM

itself; the other two are more properly regarded as properties of the environment in which the

RVM operates. Thus, although the concept of a reference monitor may serve to guide and
',

motivate the design of a TCB, it is clear that a TCB must be more than just an RVM. The

first requirement of a TCB is that it should create an environment in which an RVM can

operate securely.

The type of environment required for this purpose is one of cleanly separated "domains" in

which untrusted programs can operate with no opportunity to interfere with each other.

Domains cannot be completely isolated, of course, or there would be no possibility for

information flow between the different security levels at all - the purpose of a secure system is

not to prohibit information flow between different security levels, but to control it. The

Domain Separation Mechanism (DSM) of a TCB must therefore provide channels for inter
' domain communication, but these communication channels must be under strict control and

must be "wired up" correctly. (For example, there must be no channels directly connecting

untrusted domains of different security levels.) Abstract domains and communication channels

are represented by the isolated "offices" and "vaults" and by the "doors" and hallways of the

human-world example described earlier.

It is interesting to observe that for certain simple systems, domain separati8n and

controlled "wiring" of the inter-domain communication channels may be all that 'is necessary

to provide security: an explicit RVM is not always necessary. In the example we have been

considering, it is conceivable that a cunning layout of corridors may make it possible to

dispense with the guard altogether ~ a clerk wishing to obtain information from a vault would

leave his office and find himself in a corridor giving access only to the vaults that he is allowed

to enter. There is an apparent difficulty here in that in that each clerk is restricted to a

different set of vaults depending on whether he wishes to read, or to write information. This

problem can be overcome by providing different channels for different operations: a Secret

clerk wishing to read information from a vault would exit his office by a door which gave him

access to the Unclassified, Confidential, and Secret vaults, while one wishing to deposit

information would leave by a door leading to the Secret and Top Secret vaults.

299,

We should now ask whether this scheme of carefully routed corridors is really any different

to the original one involving the guard. I think not: both schemes are implementations of the

reference moriitor concept, but whereas the guard is a run-lime mechanism - checking each

access as it is about to occur ·_ the corridor routing approach is applied at system

configuration time.

So, to summarize so far: domain separation is a necessary prerequisite for the

implementation of an RVM. In some simple cases, the RVM can be "hard-wired" into the

routing of the inter-domain communication channels. (Certain communications processing

applications lend themselves to this approach - see [3, 10] for an example of this type.) In

more complex cases, it may be better to use a run-time RVM to ·check each inter-domain

communication as it occurs. ·

The question we should now consider is whether a run-time RVM should be part of the

DSM, or a distinct mechanism in its own right. In the former. case, the DSM could monitor

each inter-domain communication channel and consult its in-built RVM before allowing the

communication to proceed. In the latter case, untrusted domains would not be allowed to

directly communicate with each other at all; instead, they would have to relay their

communication through a special domain containing an RVM. This reference validation - .domain would check each communication and pass on only those that were authorized.

On the surface, the second scheme appears to correspond to a better separation of concerns,

but would also seem inefficient (in that it doubles the· number of communication steps and

introduces additional domain swaps). Further consideration, however, reveals that these are

not the only two alternatives: there. is a third which has certain advantages over both the

others. In order to ·see this, it is necessary to consider the nature of inter-domain

communication more carefully.'

There are basically two reasons why one domain should need to communicate with another.

The first reason is simply for the purpose of passing information: one domain passes

information to another that has need of it. This style of comrn.unication is common m

communications processing applications where messages go through several stages of

processmg. The second reason is quite different: it is performed in order to obtain a service

300

from a domain which encapsulates a resource. Examples of s,uch services include storing and

retrieving files, and providing access to a communications line. Different kinds of resource

naturally provide different kinds of services and the access control restrictions necessary to

enforce security will naturally differ with the different services. For example, it is necessary to

prevent domains from reading files classified above themselves, and to prevent them from

writing files classified below their own clearance: the reading and writing of information have

different security implications and this is reflected in the different access control restrictions

that apply to the two operations. For this reason, it seems reasonable to have a separate RVM

associated with each different type of resource; in this way, each RVM can be tailored to the

particular characteristics of the service provided by the resource with which it is associated.

A counter-argument maintains that all operations on all resources can be characterized as

either read-like or write-like. If this is the case, then only a single RVM is needed: it could

operate by first consulting a record of whether the requested operation is read-like or write-like

and then applying whichever of the two fundamental access control disciplines is appropriate.

The benefit that can be claimed for this approach is that the crucial reference validation

function is localized in a single place. This argument seems plausible, but it loses much of its

force if resource managers (i.e. the domains which encapsulate resources) have to be trusted.

For certain simple kinds of resource, it is possible to construct resource managers that do not

need to be trusted, but this is possible only if a separate instance of the resource can be

synthesized a for each security level, and if the resource manager does not retain private state

information. (The vaults in our example have these characteristics.)

In order to understand why it is necessary to synthesize separate instances of a resource at

different security levels it will be helpful to return to the analogy with secure office procedures.

Suppose that the only communication between our bureaucracy and the outside world is via a

· ·· 	 single telephone line. When the phone rings, an operator answers it and interrogates the caller

in order to determine his identity and authorized security level - this could require that the

caller gives a secret password, for example. The telephone operator will then switch the call

over the internal telephone system to an office containing clerks of an appropriate level. It is

clear that the telephone operator must be trusted to perform these tasks correctly. Of course,

we could require that the guard who controls access to the vaults doubles up as the telephone

operator, but this evades the issue. The procedures necessary to operate the telephone securely

301

are quite different to those concerned with access to the vaults and the principle of separation

of concerns indicates that they are best treated separately: the best structured mechanism is

that which uses a separate and trusted telephone operator (who personifies a resource manager

for the telephone line).

To understand the significance of retaining state information in a resource manager,

suppose that the vaults do not merely contain a haphazard collection of folders which ordinary

clerks can sort through at will, but are instead maintained as orderly filing systems. This

could be achieved by having a filing clerk inside each vault who obtains files on behalf of the

ordinary clerks and who stores returned files back in their proper places. In order to maintain

the filing system, each filing clerk is allowed to maintain a directory recording which file is

stored where inside his vault. Now suppose the Unclassified vault contains, among others, 26

folders of different sizes and suppose further that one of the ordinary Secret level clerks makes

6 trips to the Unclassified vault and retrieves the 5th, 14th, 9th, 7th, 13th and 1st smallest

folders, in that order. It is not ha.rd to see that the Secret string "ENIGMA" has been

communicated to the Unclassified filing clerk -; who can now manufacture a folder containing

this information and hand it to the next ordinary Unclassified clerk who visits his vault.

These examples should convince the reader that resource managers, such as the telephone

operator and the filing clerks, generally need to be trusted to perform their functions securely

as well as correctly. This being the case, it is surely most appropriate for each resource to

have its own RVM associated with it - that RVM can then be designed to integrate cleanly

with the other trusted functions of the resource manager.

Summarizing this discussion, I propose that trusted embedded computer systems should be

structured as follows. At the bottom, closest to the hardware, there should be a domain

separation mechanism whose purpose is to divide the system into a number of separate

execution domains - virtual machines, in effect - which are interconnected by carefully

"wired" communications channels. It is an engineering decision whether the reference monitor

function at this level is accomplished by the fixed routing of the the inter-domain

communications channels, or by a run-time reference validation mechanism within the domain

separation mechanism.

302

Above the domain separation layer should come a resource management layer. Some

resource managers will consist of simply the software needed to encapsulate and control some

hardware device (i.e. a device driver). Others will synthesize more sophisticated resources out

of primitive ones - for example, a file system may be built on top of a primitive disk resource.

The code that manages each resource should be isolated in one or more domains; any trusted

code must reside in a separate domain from that which is untrusted. Care and skill are needed

to minimize the amount and complexity of the trusted code in each resource manager. This

can often be achieved by careful layering. For example, it is a complex task to synthesize a

secure file system directly on top of a raw disk driver. It may be/better to first synthesize

securely partitioned "mini-disks" on top of the single physical disk and to then build the secure

file system on top of the secure mini-disks.

Access to all "multilevel" resources must be controlled by a reference validation mechanism

that provides the only outside interface to the services of the resource. Most often, the

reference validation mechanism will be part of a domain that performs other trusted functions

concerned with the management of the resource.

At the top, above the resource management layer, should come the application layer

comprising the code necessary to tailor the system to the intended application. The domain

separation provided by the domain separation mechanism must be exploited to separate

trusted from untrusted applications code, and to partition untrusted applications code

operating with different security attributes (e.g. different "levels").

Within this structure, the Trusted Computing Base consists of the domain separation

mechanism, together with all domains that perform trusted functions. These will include t}le

reference validation and other trusted domains from the resource management layer, together

with the few (if any) application-specific trusted domains from the applications layer.

This approach to system structuring is very similar to that employed in modern operating

systems (e.g. Thoth [5] and Tunis [9]) and is in contrast to the older approach to secure system

design in which nearly all trusted functions were combined with the domain separation

mechanism to yield a rather large "security kernel" with little internal structure [1, 10]. The

approach advocated here extends naturally ,to distributed systems (where domain isolation is

303

Ill

achieved usmg separate processors and inter-domain communication uses external

communications lines) and seems well able to satisfy the system architecture requirements of

the Evaluation Criteria for B3 systems and beyond.

3. Implementation and Language Issues

In order to implement a TCB with the structure described m the previous section, it is

sensible to begin with the DSM. One approach is to use physical domain separation - that is,

to use separate processors for each domain. (See [4, 12] for systems based on this approach.)

If, however, a single processor is to support multiple domains, then we have a choice of

compile-time or run-time separation mechanisms.

The compile-time approach relies on a programing language implementation to provide

separation. In order to be suitable for this purpose, the chosen programming language must be

oriented towards the construction of programs from inter-communicating, but otherwise

isolated, units (such as "tasks" or "processes"). Modern message-based programming

languages for distributed systems (such as CSP and Gypsy) have this character; languages

based on shared-variable parallelism are not suitable. The problem with the language-based,

compile-time approach to domain separation is that it depends on the correctness of a

(generally large and complex) compiler. Although the semantics of the language may indicate

that domains with no explicit communication between them are unable to influence each other,

there is a danger that a compiler bug, or possibly a deliberately planted Trojan Horse, may

permit communication anyway. There is evidence that some real compilers do contain serious

security flaws: one notorious example concerns. a Fortran compiler that allowed the creation

and execution of arbitrary machine code, while a particularly insidious Trojan Horse is

described in [13]. Since there is no practical technology for verifying compiler correctness, the

Evaluation Criteria appear not to sanction this approach.

Instead, the Evaluation Criteria for Divisions B and A require use of a run-time domain

separation mechanism. (The full requirements are introduced at the B2 level, but some of the

key requirements are present at the B1 level also.) A run-time domain separation mechanism

relies on hardware protection mechanisms to provide domain isolation. The protection

mechanisms provided by currently available hardware are usually based on multiple CPU

states (at least a superviserfuser mode distinction is necessary) together with memory

304

management functions. These may range from the fairly crude (e.g. the fixed set of PAR/PDR

registers provided by a PDP-11/34) to the relatively sophisticated (e.g. the descriptor-based

addressing scheme of the Intel iAPX286). The Evaluation Criteria for Class B2 and above

require hardware protection mechanisms such as these to be present and to be exploited as

follows.

"The TCB shall maintain a domain for its own execution that protects it from

external interference or tampering (e.g. by modification of its code or data

structures). The TCB shall maintain process isolation3 through the provision of

distinct address spaces under its control. It shall make effective use of available

hardware to separate those elements that are protection-critical from those that are

not." [6, p30]

The TCB structure that I am advocating allocates exactly these tasks to its domain

separation mechanism. I will use the term separation kernel to refer to a· run-time DSM which

operates i:Q the way described above. In contrast to a conventional "security kernel", a

separation kernel does nothing but provide domain separation and this gives it a conceptual

simplicity that is lacking in a security kernel. The next step is make the implementation

correspondingly simple.

The task of a separation kernel is to manipulate the protection features of the hardware in

order to manufacture separate domains. The kernel must also provide inter-domain

communication and synchronization mechanisms and should probably hide some of the less

attractive hardware features (such as interrupts - these should be mapped onto the standard

inter-domain communication mechanism). By removing all complex tasks from the separation

kernel, each of its remaining functions can be accomplished in a small fixed number of machine

instructions. This makes it possible for the kernel to run with interrupts masked off. This

enormously simplifies the kernel and contributes greatly to its comprehensibility, since it can

now be understood as a single sequential program.

The functionality of a separation kernel as described here is almost identical to that of the

"nucleus" of any modern operating system [5, 9] and is therefore based on a well understood

31 interpret "process isolation", in the sense used here, as synonymous with domain separation.

305

technology. The primary difference between a conventional nucleus and a separation kernel is

that the latter must provide absolutely rigorous separation between its client domains.

Considerable simplification is possible in the case of embedded systems since their process

structure is generally static. The separation kernel for an embedded system need not,

therefore, support dynamic domain creation, and can use very simple domain scheduling

strategies. Such a separation kernel should require no more that a couple of hundred machine

instructions in total.

An important question concerns the choice of language in which a separation kernel should

be programmed. Most. high-level programming languages are ruled out immediately since they

depend upon a run-time support system that is quite often larger than the kernel we wish to

construct. Since the separation kernel is to be the fundamental security mechanism in the

system, its behavior cannot be allowed to depend on any code but its own. Thus, the kernel

implementation language must not require a run-time support system, it must permit special

hardware registers to be named directly, and it must allow the use of special machine

instructions. These requirement rule out all but assembler and a few system implementation

languages, such as the sequential subset of Concurrent Euclid [9]. Personally, I can see no

reason for using anything other than assembler since the code of a separation kernel consists

almost exclusively of assignments to special hardware registers (e.g. loading the protection

status or the memory management registers) and special instructions (e.g. those to set the

interrupt mask or the processor status word). The behavior of a separation kernel written in a

high level language cannot be inferred from the standard semantics for that language; its

behavior and effects are primarily determined by the characteristics of the hardware which it

manipulates.4 For this reason, it is absurd to suggest that a separation kernel should be written

in a high-level language in order that it be verifiable. The effect ascribed to the assignment

statement :x: := 0 by a standard programming language semantics does not begin to address

the real behavior of the program when x is the processor status word! The task of verifying a

separation kernel is rather different than conventional program verification. A technique for

accomplishing the task is described informally in [10] and more formally in [11]. An

application of the technique is described in [8].

4A simple separation kernel written in the sequential subset of Concurrent Euclid is described in [7]. However,

I found the assembler code from which it was derived considerably easier to comprehend.

306

Although a separation kernel must essentially be written in assembler (or in assembler

disguised as a high-level language), one of the merits of the TCB structure advocated here is

that it isolates all the machine dependencies in the (very small) separation kernel so that the

rest of the system can be written in a high-level language. So the next question concerns the

choice of language to be used in the rest of the system - that is, in the resource management

and application layers. Essentially, any language, or set of languages, could be used, since each

domain may contain whatever run-time support mechanisms are necessary for languages used

within that domain. Inter-domain communication can be provided by subroutine calls on the

separation kernel interface.

But while it may be possible to use any language(s) whatever, it does not follow that all

languages are equally appropriate. An embedded system presumably has some overall purpose:

all its domains must cooperate towards that end and must be understood in combination with

each other. The programming language used should therefore be one which is matched to the

environment created by a separation kernel: that is one of isolated domains with controlled

inter-domain communications channels. Essentially, this environment simulates that of a

distributed system and so the most appropriate programming languages are those intended for

distributed systems. If such a language is used, then the separation kernel becomes, in effect,

part of its run-time support system and the inter-domain communication facilities provided by

the kernel must correspond to those assumed by the language. Unfortunately, the design of

programming languages for distributed systems is still in its early stages and for systems to be

constructed in the near future, it will probably be necessary to graft inter-domain

communication primitives onto an existing sequential programming language whose choice is

dictated by other factors.

Design of the inter-domain communications primitives that should be supported by the

separation kernel is an interesting problem (see [2] for a discussion of communications

primitives). Recall that the resource management layer of the proposed TCB structure

provides services to callers. The form of communication mechanism that is most appropriate

to this form of interaction is that of a Remote Procedure Call (RPC): the domain requesting

the service must call the domain that provides (the interface to) it and must wait until the

requested service has been performed and its results (if any) returned. From the caller's point

of view, the behavior of an RPC is identical to that of an ordinary procedure call: the fact that

307

service is actually provided by a remote domain is invisible. As well as a simple semantics,

RPCs have a simple message-passing implementation using a "blocking send with reply" and a

"blocking receive" [2, 5).

In contrast to the resource management layer, where RPCs provide the communication

mechanism of choice, inter-domain communication in the application layer may be better

served by straightforward message passing (i.e. "non-blocking" send and receive). However,

the implementation of non-blocking send and receive is more complex than that of their

blocking counterparts, since it requires the buffering of messages that have been sent but not

yet received. To my mind, the implementation of these primitives is more complex than is

desirable within a separation kernel (remember, we want each kernel operation to execute in a

fixed, small number of machine instructions, so that it will be safe to mask interrupts during

the interval). A compromise approach is possible, however, by providing non-blocking message

passing as a service of the resource management layer. This can be accomplished using a

"queue management" domain that responds to RPCs containing requests to enqueue a message

from one domain to another, or to dequeue a message from the input queue of its caller. 5

As well as requiring only a simple, relatively efficient implementation, the use of RPCs as

the basic inter-domain communication mechanism has another advantage: it can support the

use of Ada. It is likely that many future secure system developments will require use of Ada.

Unfortunately, Ada was designed while hardware and language technology were in

transition [14] and its tasking facilities contain shared-variable features that are poorly

matched to the environment of a distributed system - and to the environment described here.

However, the Ada rendezvous is essentially an RPC mechanism [2) and my suggestion for

accommodating Ada within secure systems development is to use the rendezvous as the (only)

inter-domain communication mechanism. Within each domain, full Ada will be made available

5The question of how the messages constituting an RPC call and its reply are actually moved from one domain

to another is an interesting one. The conventional solution of simply passing a pointer into a global message pool

is obviously unsecure. Modern hardware often provides mechanisms whereby a segment containing a message can

be mapped out of one domain's address space and into another, but it is not easy to integrate this mechanism

into a high-level programming language. Also, the sanitization of message buffers required by the Evaluation

Criteria [6, p15] renders this solution less attractive (in the absence of "write-only" protection). Physical copying

of messages from one domain to another seems the most practicable mechanism.

308

(including unrestricted multi-tasking and shared-variable communication) by an Ada run-time

support system contained within the domain~ Between tasks located in different domains,

however, communications will be allowed only via the rendezvous mechanism, which in this

case will be provided by the separation kernel rather than the standard run-time support. The

integration of the inter-task rendezvous provided by the separation kernel and the intra

domain communications provided by the Ada run-time support system should eventually be

made as seamless as possible - though it may require considerable research and development to

reach this stage.

4. Summary and Conclusion

I have described a system structure suitable for implementing secure embedded systems.

The structure is comprised of three layers. At the bottom is a Domain Separation

f\,fechanism which is responsible for maintaining isolated "domains" (also known as

"processes" or "virtual machines") and for providing controlled channels for their

intercommunication. The other resources of the system (for example, devices and the more

abstract entities, such as file systems, built upon them) are each controlled by independent

resource managers which comprise the second layer of the system. The applications code

provides the third layer. Components in both the resource management and applications

layers are protected from each other by the domain separation mechanism. The Trusted

Computing Base is composed of the domain separation mechanism and a reference monitor

associated with each resource. This approach to system structuring is very similar to that

employed in modern operating systems (e.g. Thoth [5] and Tunis [9]) and is in contrast to the

older approach to secure system design in which nearly all trusted functions were combined

with the domain separation mechanism to yield a rather large "security kernel" with little

internal structure [1, 10].

The implementation of a domain separation mechanism is called a separation kernel.

There is little merit in attempting the implementation of a separation kernel in anything other

than assembler; the total size of a separation kernel should be no more than a couple of

hundred machine instructions. A message-based implementation of remote procedure calls is

the most appropriate choice for the inter-domain communication mechanism to be provided by

a separation kernel. More complex communications mechanisms can be provided as services of

the resource management layer.

309

The resource management and application layers can be written in any high level language.

It is proposed that Ada can be accommodated by mapping the inter-task rendezvous onto the

inter-domain remote procedure call provided by the separation kernel.

The approach advocated here extends naturally to distributed systems (where domain

isolation is achieved using separate processors and inter-domain communication uses external

communications lines) and seems well able to satisfy the system architecture requirements of

the Evaluation Criteria for B3 systems and beyond.

References

1. 	 S.R. Ames Jr., "Security Kernels: a Solution or a Problem?," Proc. 1981 Symposium on
Security and H·ivacy, Oakland, CA., pp. 141-150, IEEE Computer Society, April 1981.

2. 	 G.R. Andrews and F.B. Schneider, "Concepts and Notations for COncurrent
Programming," ACM Computing Surveys, Vol. 15, No. 1, pp. 3-43, March 1983.

3. 	 D.H. Barnes, "The Provision of Security for User Data on Packet Switched Networks,"
1983 IEEE Symposium on Security and Privacy, Oakland, CA., pp. 121-126, IEEE
Computer Society, 1983.

4. 	 T.A. Berson, R.J. Feiertag, and R.K. Bauer, "Processor-per-Domain Guard
Architecture," 1983 IEEE Symposium on Security and Privacy, Oakland, CA., pp.
120, IEEE Computer Society, 1983, (Abstract only).

5. 	 D.R. Cheriton, The Thoth System: Multi-process Structuring and Portability, North
Holland, Operating and Programming Systems Series, 1982.

6. 	 Department of Defense, Computer Security Center, Department of Defense Trusted
Computer System Evaluation Criteria, 1983, CSC-STD-001-83.

7. 	 P.F. Fisher, "An Operating System Security Kernel," Master's thesis, Computing
Laboratory, University of Newcastle upon Tyne, England, September 1982.

8. 	 B.A. Hartman, "A Gypsy-Based Kernel," Proc. 1984 Symposium on Securily and
Privacy, Oakland, CA., pp. 219-225, IEEE Computer Society, April1984.

9. 	 R.C. Holt, Concurrent Euclid, the UNIX System, and TUNIS, Addison-Wesley, 1983.

10. 	 J.M. Rushby, "The Design and Verification of Secure Systems," Proc. ACJ.-1 8th
Symposium on Operating System Principles, Asilomar, CA., pp. 12-21, December 1981,
(ACM Operating Systems Review, Vol. 15, No. 5).

11. 	 J.M. Rushby, "Proof of Separability - a Verification Technique for a Class of Security
Kernels," Proc. 5th International Symposium on Programming, Turin, Italy, pp.
352-367, M. Dezani-Cianaglini and U. Montanari, eds., Springer-Verlag Lecture Notes in
Computer Science, Vol. 137, April1982.

310

12. J.M. Rushby and B. Randell, "A Distributed Secure System," IEEE Computer, Vol. 16,
No. 7, 	pp. 55-67, July 1983.

13. 	 K. Thompson, ''Reflections on Trusting Trust," CACM, Vol. 27, No. 8, pp. 761-763,

August 1984.

14. 	 P. Wegner, "Capital-Intensive Software Technology," IEEE Software, pp. 7-45, July
1984.

311

Secure Communications Processor Research

Dr Derek Barnes

Royal Signals and Radar Establishment,

St Andrews Road,

Malvern, W orcestershire,

United Kingdom.

Abstract

For several years, the Royal Signals and Radar Establishment has been carrying out

a very active research programme in the area of Secure Communications Processors

(SCPs). This work aims to realise a range of practical Trusted Computing Bases

(TCBs) for a wide variety of network security applications. The Secure

Communications Processors have been designed to be simple, secure and efficient,

whilst the underlying TCBs are intended to be application independent. Thus, the

cost of developing a new secure component of a distributed system is minimised.

At present, three different Secure Communications Processors have been produced,

or are being researched. These are SCPI, a limited functionality TCB for dedicated

applications, SCP2, a mid-range TCB for a wide range of network security

applications, and SCP3, a high functionality, new architecture, multi-processor

system.

In this paper the three current Secure Communications Processors are functionally

described, together with the type of applications which they are intended to host. As

an example, the role of SCPI and SCP2 in the practical realisation of the Distributed

Secure System is outlined.

1. Introduction

Communications networks and distributed systems exist to provide their authorised users

with access to information, and to provide facilities to manipulate that information. The

information entrusted to such a system must be valid and reliable, so in many environments it

must be protected from unauthorised access and alteration, or at the very least any changes,

deliberate or accidental, should be detected. Users should not be able to make use of resources

to which they are not entitled; for example, not everyone should be able to make use of system

management facilities. Equally important, though perhaps the most difficult to achieve, is to

312

stop accidental or deliberate attempts to prevent users from using services to which they are

entitled. System security is therefore concerned with both accidental and deliberate attacks on

the integrity of the system and the information which it contains.

Common-user distributed systems are currently very much in favour for their ability to

provide survivable, integrated communications and computing facilities at an economical cost

to individual groups of users. However, these groups of users often wish to operate within

separate compartments, for example closed user groups, while still communicating via the same

common-user system.

It is therefore becoming increasingly important to be able to provide multi-level secure data

networks and distributed systems for a wide range of defence and civilian applications.

The Royal Signals and Radar Establishment, part of the United Kingdom Ministry of

Defence, has for several years been carrying out a very active research programm'e in this area.

One outcome of this work has been the realisation of a range of Secure Communications

Processors (SCPs) to form the basis of various network and distributed system security

schemes. Each SCP essentially represents a real-time Trusted Computing Base, specifically

orientated towards network security requirements.

2. Trusted Computing Bases

A Trusted Computing Base (TCB) is defined to be the totality of the foundation software

and hardware necessary to securely enforce a security policy upon all operations of a computer

system.

At its simplest, a TCB consists of a simple Separation Kernel [1], running on comparatively

unsophisticated hardware, e.g. a computer with a simple memory management unit. However,

a TCB can also be a large Security Kernel, together with all its related non-kernel trusted

processes, running on a larger machine and providing general purpose computing facilities [21.

313

In order to overcome these confusions, we partition the range of possible TCBs into three

classes. They are:

The Dedicated TCB

This is the simplest form of TCB; one which is basically dedicated towards performing one

very simple, static form of security application. Dedicated TCBs are usually found to be an ,

embedded part of a system component, e.g. providing the foundation for a guard or one

way filter. This type of TCB is preconfigured at system build time, and contains no

dynamic process creation facilities. The simple separation kernel [3) represents a typical

dedicated TCB.

The Mid-Range TCB

The mid-range TCB provides a common TCB for a related range of applications, e.g. a

communications orientated mid-range TCB could form the foundation for a range of

network security devices. This type of TCB provides dynamic process creation/deletion

facilities but does not allow general on-line user programming. It is therefore particularly

appropriate for running fixed applications functions, which are more sophisticated than

those which can be supported by a dedicate~ TCB.

The General Purpose TCB

The general purpose TCB provides the basis for multi-level secure, general purpose, multi

user computer systems, typically allowing its users to perform the general on-line

computing functions offered by a large mainframe. KSOS [2] is an example of a system

incorporating a general purpose TCB. This type of TCB represents the ultimate in

generality for multi-level secure systems.

3. 	Secure Communications Processors

The RSRE "Multi-Level Secure Communication Networks Initiative" is intended to realise

a range of three principle Secure Communications Processors. The essential properties of these

three are as follows.

SCPI - SCPI is a dedicated TCB for simple, static security applications. The SCPI work is

based upon a generalisation of the SUE Security Kernel work [1) on PDP11/34s

carried out at RSRE, but it is intended to realise the SCPI Separation Kernel concept

upon other machines as necessary.

314

Essentially the SCPl kernel segments a computer into a preconfigured number of

static isolated regimes, or virtual machines. Each regime contains either all trusted or

all untrusted functions. The only way in which the regimes can communicate is via

preconfigured message passing routes through the trusted SCPl kernel. The kernel

provides scheduling, timing, control and error handling functions, but all

input/output operations are directly handled by the appropriate regimes themselves.

SCP2 - SCP2 is a mid-range TCB for network orientated security applications which require

dynamic features, but which are removed from the complexities of online user

programmmg. The key features for SCP2 have been to design a system which is

secure, yet efficient enough to handle demanding real-time applications, and which

has an intrinsically simple design structure.

The philosophy behind SCP2 has been to select very carefully the commercially

available computer hardware which best provides the features determined to be

desirable for this type of secure application, making absolutely sure that it contains

no undesirable features. It should be noted that determining the absence of

undesirable features represents an onerous task! The SCP2 work has therefore

concentrated upon the design and implementation of the software for a network

orientated mid-range TCB, given certain hardware characteristics.

SCP2 provides facilities for dynamic creation and deletion of protected (isolated)

process within security environments, and provides controlled message passing inter

process communications facilities. A prototype SCP2 has been designed and built by

TSL Communications. The full SCP2 implementation, together with the T-HOST

demonstration application, is just commencing with a very short timescale for

completion.

SCP3- SCP3 is a mid-range TCB, similar to SCP2, but offers improved security, integrity

and denial of service properties, and is capable of supporting a greater range of

applications (including some online user programming).

SCP3 developed from the philosophy that all currently available commercial

hardware provides at best, something of a compromise in terms of their features from

a security point of view. Thus we have started with no preconceived views, and are

designing and implementing a secure system (hardware, firmware and software) to

provide a really very secure real-time mid-range TCB for a wide range of network

security applications.

315

When complete, SCP3 will be a modular, secure, multi-processor system, with

excellent internal integrity and denial of service protection features.

It 	is not expected that the SCP3 work will provide a usable secure system for many

years. 	 It represents part of our long term research into the next generation of secure

systems.

4. 	SCP Network Security Applications

Having identified the generic TCB types, and looked at the facilities offered by the RSRE

range of SCPs, we now consider the type of network security applications for which they can

be used.

SCPI 	is ideally suited to the provision of simple end-to-end encryption facilities [1]. However,

it can be used for a number of guard and filter applications. An example of its use for

performing a number of these features is to be found in the Distributed Secure System

Project mentioned below.

SCP2 will be able to support a range of applications in a secure, simple and efficient manner

for a complete range of security critical components for wide area and local area

networks and distributed systems. Applications therefore include the following:

a) Simple Hosts which provide predetermined, limited functionality, computer

systems accessed by local or remote users.

b) Network Front Ends which act as security managers between large host

computer systems and various networks.

c) Switches. SCP2 can provide the trusted, secure basis of packet switches,

message switches, and similar devices, being specifically designed to be

efficient enough to handle such demanding real-time applications.

d) Gateways between two or more networks which have different security

constraints and require some trusted mediator of the information flowing

between them.

e) Network Access Control Centres are required in most local and widely

distributed secure systems, providing security management functions.

316

f) Packet Assemblers/Disassemblers are becoming increasingly security

relevant, enabling users to dynamically gain access to multi-level secure

facilities and information.

g) 	General Servers on both local and wide area networks are increasingly being

seen as security relevant, e.g. filing systems and electronic mail machines.

SCP3 will be able to support all of those applications outlined for SCP2, as well as more

complex ones, including those which require a level of user programming.

The SCP2 implementation will be tested in a demonstration application, known as the T

HOST. This has been very carefully chosen, so that it can form the basis for further research,

demonstrates a useful application, and represents a sensible complexity of application

implementation. The T-HOST is a simple electronic mail host which can be demonstrated

stand-alone, or in conjunction with other T-HOSTs attached to a network. Each T-HOST

requires one link to an insecure X25 network, such as the British Telecom PSS network. All

inter T-HOST communications are encrypted at the transport service layer. The T-HOST

only provides a simple multi-level secure electronic mail application to users on the same, or

other T-HOSTS. Users can "login" locally at different security compartments, and once

satisfactorily authenticated can use the mail facilities locally or remotely on another T-HOST.

A multi-compartment disc backing store is provided on each T-HOST to support the mail

application.

5. 	The Distributed Secure System Project

It is one thing to produce building blocks for multi-level secure systems, and quite another

to produce actual working systems. The Distributed Secure System project aims to provide a

working demonstration of a real multi-level secure, general purpose distributed system.

Rushby and Randell [4] have described the basic concepts of the DSS design. A working non

secure emulation of the DSS design has recently been produced for RSRE by Systems

Designers Limited running on a number of DEC PC350 Personal Computers interconnected by

a Local Area Network. This emulation has proved the practical feasibility of the basic DSS

design.

317

In the near future, the real DSS implementation work will begin. For this Motorola 68010s

will be used for the essential Trustworthy Network Interface Units (TNIUs) which enforce the

security separation between the system components. An SCP1 type of separation kernel will

provide the dedicated TCB functions required within each TNIU. Initial multi-level secure

components such as the Multi-Level Secure Filing System will be very heavily based upon the

SCP2 mid-range TCB.

6. Conclusions

The range· of Secure Communications Processors currently being pursued by RSRE

represent an essential commitment to the basic building blocks for secure computer networks

and secure distributed systems. The alternative of starting from scratch with a bare machine

for each of the many security relevant applications envisaged has been avoided. This should

mean that new, network orientated security applications can be mounted quickly and at

minimum incremental cost in the near future.

References

1. 	 D.H. Barnes, "The Provision of End To End Security for User Data on an Experimental
Packet Switched Network," Proc. 4th International Conference on Software
Engineering for Telecommunications Switching Systems, \Varwick, England, pp.
144-148, lEE, July 1981.

2. 	 E.J. McCauley and P.J. Drongowski, "KSOS - The Design of a Secure Operating
System," National Computer Conference, pp. 345-353, AFIPS Conference Proceedings,
1979, Vol. 48.

3. 	 J.M. Rushby, ·'The Design and Verification of Secure Systems," Proc. ACM 8th
Symposium on Operating System Principles, Asilomar, CA., pp. 12-21, December 1981,
(ACM Operating Systems Review, Vol. 15, No. 5).

4. 	 J.M. Rushby and B. Randell, "A Distributed Secure System," IEEE Computer, Vol. 16,
No. 7, pp. 55-67, July 1983.

© 1984 1-IMSO, London, United Kingdom.

318

Specifying Multi-Level Security in a Distributed System

Jlllllk~ I. Gt.s.,

Gta. H. JIIII:EV~DJ

Tau Merc:auis

Flllrill Ollllbtleuehw

Department of Computing and Information Science

Queen's University

Kingston, On.tario, Canada, K7L 3N6

613-547-2915

Abstract

This paper reports on the status of work to develop a formal model of security for

the SNet multi-level secure distributed system. The design of the system is briefly
described along with an informal statement of the security model. Two of three parallel
efforts to formally specify the top-level of the system are described: a Lucid/dataflow
method, and an event-based method. An algebraic specification is also under development
but is not described. For each of the two, the formal model is given in the notation of the
formalism, and examples of the formal specification are shown. One of the three methods
will be chosen for complete specification of the design.

I. llltrodJU:timl

This paper reports on current work on the development of a formal security model
and the formal specification of a previously designed multi-level secure distributed system
[MacEwen84a]. The system, called SNet, has been prototyped using Concurrent Euclid on
a centralized system. It will shortly be carried to a more advanced prototype stage by
moving it to a distributed system based on Ethernet. Further implementations will involve
specially designed network interface hardware.

This work is supported by the

Natural Sciences and Engineering Research Council

319

untrusted uls hosts trusted mls host

STSSTS

trusted user terminals

Figure 1. SNet Architecture

Figure 1. shows an overview of the architectur;e of the design. A communication
subnetwork (CSN) links two kinds of hosts: untrusted uni-level secure (uls) hosts, and
trusted multi-level secure (mls) hosts. All data on the former are treated with the assump
tion that they are at a level associated with the host. All data on the latter are associated
with a level that may vary up to a maximum associated with the host.

The hosts connect to the CSN via a special interface called a labeller/delabeller
(ladel). This interface is a trusted component with three major functions: First, it labels
all outgoing messages with the appropriate security level; for uls hosts this is its associated
level, for mls hosts the host provides the level. Second, it ensures that messages cannot be
tampered with and that a received message originated at a trusted lade!. Third, it
enforces multi-level information ftow control on incoming messages according to the com
mon lattice security model.

Appearing to the ladels and CSN as mls hosts is a set of trusted components called
secure terminal servers (STS's). These components provide a small set of commands for
users to establish open circuits to a set of hosts, state the level at which they should be
treated for each of these circuits, and to connect to one of these circuits. Otherwise, an
STS simply provides a transparent circuit from a user terminal to its currently connected
host. Files can be transferred from one host to another by using untrusted protocol
software residing on each host and shown in Figure 1. as host terminal-server (HTS)
software. Of course, all terminal/host and host/host communication is subject to enforce
ment by the trusted ladels. One example of a mls host is a secure downgrader.

While the prototyping work is proceeding we are working on a formal security model
and the formal specification of the system. Obviously, the prototype development and the
specification will interact. The prototype work can expose issues that the specifiers may
have missed, and the specification can expose design features that may be incorrect or
unnecessary.

320

We have taken the approach of investigating three different specification methods.
Also, the definition of the security model and the investigation of specification methods
have proceeded in parallel. We have attempted a top-level specification of the prototype
system in each of three formalisms: event-based specification, a dataflow approach based
on the Lucid language, and algebraic specification~ As a result, the specification work has
raised questions about the model and has resulted in a ~tter model that is more
specification method independent.

The security model was first defined informally. It's formal statement, of course, will
be given in the language of each specification formalism. What we hope to gain from this
three-pronged attack is a better understanding of the problems of specifying distributed
systems, an improvement in the security model, a better assurance of the correct
specification of the system by comparing the three specifications, and finally, a firm base
upon which to select the most appropriate specification method to be used for the com
plete specification.

The following section presents the informal security model. The next two sections
each show a formal security model and some examples of the specifications for two of the
three specification methods under investigation: the Lucid/dataflow approach and the
event-based method. The algebraic specification will be described in a future paper.

2. S«•iq Motlt!l
The informal security model is based on four kinds of entities: a set U of ,.,.6; a set

H of "-a; a set N of .-a. N =U.U.H; and a set L of lewb.

A partial order s, called tl--=-a. is defined on L. Consequently,

~)(Is I)

~1)~2)(11 s 12 and 12 s 11 11 = 12)

~1)~2)~3) (11 s 12 and 12 s 13 - 11 s 13)

There are three constant mappings:

Clearance: U - L
Max: H -L
Trusted: H - Boolean

Clearance represents the maximum level that a user may specify for his current
level. Max represents the maximum level for a mls host and the singular level for a uls
host. Trusted indicates whether a host is mls (true) or uls (false).

The unit of user/host and host/host communication is the data type D. Messages of
type D comprise the major part of the system state of the model but the model does not
explicitly define the complete state since, for a distributed system, the notion of state' is
not appropriate. However, there is one component of the system state that is security
relevant and is, therefore, part of the model. This component comprises two mappings
that give, for a user, his currently connected host and assoeiated level.

Currenthost: U - H
Currentlevel: U .. L

The functionality of these two mappings is referenced in the following and is denoted by
Mh and Ml to mean respectively (U){) and (U,L).

Users have available the six operations listed below. In these syntactic definitions,
Mh and Ml represent the system state information that is security relevant. The.
definitions are not intended to model the implemented operations directly since the

321

parameters of type U, and functionality Mh, and Ml can be expected to be supplied by the
system. Lower case letters are used to denote an actual parameter of the type specified.
The informal semantic description is not part of the model.

usend(U ,D,Mh,Ml)
User u transmits a message d with associated level I to destination h,
where h=mh(u) and l=ml(u).

ureceive(U ,Mh,Ml) returns D

User u receives message d.

login(U ,H,L,Mh,MI) returns Mh x Ml
User u establishes a circuit between himself and host h with his level for
that connection being I.

logout(U ,H,Mh,Ml) returns Mh x Ml

User u deletes the circuit between himself and host h.

connect(U ,H,Mh,Ml) returns Mh x Ml
User u establishes host h as his current host with his level being that previ
ously specified in a login.

disconnect(U ,Mh,Ml) returns Mh x Ml

The current host and current level for user u become null.

Hosts can perform two operations.

hsend(H,L,D,N)

Host h transmits a message d with associated level I to destination n.

hreceive(H) returns L x D

Host h receives message d with associated level I.

An era~~ is a set of associated values. Events are partially ordered on the relation
,-«aaa. The model has two types of events,

send(N,L,D,N)

receive(N,L,D)

with values of the types indicated. The execution of certain operations is associated with
one and only one event as follows:

usend(u,d,Currenthost,Currentlevel) is associated with an event send(u,l,d,n)

ureceive(u,Currenthost,Currentlevel) is associated with an event receive(u,l,d)

hsend(h,ll,d,n) is associated with an event send(h,l2,d,n)

hreceive(h) is associated with an event receive(h,l,d)

The following four constraints represent the security requirements for the model.

1. Users' levels

For all u EU, Currentlevel(u) s Clearance(u)

322

Users are constrained to specify a current level only as great as their clearance.

2. Labelling of messages

For all events send(hJ,d,n), if not Trusted(h) then 1 =Max(h)

For all events send(uJ,d,n), 1 = Currentlevel(u)

All transmitted messages are labelled with a level that is determined by the level of
the source. In the case of a mls host, the host must supply this level.

3. Authenticity of messages

For any set of k identical events receive(nlJ,d), there is a

set of k distinct preceding events send(niJ,d,nl), i=l,k.

This constraint covers three concerns. First, all messages received are guaranteed to
have originated at a system port, either a user or a host. That is, the network does not
generate any messages internally and any message received is guaranteed to have ori
ginated at an authentic network source.

Second, any message received must not have been altered with respect to the values
of the level, data, and destination address. Consequently, the binding of the level to the
data is assured.

Third, duplication of messages is not allowed. This constraint is included to prevent
certain information flow channels that might exist if untrusted network components could
resend message copies in a modulated stream to encode information that could have been
obtained from control information portions of messages. The constraint that the destina
tion component of a message not be altered seems to be over-specification with respect to
security concerns, but the duplication restriction seemed to be difficult to express without
it.

4. Flow control

For all events receive(hJ,d), l s Max(h)

For all events receive(u,l,d), l s Currentlevel(u)

This is the fundamental multi-level security constraint of "flow upward only" with
respect to the dominates relation.

The Lucid/dataflow specification provides a particularly simple and intuitive model of
the system. This is done by utilizing a dataflow network to illustrate the flow of messages
through the network. The constraints placed on the flow are represented by the dataflow
language Lucid [Ashcroft83]. Because Lucid is also a specification language the end result
is a formal specification for the network that can be verified using the Lucid verification
rules. Unlike most specifications, the Lucid approach can also provide an implementation
for the system.

4.1 Dataflow Model

Dataflow programming can be conceptualized by a dataflow network. Such a network
consists of a system of nodes connected by communication arcs. Each node can be con
sidered as a processing module whose only interaction with other modules is through the
communication channels.

323

We can consider a dataflow network for the secure distributed system as consisting
of three connected components: users, hosts, and a medium (See Figure 2.).

Figure 2. Dataflow Model of SNet

Each user consists of three processing modules (nodes). These nodes represent func
tions that send messages (usend), receive messages (ureceive) and determine the current
host and level (active). The subnetwork for user u is illustrated in Figure 3. The host sub
network contains, for each host, a receive processing node (hreceive) and a send process
ing node (hsend) (See Figure 4.). Interconnecting all users and hosts is a medium that
receives messages from the hosts and users and transmits messages back to the same set of
hosts and users. Figure 5. illustrates the configuration for a two host (hl and h2) and two
user (ul and u2) distributed network.

msgseq

outuser (u)

Figure 3. User Dataflow Subnetwork

324

Figure 4. Host Dataflow Subnetwork

4.2 Lucid Speclflcatlon

The language Lucid was originally developed for the purpose of program verification.
More recently, it has been viewed as a special purpose dataflow language. Unlike most
other dataflow languages it does not rely on the old von Neumann form of computation.
Jnstead, it intuitively reflects the concepts of data flowing through a network.

Lucid denotes a class of languages. We consider Lucid[A] to be a language that
depends on a given algebra A. Operations in a Lucid language consist of pointwise exten
sions to the operations of the algebra A along with special modal operators. The basic
data objects of Lucid[A] are infinite sequences consisting of the data objects of A. These
sequences intuitively correspond t<J the communication channels of a dataflow network. In
both cases we are considering infinite history sequences of the form <p0,pl'p2, ... > where
P· is said to be the value of sequence p at time i. Our use of time here must be clearly
uhderstood; this refers to a local time for the processing node producing the sequence.

Time is used in the Lucid specification to establish a partial ordering (to be intro
duced later) on related events. That is, a receive event occurs at a time j greater than the
time i at which the message was sent. We are not concerned with the time interaction of
unrelated events such as two sends. Implementations exist to support this kind of
specification [Lamport78].

325

Figure 5. Example Dataflow Network

An example of a Lucid implementation is pLucid [Faustini83]. The data objects of
this language consist of integers, reals, booleans, word character strings and finite lists.
pLucid operations are made up of extensions of the usual arithmetic and logic operations
as well as operations performed on lists. The network specification contained in this paper
is implemented in pLucid.

A program in Lucid is simply an expression. Structuring of programs is achieved in a
method similar to the where clause of Landin's ISWIM [Landin62]. Such a clause is of the
form

given an expression E and function definitions D1'... ,Dn. The "where" expressions can be
nested to any depth. An example of a Lucid program that determines the sequence of

326

integer squares <0,1,4,9, ... > is

square where
int = 1 fby (1 + int);

· square = 0 fby int • int;
end

where the modal operation fby (read "followed by") is defined for any infinite sequences p
and q as

For further information on the language Lucid we refer you to the pLucid reference
manual.

The Lucid specification of the dataflow network consists of two classes of
specifications: node and configuration. First, each node on the dataflow graph must be for
mally specified. This is done by giving functional Lucid definitions that place the proper
constraints on the flow of messages. We also attempt here not to place any unnecessary
constraints on the system and thus over-specify the security.

To illustrate the specification of a node consider hsend, the processing module that
sends messages from a host to the medium. We define hsend as a function of four input
parameters: host,level,data, and destination. Level, data and destination are combined in a
triple denoted message. This parameter is nil if no message is present at that time. Below
is the Lucid definition of function hsend:

hsend(host,message) =
if notpresent

then nil
elseif trusted(host)

then [% host,lev,dat,destination %]
else [% host,max(host),data,destination %]

fi
where

lev = hd(message);
data = hd(tl(message));
destination = hd(hd(tl(message)));
notpresent = message eq nil;

end;

Given any host and message, the function hsend produces the value nil (no value) if
no message is input. Assuming a message exists and the host is trusted then hsend pro
duces the original message. If the host is not trusted then the level of the message pro
duced is the value max(host) where max is the constant function that determines the max
imum level of a given host.

The second class of Lucid specifications is the definition of the network
configuration. We break this down into definitions for the users and hosts, and a
specification of the message medium for the particular network. The medium definition is
the only one that varies from network to network since it describes the actual users and
hosts of a particular system.

Since for all hosts (or all users) the processing modules are the same, we can give a
general definition for the output of each node in the subnet for a user or a host. The

327

... i

medium definition states the actual parameters that will be applied to .these definitions.
We initialize the value of all arcs to bel (undefined).

II Specification of user x (corresponds to Figure 3.)

outuser(x) =l fby user(x);
inuser(x) =l fby ureceive(x,msguser(x),current(x));
msguser(x) =l fby usend(x,outuser(x),current(x));

II Specification of host y (corresponds to Figure 4.)

outhost(y) =l fby host(y);
inhost(y) =l fby hreceive(y) ;
msghost(y) =l fby hsend(y,outhost(y));

II Specification of the medium for a two user (ul,u2)

II and two host (hl,h2) network (corresponds to Figure 5.)

msgseq =l fby medium(msghost(hl),msghost(hl),msguser(ul),msguser(u2));

For the configuration of Figure 5. we have assumed that host(hl), host(h2), user(ul) and
user(u2) are all external message inputs to the system. · ·

The Lucid specification also contains several auxiliary definitions that specify the
constant mappings and the dominates relation. For example

clearance(x) = case x of
"ul": 2;
"u2": 3;
default : 0;

end;

4.3 Security Model

In this section we express the constraints of Section 2 in a representation that
corresponds to that of the Lucid/dataflow specification. Before this can be done we first
extend the SNet security model to incorporate the notion of the state of a network.

The set A of tuc• for a given dataflow network contains all communication channels
(arcs) on the corresponding graph. For example ·. A =
{inuser(ul),inuser(u2),msgseq,inhost(hl), ... } for the network in Figure 5.

We consider the ntzu of a network to be a list of the values of arc set A at some
time i. That is, if A = {al,a2, ... ,an} then sj = [ali,a2;.., ... ,anjl- These correspond to the ith
values of the Lucid history sequences for the arcs as described in Section 4.2.

The introduction of the notion of state and of time in this way is an artifact of the
specification. What we are doing is describing the processing nodes as if they operate in
strict global synchronization which, of course, they do not. By doing this, however, we
have a framework in which to describe constraints on certain events that are partially
ordered. We are only interested in these partially ordered events and the constraints.

In the general network constraints model of Section 2 we have the concepts of send
and receive events. We relate these events to a given state as follows:

328

The set of llt!llll events for a network in state si (denoted sei) is

(U msguser(u)i) U (U msghost(h)i)

uEU hEH

The set of rf!t:f!iH events for a network in state si (denoted rei) is

(U inuser(u)i) U (U inhost(h)i)

uEU hEH

In both cases we consider these events as a set of non-nil messages, i.e. msgset U nil =
msgset. Thus a send event is always of the form (sender ,level,data,destination) and a
receive event is of the form (receiver ,level,data).

We say that a receive event (rec,lev1,dat1) in state si is ,...,_ to a send event
(sen,lev2,dat2,dest) in state sj iff

rec =dest
lev1 =lev2
dat1 =dat2 and
j < i

The notion of relatedness does not necessarily imply cause, only possible cause. That is, a
receive may have resulted from a related send.

Finally we define the auratli!HI of a user u at time i, currentlevel(u)i, as the level
of the message being sent by user u at time i, i.e. if active(u)i = (host,level) then
currentlevel(u). = level. Also, the reader will notice that a constant in Lucid is treated as
an infinite seqtfence of the same constant value.

Network Constraints

1. Users' levels
For all u E U and all S· E S,

currentlevel(u)i s c\earance(u)i

2. Labelling of messages
a) For all si E S and all h E H,

If (h,lev,dat,dst) E sei and not trusted(h)i_1
then lev = max(h)i_1

b) For all si E Sand all u E U,
If (u,lev,dat,dst) E se.

then lev =currentfevel(uh.1

3. Authenticity of Messages
Gsi , ... ,si E S)[(r E rei r E rei) ...A ••• A

1 n 1 n

(3sj1 , ... ,sin E S)(s1 E sej1 sn E sein AA •••A

r in state s. is related to sk in state s.
11k k

for all k, 1 s k s n)]

329

4. Flow Control
a) For all si E S and all h E H

If (h,lev,dat) E reh. then lev s max(h)i
b) For all si E S and a u E U

If (u,lev,dat) .E rei then lev s currentlevel(u)i

4.4 Verification and Implementation

The language Lucid has powerful inference/manipulation rules [Ashcroft79] that '
allow for straightforward verification of Lucid programs. We can use these rules to prove
that the Lucid specifications for any given network adhere to the security constraints.
This is illustrated by the following proof for labelling of messages as stated in constraint
2a.

CtiiUirllilll:
For all si E Sand all hE H

If (li,lev,dat,dst) E sei and not trusted(h)i_1

then lev = max(h)i_1

l'rllllf:
Assume for some state si E S and some host hE H

(h,lev,dat,dst) E sej and not trusted(h)i_1

then (h,lev,dat,dstJ = msghost(h)i =

l fby hsend(host,message)i =

hsend(host,message)i_1 =

if notpresent

then nil

elseif trusted(host)i_1

then [% host,rev,data,destination %]
else [% host,max(host)i_1,data,destination %]

by definition of hsend. Since (h,lev,dat,dst) E sei it must be the case that not (mes
sage eq nil), thus notpresent is false and therefore:

hsend(host,message). =
if trusted(hosl}._1

then [% host,lev,data,destination %]
else[% host,max(hosth-t•data,destination %]

We have assumed not trusted(host) thus we get the result

(h,lev,dat,dst) = [% host,max(host)i_1,data,destination %)

therefore lev = max(host)i-1"

The event-based method we are using Is based on the work of Chen and Yeh
[Chen82,Yeh83a,Yeh83b). Their specification language, called EBS, distinguishes between
the llt!luzri« and the ~e of a distributed system. The behavior is described in terms
of externally visible effects of operations on a "black box" system comprising a single pro
cessing node; the structure describes the decomposition of this node into inter-connected

330

component processing nodes, each of which in tum has a behavior specification.

The external interface of a processing node is represented by a set of 1J11rb each of
which comprises a sequence of events. An f!HIII is an instantaneous local state transition,
such as the receipt or transmission of a message, which has an associated set of values
determined at the time of its occurrence. The language is based on two fundamental rela
tions on events: the precela relation represents a partial time ordering, and the,_
relation represents causality. Consequently, both control-related and data-related proper
ties can be specified. It is important that no global state assumptions are required.

The top-level conceptual model of a distributed system from a user's point of view is
a black box with only the interface visible. The user can only observe events in the top
level behavioral specification. A designer, however, views the system as a set of processes
communicating via communication channels as described in the structural specification.

There are two ways of connecting component processes, or subsystems, in a struc
tural specification: an illtt!r/t~t:e connects a port of a subsystem with a port of the enclosing
system; a lid connects a port of a subsystem with a port of another subsystem. For both
kinds of connection any event occurring in the first port occurs simultaneously in the con
nected port.

u.s,rl

us"r2

hosi.Z

Figure 6. EBS Structural Specification of SNet

331

Each internal process is further refined in lower levels of specifications, as a set of
subprocesses which again communicate among themselves with well defined communica
tion channels. These subprocesses can be further decomposed until the desired level of
detail is reached. This decomposition process allows for the use of the specification
method with hierarchical design methodologies.

Figure 6. shows a graphical representation of a · t~level structural specification for
SNet.

5.1 The VEBS Speclflcatloa Method

· EBS, unfortunately, is not supported by ·a language processor and verification system.
Since an automated system greatly assists the specification and verification of any practi
cally sized system, we opted for a compromise; our method, VEBS, uses the.commercially
available VERUS specification language [Marick83] to expreiss the semantics of EBS. As a
preliminary step to the work on SNet, the expressibility of EBS concepts with VERUS was
tested using an example of the Alternate-.Bit-Protocol given in [Chen82]. Some of the
proofs were carried oqt using the VERUS theorem prover-checker.

VERUS is a package of three programs: a parser to check specifications syntactically,
an unparser for formatted output of parsed specifications; and a theorem prover-checker
to check consistency of specifications. The VERUS specification language is not tied to
any one application, e.g., state machine specifications, but is general enough for a wide
variety of applications and provides a notation for first-order predicate calculus with types
and functions. The only primitive types are integers and booleans; all other types must be
defined by the user. The definition of structured types is somewhat awkward. For
instance, the definition of a message type as an event in EBS is done in a notation similar
to Pascal:

outport.msg:
record

sender: hostid;
contents: data;

end;

: HOSTID;
:DATA;

Sender(EVENT): HOSTID;
Contents(EVENT): DATA;
Event_Record(sv, cv): EVENT

A reference to a field of a record in EBS notation, e.g. the sender field of an event vari
able ev of type outport.msg, is illustrated by:

332

ev.sender,

while in VERUS it will be:

Sender(ev)

As illustrated above, terms in VERUS are always typed. New types are defined in
terms of the primitive data types, as well as of user defined types. One can declare
enumerated data types; the elements are ordered by their occurrence in the declaration
and can be used with relational operators. In general, a term can be either a constant, a
variable, or a function reference.

The basic entities in VEBS are infinite sequences of events. In our case, events are
associated with messages sent or received. The events in a behavioral specification belong
to one of three sets: PORTS, a set of unidirectional communication channels between the
process and its environment; SYS, a set of events intem.al to the process; and ENV, a set
of events in the environment of the process.

Information about events is retrieved using access functions; for example, the time
stamp of an event in a port is returned by the function TimeStamp(port, event). Events in
a port are totally ordered. All the semantics of EBS constructs are provided to the VEBS
specification in the form of axioms (predicates known to be true).

The following naming convention is observed. Functions and constants begin with an
upper case letter. Variables begin with a lower case letter. Types are entirely upper case.

S.l VEBS Spedfleatlon or SNet

In this section we give some examples of part of a second level specification for a
two-user, two-host SNet system. The specification occurs in two parts, the structural
specification and the behavioral specification for the component processes. The top-level
behavioral specification, of course, represents the security model. The complete
specification will appear in [Mercouris84).

The subjects of the model, users and hosts, are constants in the VEBS specification;
Userl, User2, Host!, and Host2. Each port is associated with a single subject only; there
fore we can conceive the constraints applying to users and hosts, as constraints on the
events occurring in the associated ports. The events are the objects being manipulated by
the subjects. Users of SNet communicate with the network through unidirectional ports
named like the following: SNet_userl_in, and SNet_userl_out for communication between
Userl and SNet. All the ports are named in the same fashion. They consist of three parts
separated by an underscore; the first part of the name denotes the subsystem where the
port belongs, the second the communicating partner, and the third denotes an irlpoTt or an
DIIIJIDrl- lnports are used to direct messages from the environment into the processing
node, and outports from the processing nod~ to the environment. Likewise, processing
nodes consist of two parts separated by an underscore: the first part denotes the subsystem
specified, and the second is the letter "p". For instance, the processing node of the SNet
system is denoted by SNet_p.

As described before, events can carry information. For instance, the function
Contents_data returns the data portion of an event. Other functions give the security
level of the data portion (Contents_level), the sender field (Contents_sender), and the
receiver field (Contents_receiver).

The variables of type USER, or HOST in the functions in the informal model have
been replaced by the associated port variables in the formal expression of both the security
model and the specification. Currentlevel additionally contains the time as a parameter in

333

http:intem.al

its argument list. The functions used in this specification, as well as in the formal expres
sion of the security model, have the same name as the corresponding ones in the informal
model.

Structural Specification

The structural specification consists of declarations of the subsystems of which a sys
tem is composed, and how these subsystems communicate. This particular SNet is com
posed of one Sts (Secure Terminal Server), three Ladel devices, and the communications
subnetwork Csn. The decomposition of the system is expressed with:

DEFINE System_Structure_SNet: BOOLEAN
BY

AND

{

InSystem(SNet, Sts);

InSystem(SNet, Ladell);

InSystem(SNet, Ladel2);

InSystem(SNet, Ladel3);

InSystem(SNet, Csn);

};

where InSystem(SNet, Sts) states that any event that occurs in Sts occurs in the SNet sys
tem as well.

Likewise, we can specify ports and process nodes to be a part of SNet. In particular,
the SNet system as seen in the behavioral specification consists of a processing node,
SNet_p, and a number of ports. The statement of this structure is:

DEFINE System_Components_SNet: BOOLEAN

BY

AND

{

InSystem(SNet, SNet_p);

InSystem(SNet, SNet_userl_in);

InSystem(SNet, SNet_user2_in);

InSystem(SNet, SNet_userl_out);

InSystem(SNet, SNet_user2_out);

InSystem(SNet, SNet_hostl_in);

InSystem(SNet, SNet_host2_in);

InSystem(SNet, SNet_hostl_out);

InSystem(SNet, SNet_host2_out);

};

The definition of links for SNet is:

DEFINE Links_SNet: BOOLEAN

BY

AND

{

Link(Sts_ladel_in, Ladel3 _sts_out);

Link(Sts_ladel_out, Ladel3_sts_in);

Link(Ladel3_csn _in, Csn_Iadel3 _out);

Link(Ladel3_csn_out, Csn_ladel3_in);

Link(Ladell_csn_in, Csn_ladell_out);

Link(Ladell_csn_out, Csn_ladell_in);

Link(Ladel2_csn_in, Csn_ladel2_out);

334

Link(Ladel2_csn_out, Csn_ladel2_in);

};

Behavioral Speclflcatlon

The ladel is responsible for enforcing the information flow policy by setting the level
on transmission of a message, and by allowing reception of only those messages that con
form with the information flow policy. These are known as the labelling and delabelling
functions. The complete specification of the ladels requires additional properties, such as
the fact that they do not generate messages internally. An example showing only the
labellingldelabelling is shown below.

DEFINE Ladell_delabelling: BOOLEAN

BY

FOR event2 FOR eventl

IF AND

{

InObject(Ladell_hostl_out, event2);

InObject(Ladell_csn_in, eventl);

Enables(eventl, event2);

}
THEN Contents_level(eventl) <= Level(Ladell);

DEFINE Ladell_labelling: BOOLEAN

BY

FOR event2 FOR eventl

IF AND

{

InObject(Ladell_ hostl_in, eventl);

InObject(Ladell_csn_out, event2);

Enables(eventl, event2);

}
THEN

IF Trusted(Ladell)

THEN Contents_level(event2) = Contents_level(eventl)

ELSE Contents_level(event2) = Level(Ladell);

where InObject(Ladell_hostl_in, eventl) tests if eventl has occurred in the history of the
Ladell_hostl_in port. The expression Enables(eventl, event2) means that the occurrence
Jf eventl catised the occurrence of event2. It must also be specified that Level(Ladell) =
Max(Hostl), and Trusted(Ladell) =Trusted(Hostl).

5.3 Security Model

We first express the constraints in a set of predicate definitions to simplify the
specification. These definitions are used in the formal specifications and in the expression
of the model in VEBS. For instance, the definition of the first constraint is:

DEFINE Constraintl(net_user_in): BOOLEAN

BY

FORt

Currentlevel(net_user_in, t) <= Clearance(net_user_in);

net_user_in is a variable of type INPORT, and t of type TIME. Since each port is

335

associated with a single user only, then the value of Clearance(net_user_in) must be
specified elsewhere to be equal to Clearance(u), where u is the user associated with the
net_user_in inport. Similar statements apply to Currentlevel, Trusted, and Max. Of
course, net_user_in is only a formal parameter here; the actual parameter is supplied when
the constraint is applied to a particular configuration.

Recall that the informal model associated the execution of operations with events.
Here, we view the execution of an operation as an event in a network inport and associate
that event with an internal event in the network. This association is made explicit in the
second constraint on labelling messages. In VEBS this is expressed:

DEFINE Constraint2a(net_user_in, net_p): BOOLEAN

BY

FOR eventl

IF InObject(net_user_in, eventl)

THEN EXIST event2

AND
{

Enables(eventl, event2);

InObject(net_p, event2);

Contents_level(event2) =

Currentlevel(net _user _in, TimeStamp(net_ user _in, eventl));
};

DEFINE Constraint2b(net_host_in, net_p): BOOLEAN

BY

FOR eventl

IF InObject(net_host_in, eventl)

THEN EXIST event2

AND
{

Enables(eventl, event2);

InObject(net_p, event2);

IF Trusted(net_host_in)

THEN Contents_level(event2) = Contents_level(eventl)
ELSE Contents_level(event2) = Max(net_host_in);

};

where net_p is a variable of type PROCESS, and net_user_in is a variable of type
INPORT.

The third constraint is expressed in two parts: part a) defines the authentication and
integrity property, and part b) addresses the non- duplication of messages. Constraint four
follows.

DEFINE Constraint3a(net_name_in, net_name_out): BOOLEAN

BY

FOR event2 FOR l FOR d

IF AND

{

InObject(net_name_out, event2);

Contents_receiver(event2) = net_name_out;

Contents_level(event2) =1;

Contents_data(event2) = d;

}

336

THEN EXIST eventl

AND

{

InObject(net_name_in, eventl);

Contents _receiver(eventl) =net _name_ out;

Contents_level(eventl) = l;

Contents_data(eventl) =d;

Enables(eventl, event2);

};

DEFINE Constraint3b(net_name_in, net_name_out): BOOLEAN

BY

FOR eventl

IF InObject(net_name_in, eventl)

THEN IF EXIST event2 EXIST net_name_out

AND
{

InObject(net_name_out, event2);

Enables(eventl, event2);

}THEN FOR event2

NOT EXIST event3 NOT EXIST net_namel_out

AND
{

InObject(net_namel_out, event3);

Enables(eventl,event3);

NOT event2 = event3;

NOT net_name_out = net_namel_out;

};

DEFINE Constraint4a(net_host_out): BOOLEAN

BY

FOR eventl

IF InObject(net_host_out, eventl)

THEN Contents_level(eventl) <= Max(net_host_out);

DEFINE Constraint4b(net_user_out) : BOOLEAN

BY

FOR eventl

IF InObject(net_user_out, eventl)

THEN Contents _level(event!)

<= Currentlevel(net_user_out, TimeStamp(net_user_out, eventl));

where l is a variable of type LEVEL, and d a variable of type DATA. Also,
net_namei_in is a variable that may assume the value of any inport of the SNet system,
user or host. Likewise the net_namei_out can assume the value of any outport of the SNet.

The subjects of the model, except SNet__p, are variables in VEBS. SNet__p is constant
because it refers to a single processing node. An arbitrary number of users and hosts may
communicate using SNet__p, and that is why the associated ports are represented by vari
ables. Users of the SNet system connect to ports named snet_useri_in, and
snet_useri_out. Likewise, host ports are named snet_hosti_in, and snet_hosti_out. How
ever, snet_user_in is a variable of type INPORT, and may assume the value of any inport
associated with a user. This is also true for snet_user_out, snet_host_in, and snet_host_out.
The operations in the informal security model are expressed by events occurring at the

337

user and host interface ports. The events of the informal security model are internal
events occurring in SNet_p.

We express the constraints of the security model for an arbitrary number of users
and hosts using the definitions shown above. We express the constraints in terms of rela
tionships on events happening in SNet inports and outports.

DEFINE Mod_Constraintl: BOOLEAN

BY

FOR snet_user_in

Constraintl(snet_user_in);

DEFINE Mod_Constraint2a: BOOLEAN

BY

FOR snet_user_in

Constraint2a(snet_user_in, SNet_p);

DEFINE Mod_Constraint2b: BOOLEAN

BY

FOR snet_host_in

Constraint2b(s·net_host_in, SNet_p);

DEFINE Mod_Constraint3a: BOOLEAN

BY

FOR snet_name_in FOR snet_name_out

Constraint3a(snet _name _in, snet _name_ out);

DEFINE Mod_Constraint3b: BOOLEAN

BY

FOR snet_name_in FOR snet_name_out

Constraint3b(snet_name_in, snet_name_out);

DEFINE Mod_Constraint4a: BOOLEAN

BY

FOR snet_host_out

Constraint4a(snet_host_out);

DEFINE Mod_Constraint4b: BOOLEAN

BY

FOR snet_user_out

Constraint4b(snet_user_out);

Now using the above expression of the model the top-level specification becomes con
cise and particularized to the configuration specified. For example,

DEFINE Constraint2a_sp: BOOLEAN

BY

AND

{

Constraint2a(SNet _ userl_in, SNet _p);

Constraint2a(SNet_user2_in, SNet_p);

};

5.4. Verification and Implementation

338

Verification of the specification using VERUS is now underway and will be the sub
ject of a future paper.

There is some work being done to complement the abstract EBS specification
language with CSP as an implementation language [Yeh83b]. There are two reasons why
CSP is not suitable for us. First, communication between two parties takes place only
when they are both ready, and that constitutes a bidirectional information flow contradict
ing the unidirectional flow requirement. Second, our prototype work is in Concurrent
Euclid.

Verification between levels in the abstract specification will be done using the
VERUS theorem prover-checker. Each process's behavioral specification must be verified
against the decomposition of that process in the next lower level to a set of behavioral
requirements for each subprocess and a structure for these subprocesses.

Verification of the implementation has not been addressed. We hope to transform
the specification into a set of predicates that can be used in an informal comparison with
the CE code.

Developing the security model along with the specifications has been extremely valu
able in sharpening our understanding of the security model. In an ideal world one defines
the security model in isolation so that it is unencumbered with dependencies on particular
systems or specification methods. In practice, however, we found the security model very
difficult to get right. Some revisions to it resulted from simply reviewing it, but others
resulted directly from attempts to specify the constraints that directed us to focus on prob
lems.

This experience in trying to get the model right and going through many revisions, of
course, leaves us with some doubts as to its appropriateness even now. The problem, of
course, is that our model is very operational in its nature. We have spent some time in
trying to find a more abstract model that will capture the constraints that we want. Thus
far we have not been successful but this effort will continue.

References

[Ashcroft79)
Ashcroft, E.A., Wadge, W.W.,
Structured Lucid,
University of Waterloo Technical Report CS-79-21,
June, 1979.

[Ashcroft83)
Ashcroft, E.A., Wadge, W.W.,
Why Lucid,
Distributed Computing Project No. 3,
Department of Computer Science,
University of Warwick,England,1983

(Chen82)
Chen, Bo-Shoe,
Event-Based Specification and Verification of
Distributed Systems,
Department of Computer Science,
Ph.D. Thesis, University of Maryland, 1982.

339

[Faustini83]
Faustini, A.A., Mathews, S.G. and Yagbi, A.A.,
The pLucid Programming Manual,
Department of Computer Science, University of Arizona,
Tempe. Arizona. 1983.

[Glasgow84]
Glasgow, J.J., MacEwen, G.H.,
Specification of a Distributed Multi-Level ~ure System:
The Lucid/Dataflow Approach
Biennial Symposium on Communications,
Queen's University, Kingston. 1984

[lamport78]
Lamport, L.,
Time, Clocks, and the Ordering of Events in a Distributed System
CACM 21. 7(Jul 78), SS8-S6S.

[Landin62)
Landin, PJ.,
The Next 700 Programming Languages,
Proceedings of IFIP, 1962.

[MacEwen84a]
MacEwen, G.H .• Burwell, Bruce, Lu, Zbuo-Jun,
The Design of a Distributed Multi-Level ~ure System
Based on Physical Isolation,
IEEE Symp. on Security and Privacy, Oakland,CA, Apri184.

[Marick83]
Marick, B., Mostek, J.W., Wagner, F.R.,
VERUS Language Manual,
Compion Corporation, January, 1983.

(Mercouris84J
Mercouris, T.
Specification of a Distributed Multi-Level ~ure System
M.Sc. Thesis, in preparation,
Queen's University. Kingston

(Ych83aJ
Yeh, R.T., Chen, Bo-Sboe,
Formal Specification and Verification of
Distributed Systems,
IEEE Trans. on Soft. Eng. SE-9, 6(Nov 83), 7 1 0- 7 2 2

[Yeh83bJ
Yeh, R.T., Reed, J.N.,
Specification and Verification of Liveness
Properties of Cyclic Concurrent Processes,
Computer Science Department,
University of Maryland, March, 1983.

340

A MULTI-LEVEL SECURE LOCAL AREA NETWORK

-~,

Albert L. Donaldson

Verdix Corporation

7655 Old Springhouse Road

McLean, Va. 22102

This paper describes a local area network (LAN) architecture that utilizes Network Security Devices
(NSDs) to provide trustworthy interfaces between untrusted users and a multi-level secure network.
The design is based on concepts defined in the DoD Trusted Computer System Evaluation Criteria
(TCSEC) [DoDCSC] for Class Al systems, and provides mandatory and discretionary access control
mechanisms within the framework of a communications protocol reference model. The paper does
not attempt to define trusted network evaluation criteria, but instead focuses on the requirements
analysis and engineering integration of a Trusted Network Base.

1. Introduction.

Until recently, the formal security methods used to design secure computer systems have not been
sufficiently integrated with LAN architectures to develop trusted LAN. components. Formal
specification and verification has been used in the development of highly-critical one-of-a-kind
communications guard devices, such as the Message Flow Modulator and the Restricted Access
Processor. However, these are not general purpose communications systems and do not use
Department of Defense (DoD) or industry standard communications protocols.

The initial emphasis within the DoD has been on the need for trusted computer systems, rather than
trusted computer networks. Last year the DoD Computer Security Center (DoDCSC) released the
Trusted Computer System Evaluation Criteria (TCSEC), which identifies specific security features
and assurance requirements to be used in the evaluation of commercial Automatic Data Processing
(ADP) systems. There are two main reasons for this emphasis on trusted ADP systems. First is the
high cost of physical, procedural and personnel security measures required to protect information in
System High mode. Second, emerging DoD applications require interoperability between entities at
different security levels, in strict accordance with security policy. These requirements can best be
satisfied by trusted computer systems operating in Multi-Level Security mode.

A distributed approach to multi-level security has been proposed in [Rushby], which relies on a
relatively simple but strategically placed guard d~ice (the Trusted Network Interface Unit) to
enforce an access control policy between untrusted computer systems. While this approach uses
LAN components for interconnecting the host systems, the effort was directed toward developing a
distributed multi-level computer system rather than a trusted LAN.

Our approach differs from previous work in that its purpose is to develop trusted LAN interface
components to meet the emerging communications requirements of the DoD, in programs such as the
WWMCCS Information System (WIS) [Bernosky, Gomberg]. Current commercial LANs do not
provide the necessary communications protocols, security or performance required for
interoperability between heterogeneous host systems, possibly operating at different security levels.
Usage of DoD and industry standard protocols is essential to meet the DoD's interoperability
requirements, while the usage of formal design methods is necessary to provide a high degree of
assurance that the LAN components operate according to DoD security policy.

The remainder of this paper describes the architectural approach and communications protocol
hierarchy, discusses the relevance of TCSEC to our Secure LAN design, and discusses the security
requirements.

341

2. Secure Network Architecture.

The solution to the DoD's requirements for secure communications networks has been viewed in the
past as a network of trusted nodes, consisting of independent trusted ADP systems, interconnected
by encrypted .communications links. This seems to be a quite reasonable approach to network
security, until one considers the following two problems. First, each of the individual nodes is
operated by a different security administrator, which would make the management of large, highly
interconnected networks very tedious if not impossible. Second, in order for any particular host to
handle multi-level data, the entire communications protocol hierarchy must be trusted. This
approach is quite expensive, given the complexity of communications protocol software and the
necessity of verifying all the protocol layers handling multi-level data.

Both of these problems can be solved by building a distributed Trusted Network Base (TNB),
responsible for reliably enforcing access to the network in accordance with a well-defined network
security policy. This approach allows a coherent policy to be controlled by a single network security
administrator. More important, however, is that this approach requires only the lower protocol
layers (i.e., the TNB) to be trusted. Since all communications must pass through these lower layers,
it is not necessary to trust the higher protocol layers or the host operating system.

HOST
A

(TS)

HOST
B

(UNCL)

HOST
C

(Secret)

•• HOST
N

(UNCL)

r ------,
I I
I I
I

: I EEE 802 LAN

I

I
I NSC I
I I
I I
I I
L------- -Logical Security Perimeter-- ----__J

Figure 1. Secure LAN Architecture.

The top-level architecture shown in Figure 1 allows users with multiple security levels to share a
single IEEE 802 LAN medium by using trustworthy Network Security Devices (NSDs) that strictly
enforce a Network Security Policy and provide end-to-end encryption. A Network Security Center
(NSC) provides capabilities for a network security administrator to control and audit the security
aspects of the entire network. An untrusted Host Specific Interface (HSI) (not shown in the figure)
can be used to convert the user's interface to the NSD's external interface, so that the NSD can be
used without modification for different host and terminal devices.

The individual NSDs mediate the flow of user-labeled data based upon a security window
(mandatory access controls) and an access matrix (discretionary access controls), both defined by the
network security administrator at the NSC. The security window can be closed down to a single
authorized classification and category, or can be opened up to accommodate multi-level secure hosts.
Eight hierarchical classifications and 32 non-hierarchical categories are provided. As shown in Figure
2, packets (a, b, c) pass through the origin NSD's transmit window, while packets (d, e) are labeled
below allowable limits and will be rejected. All data on the network is labeled with the user (or HSI)
originated label, provided that it passes through the transmit window. At the destination, only
packets (b, c) pass through the receive window, while packet (a) is labeled above allowable limits.

342

Origin

(b) ___, -------lo~

(c) ---·'1 -----+-·•

(d)---

(e)-----

Network Destination

"r---i~ (b)

~---..lc)

Figure 2. Security Window Mechanism.

The philosophy is that the network security administrator can decide whether a particular host's
operation is sensitive enough to confine it to a single level and compartment, or if it can be trusted
to properly identify its level and compartment set within certain bounds. This approach provides
maximum flexibility and security while also accommodating trusted multi-level secure h_osts.
Properly labeled and properly addressed packets are routed transparently to the named destination,
while improperly labeled or improperly addressed packets are intercepted and explicitly routed to
the NSC for auditing.

3. Communications Architecture.

Network security must be discussed in the context of a communications protocol reference model,
such as the International Standards Organization (ISO) Open Systems Interconnection (OSI) model
[ISO] or the recent DoD Protocol Reference Model (PRM) [Ennis]. The PRM is based on [ISO], but
was influenced by the ARPA Internet project and specifically addresses the DoD's future operational
requirements. There are several differences between the two models. but the major distinct.ions
center on the definition of protocol layers and the importance of internetworking. The OSI model
defines seven protocol layers, each responsible for a specific abstract function, while the PRM is
concerned primarily with the requirement that protocols be arranged hierarchically. The PR~-1
identifies separate network and internet layers, which reside in a single network layer in the OSI
model.

Since these issues primarily affect higher-level protocols outside the trusted network base, the
following discussion is presented using the more familiar OSI reference model. Table 1 shows that
the trusted access control mechanisms have been placed at layer 3 of the OSI reference model.
between the IEEE 802 LAN protocols and the DoD Internet Protocol (IP). There are two reasons
for this placement. First, local area network security measures properly reside in this layer, just as
measures to enforce inter-network security properly reside within the IP. Second. this network layer
is generally unused in IEEE 802 LANs, which allows the integration of security with the protocol
structure rather than attempting to add security to existing protocols.

343

Table 1. Secure LAN Protocol Hierarchy.

OSI Layer Protocol
4- Transport
3- Internet

3- Network

2- Link
2 - Link
1 - Physical
0- Medium

DoD Transmission Control Protocol (TCP)
DoD Internet Protocol (IP)

LAN Logical Security Perimeter ---------
Network Security Protocol (NSP)
Encryption
IEEE 802.2 Logical Link Control (LLC)
IEEE 802.3 Media Access Control (MAC)
IEEE 802.3 Media Access Unit (MAU)
baseband or broadband cable, fiber optics

Because we are proposing the development of a Secure LAN (and not a secure internetwork), we
have drawn a logical security perimeter between the LAN security critical protocols and the higher
level internetworking protocols. Within this perimeter, we intend to specify and develop a Network
Security Protocol (based. on the TCSEC mandatory and discretionary access control requirements)
that will allow only authorized LAN interactions. The Network Security Protocol and higher level
data will be encrypted, leaving only the IEEE 802 protocol headers in the clear.

Usage of DoD TCP and IP is mandatory for "all DoD packet-oriented data networks which have a
potential for host-to-host connectivity across network or subnetwork boundaries" [DeLauer].
However, these protocols are not part of the TNB. Their presence is required only for internetwork
communications purposes, and not for security reasons.

The following paragraphs describe· how the Secui"e LAN handles data labeling by untrusted users,
and how data is transferred from one security level to a higher level.

IP security label. According to the Internet Protocol Transition Workbook [Postel],

TCP modules which operate in a multilevel secure environment must mark outgoing segments with
the [user's] security, compartment, and precedence. Such TCP modules must also provide to their
users or higher level protocols such as Telnet or THP an interface to allow them to specify the desired
security level, compartment, and precedence of connections.

This information is copied into the IP Security Option field, and evaluated by the destination host.
Note that [Postel] does not define what is done if the attempted transfer violates the security policy,
and also leaves unstated the accreditation requirement for a trusted host to process data at multiple
security levels.

However, untrusted hosts can be used in a multi-level secure environment if access to the network is
controlled by a TNB. The NSD provides an independent check on the TCP-specified labeling by
correlating it against information defined by the network security administrator. Properly labeled
IP-data-units are transferred into the network, while improperly labeled data is intercepted and
logged at the NSC.

Low-to-high data transfers. High-level protocols such as the File Transfer Protocol (FTP) are
full-duplex, with data flowing in one direction and acknowledgements in the other. For example, a
file transfer from an Unclassified host to a Secret host requires acknowledgements to be transferred
from the Secret host to the Unclassified host. Because this conflicts with multilevel security policy,
[Rushby] concludes that the best way to provide secure information flow across security boundaries
is through a trusted intermed-iary, the Secure File Store.

While the usage of such a trusted intermediary is compatible with our security window approach
(i.e., it is simply another host), we have chosen to view this as a host function requiring a trusted
multi-level secure host. (This seems reasonable since the NSD operates at the network layer, while

344

file transfers are a higher-level host function.) Either the Secret host must be trusted to downgrade
the acknowledgement to Unclassified, or the Unclassified host must be trusted to properly handle the
Secret acknowledgement. Depending upon the approach, either the Secret host's transmit window
or the Unclassified host's receive window must be opened sutficiently to allow the acknowledgement
to pass through.

4. Trusted Network Evaluation Criteria.

There has been considerable debate .over the applicability of the TCSEC to secure computer
networks. The TCSEC explicitly addresses the development of trusted general-purpose and trusted
embedded ADP systems and does not mention any applicability to network configurations. While
the DoDCSC is currently involved in the development of network criteria, informal discussions lead
us to believe that it may be a year or more before they are approved and released. This leaves
secure network developers in a ditficult position, since two reasons for such criteria are:

To provide users with a metric with which to evaluate the degree of trust that can be placed in com
puter systems for the secure processing of classified and other sensitive information.

To provide guidance to manufacturers as to what security features to build into their new and
planned commercial products in order to provide widely available systems that satiSfy trust require
ments for sensitive applications. [DoDCSC]

Contemporary thinking is that there are fundamental ditferences in nature (e.g., functions,
relationship between subjects and objects, protection issues) between computer systems and
communications systems that necessitate the development of a separate set of trusted network
evaluation criteria. The primary ditference is that users can execute arbitrary programs on
computer systems, while communications systems are generally used only for executing pre-defined
protocol processes. In other words, computer system subjects (acting on behalf of system users) can
interact in an almost unlimited number of ways, while communications systems consist of a fixed
number of protocol process subjects whose actions and interactions are pre-defined by the
hierarchical nature of the protocol reference model. Further, processes in a communications system
tend to exist only as subjects, while they may exist either as subjects or objects in a computer
system. A less obvious ditference identified in the Draft Communications Network Criteria proposed
by Ford Aerospace is:

Processes (subjects) are relatively transitory and objects are relatively static in ADP systems, while
the opposite is true for communications systems (e.g., objects are transitory and processes are static).
[FACe]

For these reasons, we do not believe the TCSEC is suitable in its existing form for the formal
evaluation of secure LAN products, but we believe that the existing TCSEC security policy,
accountability, and assurance requirements can be used to provide guidance toward the development
of a Secure LAN.

The distinction between trusted distributed ADP systems and trusted networks is not always a clear
one. For example, it seems quite feasible to build a LAN-based distributed secure computer system
(such as that proposed by Rushby) according to the TCSEC, and have it evaluated b)' the DoDCSC
at the AI level. Because of these similarities, we believe the major ditferences between the existing
TCSEC and the forthcoming trusted network criteria will be in the following areas:

• location of security mechanisms within the protocol hierarchy
• addressing network protection and encryption issues
• distinction between network policy and node policy.

The purpose of this paper is not to propose yet another set of criteria, but rather to explain how we
intend to solve a security problem, based on our use of the TCSEC and its rationale.

345

5. LAN Security Requirements.

The LAN security requirements were derived from a threat analysis for IEEE 802 LANs, and from
the TCSEC security policy, accountability, and assurance requirements for Class Al systems.

5.1. 	LAN Threat Analysis.

Threat analyses are performed during the accreditation of operational sites, but are not normally
done during trusted system development. However, because certain network threats are not
addressed by the TCSEC, a LAN threat analysis was performed. It concluded that an integrated
approach, utilizing both trusted logical mechanisms and intra-network encryption, is necessary to
protect against different classes of security threats.

Network security threats can b~ categorized as either external (e.g., wiretap), or internal (improper
behavior by valid users and software). Different LANs have slightly different vulnerabilities with
respect to external threats, but all LANs have the same vulnerability to internal threats.

External threats. Much of the existing work categorizing external security attacks is applicable to
LANs as well as to wide area networks. Wiretappers can attack LANs using either passive or active
techniques, depending on whether the goal is to eavesdrop or to modify data. The three different
IEEE 802 LANs (CSMA/CD, token bus, and token ring) are equally vulnerable with respect to
passive eavesdropping, since each of the access methods provides for complete coverage of the
medium. Ring topologies are slightly more vulnerable than bus topologies with respect to active
modification threats. With bus topologies the data is transmitted only once, and it cannot be easily
modified enroute to its destination. Because of the multiple linkwise transmissions on a token ring,
there is additional risk that data might be modified by an intermediate node or by a wiretapper
between two legitimate nodes. External threats are best controlled by physical separation of the
sensitive data from the, outside world; however, encryption may be used when such physical
measures are inapplicable. Another solution is fiber optics, which does not emanate RF energy, and
is relatively difficult to tap without major disruption.

Internal threats. For trusted systems we must broaden our analysis to include those legitimate
users who either maliciously or unintentionally release or modify information intended for other
users. All three IEEE 802 LANs are equally susceptible to these internal threats, since all are
designed to promote open sharing of information. These threats may take the form of passive
attacks (listening to all data on the LAN), or active attacks (e.g., spoofing). Internal threats can
only be countered with trusted access control software that reliably enforces a security policy.

5.2. 	TNB requirements

Although there was some interpretation involved in translating the TCSEC requirements for a TCB
to a communications environment, Part II of the TCSEC was used as a guide in identifying the
basic intent of the requirements. Because the essence of security is access control, the goal is to
ensure that the user's ability to write information to the LAN and read information from the LAN is
in accordance with security policy.

In this context, the term user applies to the protocol layer immediately outside the TNB and does
not necessarily apply to the individuals using the attached system. (If the attached system is a
single-user workstation, one may make some asl4mptions about the behavior of its user, but in
general the attached system will be a multi-user untrusted host computer.)

5.2.1. Security Policy.

The security policy requirements for mandatory security controls, discretionary security controls,
and marking are listed below:

(1) 	 Each NSD shall determine that the user-supplied sensitivity level is consistent with the
transmit security window (defined for that NSD) before transmission to the network. All user
data that is not properly labeled shall be rejected.

346

(2) 	 Each NSD shall examine all data arriving from the LAN, and shall transfer the data to the user
only if the sensitivity label of the data is consistent with t))e receive security window defined
for that NSD. All data not satisfying this check shall be rejected.

(3) 	 Each NSD shall maintain a list of other NSDs to which it is allowed to send data and a
separate list of NSDs from which it is allowed to receive data. All data transmissions (either
from the user or the network) which attempt to violate these controls shall be rejected.

(4) 	 Each NSD shall label each packet of data to be transmitted on the LAN with the valid user-
specified sensitivity level and destination address of the data.

The transfer of a user protocol-data-unit from user A to user B takes place in two stages: user A to
LAN, and LAN to user B. (Again, the two users are defined as the host-resident protocol layers
immediately outside the logical security perimeter, £.e., IP/TCP.) This may be modelled as a
synchronized write-read transaction between the two user subjects, with subject A writing the
object 0 to the LAN, and subject Breading the object 0 from the LAN.

Mandatory Access Control. The TCSEC control objective description for mandatory security
policy states:

Mandatory security refers to the enforcement of a set of access control rules that constrains a
subject's access to information on the basis of a comparison of that individual's
clearance/authorization to the information, the classification/sensitivity designation of the informa
tion, and the form of access being mediated. Mandatory policies either require or can be satisfied by
systems that can enforce a partial ordering of designations, namely, the designations· must form what
is mathematically known as a lattice.

As defined in requirements 1 and 2, this is satisfied by the necessity for data to pass through the
transmit security window (represented by a lattice structure) at NSD A, and through the receive
security window at NSD B, before it can be delivered to the destination user. The transmit window
prevents the origin user from labeling information below allowable limits, while the receive window
prevents the destination user from reading information above its clearance level. These are similar
to the Bell and LaPadula *-Property and Simple Security Condition, respectively.

Discretionary Access Control. The TCSEC provides the following description of discretionary
security:

The basis of this kind of security is that an individual user, or program operating on his behalf, is al
lowed to specify exactly the types of access other users may have to information under his control.
Discretionary security differs from mandatory security in that it implements an access control policy
on the basis of an individual's need-to-know as opposed to mandatory controls which are driven by
the classification or sensitivity designation of the information.

There are two critical concepts within this description: first, it is user spec£fied (hence the name
d£scret£onary), and second, it allows access on a need-to-know basis. The first issue is to some extent
already satisfied by network mechanisms, since it is at the user's discretion whether to send or
receive a data unit from the TNB. It is impossible for user B to read an object that is not written
by user A; even if user A writes the object, user B is not forced to read it. Unless both users
cooperate, the transfer will not be completed. We feel that the second issue is significantly more
important, £.e., the need for a finer grained access mechanism that operates on a need-to-know basis.
Such a need-to-know concept can be reasonably extended to host systems, even though protocol
addresses do not refer to specific individuals.

As described in Requirement 3, the proposed mechanism is via transmit and receive access control
lists enforced by the NSDs. Based upon the observation that an object exists only in the context of
a synchronized write-read transaction pair, the transmit list defines the allowable destination link
addresses for objects that can be written to the network. Similarly, the receive list defines the
allowable set of origin link addresses for objects that can be read from the network. Since these lists
are defined by the network security administrator rather than by the individual users, the classical
meaning of d£scret£onary has been modified, but the intent of need-to-know access is preserved.

347

Marking. As noted in Requirement 4, proper marking of communications objects is necessary in
order for the destination NSD to properly perform mandatory and discretionary access controls.
This labeling requirement also includes the internal storage of the data units while they are being
processed within the NSDs. The requirements for labeling human-readable output and interactive
notification of a subject's sensitivity level do not apply within the context of a Secure LAN, because
these are application level functions.

5.2.2. Accountability

Even though the TNB interacts directly with higher-level protocol entities rather than human users, ,
it is still essential that there be an individual who is accountable for the proper operation of each
NSD. For a single-user workstation, the accountable individual will probably be the individual using
the workstation to access the network. For a large host computer, the accountable individual might
be either the computer operator or host security administrator. However, this individual does not
necessarily have to be a user of the system attached to the NSD.

User identification and authentication. User identification can be based on unique physical
characteristics of the individual, what the user has in his possession, or what the user knows. The
recommended approach is the usage of physical key or card devices in the possession of legitimate
users, since such devices as fingerprint readers are expensive and password schemes are subject to
attack. Because this is a local area network, these physical devices can be re-programmed and re
distributed as frequently as necessary.

(1) 	 The NSD shall provide a trusted path between itself and the user identification hardware, and
between itself and the NSC, in order to authenticate the individual who is responsible for the
proper operation of the NSD.

Audit. Each NSD must notify the NSC of significant events such as startup attempts, rejected
data, error conditions, and acknowledgements of NSC commands. The NSD must accumulate
certain statistical information such as the number of data-units transmitted and received, and
transfer this information periodically to the NSC. The NSC must log these events and must provide
for notification of the network security administrator for selectabl'e security-relevant events.

(1) 	 Rejected data shall be logged, along with the identification of the transmitting or receiving
NSDs, the reason for rejection, and a date and time stamp.

(2) 	 Each NSD shall generate an audit trail of its actions and transmit it to the NSC.

5.2.3. Assurance

The operational and life-cycle assurance requirements are identified below.

Operational assurance. The key concept of operational assurance is that the Secure LAN TNB
must maintain a protected execution domain that protects it from external influence by attached
users or wiretappers. Protection is a two-layer requirement. First, the network facilities must be
physically, procedurally and cryptographically protected in accordance with the maximum level of
data 	on the network. Second, each of the individual NSD nodes must provide their own protected
execution domain, which includes requirements for isolation of protocol processes and data objects.
The 	internal structure of the TNB must be organized in accordance with the layering inherent in the
protocol hierarchy. The following specific requirements have been defined:

(1) 	 The Secure LAN shall be physically, procedurally and cryptographically protected in
accordance with the maximum level of data on the network.

(2) 	 The only access to the physical network shall be through the NSD. The NSDs shall not be
bypassed.

(3) 	 The software that implements the above mandatory and discretionary controls shall reside
within the TNB and shall not be modified during execution.

348

(4) 	 The NSDs and NSC shall perform periodic checks of their integrity and proper operation in the
secure network. If an NSD determines that it is operating in a degraded mode, it shall stop
transmitting data, notify the network security administrator, and shall take itself offline.

The TNB must provide for a network secur£ty adm£n£strator position at the NSC, in order to define
the mandatory and discretionary access controls for each user and to audit the operation of the
network. The NSC must be dedicated to the operation of the Secure LAN. However, there is no
requirement for separate operator and administrator positions (as required for the higher TCSEC
classes), since the operator functions are significantly reduced in a LAN environment. Invalid
operation of any portion of the secure network (including rejected data) must cause an alarm to be
generated.

Life-cycle assurance. The TNB must be designed and engineered using formal specification and
verification tools, similar to the requirement for TCSEC Class Al systems. This includes a security
policy model, a formal top level specification, formal design verification, and implementation
verification, in addition to security testing and configuration management.

6. Conclusions.

Trusted LAN communications products can be built that will integrate many of the security
requirements stated in the TCSEC with existing DoD and industry standard protocols. \Ve have
found that the mandatory and discretionary access con trois required by the TCSEC for trusted
computer systems are directly applicable, and can be implemented within a network protocol,
without modification to existing DoD and industry standard protocols.

The proposed architecture uses Network Secur£ty Dev£ces (NSDs) to interface untrusted hosts to a
multi-level LAN by enforcing mandatory and discretionary access controls on all transfers to and
from the network. The approach has been to define a Trusted Network Base architecture that can
implement a coherent security policy based on security windows and access control lists defined by
the network security administrator at the Network Security Center (NSC). These trusted
mechanisms provide an independent check on user supplied labeling, which represents a significant
increase in security over existing hierarchical security labeling approaches, such as labeling of IP
packets based upon information supplied by higher protocol layers.

Because the individual NSDs and the LAN medium may be located in unprotected environments.
Verdix is providing intra-network end-to-end encryption using the DES for protection against.
external wiretapping. While the DES has not been approved for the protection of classified
information, it is the only such VLSI device currently available. It is clear that there must
eventually be a consensus with respect to approved, lower-cost encryption devices for LANs. Either
the DES must be approved for handling some levels of classified data in moderately protected
locations such as LANs, or a new, less expensive encryption device must be provided for that
application.

Finally, while this architecture has immediate applicability as a trusted interface allowing untrusted
hosts to be used in a multi-level secure environment, its usefulness does not end when trust.ed host
systems become readily available. The NSD can still be used to offload protocol processing and
provide an additional degree of trust (even with a network consisting of Al hosts). The centralized
control afforded by the NSC is essential to secure network management.

Acknowledgements

This work was partially funded by the Air Force Systems Command, Electronics Systems Division.
under Contract F19628-83-C-0171, as part of the DoD Small Business Innovative Research (SBIR)
program. The author also wishes to acknowledge the cont.ributions of Karl Nyberg, George Cowan,
Donn Milton, Steve Deller, Chetan Sanghvi and Jerry Shelt.on toward the design of this system.

349

http:Shelt.on
http:trust.ed

References

[Bernosky] - Larry Bernosky and Bill Blankertz, "WIS: Gateway to Worldwide Military
Communications", Government Data Systems, Vol. 12, No. 6, November-December, 1983.

[DeLauer] - Richard DeLauer, Under-Secretary of Defense for Research and Engineering,
Memorandum on "DoD Policy on Standardization of Host-to-Host Protocols for Data
Communications Networks", March, 1Q82.

[DoDCSC]- Department of Defense Trusted Computer System Evaluation Criteria, CSC-STD-001-83,
Department of Defense Computer Security Center, Ft. George G. Meade, MD 20755, 15 August
1983.

[Ennis] - Gregory Ennis, "Development of the DoD Protocol Reference Model", SIGCOMM '88
Symposium: Communications Architectures and Protocols, March, 1Q83.

[FACe] - Ford Aerospace & Communications Corporation, Draft Communications Network Criteria,
Version 1.12, March 1Q84.

[Gomberg]- David A. Gomberg, William H. Blankertz, George A. Huff and Robert W. Shirey, WIS
Local Area Network System Concepts Paper, MTR-83W00025, June 1Q83.

[ISO] - Open Systems Interconnection- Basic Reference Model, Draft Proposal 7498, ISO/TC 97/SC
16, August, 1Q81.

[Postel] - Jon Postel, ed. Internet Protocol Transition Workbook, Network Information Center, SRI
International, Menlo Park CA Q4025 March 1Q82.

[Rushby] - John Rushby and Brian Randell, "A Distributed Secure System", IEEE Computer, July
1983.

350

AUTOMATED DATA PROCESSING SECURITY ACCREDITATION PROGRAM

(A COMPOSITE GUIDELINE)

JOHN S. COCHRANE SR.

STAFF COMPUTER SYSTEMS ENGINEER

MARTIN MARIETTA, DENVER AEROSPACE

FOREWORD

The data developed within this documentation consists of a sample

accreditation program containing composite information extracted from

the requirements documents addressing ADP Security for the Department

of Defense, U.S. Army, U.S. Navy, U.S. Air Force, and Defense

Intelligent Agency.

It is a comparison between various agencies accreditation policies and

users will in turn modify as required to apply all or part of this

document to their specific needs.

351

I

I. Introduction

This document is generic in nature and therefore overviews policies and

procedures governing the security accreditation program for Department

of Defense (DOD) Automated Data Processing (ADP) facilities. In the

context of this document, the term "accreditation" is used to describe

the process whereby information pertaining to the security of a Data

Processing. Installation (DPI) is collected, analyzed, and submitted for

a Designated Approving Authority's (DAA) approval. The DAA, upon

reviewing the documentation provided via the accreditation program may

either concur, thereby certifying that an acceptable level of security

is present, or non-concur, indicating that the level of risk has not

been reduced to a satisfactory level.

II. Purpose

This document provides generic guidelines to be used in the preparation

of an ADP Security Accreditation Program. The objective is to ensure

that ADP personnel, and others who may be involved in the planning

process, are aware of the information which should be included in such

a program, to provide a recommended structure and suggested format, and

generally to make those responsible aware of the criticality of the

accreditation process.

III. Scope

This document applies to all DPI's and computer systems proposed for

the processing of classified information except those listed below:

a. 	 Those preprogrammed and embedded in non-ADP machines or devices

and which operate essentially to monitor or control the devices

of which they are a part.

b. 	 Programmable calculators and microprocessors used exclusively

for mathematical and scientific applications and on which no

textual information is processed or stored.

352

c. 	 Components located within a Communication Center and used

exclusively for the functions performed in message switching

type communication facilities.

IV. Accreditation Categories

Given the varying types of DOD automated data processing systems; the

functions they perform, and the variety of installation housing

computer equipment, different accreditation standards and procedures

are required. In cases when a DPI has computer systems which operate

at different classification levels, procedures and policies will be

established for each system according to its classification level. For

accreditation purposes, DPI's are grouped according to the following

modes of operation: (see Appendix A for definitions)

a. 	 Dedicated

b. 	 System High

c. 	 Controlled

d. 	 Multi-level

e. 	 Compartmented.

No single government document contains all the above modes of

operation. The Industrial complex, unless under a specific contract,

cannot operate above the Controlled mode of operation. Since this is

an overview accreditation program, we have listed all categories that

possibly could be used.

V. Reference Guideline Documentation

a. 	 DOD 5200.28 Security Requirements for Automatic Data

Processing (ADP) Systems

b. 	 DOD 5200.28M ADP Security Manual • • •

c. 	 DOD 5220. 22M Industrial Security Manual for Safeguarding

Classified Information

353

d. AFR 300 - 8 	 Automated Data Processing • • •

e. 	 OPNAVINST 5239.1A Department of Navy Automatic Data Processing

Security Program

f. AR 380 - 380 	 U.S. Army Automated System Security

g. 	 DIAM 50 - 4 Security of Compartmented Computer Operations

(Classified Document)

VI. The Accreditation Process

A. Accreditation

Accreditation is the DAA's formal declaration that appropriate ADP

Security countermeasures have been properly implemented for the ADP

Activity consistent with data protection requirements and that the

applicable steps in the 	accreditation process have been completed. The

basic steps of the accreditation process may not vary by level and

types of data. However 	 the individual requirements will vary and are

presently defined by Department of Defense documentation i.e. DOD

5220.22M, Defense Intelligence Agency, i.e. DIAM 50- 4, and Military

regulations i.e. AFR 300 - 8, together with the DAA's interface and

concurrence. The accreditation process requires information gathering,

analysis, and formal review by management within both the operating and

certifying ~nvironments. These accreditation processes must be

conducted so as to include the following security categories:

Physical Security
Information Security
Personnel Security
Communication Security
Computer Security

The accreditation process should involve the following essential

actions: (additional actions may be added at the direction of the DAA)

354

1. 	 Statement of DPI goals and objectives; to'include a review of

security requirements and implementation methods for the operations

requiring certification. This can be a separate document i.e. ADP

Security Requirements/Implementation Plan or it can be included in

the Project Management Plan (PMP), System Requirements Review

(SRR), etc.

2. 	 Detailed risk analysis i.e. FIPS 65, to identify vulnerabilities

and evaluate risks, and countermeasures available to minimize

risks. A risk analysis is required if the DAA is the Defense

Intelligence Agency but is usually a requested option by other

Designated Approving Authorities.

3. 	 Detailed descriptions of proposed operation i.e., modes, users,

security level and services to be provided to include precise

definition of security features forming the basis for

accreditation. This detailed description will be identified as the

ADP Security Plan (reference Appendix B) which requires Designated

Approving Authority approval.

4. 	 Coordination of the acquisition and implementation of all the

required security features, i.e. Design reviews (PDR), Computer

Program Configuration (CPCI), Equipment Configuration Item (CI) etc.

5. 	 A plan for a system security test and evaluation, test and

evaluation team, test procedures, etc. This effort will be

documented through the development of the ADP Security Test and

Evaluation Plan (Reference Appendix C) which will be approved by

the Designated Approving Authority. *1

6. 	 Establishment of a Test Team to conduct a security test and

evaluation in accordance with the approved Security Test and

Evaluation Plan.

355

7. 	 Statement of continuing problem areas, resources requirements and

impact will be developed. The Security Test and Evaluation Report

(Reference Appendix D) documents the execution and results of the

Security Test and Evaluation Plan. It analyses the findings,

and/or vulnerabilities, and lists recommendations for corrections

as required.

8. 	 A formal request for accreditaton (Reference Appendix E) with the

above supporting documents will be addressed to the Designated

Approving Authority.

9. 	 A Contingency Plan is often a Designated Approving Authority

required option within the accreditation program. The detail and

scope of the plan depends upon the characteristics of the

individual activity and should provide detailed procedures for all
*2aspects of emergency backup, and recovery operations.

(*1) - Items 5, 6, and 7 are not an accreditation process within the

Industrial Security environment.

(*2) - Contingency Planning is only identified in the following

Regulations; OPNAVINST 5239.1A, AFR 300-8, DIAM 50-4.

Since the documentation associated with the formal accreditation

describes in detail vulnerabilities, risks, and physical layout of the

DPI, consideration should be given to classifying such documentation to

a level commensurate with the highest classification of information

processed. A review of the Project Classification Guide and/or

direction from the Designating Approving Authority should assist in

determining the classification of these documents.

356

Computer
Center

0

DAA Approval

ST&E Report

ST&E Team

ST&E Plan

ADP Security Plan

Security
Working GrouP.

Contractor

Figta'e A Aaareditation Program

357

ADP
Security
Plan

ADP
Security
Test

ADP
Security
Test

Accreditation
Request
Certification

rsecutity-- -l
I Requirement 1 f'T~;es~--j
I Implementation) I I r.--- --,1Plan --..J I Data I Contingency

. Package ;~--"'"' __ 1
I Plan

1
l

I - 1 ..,.,..
I ,.-..J....... __ ,
1--- Optional!

Figure B Aaareditation Documentation FZow

358

--

.;)t!f}i:::::i:::::

Selected Security ADP
Security Operations Security
Criteria Concept Plan
Report --- -

- Phys.Define Perform RiskSelectResearch Identify - Com.Security Assessment andSecurity Methods ofSecurityOperations I1-- TradeoffCriteria ImplementRequire~mentConcept II Studiesat ion
I I

Pers.- I
I.
IIdentify Identify

Computer 1------ Computer ~--------------~
Equipment Softwarew

U1
\0

ADP1Security~DP Security Accredita Certifica
Test tionTest tion

RequestEvaluationEvaluation
L!.lan_

Install
Secur_ity

~

--
Perform
Security
Test
Evaluation

1

Figure C Accreditation Program Flow

L---l--

Obtain I I I •
•' I Accreditation

Maintain
~SecurityAudit
Recertification

Program

B. Certification

All DPI's designated to process classified data will be certified prior

to commencing operations at that classified level. The Designated

Approving Authority will issue a Certification Statement (Reference

Appendix F). A DPI not accredited may operate with classified data if

the appropriate Designated Approving Authority has issued an interim

authority to operate. This interim authority to operate while

continuing the accreditation process permits the activity to meet

critical operational mission requirements while improving its ADP

security posture.

Interim authority to operate is not a waiver of the requirement for

accreditation.

C. Re-certification

Each DPI will undergo a formal re-certification review according to ·the

schedule assigned by the DAA. However most government regulations

recommend that the review be performed as a minimum "annually".

DPI's will also be recertified when the DAA or ADP security staff

determines that a change has been made which voids the original

accreditation conditions. Significant changes which could impact the

ADP 	 security position are:

1. 	 A change in the level or type of data being processed, i.e., secret

to top secret or collateral to SCI.

2. 	 Addition or replacement of a mainframe or major system components.

3. 	 A complete revision, new release or update to the operating system.

4. 	 A breach of security, violation of system integrity or unusual

situation which appears to invalidate the original condition of

certification.

360

5. 	 Construction or modification of the ADP facility.

6. 	 A change in the mode of operation, i.e., System High to Controlled

mode of operation.

VIII. Various Accreditation Tools

Automated Data Processing Systems directed to operate in a security

mode of operation of a higher level than System High will be required

to demonstrate an enhanced Security Control in Computer Security,

thereby requiring an in-depth review of Computer Hardware/Software

Security controls. Listed in this section are some of the Computer

Security evaluation tools available to exemplify accreditation. (This

is not intended to be a total listing.)

A. 	 Security Model

A Security Model is an evaluation tool to which identifies the entities

in a computer system are abstractly divided into sets of subjects

(active entities, such as processes) and objects (information

containers). Within the model the motion of a secure state is defined,

and 	an inductive proof of system security is defined, and an inductive

proof of system security can be given. A system state is defined to be

"secure" if the only permitted access of subjects to objects are in

accordance with specified level restrictions.

B. 	 Trusted Computer System Evaluations

The 	DOD Computer Security Center has developed a Trusted Computer

System evaluation criteria (CSC-STD-001-83 DOD Trusted Computer System

Evaluation criteria) which provides a basis for the evaluation of

effectivness of security controls built into automatic data processing

system products. The criteria has been developed with three objectives

in mind: (a) to provide users with a yardstick with which to assess

the 	degree of trust that can be piaced in computer systems for the

secure processing of classified or other sensitive information, (b) to

361

provide guidauce to mauufacturers as to what to build their uew, widely

available trusted commercial products iu order to satisfy trust

requiremeuts for seusitive applicatious, aud (c) to provide a basis for

specifyiug security requiremeuts iu acquisitiou specificatious.

c. Security Checklist

Each ageucy has developed a series of ADP Security checklists. These

checklists are either a composite or au iudividual security documeut

which well covers all Security categories, i.e. Physical, TEMPEST,

Computer, etc. Refereuce aud/or example of checklists cau be

ideutified iu the goveruiug security documeuts for a users giveu

program.

362

The follow appendixes are available upon request from the DoD Computer
Security Center.

Appendix A - Accreditation Categories
Appendix B - The ADP Security Plan
Appendix C - The ADP Security Test and Evaluation Plan
Appendix D - The ADP Security Test and Evaluation Report
Appendix E - System Accreditation Request
Appendix F - System Certification Statement
Appendix G - Bibliography

Please address requests to:

DoD Computer Security Center
9800 Savage Rd.
Fort George G. Meade, MD 20755-6000

Attn: M. Vaughan, C4

363

aR'IGJRATI~ ~
FOR . .

CERl'IFim AND AIXRI!Dl'l'ID CPERATIQW. SYS'JBI)

LYNNE S. ·VIJ:MAR AND . LESLEE L. O'DELL

DEPARIMENT OF DEFENSE CCMJ?UrER SOCURITY CENTER

The philosophical basis for which this paper has been initiated is to provide
well defined Configuration Controls that address security related changes to a
certified and accredited operational system. We feel that the purpose of these
Configuration Management Procedures is to control. the process in which a change is
made to a previously certified system in order to reduce the amount of effort to
certify this roodified system. Discussed in this paper are the reasons for which an
operational system may need to be re-certified, controls which must be followed
during a change to system security features, and requirements that must be met
after the system change has been corrpleted. It is ili{X>rtant to define
Configuration Controls for certified and accredited operational systems because
currently there is not a Configuration Control Plan with respect to the DoD Trusted
Oomputer Evaluation Criteria that addresses changes which affect the code of the
Trusted Oomputing Base (TCB) •

We concluded that When a change is performed which affects any code residing
in the TCB, it creates a roodified or new version of the system. Any change made to
the TCB invalidates that system's current certification and accreditation rating.
Therefore, for any operational system rated D-Al in accordance with the Criteria,
we suggest that when any change is made to the system's 'K!B, this new system should
be certified. Any changes made to the system's TCB are considered to violate the
current assurance of the system's security state. We have defined a security state
as the certification rating of the original system. In conclusion, the system's
current certification and accreditation is maintained only when there are no
changes to the 'K!B.

·li'aMT <F 'lBE PAPER

There are t~ major divisions in this paper. ·The first division contains the
Configuration Management Controls for systems falling under D-Bl evaluation Classes
and the second division contains the Configuration Management Controls for systems
falling under B2-Al evaluation Classes. The reason for the t~ major divisions is
to separate the methods by which the change is made, the change is tested, and the
change is evaluated.· For systems being changed that fall under the D-Bl Classes,
the entire TCB shall be evaluated and tested because their architecture does not
support Security Ibnains of Execution. For exanple, when a change is made to the
'K!B of a C1 rated system, the entire system which is the 'K!B must be tested and
certified. Since there is the concept of Security Ibnains of Execution in the

364

Classes B2-Al, evaluating and testing is performed differently. This will be nore
thoroughly explained in the Introduction of the Configuration Management Procedures
for the B2-Al evaluation Classes· (P. 11) • All configuration controls contained in
classes D-Bl will establish the basis for the controls for systems rated B2-Al
class.

For the context of this paper, each of the two divisions of Configuration
Management is broken into four parts. Part one is the process by which changes are
considered and reviewed. Part two are the Configuration Controls to be followed
when making a change. The third part consists of both the testing requirements and
the check list. The check list for the system's class is all the requirements for
that class as specified in the 11 1bD Trusted Conputer System Evaluation Criteria...
The fourth and final part contains the recording and reporting of changes to both
the system and procedures which are used in the operational state. An operational
state is defined as the oondition or node when a system is declared to be properly
implementing its desired functions. We believe each process must be rigidly
adhered to, in a distinct order, to ensure an employable configuration control plan
for the system. We feel that if any one of these processes fails, the entire
Configuration Management process fails.

Configuration Manag~nt is necessary for all systems. Systems rated Cl-Bl
have limited but necessary security features. Therefore, to maintain that these
systems continue to uphold their minimum security assurances, we are suggesting
that our proposed configuration controls be followed. For a system rated in the D
class, we feel a configuration control plan is necessary because a change may
upgrade the system to a higher class. For example, in order for a D rated system
to be upgraded and certified as a Cl system, the change must follow the
Configuration Control process for a Cl system.

Before any changes can be made to the TCB, ,we suggest a design of the change be
brought before a Security Configuration Control Board (SCCB). This Board could be
composed of an accreditor, certifier, and a security representative and anyone they
deem appropriate in facilitating the change. For example,

Engineers- who would reside on the Board to address hardware or interface
changes,

Operations Personnel- who Would reside on the Board to address the
corrplications in running the sy.stem once the change
has been made,

365

System Software Support- who would reside because they will have to re
compile all changes in the baseline master copy,

Vendor- who would reside on the Board if the change is a vendor change to
give assistance in defining the proposed change,

and others in areas such as product assurance, logistic support, production,
maintenance, test, procurement, facilities, interface control, users, and others.
The accreditor(s} will be the chairman of the SOCB with a designated alternate(s}.
The chairman, his alternate, and the remaining members will be specifically named
on special orders/charters establishing the SOCB. These orders should be revised
periodically to reflect appropriate changes in SOCB corrposition. We feel there
should be a document which will contain the concurrence/non-concurrence of the
Board as a whole, of ea9h member, the established implementation need date, and the
recommended method of implementation. Controls shall be established for the
running of the Board. We suggest the Board adhere to the following rules: before
a session may begin, the accreditor(s}, certifier, and security representative
must be in attendance; as for the rest of the Board, more than fifty percent (50%}
of the members must be present for the Board to convene. The recommendations given
to the accreditor represent not only each members concurrence/non-concurrence, but
also the Boards majority rule; therefore, a 50+% attendance requirement.

The following are suggested steps that the Board should perform:

1. The requesting office or vendor should submit their proposed change
according to the format given in figure 1 to the accreditor, certifier, and
security representative. These SOCB members shall review the information provided
in the Proposed Change Request Form (Fig. 1} to determine whether the proposed
change is '103 relevant. If the change is decided to be '103 relevant, then the
office or vendor requesting the change will submit a formal Security Change Request
Form (Fig. 2} and the Board shall convene and begin the process of considering and
reviewing the overall impact of the change to the system. The format of the
security request change includes a definition of the change, what the change is,
impact the change will have on the TCB, risks involved, etc. If the proposed
change is not security related, then the change will fall under a different
Configuration Control Plan not discussed in this paper.

2. We envision that every TCB change will be critically evaluated, including
as an alternative, not making the proposed change. This Board will assess the
overall impact that the design change may have on the system's security. Although
a change in design, implementation, and its impact on the system's security is the
Boards major concern, the following represent other factors to be considered in the
Boards decision: the costs and time needed for the rrodification, possible risks
involved, performance reliability, maintainability, schedule, operational
effectiveness, safety and human factors, logistic support, and transportability.
We suggest a maximum thirty (30} day time limitation on the SOCB for their
recommendations to the accreditor. The documented recommendations will be
presented to the accreditor for his review.

366

3. we concluded that the accreditor{s) shall make the final decision to
approve or disapprove the implementation of the security related change based on
the Boards recorrmendations. Again, we recommend that the accreditor {s) has a
rnaxirrurn of sixty {60) days for this decision. If the change is allowed then the
accreditor{s) shall submit the approved change request to the Configuration
Manager. If the proposed security related change is not approved, the accreditor
submits the disapproved change and his documented reasons for disapproval to the
Configuration Manager for archival. The reason for documenting all decisions is
for historical purposes and for fallback procedures. For example, if a change is
submitted to the SCCB which has previously been submitted and reviewed, the Board
will already have the necessary information and much time and effort will be saved.

4. If a Configuration Manager currently exists for the system, he should
ensure the correct implementation of all Configuration Controls provided in this
paper. If a Configuration Manager does not exist, one shall be appointed for the
system. The Configuration Manager is responsible for the documentation of every
phase of each change, including: drawings, parts lists, specifications, test
procedures, evaluations, etc.

5. we believe after testing and evaluating is completed, the Configuration
Manager will submit to the SCCB the evaluation and test results of the change.
These results will be deliberated upon by the SCCB for their final recorrmendation
to the accreditor{s) for approval or disapproval. Again, there is a suggested five
day time limitation on the SCCB for their recommendations. The accreditor(s) shall
make the final decision of approval or disapproval based on the SCCBs
recommendation. The accreditor has a rnaxirrurn of five days to make a final
decision. Upon disapproval/approval the accreditor shall submit a formal letter to
the office requesting the change stating reasons for approval/disapproval. If the
accreditor disapproves the evaluated, tested, and certified change, he will submit
this decision to the Configuration Manager for archival. If the change is
approved, the Configuration Manager will be notified to implement the change and
update the documentation.

The following Configuration Controls shall be enforced by the Configuration
Manager for any system rated from D to Bl when changes are made to the trusted
computing base (TCB). These Controls shall only be followed after the SCCB has
approved the change for any system originally certified and accredited in the Class
range of D to Bl systems. All new controls are in bold type.

1. 'Dle security related change llllSt first be awroved by the SCD3 before any
work may begin.

2. All changes will be made to a ~ of the baseline master ~ of the
system rather than the q?erational system•s code because the baseline DBSter ~
is stored in a secure manner am has I'X>t been subjected to the q?erational
envirooment thereby, I'X>t exposing it to possible subversive code.

367

3. After the change is ca~pleted, the entire trusted <XIIplting base ('.103)
llllSt be evaluated, tested, and certified. 'lhe evaluation, tests, and certification
shall denDlStrate that the change did not increase the risk of denial of service•

. 4. 'lbe catfiguration Manager llllSt create an orderly identification and
scheduling system for initial release of design data and expeditious acca«plistmmt
of C'haojes ~ the drawing or specification is released. Major objectives are the
following:

a. 	 Assure proposed changes stay within the booms of
the overall project direction which was given
by the Security catfiguration Caltrol Board.

b. 	 Establish a change introduction point and

disposition for existing materials.

c. 	 Assure changes as defined are correct, clear,
caJPlete, and understood by respoosible persoonel.

d. 	 Integrate the changes aDD119 all affected ~ratialS.

5. 'lbe Manager 1111st establish a central location (integrated record system)
lllilere the status of existing hardware and software are laxJWn; for exaople,

a. 	 ()Jantities of hardware in existence.
b. 	 Stage of ca~pletion of hardware, firllliare and

software and their location.

c. 	 Ia::ation of hardware, software and firllliare being

used.

6. All approved security changes will be made at a central depository which
maintains the necessary develcpnent tools;

7. 'lhe Calfiguration Manager will subni.t the catfiguration Management
procedures inpleEnted during the C'haoje, the test results, and an evaluation of
the inpact of the change on the '.103 to the acx::reditor and his Board.

8. Ebsure that any software change OCDforms to the format of the baseline
master oopy of the software already in place.

9. Qlce the acx::reditor approves the tested security related change, the
catfiguration Manager is respoosible for ensuring the correct inplementation of the
C'hao]e to the baseline master oopy of the code. A tool shall be provided for
ocmparing the newly generated version of code with the baseline master oopy to
ascertain that only the approved change has been made. After a successful
ocmparison, the new version of code will be prOODted to the baseline master oopy.,

10. <llcm.Jes to engineering calfiguration data shall be pr~rly inpleEnted to
assure that the change is minimized and that the configuration item will be
produced as specified.

ll. All individuals who maintain or alter the system shall be under that
facility's requirements for persoonel security. 'lbese individuals shall have a
clearance as high as the highest security classification of data residing on the
:;ystem. ('lhis is to maintain the integrity of the data residing on the system.)

368

U. q;xm fina1 awrova1 of the evaluated, tested, arrl certified change, the
catfiguraticn Manager is respoosible for the secure distributicn of all cq>ies of
the base1ine master cqJy to all field sites.

13. A cad:>inaticn of physica1, procedura1, arrl technica1 (e.g., cryptographic
Ethods) safeguards sha11 be used to protect fran unauthorized IIDdificaticn or
destructicn the master cqJy or cq>ies of all uateria1 used to generate the '1m.

14. After fina1 testing arrl evaluati<D of the security related change, the
accreditor (s) llllSt awrove or disawrove the change by evaluating the resu1ts
subni.tted by the catfigurati<D Manager.

15. 'lbere llllSt be assurance of a secure initia1 state.

16. 'lbere llllSt be assurance of a trusted restart.

17. 'lbere mst be sufficient oontrols to ensure that the field sites received
the deliverable items in the sane structure as they were sent.

18. 'lbere shall be aperiodic evaluaticn of master cq>ies of the security
related hardware boards, software arrl firnware at all field sites.

19. All engineering, hardware, software, fi.rlaliare arrl oonfigurati<D data
affected by awroved changes shall be revised as necessary to describe the change.
'!be char¥je shall also be shown in all related soax>rt el.enEnts such as manuals,
bardxxlks, soax>rt equip~ent, etc. - to the extent described in the catfigurati<D
Q:ntrols for that l.ev'e1.

20. All acti<DS related to the subni.ssi<D, ana1ysis, approva1, arrl
inpl.eoentaticn of changes shall be thoraJghly docunelted arrl archived.

21. All dcnmpntati<D, SCXJrce code, object code, cxupi1ers, soax>rt software,
processed inforuation, ca1p1ters arrl any periphera1 devices shall be uaintained in
a faci1ity with a Classificati<D leve1 no la!Jer than the highest Classificati<D of
any of the items nentialed above.

22. Every changed 1ine of code to the cqJy of the base1ine master cqJy shall
be initia1ed by the changer arrl archived. 'Ibis awroved initia1ed cqJy of the
base1ine master cqJy sha11 be used as a cross reference against the origina1
base1ine master cqJy when the update is made.

The following section establishes testing requirements which must be satisfied
for system's rated IrBl Class. The Configuration Manager is responsible for the
correct implementation of all controls during the test phase of the change. He is
also responsible for obtaining an appropriate qualified organization to perform the
evaluation, testing and certification of the changed system. When the system falls

369

under one of these Classes, the entire 'ICB must be evaluated and tested. All the
requirements which are stated under a certain Class for that system must be
satisfied. Testing requirements contained in a lower Class will also apply to all
consecutive hierarchical Classes. All new requirements to each Class are in bold
type.

D Class Testing Requirements

There are no specific testing requirements at this level. This Class is
reserved only for those systems which have been evaluated and tested and do not
meet any other higher evaluation Class.

Cl Class Testing Requirements

After changes are made by appropriate personnel, testing shall be performed on
the system by a qualified organization. The following test requirements shall
apply at the Cl level:

"lbe "..CB shall be tested am foum to work as clainEd in

the updated system dcc:nnentatial am as defined by the IklD

Trusted Calputer System Evaluatia1 Criteria.

- "lbe tests shall assure that there are no dwiaJS

ways for an unauthorized user to bypass or otherwise

defeat the security protectia1 mechanisms of the 'lrn.

An updated test plan which irxx>rporates the security

c:hcm]es shall be used.

Cl Check List For Testing

The check list for the testing requirements are the requirements found in the
"IbD Trusted Cooputer System Evaluation Criteria" specified under the Cl class.
The Configuration Manager is responsible for documenting all controls used during
testing.

C2 Class Testing Requirements

After changes are made by appropriate personnel, testing shall be performed on
the system by a qualified organization. The following test requirements shall
apply at the C2 level:

The 'ICB shall be tested and found to work as claimed in

the updated system documentation and as defined by the lbD

Trusted Oamputer System Evaluation Criteria.

- The tests shall assure that there are no obvious

ways for an unauthorized user to bypass or otherwise

370

defeat the security protection mechanisms of the TCB.

- An updated test plan which incorporates the system changes

shall be used.

- Testing shall i.rx::lude a search for dwious flaws that

walld allow violatiCX'l of resoorce isolation, or that walld

permit unauthorized access to the audit or authenticatiCX'l

data.

C2 Check List For Testing

The check list for the testing requirements are the requirements found in the
"D::>D Trusted CoJI[>uter System Evaluation Criteria" specified under the C2 class.
The Configuration Manager is responsible for documenting all controls used during
testing.

Bl Class Testing Requirements

After changes are made by appropriate personnel, testing shall be performed on
the system by a qualified organization. The following test requirements apply at
the Bl level: ·

- The TCB shall be tested and found to work as claimed in
the updated system documentation and as defined by the DoD
Trusted Computer System Evaluation Criteria.

- The tests shall assure that there are no obvious
ways for an unauthorized user to bypass or otherwise
defeat the security protection mechanisms of the TCB.

- An updated test plan which incorporates the system changes
shall be used.

- Testing shall include a search for obvious flaws that
would allow violation of resource isolation, or that would
permit unauthorized access to the audit or authentication
data.

- '1be system shall be subject to thoraigh analysis am
testing by a team of in:Iividuals who umerstam the
specific inplenentation of the '103 1 s design docnmentatiCX'l,
SCXJrce Code, am OOject code. 'IbiS teams I objectiVeS
shall be: to WJC'Oiler all design am inplenentatiCX'l flaws
that walld permit a subject external to the '103 to read,
change, or delete data norDBlly denied umer the IIBl'ldatory
or discreti<mary security policy enforced by the 'R:Bi as
well as to assure that no subject (withcut authorizatiCX'l
to do so) is able to cause the '103 to enter a state such
that it is tmable to respood to ocmn.:mications initiated
by other users.

371

- All discx:wered flaws shall be renoved or neutralized am

the '1m retested to denDnstrate that they have been

eliminated and that no new flaws have been introduced.

Bl Check List For Testing

The check list for the testing requirements are the requirements found in the
"DoD Trusted Couputer System Evaluation Criteria" specified under the Bl class.
The Configuration Manager is responsible for documenting all controls used during
testing.

The following section indicates required documentation which must, when
applicable, be updated to reflect any tested and approved change to the system for
system's rated ~Bl Class. All the requirements which are stated under a certain
Class for that system must be satisfied. Required documentation contained in a
lower Class will also apply to all consecutive hierarchical Classes. All new
requirements to each Class are in bold type.

D CLASS OC:X:UMENTATICN

There are no specific documentation requirements at this level. This Class is
reserved only for those systems which have been evaluated and tested and do not
meet any higher evaluation Class.

Cl CLASS OC:X:UMENTATICN

The following are the specific Cl evaluation class documentation requirements
which, when applicable, must reflect the accreditor approved security related
change:

1. All test plans and results of the security mechanisms' functional testing shall
be dcn:nuented.

2. '!here shall be a sunmary, chapter, or DBnUal in the user doctuEntation which
describes the protection mechanisms provided by the 'lrn, guidelines of their use,
and how they interact with ooe another.

3. 'lbere shall be a manual addressed to the ADP system administrator which
cautions about functions and privileges that shool.d be coo.trolled when running a
secure facility.

4. 'lbere shall be a docunent available which describes and explains the security
policy(s) being i.uplemented. If the '1m is t:ni{XlSE'(I of distinct DDdul.es, the
interfaces between these DDdules shall be described.

372

http:DDdul.es

C2 CLASS J:XX:UMENTATION

The following are the specific C2 evaluation class documentation requirements
which, when applicable, must reflect the accreditor approved security related
change:

1. All test plans and results of the security mechanisms' functional testing shall
be documented.

2. There shall be a summary, chapter, or manual in the user documentation which
describes the protection mechanisms provided by the TCB, guidelines of their use,
and haw they interact with one another.

3. There shall be a manual addressed to the ADP system administrator which
cautions about functions and privileges that should be controlled when running a
secure facility. '1he procedures for examining am 11Bintaining the audit files as
well as the detailed audit record structure for each type of audit event shall be
given.

4. There shall be a document available which describes and explains the security
policy(s) being implemented. If the TCB is co111p0sed of distinct m::::ldules, the
interfaces between these m::::ldules shall be described.

Bl CLASS J:XX:UMENTATION

The following are the specific Bl evaluation class documentation requirements
which, when applicable, must reflect the accreditor approved security related
change:

1. All test plans and results of the security mechanisms' functional testing shall
be documented.

2. There shall be a summary, chapter, or manual in the user documentation which
describes the protection mechanisms provided by the TCB, guidelines of their use,
and how they interact with one another.

3. There shall be a manual addressed to the ADP system administrator which
cautions about functions and privileges that should be controlled when running a
secure facility. The procedures for examining and maintaining the audit files as
well as the detailed audit record structure for each type of audit event shall be
given. '1he manual shall describe the qJerator am administrator fmlctioos related
to security, to include changing the security characteristics of a user. It shall
pr011ide guidelines on the ooosistent am effective use of the protection features
of the system, how they interact, how to securely generate a new 'lm. '!be manual
shall also pr017ide facility procedures, warning~, am privileges that need to be
ccntrolled in order to operate the facility in a secure manner.

4. There shall be a document available which describes and explains the security
policy(s) being implemented. If the TCB is composed of distinct m::::ldules, the
interfaces between these m::::ldules shall be described. An infoC11Bl or foC11Bl

373

II

descriptioo. of the security policy nDdel enforced by the 'lCB shall be available and
an explanatioo. pr011ided to show that it is sufficient to enforce the security
policy. 'Dle specific '1m protectioo. IIEChanisms shall be identified and an
explanatioo. given to show that they satisfy the no:lel.

C£H?IGORATI<E ~ FOR B2-Al EVAUJATI<E cr..ASSES

II

Unlike the D-Bl Classes where the entire TCB must be evaluated and tested,
this division of Classes B2-Al introduces the new concept of evaluating and testing
only particular Security Domains of Execution. A Security Domain of Execution is
an architectural structure within the TCB which supports only distinct modules of
security code. Security Domains of Execution provide a distinct separation between
non-protection critical elements and protection critical elements. The purpose of
these Domains is to reduce the effort required to certify a changed system. Before
a security related change can be made to the TCB, all the Domains which are
directly or indirectly affected by the change must be presented to the Security
Configuration Control Board (SCCB). Before the change is made, there shall be an
analysis conducted by the office or vendor requesting the TCB change to identify
those affected Domains to the sees. After the TCB change has been made to a copy
of the baseline master copy of the code, the appropriate qualified organization
shall perform an analysis to determine which Domains were actually affected by the
TCB change. All established affected Domains will be evaluated and tested.
However, during the evaluating or testing of these affected Domains, a Domain not
previously stated may be found. If this occurs, then this Domain must undergo the
same rigorous evaluating and testing as the affected Domains. All other Domains
that were not directly or indirectly affected by the change do not need to be
evaluated and tested because they were not affected by the change. The affected
Domains which are evaluated and tested must fulfill all the requirements (which
that Domain implements) specified in the TESTING REQUIREMENTS check list for that
system's particular Class. When checking a change which directly or indirectly
affects a Domain, the Domain must satisfy all the regulations under that specific
feature(s).

Before any changes can be made to the TCB, a design of the change will be
brought before a Security Configuration Control Board (SOCB). Again, it is
suggested that this Board will be composed of an accreditor, certifier, and a
security representative and anyone they deem appropriate in facilitating the
change. For example,

Engineers- who would reside on the Board to address hardware or interface
changes,

Operations Personnel- who would reside on the Board to address the
complications in running the system once the change
has been made,

374

System Software Support- who would reside because they will have to re
compile all changes in the baseline master copy,

Vendor- who would reside on the Board if the change is a vendor change to
give assistance in defining the proposed change,

and others in areas such as product assurance, logistic support, production,
maintenance, test, procurement, facilities, interface control, users, and others.
The accreditor(s) will be the chairman of the SOCB with a designated alternate(s).
The chairman, his alternate, and the remaining members will be specifically named
on special orders/charters establishing the SOCB. These orders should be revised
periodically to reflect appropriate changes in SCCB composition. There shall be a
document which will contain the concurrence/non-concurrence of the Board as a
whole, of each member, the established implementation need date, and the
recommended contractual method of implementation. Controls should be established
for the running of the Board. It is suggested that this Board adhere to the
following rules: before a session may begin, the accreditor(s), certifier, and
security representative must be in attendance; as for the rest of the Board, nore
than fifty percent (50%) of the members must be present for the Board to convene.
The recommendations given to the accreditor represent not only each members
concurrence/non-concurrence, but also the Boards majority rule; therefore, a 50+%
attendance requirement.

The following are suggested steps that the Board should perform:

1. The requesting office or vendor should submit their proposed change
according to the format given in figure 1 to tl1e accreditor, certifier, and
security representative. These SOCB members shall review the information provided
in the Proposed Change Request Form (Fig. 1) to determine whether the proposed
change is TCB relevant. If the change is decided to be TCB relevant, then the
office or vendor requesting the change will submit a formal Security Change Request
Form (Fig. 3). Then, the Board shall convene and begin the process of considering
and reviewing the overall impact of the change to the system. The format of the
security request change will include a definition of the change, what the change
is, impact the change will have on the TCB, risks involved, etc. Also included in
this specification, will be a detailed description of the Security Domains of
Execution that are indirectly or directly affected by the security related change.
If the proposed change is not security related, then the change will fall under a
different Configuration Control Plan not discussed in this paper.

2. Every TCB change will be critically evaluated, including as an
alternative, not making the proposed change. This Board will assess the overall
impact that the design change may have on the system's security. Although a change
in design and its impact on tl1e system's security is the Boards major concern, the
following represent other factors to be considered in the Boards decision: the
costs and time needed for the m:xlification, possible risks involved, performance
reliability, maintainability, schedule, operational effeCtiveness, safety and human
factors, logistic support, and transportability. It is suggested that there be a
maximum thirty (30) day time limitation on the SCCB for their recommendations to
the accreditor. The documented recommendations will be presented to the accreditor
for his review.

375

3. The accreditor (s) shall make the final decision to approve or disapprove
the irrplerrentation of the security related change based on the Boards
reconm:mdations. Again, it is suggested that the accreditor (s) have a maximum of
sixty (60) days for this decision. If the change is allowed then the accreditor (s)
shall submit the approved change request to the Configuration Manager. If the
proposed security related change is not approved, the accreditor submits the
disapproved change and his docurrented reasons for disapproval to the Configuration
Manager for archival. The reason for docurrenting all decisions is for historical
purposes and for fallback procedures. For example, if a change is submitted to the
SOCB which has previously been submitted and reviewed, the Board will already have
the necessary information and much tirre and effort will be saved.

4. If a Configuration Manager currently exists for the system, he will ensure
the correct implementation of all Configuration Controls provided in this paper.
If a Configuration Manager does not exist, one shall be appointed for the system.
The Configuration Manager is responsible for the docurrentation of every phase of
each change, including: drawings, parts lists, specifications, test procedures,
evaluations, etc.

5. After the testing and evaluating is completed, the Configuration Manager
will submit to the SOCB the evaluation and test results of the change. These
results will be deliberated upon by the SOCB for their final recommendation to the
accreditor(s) for approval or disapproval. Again, there shall be a maximum five
day time limitation on the SOCB for their recommendations. The accreditor(s) shall
make the final decision of approval or disapproval based on the SOCBs
reC()J'(Jm:ndation. The accreditor has a maxL"TTUUTl of five days to make a final
decision. Upon disapproval/approval the accreditor shall submit a formal letter to
the office requesting the change stating reasons for approval/disapproval. If the
accreditor disapproves the evaluated, tested, and certified change, he will submit
this decision to the Configuration Manager for archival. If the change is
approved, the Configuration Manager will be notified to inplerrent the change and
update the docurrentation.

The following Configuration Controls shall be enforced by the Configuration
Manager for systems which have been accredited and certified B2 through Al. These
Controls shall only be followed after the SOCB has approved the change for any
system originally certified and accredited in the Class range of B2 to Al systems.
All new controls are in bold type.

1. The security related change must first be approved by the SCCB before any
\>K>rk may begin.

2. All changes will be made to a copy of the baseline master copy of the
system rather than the operational system's code because the baseline master copy
is stored in a secure manner and has not been subjected to the operational
environrrent thereby, not exposing it to possible subversive code.

376

3. After the cbaBJe is OCIIpleted, ally the directly or Wirectly involved
Security Ikmains of Executia1 of the trusted ooopiting base (TCB) nust be evaluated
am tested. '!he evaluating am testing shall denalstrate that the cbaBJe did IDt
increase the risk of denial of service.

4. The Configuration Manager must create an orderly identification and
scheduling system for initial release of design data and expeditious accomplishment
of changes once the drawing or specification is released. Major objectives are the
following:

a. 	 Assure proposed changes stay within the bounds of
the overall project direction which was given
by the Security Configuration Cbntrol Board.

b. 	 Establish a change introduction point and

disposition for existing materials.

c. 	 Assure changes as defined are correct, clear,
corrplete, and understood by responsible personnel.

d. 	 Integrate the changes arrong all affected operations.

5. The Manager rust establish a central location (integrated record system)
where the status of existing hardware and software are known; for example,

a. 	 Quantities of hardware in existence.
b. 	 Stage of corrpletion of hardware, firiTMare and

software and their location.

c. 	 Ia::ation of hardware, software and firiTMare being

used.

6. All approved security changes will be made at a central depository which
maintains the necessary development tools.

7. The Configuration Manager will submit the Configuration Management
procedures irrplemented during the change, 'the Security Ikmains of Executia1
affected, the test results, and an evaluation of the impact of the change to the
accreditor and his Board.

8. Ensure that any software change conforms to the format of the baseline
master copy of the software already in place.

9. Once the accreditor approves the tested security related change, the
Configuration Manager is responsible for ensuring the correct implementation of the
change to the baseline master copy of the code. A tool shall be provided for
comparing the newly generated version of code with the baseline master copy to
ascertain that only the approved change has been made. After a successful
oomparison, the new version of code will be prOIIDted to the baseline master copy.

10. Changes to engineering configuration data shall be properly implemented to
assure that the change is minimized and that the configuration item will be
produced as specified.

11. All individuals who maintain or alter the system sha;n be under that
facility's requirements for personnel security. These individuals shall have a
clearance as high as the highest security classification of data residing on the
system. (This is to maintain the integrity of the data residing on the system.)

377

12. Upon final approval of the evaluated and tested change, the Configuration
Manager is responsible for the secure distribution of all copies of the baseline
master copy to.all field sites.

13. A combination of physical, procedural, and technical (e.g., cryptographic
rrethods) safeguards shall be used to protect from unauthorized IOOdification or
destruction the master copy or copies of all material used to generate the TCB.

14. After final testing and evaluation of the security related change, the
SOCB nust approve or disapprove the outcome of the results. All effected Security
Iboains of Executiat JD.JSt be well doconented.

15. '!here rrust be assurance of a secure initial state.

16. There must be assurance of a trusted restart.

17. 'lbere IIUSt be sufficient proof that the field sites received the
deliverable items in the same structure as they were sent.

18. There shall be aperiodic re-distribution of master copies of the security
related hardware boards, software and firmware to all field sites.

19. All engineering, hardware, software, firmware and configuration data
affected by approved changes shall be revised as necessary to describe the change.
The change shall also be shown in all related support elements such as manuals,
handbooks, support equiprrent, etc. - to the extent described in the Configuration
Oontrols for that level.

20. All actions related to the submission, analysis, approval, and
inplerrentation of changes shall be thoroughly docurrented.

21. All docurrentation, source code, object code, co:npilers, support software,
processed information, computers and any peripheral devices shall be maintained in
a facility with a Classification level no lower than the highest Classification of
any of the items rrentioned above.

22. '1be catfiguratiat Manager shall ensure that the '1CB maintain a certifiable
architectural structure after a change is ooopleted (i.e., layering, abstractiat,
data hiding•••) •

23. '1be catfiguratiat Manager shall ensure that the '103 be internally
structured into well-defined largely imepem.ent DDdul.es. It shalliiBke effective
use of available hardware to separate those elements that are protectiat~ritical
fran those that are not.

24. '1be catfiguratiat Manager shall ensure that the '1CB DDdul.es are designed
such that the principle of least privilege is enforced. Features in hardware, such
as segoentatiat, shall be used to support logically distinct storage oojects with
separate attribltes (name1y: readable, writeable).

378

http:DDdul.es
http:DDdul.es

25. "!here shall be assurarx:e of a ooosistent ~ing ai1D19 all clocunentatioo.
am code associated with the current (updated) versioo. of the '103. '!bois shall be
provided for generatioo. of a new versioo. of the '103 fran source code. Also
available shall be tools, maintained mner strict a:nfiguration centro!, for
c:xnparing a newly generated versioo. with the previous '1m versioo. in order to
ascertain that oo.ly the inteOOed changes have been made in the code that will
actually be used as the new versioo. of the '103.

26. '!he C'alfiguratioo. Manager shall ensure that the '103 support separate
cperator am administrator fwx:tioo.s.

27. Every changed line of code to the copy of the baseline master copy shall
be initialed by the changer and archived. This approved initialed copy of the
baseline master copy shall be used as a cross reference against the original
baseline master copy when the update is made.

28. '!he C'alfiguratioo. Manager shall ensure that the evaluating am testing
organizatioo. analyzes the change to the ocpy of the baseline master ocpy in order
to locate the Security Iblains of Executioo. which were effected by the change. All
effected Iblains shall be evaluated am tested by this organizatioo..

The following section establishes testing requirements which must be satisfied for
systems rated B2-Al Class. When the system falls under one of these Classes, the
quantity of testing and evaluating of the TCB will be determined by the Security
Dornain(s) of Execution which are affected by the change. The Configuration Manager
is responsible for documenting all controls used during testing. He is also
responsible for obtaining an appropriate qualified organization to perform the
evaluation, testing and certification of the changed system. Only those Security
Dornain(s} of Execution which were affected by the change will be tested and
evaluated to those specific features which the Domain(s) enforces. All the
requirements contained in a lower Class will also apply to all consecutive
hierarchical Classes. All new requirements to each Class are in bold type.

B2 Class Testing Requirements

After changes are made by qualified personnel, testing shall be performed on
the system by a qualified organization. The following test requirements shall
apply to the domains effected by the change at the B2 level:

The system shall be tested and found to \<K>rk as claimed in

the updated system documentation and as defined by the

DoD Trusted Computer System Evaluation Criteria.

The tests shall assure 'that ~~ere are no obvious ways

for an unauthorized user to bypass or otherwise defeat

the security protection mechanism of the TCB.

- The tests should be no more stringent or thorough then

those from ~,e original certification.

379/

- An updated test plan which incorporates the system changes
shall be used.

- Testing shall include a search for obvious flaws that

would allow violation of resource isolation, or that would

permit unauthorized access to the audit or authentication

data.

- The system shall be subject to thorough analysis and

testing by a team of individuals who understand the

specific implementation of the TCB's design documentation,

source code, and object code. This teams' objectives

shall be: to uncover all design and implementation flaws

that would permit a subject external to the TCB to read,

change, or delete data normally denied under the mandatory

or discretionary security policy enforced by the TCB; as

well as to assure that no subject (without authorization

to do so) is able to cause the TCB to enter a state such

that it is unable to respond to communications initiated

by other users.

- Any change shall cause the TCB to be retested to

demonstrate that all discovered flaws have been eliminated

and that no new flaws have been introduced.

- '1he system changer shall cxnluct a thorough search for
covert storage channels and make a determinati<Xl

(either by actual measurement or by engineering

estinBti<D) the maxi.num baOOwidth of each identified

channel.

- '!be system testers and changer shall maintain that the 'lCB

be fam:l relatively resistant to penetrati<D.

- '1he system changer shall denalstrate that the 'lCB

inplelEntati<Xl is ooosistent with the updated Dl'LS.

B2 Check List For Testing

The check list for the testing requirements are the requirements found in the
"Ik>D Trusted Corrputer System Evaluation Criteria" specified under the B2 class.
The Configuration Manager is responsible for documenting all controls used during
testing.

B3 Class Testing Requirements

After changes are made by qualified personnel, testing shall be perforrred on
the system by a qualified organization. The following test requirements shall
apply to the domains effected by the change at the B3 level:

380

- The SLStem shall be tested and found to work as claimed in
the updated system documentation and as defined by the IbD
Trusted Computer System Evaluation Criteria.

- The tests shall assure that there are no obvious ways
for an unauthorized user to bypass or otherwise defeat
the security protection mechanism of the TCB.

- The tests should be no more stringent or thorough then
those from the original certification.

- An updated test plan which incorporates the system changes
shall be used.

- Testing shall include a search for obvious flaws that
would allow violation of resource isolation, or that would
permit unauthorized access to the audit or authentication
data.

- All discovered flaws shall be removed or neutralized and
the TCB retested to demonstrate that they have been
eliminated and that no new flaws have been introduced.

- The system shall be subject to thorough analysis and
testing by a team of individuals who understand the
specific implementation of the TCB's design documentation,
source code, and object code. This teams' objectives
shall be: to uncover all design and implenentation flaws
that would permit a subject external to the TCB to read,
change, or delete data normally denied under the mandatory
or discretionary security policy enforced by the TCB; as
well as to assure that no subject (without authorization
to do so) is able to cause the TCB to enter a state such
that it is unable to respond to communications initiated
by other users.

- The system developer shall conduct a thorough search for
covert channels and make a determination (either by
actual measurement or by engineering estimation) the
maximum bandwidth of each identified channel.

- The system shall maintain that the TCB be found resistant
to penetration.

- The system shall demonstrate that the TCB implementation
is consistent with the updated DTLS.

There shall be no design flaws and no more than a few
correctable implementation flaws found during testing and
there shall be reasonable confidence that few remain.

A cawincing argmnent shall be given that the updated IJriS is
ooosistent with the IIDdel.

381

B3 Check List For Testing

The check list for the testing requirements are the requirements found in the
"O:>D Trusted Computer System Evaluation Criteria" specified under the B3 class.
The Configuration Manager is responsible for documenting all controls used during
testing.

Al Class Testing Requirements

After changes are made by qualified personnel, testing shall be performed on
the system by a qualified organization. The following test requirements shall
apply to the domains effected by the change at the Al level:

The system shall be 'tested and found to work as claimed in
the updated system documentation and as defined by the O:>D
Trusted Computer System Evaluation Criteria.

- The tests shall assure that there are no obvious ways

for an unauthorized user to bypass or otherwise defeat

the security protection mechanism of the TCB.

- An updated test plan which incorporates the system changes

shall be used.

- Testing shall include a search for obvious flaws that

would allow violation of resource isolation, or that

would permit unauthorized access to the audit or

authentication data.

- All disc~ered flaws shall be removed or neutralized and

the TCB retested to demonstrate that they have been

eliminated and that no new flaws have been introduced.

- The system shall be subject to thorough analysis and

testing by a team of individuals who understand the

specific implementation of the TCB's design documentation,

source code, and object code. This teams' objectives

shall be: to uncover all design and implementation flaws

that would permit a subject external to the TCB to read,

change, or delete data normally denied under the mandatory

or discretionary security policy enforced by the TCB; as

well as to assure that no subject (without authorization

to do so) is able to cause the TCB to enter a state such

that it is unable to respond to communications initiated

by other users.

The system developer shall conduct a thorough search for

covert channels and make a determination (either by

actual measurement or by engineering estimation) of the

maximum bandwidth of each identified channel. Formal

methods shall be used in the analysis.

382

- The system shall verify that the TCB remain resistant

to penetration.

- The system shall demonstrate that the TCB implementation

is consistent with the updated DTLS.

- Testing shall demonstrate that the TCB implementation is

consistent with the updated FTLS.

- Manual or other mapping of the FTLS to the source code may

form a basis for penetratioo testing.

- There shall be no design flaws and no more than a few

correctable implementation flaws found during testing and

there shall be reasonable confidence that few remain.

- A convincing argument shall be given that the updated DTLS

is consistent with the m:x1el am a c:ad:>inatioo of formal am

informal techniques shall be used to show that the updated FTLS

is consistent with the BDdel. '!his verificatioo evi.deru!

shall be consistent with that provided within the state

of-the-art of the particular Calp.lter Security Center
emorsed formal specificatioo am verificatioo system

used. Manual or other mappiDJ of the updated FTLS to the

'lU3 source code shall be performed to provide evidence of

correct iuplemantatioo.

Al Check List For Testing

The check list for the testing requirements are the requirements found in the
"I:bD Trusted Conputer System Evaluation Criteria" specified under the Al class.
The COnfiguration Manager is responsible for documenting all controls used during
testing.

The following section indicates required documentation which must, when
applicable, be updated to reflect any tested and approved change to the system for
system's rated B2-Al Class. All the requirements which are stated under a certain
Class for that system must be satisfied. Required documentation contained in a
lower Class will also apply to all consecutive hierarchical Classes. All new
requirements to each Class are in bold type.

B2 Class I:bcumentation

The following are the specific B2 evaluation class documentation requirements
which, when applicable, must reflect the accreditor approved security related
change:

383

1. All test plans and results of the security mechanisms' functional testing shall
be docwrented. It shall include results of testing the effectiveness of the
methods used to reduce covert channel bandwidths.

2. There shall be a summary, chapter, or manual in the user docwrentation which
describes t."le protection mechanisms provided by the 'ICB, guidelines on their use,
and how they interact with one another. ·

3. There shall be a manual addressed to the ADP syste~ administrator which
cautions about functions and privileges that should be controlled when running a
secure facility. The procedures for examining and maintaining the audit files as
well as the detailed audit record structure for each type of audit event shall be
given. The manual shall describe the operator and administrator functions related
to security, to include changing the security characteristics of a user. It shall
provide guidelines on the consistent and effective use of the protection features
of the system, how they interact, how to securely generate a new TCB. The manual
shall also provide tacility procedures, warnings and privileges that need to be
controlled in order to operate the facility in a secure manner. The~ modules
that oontain the refererx:e validatiCXl nechanism shall be identified. The
procedures for secure generatiCXl of a new ~ fran source after BDdificatiCXl of any
mdules in the 'KB shall be described.

4. There shall be available a docwrent which describes and explains the protection
security policy being irrplemented. The document shall also describe the mterfaces
between the~ nr::ldules. A fornal descriptiCXl of the security policy DDdel
enforced by the 'KB shall· be available and proven that it is sufficient to eriforce
the security policy. The specific~ protectiCXl nechanisms shall be identified
and· an explanation given to show that they satisfy the DDdel. The descriptive t;qr
level specificatiCXl (Dl'LS) shall be shown to be an accurate descriptiCXl of the 'KB
interface. ~tatiCXl shall describe how the~ illplements the refererx:e
IIDI'litor ooocept and give an explanatiCXl why it is tanperproof, cannot be· bypassed,
and is correctly iDplemented. Ib::umentation shall describe how the 'KB is
structured to facilitate testing and to enforce least privilege. 'Ibis
documentati<n shall also present the results of the covert channel analysis and the
tradeoffs involved in restricting the channels. All auditable events that IIBY be
used in the exploitation of known covert storage channels shall be identified. The
bandwidths of covert storage channels, the use of which is not detectable by the
auditing nechanisms, shall be provided.

B3 Class Docwrentation

The following are the specific B3 evaluation class docwrentation requirements
which, when applicable, must reflect the accreditor approved security related
change:

1. All test plans and results of the security mechanisms' functional testing shall
be documented. It shall include results of testing the effectiveness of the
methods used to reduce covert channel bandwidths.

2. There shall be a summary, chapter, or manual in the user documentation which
describes the protection mechanisms provided by the TCB, guidelines on their use,
and how they interact with one another.

384

3. There shall be a manual addressed to the ADP system administrator which
cautions about functions and privileges that should be controlled when running a
secure facility. The procedures for examining and maintaining the audit files as
well as the detailed audit record structure for each type of audit event shall be
given. The manual shall describe the operator and administrator functions related
to security, to include changing the security characteristics of a user. It shall
provide guidelines on the consistent and effective use of the protection features
of the system, how they interact, how to securely generate a new TCB. The manual
shall also provide facility procedures, warnings and privileges that need to be
controlled in order to operate the facility in a secure manner. The TCB modules
that contain the reference validation mechanism shall be identified. The
procedures for secure generation of a new TCB from source after modification of any
modules in the TCB shall be described.

4. There shall be available a docUirent which describes and explains the protection
security policy being i.nplemented. The document shall also describe the interfaces
between the TCB modules. A formal description of the security policy model
enforced by the TCB shall be available and proven that it is sufficient to enforce
the security policy. The specific TCB protection mechanisms shall be identified
and an explanation given to show that they satisfy the model. The descriptive top
level specification (DTLS) shall be shown to be an accurate description of the TCB
interface. Documentation shall describe how the TCB implements the reference
rronitor concept and give an explanation why it is tarrperprodf, cannot be bypassed,
and is correctly inple~nted. '1he ':ocB inplementatia1 (i.e., in hardware, fi.rnware,
am software) sball be informally shown to be coosistent with the DrLS. '1he
elements of the DrLS shall be shown, using informal techniques, to oorrespald to
the elements of the ':ocB. Documentation shall describe how the TCB is structured to
facilitate testing and to enforce least privilege. Tnis documentation shall also
present the results of the covert channel analysis and the tradeoffs involved in
restricting the channels. All auditable events that may be used in the
exploitation of known covert storage channels shall be identified. The bandwidths
of covert storage channels, the use of which is not detectable by the auditing
mechanisms, shall be provided.

Al Class Ih::umentation

The following are the specific Al evaluation class documentation require~nts
which, when applicable, must reflect the accreditor approved security related
change:

1. All test plans and results of the security mechanisms' functional testing shall
be documented. It shall include results of testing the effectiveness of the
rrethods used to reduce covert channel bandwidths.

2. There shall be a summary, chapter, or manual in the user documentation which
describes the protection ~chanisms provided by the TCB, guidelines on their use,
and how they interact with one another.

3. There shall be a manual addressed to the ADP system administrator which
cautions about functions and privileges that should be controlled when running a
secure facility. The procedures for exa~ining and maintaining the audit files as

385

well as the detailed audit record structure for each type of audit event shall be
given. The manual shall describe the operator and administrator functions related
to security, to include changing the security characteristics of a user. It shall
provide guidelines on the consistent and effective use of the protection features
of the system, how they interact, how to securely generate a new '103. The manual
shall also provide facility procedures, warnings and privileges that need to be
controlled in order to operate the facility in a secure manner. The '103 modules
that contain the reference validation mechanism shall be identified. The
procedures for secure generation of a new TCB from source after modification of any
modules in the TCB shall be described.

4. There shall be available a docwrent which describes and explains the protection
security policy being inplem:mted. The d()CUJ(ent shall also describe the interfaces
between the '103 modules. A formal description of the security policy model
enforced by the TCB shall be available and proven that it is sufficient to enforce
the security policy. The specific TCB protection mechanisms shall be identified
and an explanation given to show that they satisfy the model. The descriptive top
level specification (DTLS) shall be shown to be an accurate description of the TCB
interface. Documentation shall describe how the TCB implements the reference
nonitor concept and give an explanation why it is t:arr{>erproof, cannot be bypassed,
and is correctly implemented. The TCB irnplementation (i.e., in hardware, fir:nware,
and software) shall be informally shown to be consistent with the fiDrmal tqp-level
specification (FTLS). The elements of the FTLS shall be shown, using informal
techniques, to correspond to the elements of the TCB. Ibcwrentation shall describe
how the TCB is structured to facilitate testing and to enforce least privilege.
This documentation shall also present the results-of the covert channel analysis
and the tradeoffs involved in restricting the channels. All auditable events that
may be used in the exploitation of known covert storage channels shall be
identified. The bandwidths of covert storage channels, the use of which is not
detectable by the auditing mechanisms, shall be provided. 'lbe use and ~ilities
of hardware, firnlllfare, and software mechanisms not dealt with the FTLS but strictly
internal to the '103 (e.g., DBPPing register, direct EIIDry access I/0) shall be
clearly described.

Configuration Controls for Certified and Accredited Operational Systems are
necessary to guide the process of changing the TCB. We feel it is vital that these
Configuration Control Procedures interact so that the change can be tightly
controlled throughout the change process. When changing the TCB in any system
rated D-Al, we concluded that the current certified and accredited rating becarre
invalid. But by following our proposed Configuration Controls, the effort in
certifying this modified system is reduced especially for systems in the B2-Al
class. The reason for the reduced effort for systems B2-Al is because of the
architectural difference between D-Bl systems and B2-Al systems. When changing a
system rated D-Bl, we concluded that the entire TCB rust be re-certified because
the TCB is effectively the whole system. But because of Security llJrnains of
Execution in systems rated B2-Al, only those affected Security llJrnains of Execution
have to be evaluated and tested towards the system's new certification. Therefore
systems in a higher class require less overall, but just as stringent evaluation
and testing as systems rated D-Bl.

386

We concluded that the Controls placed on the SCCB are generic for both
divisions. This is because the procedures which the SCCB and the Configuration
Manager must follow in the process of changing the system are similar for all
classes of systems. By having Configuration Controls which closely regulate the
change process, the operational site or vendor will be able to change their system
in a ti.maly manner.

It must be recognized that this paper is a living document and any suggestions
and comnents regarding this subject would be greatly appreciated.

The authors would like to thank Warren Shadle and Don Yeskey for raising this
~rtant issue of Configuration Management for Operational Systems and for their
guidance and support in the writing of this paper.

Bersoff, Edward H., Software Configuration Management,

An Investment in Product Integrity, 1980.

Department of Defense Joint Services and Agencies,

Configuration Management Regulation, AR 70-37, NAVMATINST

4130.1B, M::O 4130.1B, AFR 65-3, DLAR 8250.4, NSA/CSS ROO

80-14, DCAC 100-50-2, DNA INST 5010.18,

National Security Agency, Ft. Meade, MD, 30 O.::tober 1981.

Department of Defense Trusted Computer System Evaluation

Criteria, CSC-STD-001-83, DoD COmputer Security Center,

Ft. Meade, MD, 15 August 1983.

Samaras, Thomas T., Fundanentals of Configuration

Management, 1971.

Schaefer, M. and R. R. Schell, Toward an Understanding of
Extensible Architectures for Evaluated Trusted Qomputer
System Products. IEEE Proceedings of the 1984 Syrrp:>sium
on Security and Privacy, pgs 41-52.

387

Figure 1

PCRi____--1

Date:_/_/_

Originator:_______ Project Manager:_______

System:________ System Configuration Manager =-------1

CPCI No.:______ CPC No.:_______

Brief Change Description:

Reason for Change:

Signature of Originator Signature of Project Manager

To Be Completed By Security Review Team

Date:_/_/_

.Accreditor:------ Security Representative:___.______

Security Relevant Change: YES NO

Signature of Accreditor ·signature of Security Representative

388

Figure 2

SCR#_______

Date:_/_J_

Current Evaluation Class: (check one)

D Cl C2 _Bl

Originator:_______ Project Manager:_______

System:__________ System Configuration Manager: _______

CPCI No.:______ CPC No. : ________

Reason for Change:

Detailed Change Description:

Ir!pact of Change to System Security:

Proposed Schedule:

Man M:>nths Required:________

Requirement for Contractor: YFS

Signature of Originator

Cost of Change:_______

NO

Signature of Project Manager

To Be Conpleted By .Accreditor I
i

Date:_/_J_ Accreditor: I
-----------------~

jAccreditors Recammendation: APPRCYVED DISAPPRCYVED

Signature of Accreditor I
I

389

Figure 3

SCR#________

Date:_/_/_

Current Evaluation Class: (check one)

B2 B3 Al

Project Manager:________
Or iginator=------·---
System:____________ System Configuration Manager: _______

CPCI No. : _______

CPC No. =------·-

Reason for Change:

Detailed Change Description:

L~ct of Change to System Security:

Affected Security Execution Domains:

Proposed Schedule:

Man M:>nths Required:________ Cost of Change=-------

Requirement for Contractor: NO

Signature of Originator Signature of Project Manager
J
I Tb Be Completed By Accreditor

I Date:_/_/_ Accreditor:

Accreditors Recommendation: APPROVED DISAPPROVEDI
.

i
i
1 Signature of Accreditor

390

ANALYSIS OF A KERNEL VERIFICATION

Terry C. Vickers Benzel

The Mitre Corporation

Bedford, MA

Abstract

1
This paper reports on the. analysis and evaluation of the SCOMP kernel verifica

tion. The SCOMP system was developed by Honeywell FSD and is targeted at the A 1
class of the DoD Trusted Computer System Evaluation Criteria [CSC83]. It is
currently under evaluation by the Department of Defense Computer Security Center
(DoDCSC). The ~-1ork reported on here is significant in that the SCOMP system is the
first commercially-available formally verified operating system. Furthermore, it is
the first system to be evaluated against the A 1 requirements for formal design
specification and verification. The methods and procedures used for this analysis
and evaluation will be of interest to future system designers, verifiers, and
evaluators. The results of the verification, in particular the types of assurances
that were gained, will also be discussed.

I. Introduction

This paper reports on the analysis and evaluation of the SCOMP kernel verifica
tion. Th~ SCOMP system was developed by Honeywell FSD and is targeted at the A 1
class of the Trusted Computer System Evaluation Criteria [CSC83]. It is currently
tL."l.der evaluation by the Department of Defense Computer Security Center (DoDCSC).
The work reported on here is significant in that the SCOMP system is the first
commercially-available formally verified operating system. Furthermore, it is the
first system to be evaluated against the A 1 requirements for formal design specifi
cation and verification. The methods and procedures used for this analysis and
evaluation will be of interest to future system designers, verifie,.,s, and evalua
tors. The results of the verification, in particular the types of assurances that
were gained, will also be discussed.

The background and historical perspective of the SCOMP verification effort 1-1ill
be presented briefly in Section 2. Section 3 will discuss the formal specification
ef.'fo,-.t, including swJh concerns as specification for desi.g!1 vs. specificatio!1 for
verification, specification of user-visible vs. user-invokable functions, and de~ail
vs. abstractio0. Section U will present the verification effort that took place on
three occasi_ol1S dm~ing a t.hree-year period. Section 5 Hill prese!1t the l'esults
obtained for each of these verificatio!1 efforts. The covert channel analysis and
the methods developed to perform this analysis will be covered in Section 6; of par
ticular interest is the number of covert channels that were found through the use of
formal methods as compared to those found through informal methods. Section 7 Hill
discuss the methods and procedures developed to establish the specification-to-code
correlation, and the results obtained. Finally, Section 8 will address the types of

,assurances, security security-related and non-security-related, 1-1hich were gained as
a result of the ke!~nel verification.

f <~> -·--1-gS4IEE-E~-R;~;inted, with permiss ton, form Proceedings of the 1984 Symposium
Security and Privacy April 29-May 2 1984 Oakland, California pages 125-133

391

II. Background and Historical Perspective

This section will present a brief overview of the historical motivation, verif
ication goals, and an introduction to the HDM verification methodology.

The SCOMP system consists of a commercial Honeywell Level 6 minicomputer
enhanced by a hardware Security Protection Module (SPM), security ker•nel software
and a SCOMP system Kernel Interface Package (SKIP). Honeywell worked extensively
with various DoD organizations during the design and development of the SCOMP sys
tem. Formal methods of specification and verification were employed during the.
development of the system. One goal of this project was to develop a system which
could comply wlth the DoD policy on alljtomatic processing of multiple levels of clas
sified data [OOD5200] In order to meet this goal Honeywell used the concepts of a
reference monitor, security kernel and formal specification and verification. The
design of the SCOMP system and its architecture and security mechanisms are dis
cussed in [FRAIM83], and [BENZ83].

The design of the SCOMP security kernel was formally specified and verified
using the SRI International Hierarchical Development Methodology (HDM) and tools.
The basic concepts of HDM are discussed in [ROBI79]. The design of the SCOMP system
kernel was formally specified in the HDM specification language SPECIAL. Then the
Multilevel Security tool (MLS) and theorem prover of HDM were used to verify that
the kernel obeyed the required security properties. The security properties of
interest were derived from the Bell and LaPadula model. [BELL74J. These security
properties are defined by Bell and LaPaduta in terms of subjects and objects, they
are:

~ Simple Security: A subject can read a data object only if the s_ubject has a
security level greater than or equal to that of the object;

~ *-Property: A subject can write a data object only if the subject has a secu
rity level less than or equal to that of the object.

The MLS tool is based on the concept of flow analysis, it determines the paths
through which information can flow in the specifications. For each path the tool
generates a formula which describes the information flow between the variables in
the system. The tool then attempts to resolve any formulas which are trivially true
by examining the security levels of the variables. Trivially true formulas involve
flows of information between two variables at the same level, flows from a variable
at system low to any variable, and flows from a variable at any level to a variable
at system high. All formulas which the MLS tool is unable to resolve are passed to
the Boyer-Moore theorem to be proved. In theory, all formulas which the theorem
prover is unable to prove denote invalid (or insecure) information flows in the
system. Each unproven formula must be inspected manually in order to determine
which flows are truly invalid. The MLS tool and its application to proving design
specifications secure is discussed in [FEIER80]. Thus, the primary goal in the
SCOMP verification effort was to demonstrate that the design specifications for the
SCOMP security kernel obeyed the multilevel security properties.

392

III. Analysis of the Specifications

The formal specifications for the SCOMP system oPiginally were written at a
time when the specification language and tools were still under development. This
resulted in numerous revisions to the specifications in order to make them compati
ble with the developing verification tools. The first version of the formal specif
i.cations was written as a design specification and did not include the properties
necessary to construct a proof of the system's security. In practice, writing a
rormal design specification is very different from writing a formal specifi.cation
which can be subjected to automated verification techniques.

There are certain rules which must be obeyed when writing formal specifications
for processing by the MLS tools. These rules help the specifieP express the secu
rity properties to be verified in the specifications. For example some of the r-ules
for the MLS tool, as summarized by [SILV8i], are:

<a 	 Declare a security level for every function reference.

e 	 Define a binary partial ordering relation over the set of security levels.

e 	 Express all flows of information in terms of the binary partial ordering
relation.

In many cases the verification rules above introduce extraneous constructs into the
specifications which can be counter-intuitive to a designer. Thus, one must be
awar·e of the tradeoffs which are made when writing specifications for verification
vs. design. An example of a problem of just this nature that arose in the process
of writing the specifications for the SCOMP is as follows: the underlying secm~ity
model on which the specifications were based assumed that all multilevel security
phecks were performed using a partial ordering relation. However, the implementa
tion of the SCOMP system includes the concept of privilege, thus additional checks
outside of the partial ordering relation had to be performed. The resulting specif
ication then had a single multilevel security check for purposes of verification and
a set of security and privilege checks for the system design.

One further consideration had to be taken into account when l..rru:,lng the specif
L·~:~.tions for verification. The verification system has bounds on both the space and
time required to process a specification. Therefore, the specifiers had to be care
ful to include only enough complexity in the specificati.ons so as to make them mean
ingf11l and yet manage:~.ble by the verification system.

':'"le basic approach employed in the development of the speci.fications w:~.s to
specify only the user-visible properties, that is, the functions at the user inter
face. This was consistent with the verification philosophy of the MLS tool, and the
HJt1 approach to ,.,rri ti.ng speci.fications for design verification. It should be noted
though that in actuality the user-visible prs:>perties which were specified were the
\lser-invokable fun~tions. This is because there are certain user visible properties
for wh:i. ch it is not possible to write SPECIAL specifications. In particular timing
del:=tys as a result of mul tiprogramrning are visible to the user but are not formally
sp.~cj_fied. Thus in practice specifications a;~e written in terms of the useP
in vokabl e functions ~ather t:1an all truly user-vi.si bl•2 properties.

The SCOMP kernel specifications inclu:ie the effects of c:~.l~_s made by a use!~ or
trusted process to the 38 kernel gates and 12 hard1rra1~e functions. These are speci
fied in terms of all possible exceptions or returned error messages that could occur

393

http:user-vi.si

and the effect if no error results. !1any of the effects were specified by refer
ences to the effects of other lower-level functions. This nesting of effects often
made the specifications difficult to verify since large numbers of formulas were
generated.

Another problem that the specifiers encountered was how to include the concepts
of privilege and tranquility in the specifications, since the MLS tools used in the
verification did not include either concept. Privilege plays an important role in
the implementation of the kernel. The protection mechanism of the kernel has spe
cial attributes used to denote privilege. These allow the simple security and star
properties to be violated in certain :i.nstances, and are necessary for the kernel to
function in an application environment. Examples of processes which possess
privilege are operator, administrator, and auditor. In addition a real world
application must have controlled upgrading and downgrading ability. Since the MLS
tools do not incorporate privilege in the security checks, the verification tools
reported security violations where in actuality a privilege check occurred. Conse
quently, whenever this happened comments were added to the specifications. The
specifications then had to be manually checked against the failed formulas to insure
that there were no additional security violations, or rather that the violations
occurred in a controlled manner.

The inability to specify tranquility violations b. the formal specifications
was due to the WwS tool's aSSQ~ption that all objects remain at a constant security
level throughout their life in the system. Many applications need the ability to
upgrade and downgrade an object's:. security level, thereby violating tranquility.
The SCOMP kernel has two functions, "Set Device Access", and "Set Segment Access"
which are designed to violate the tranquility principle, given that the caller has
the proper privilege. Again comments were included in the specifications to this
effect and manual checking had to be done.

In addition to insuring that the specifications adequately expressed the func
tionality of the kernel and its security requirements both from the viewpoint of the
!'1LS properties and those other than MLS (tranquility and privilege), the evaluators
analyzed the specifications in terms of completeness. In order for the verification
results to be meaningful it is necessary that the specifications include all user
invokable properties of the kernel. If any user-invokable properties are not speci
fied, then the verification and covert channel analysis will be incomplete.

IV. The 	Verification Effort

The kernel was verified using the HDM tools on three occasions. The first
verification occurred in 1980 and the report on this effort is contained in
[3ILV81]. Then in 1982 a design change was made which required re-verificat.i.on.
This work was performed at The MITRE Corporation and is reported on in [EPS T82] .

··· 	 However, neither of these first verifications was complete. In both attempts two
kernel functions, "Create Process", and "Invoke Process" c:::>uld not be processed by
the MLS tool. The system on which the tools ran exhausted its address space before
the complete set of formulas for the functions could be generated.

When the formal evaluation of the SCOMP system began in late 1982, it became
evident that the remaining two functions would have to be verified in order for the
SCOMP system to meet the A1 requirements of the Trusted Computing System Evaluation
Criteria for design specification and verification. Honeywell requested assistance
from the research group of the DoDCSC to complete the verificatlon. The difficulty

394

http:re-verificat.i.on

in verifying the functions had been due to the fact that they were very long and
complex, and had many nested "EFFECTS OF" statements. In order for the tools to
process these functions, they had to be split into several subfunctions. Bret Hart
man and Grant Wagner of DoDCSC developed a method to complete the MLS processing of
these functions. Their method was shown to yield equivalent security information
flows. A report documenting this effort is in progress. ·"Create Process", and
"Invoke Process" were each broken up into eleven subfunctions, each of which con
tained all of the "EXCEPTIONS", but only one of the "EFFECTS OF" statements. All of
the subfunctions were successfully processed by the MLS tool. In addition, all of
the previously verified kernel functions were re-verified in order to re-create the
complete proof files. A report on this third verification effort is in progress.

V. Analysis of The Verification Results

For each of the verifications performed, a report was made in which the verif
iers analyzed the failed formulas to determine if an actual information flow
existed. The evaluators were then presented with the formal top level specification
(FTLS) , terminal session transcripts of the proofs, and the analysis of the failed
formulas. The evaluators then performed several tasks. First they checked that all
specified functions had been assigned proper access levels. This is a critical
step, since if access levels are improperly assigned the MLS formula generation
could produce invalid formulas. Then they checked that the correct parameter had
been selected as the access level for each function.

The MLS tool produces fo~ulas based on its analysis of the specifications. In
order for the specifications to be proven consistent with the MLS properties, all of
the formulas must be proven by the theorem prover. In general, a failed formula
indicates that the specification may violate the MLS properties. However, there are
instances where a failed formula does not indicate an information flow, or when such
an information flow may be acceptable.

In the case of the SCOMP system, all three of the verifications produced failed
formulas. Honeywell provided English justifications for all of them, and the
evaluators analyzed these justifications using a three-part process, as follows:

1) 	 Each failed formula from the proof transcript was matched to Honeywell's
English justification, thereby insuring that all failed formulas were justi
fied.

2) 	 The cause of the failed formulas was traced back to the kernel specifica
tions, which gave the team a mapping between all of the Honeynell justifica
tions and the information flows in the specifications.

It should be noted however that the MLS tool did not always provide suffi
cient information to easily trace the failed formulas. In these cases the
formulas had to be generated by hand in order to discover which information
flows caused the failed formulas.

3) 	 It was determined if each justification was valid. Valid justifications fell
into two categories:

a. 	 Those formulas that failed because the theorem prover did not have
enough information, or was unable to construct the proof, in which case
the team checked that a proof could be constructed manually given the
additional information contained in the justification.

395

b. Those formulas that failed because they were false, thereby revealing an
information flow. In this case the team verified that the justifica
tions had adequate explanations for the flow (e.g., closed by privilege
checks) or that the flow cl:,tannel was closed or its bandwidth minimized.
This frequently involved checking the specifications against the code to
insure that the bandwidth limitations specified in the justifications
were properly implemented.

It is interesting to examine the statistics for the overall kernel verifica
tion. Fifty kernel functions (hardware and software) were formally specified and
verified. The specifications for these functions consisted of approximately 3300
lines of SPECIAL wh;tch corresponded to 10,000 lines of PASCAL. The initial verifi
cation produced 2002 formulas. The fomula generator eliminated 192 duplicate for
mulas and 1743 trivially true fomulas. Of the 2002 formulas generated, only 67
were processed by the theorem prover, 34 of these were proven true and 33 were not
provable. The second verification produced slightly more fomulas but the number of
unprovable formulas was identical. The third verification PrOduced a similar number
of formulas to the first two for the previously verified modules, and an additional
3224 fomulas for .the two previously unverified modules. Of the 3224 new formulas,
2970 formulas were eliminated as either trivially true or duplicates, 219 were pro
ven true and 35 were unprovable. Thus, in the final verification 5226 formulas were
generated, 4905 were eliminated, 253 were proven true. and 68 were unprovable. The
flows which caused the 68 failed fomulas will be discussed under "Analysis of
Covert Channels".

The number of formulas generated can at first be misleading, particularly in
the case of the two previously unverified functions. These two functions generated
a large number of duplicate formulas due to the redundancy that occurred when the
functions were split into subfunctions. In addition one design flaw or covert chan
nel can result in numerous failed formulas. In one case a single flaw caused 28
failed formulas. The channel could be exploited in 4 different ways, yet it
appeared in .28 forms in the system. Thus, the total number of false formulas in a
verification should not be considered a measure of the security of the system.

VI. Specification-To-Code Correspondence

The Trusted Computer System Evaluation Criteria requires manual mappings of the
formal top level system specifications (FTLS) to the implementation source code for
class A 1 systems. One approach to specification-to-code mappings consists of map
ping the English language descriptions in the Type B5 specification to the SPECIAL
functions in the FTLS which then are mapped to pseudo-code descriptions in the type
C5 specification and finally to the source code. Although several informal methods
have been developed, notably, [SOL082], there currently exists no fomal methodology
for establishing these mappings. Given that this was the first formal evaluation of
an A1 system and given the lack of proven methods for perfoming these mappings, the
members of the fomal verification evaluation subteam worked closely with Honeywell
in developing methods and evaluating the correspondences. Initially, the team sup
plied Honeywell with interpretations of the Trusted Computer System Evaluation Cri
teria. This early effort resulted in the production of [BONN82]. This document
mapped paragraphs in the Type B5 spec to functions in the FTLS, which were then
mapped to paragraphs in the Type C5 specifications and functions in the source code
modules. The fomal verification evaluation team assisted Honeywell in further

396

refining these mappings. A procedure was developed which correlated data structures
in the formal top level specification language, SPECIAL, to the data structures in
the definition and types modules of the source code. Then each specified SPECIAL
exception was mapped to each error condition in the source code. Finally the
"EFFECTS OF" statements in the SPECIAL specification had to be mapped to one or more
statements in the code which actually implemented the effects of the function.

The mappings established are top-down, that is, all statements in the formal
top level specification are mapped to lines in the implementation, but not all lines
in the implementation are mapped up to the formal top level specification. This is
because many implementation specific details are introduced in the lower level
specifications and implementation code. However, it is important to ascertain that
the implementation details do not map up and furthermore that all user-visible secu
rity relevant code is specified.

There are several important factors to consider in order to make such a mapping
feasible. First, the naming conventions used in the formal top level specification
must be consistent with those used in the implementation. Secondly, this procedure
is very dependent on the semantics of the specification language used. Lastly, the
use of comments in t.he implementation language is needed to simplify the task.

The result of the specification-to-code correspondence is an annotated top
level specification. Seven discrepancies between the code and the FTLS were found
as a result of this mapping. The evaluators met with Honeywell to analyze these,
and all but two could be fully justified by Honeywell. The two unjustified
discrepancies were due to exceptions, or error conditions, in the implementation
code that did not appear in the FTLS, and both are known covert channels not found
by the MLS tools. If these exceptions had been included in the FTLS, then the MLS
tools would have found the corresponding channels. It should be noted that if these
channels had not been identified previously by informal methods, then the
specification-to-code correspondence would have found them. Thus, the process of
establishing a correspondence between the specifications and the implementation code
can assure that the implementation was derived from the verified specification,
assist in locating covert channels, and assist in tracing formulas for the kernel
verification analysis.

The process of establishing specification-to-code correspondence is tedious and
time consuming. Because in this case four separate documents (B5-Spec, FTLS, C5
Spec, Source Code) were consulted in order to establish the correspondence, four
people were used. Each person was responsible for ·two levels of specification
(e.g., B-Spec and FTLS), to trace verbally the mapping of a particular structure
through the levels.

The specification-to-code correspondence procedure for the SCOMP kernel took
approximately 320 man hours to complete. This was able to be minimized thanks to
several factors: the level of abstraction of the FTLS and the implementation was
similar; the implementation· was in Pascal which is a highly structured and typed
language; and all members of the team were familiar with the specification and
implementation languages.

397

VII. Analysis of Covert Channels

The analysis of covert channels is dependent on the analysis of the kernel
verification and on the specification-to-code correlation. First, the kernel verif
ication must detect the covert channels; then the specification-to-code correlation
must insure that the channels have been closed or their bandwidths minimized in the
implementation.

Perhaps one of the most interesting statistics to examine in this verification
effort is the number of covert channels that were discovered through the use of the
MLS tools as compared to those discovered through more informal manual methods.
Currently, there are 12 known covert channels in the SCOMP system; other covert
channels were discovered but closed. The bandwidths of the 12 remaining covert
channels have been tested, all are fully audited, and their bandwidths have been
minimized. Of these twelve, only four covert channels and one timing channel were
discovered through the use of the MLS tools.

COVERT CHANNELS FOUND BY FORMAL METHODS

The existence of 68 unproven formulas was fully justified by Honeywell and
checked by the evaluators. In theory, each failed formula denotes an invalid infor
mation flow in the system. In reality only 14 of the failed formulas denoted covert
channels. These 14 covert channels were the result of resource e~austion. One of
the failed formulas occurred 11 times due to the splitting of "Create Process" into
the subfunctions, and thus in actuality there were only 4 covert channels found by
formal analysis. Measures have been taken to reduce the effective bandwidths of
these channels in the implementation. The channels, their cause, and their
bandwidths are described in a Honeywell technical note. Sixteen of the failed for
mulas (actually the same one in 16 places) were the result of a timing channel.
Although the MLS flow analysis tools do not normally detect timing channels, this
one was detected because the specifications included the relevant state variable
information which is modified by the caller of the kernel gate. The timing channel
is a result of the SCOMP system's "Exclusive Use of Segments" feature, which allows
a user to obtain exclusive use of a segment. However, if another user already has
exclusive use of the segment, then the user requesting exclusive use will block
until the segment is released. The bandwidth of this channel is less than the max
imum bandwidth for covert channels suggested by the Trusted Computer System Evalua
tion Criteria. The system designers feel that there is no means of eliminating the
channel and that the "Exclusive Use" feature is critical for some applications.

The existence of the remaining 38 failed formulas was justified by Honeywell as
explained below. Two of the failed formulas were a result of tranquility-principle
violations. That is, the security level of an object is changed by a call to a ker
nel gate. These channels were closed by checking that the calling process had the
necessary privileges. Twenty-seven of the failed formulas were a result of upgraded
objects; these channels were closed by performing an additional "Read Check" and
only returning information when the calling process had the proper access. Nine of
the formulas could not be proven by the theorem prover because it did not have suf
ficient information. All of these were proven by hand using 'the additional informa
tion in the justifications. It is ironic to note that one of these failed formulas
resulted because the theorem prover had oversimplified the formula to a point where
it could not prove it.

398

The analysis of these formally found covert channels consisted of tracing the
failed formulas back to the specifications, and then tracing the lines of the
specification back to tQe lines of code. It is important to note that if the covert
channel analysis had been performed prior to the specification-to-code correspon
dence, this t.ask would have been much more difficult. Once the implementing lines
of Pascal code had been located, the evaluators checked that the proper bandwidth
minimizing techniques had been implemented and that the channel was audited. It
must be stressed that in order for the kernel verification analysis, the covert
channel analysis, and the specification-to-code correlation to proceed the
specification-to-code correlation must be established first, then the kernel verifi
cation analysis, and finally the covert channel analysis.

COVERT CHANNELS FOUND BY INFORMAL METHODS

In addition to the 4 covert channels and the 1 timing channel found through the
use of the MLS tools, 7 other covert channels have been identified. These channels
were discovered during the process of design review and code walk-throughs. The
channels are very similar to those found by the MLS tool, in that they are princi
pally resource exhaustion channels. These channels were not found by the MLS
analysis because of the manner in which the filesystem resources were modeled in the
specifications. A filesystem was modeled in the specifications as capable of sup
porting only a fixed number of segments. Thus, the specification model of a
filesystem did not reflect the fact that fixed resources are required to define a
segment and variable resources are required to support the segment contents. There
fore, the resource exhaustion channel which occurs as a result of creating a segment
was detected by the MLS tool. However, the resource exhaustion channel which occurs
as the result of extending an existing segment was not detected• Honeywell is modi
fying the specifications so that they will better model the filesystem. Two other
channels were not detected by the tools, because the specifications did not include
a limit on the number of devices which the system can support, and the dependency
between successive values of unique identifiers. The specifications are being modi
fied to include both of these and will be re-verified. It is believed that these
channels will be detected by the MLS tools when the modified specifications are ver
ified.

The evaluators' method of analyzing these informally found channels focused on
the code rather than on the specifications. Furthermore, the implementation code
was closely scrutinized for the existence of additional covert channels. The ratio
of formally found covert channels to informally found covert channels (5 to 7) is
somewhat disturbing. One might naturally ask how were these channels found and how
do we know that indeed all were found? Unfortunately, we have no assurance outside
of penetration testing that all covert channels were found. However, if the specif
ications were modified as above, then it is believed that all of the identified
covert channels would have been located by the MLS tools.

Several other points should be made. First, we can be reasonably sure that all
covert channels have been identified largely due to the experience and expertise of
the system developers and design review board. Second, as we learn more about
specification writing and benefit from the experience of other verification efforts,
this knowledge will contribute to specifications better tailored to detecting covert
channels. Clearly, guidelines on specification writing an~ covert channel detection
are needed.

399

VIII. Conclus;ions

The SCOMP system was the first security kernel of its size and complexity to be
formally verified, and the first to be evaluated l'3,gainst the Trust,ed Computer System
Evaluation Criteria. The knowledge gained from this effort will contribute to
future verification and evaluation projects.

This paper has examined same .of the types of problems encountered in the SCOMP
system verification. The methods and procedures developed for analyzing the verifi
cation, notably in the area of covert channel analysis and specification-to-code
correspondence, have been presented. A statistical analysis of the kernel verifica
tion results and covert channel analysis was also presented.

In the end, it was felt that the verification successfully provided additional
assurance of the security of the system. - The specification-to-code correlation was
very helpful in convincing the evaluators that the verified system was the imple
mented system, and providing guidance to the penetration team. Specification-to
code also contributed to the analysis of the verification results and to the covert
channel analysis. Four covert channels and 1 timing channel were detected by the
MLS tools that may not have been found through informal analysis. In most cases, an
informal analysis would have found fewer covert channels. (However in this case the
system developers and the initial design reviewers were very experienced and
knowledgeable in multilevel security and kernel.design.) Although the ratio of for
mally found to informally found covert channels was low, it is believed that more
channels could have been found formally. Thus it has been demonstrated that the use
of formal methods is significant in analyzing a system's security.

Acknowledgements
The kernel design verification discussed in this paper was performed by the
Honeywell Corporation, principally John Silverman and Chuck Bonneau. The kernel was
re-verified by Harvey Epstein of The MITRE Corporation. The evaluation and analysis
of this work was performed by the formal subteam of the SCOMP evaluation team: Terry
Vickers Benzel and Dave Drake of· the MITRE Corporation, ·and Bret Hartman and Tad
Taylor of the DoDCSC. This paper would not be possible without the efforts and
technical contributions of these individuals.

400

REFERENCES

BELL74 	 Bell; D. E., LaPadula, , "Secure Computer Systems Mathematical Foundations
and Model'', M74-244, The Mitre Corporatton, Bedford, MA, October 1974.

BENZ83 	 Benzel Vickers, T., "Overview of the SCOMP Architecture and Security
Mechanisms", HTR-9071, The Mitre Corporatton, Bedford, Ml\, September 1983.

BONN82 	 Bonneau, C. B:., "SC0!1P Specification-To-Code Corr·elation", Honeytl•3ll Infor
mation Systems, McLean, VI\, 1983.

CSC83 	 "Department of Defense Trusted Computer System F:valu.3.tion C:riteria", CSC
STD-001-83, Depar•tment of Defense Computer Security Center, Fort George G.
Meade, Maryland.

DOD5200 	 DoD Directive 5200.28, Security Requi~ements For Automatic Data Processing
(ADP) Systems, revised April 1978.

EPST82 	 Epstein, H. I., "SCOMP Kernel Re-verification Results", MTR-8781, The Hitr-e
Corporation, Bedford, ~~' September 1982.

FEIER80 	 Feiertag, R••J., "A Technique for Proving Specificatioqs are Multllevel
Secure", CSL-109, SRI International, Menlo Park, CA, January 1980.

FRAIM83 	 Fraim, , "SCOMP: A Solution to the Multilevel Security Problem", Computer,
Volu.me 16, Number 1, July 1983.

ROB I79 	 Robinson, CA , .June 1979.

SILV81 	 Silverman, J., "Proving an Operating System Kernel Secure'', Technical
Report 81SRC31, Honeywell Systems & Research Center, Minneapolis, MN, April
1981.

SILV83 	 Silverman, J., "Reflections on the Verificat.ton of the 3ecuri ty of an
Operating System Kernel", Proceedings of the Ninth ACM Symposium on Operat
ing Systems Principles, October 1983.

SOL082 	 Solomon, J. "Specification-To-Code Correlation", Proceedings of the 1982
Symposium on Security and Privacy, Oakland California, April 1982.

401

THE AUTOMATED RISK PROFILE
(RiskPac)

Peter s. Browne
Profile Analysis Corporation

An ADP risk assessment looks at an organi
zation's ability to perform operational func
tions in a correct and timely manner. It
involves the review of a given ADP environ
ment, an analysis of loss exposure and the
development of minimum and recommended control

·standards. It should provide the criteria to
determine an · appropriate mix of access
control, audit trails, transaction authen
tication and network security.

Presently, the technology of risk assessment
is not adequate for modeling uncertain
th~eats, uncertain exposures and uncertain
implementation of safeguards. Even though the
mathematical underpinnings are based on a
solid actuarial science, the risk analytic
process tends to obscure the results. All too
often the veracity of a given threat frequency
or loss exposure is cast in severe doubt. The
input is subjective, the calculation and rela
tionship process is complex and the output is
usually not statistically valid.

The other major problem is that of cost/
benefit. In order to produce valid results, a
quantified risk assessment must rely on large
masses of data. The collection is labor inten
sive, thus costly. When results do not match
expectations, the whole method or process
loses credibility. Thus, risk assessment is
not the panacea once thought.

RiskPac~ was designed for the. purpose of pro
viding explicit guidance for decentralized
users of distributed processing systems. In
developing a "risk profile", this system faci
litates the collection of important infor
mation about processing locations and
applications .software. The purpose is to
determine an appropriate mix of security,
audit and management control.

The system objectives are to:

Assess impact of new ADP systems on an
organization's ability to perform
various business functions.

- Determine how those systems might fail
to meet their functional objectives.

- Assess inherent risks due to the system
environment and function.

- Provide guidance for implementation of
appropriate controls.

Approach

The determination of risk is accomplished by
focusing on computer applications systems.

Questions are asked about connectivity, type
of system, degree of access control, system
criticality and sensitivity.

Various rating factors or "exposure quotients"
are then assigned, based on answers to the
questions. Depending on the calculated risk
profile ratings, certain data security stan
dards are then required or suggested.

The risk profile is a broad based management
tool that can be used to initially determine
risk exposures in a computer application, a
physical location, or a business function. It
will identify and describe risks, but will not
calculate dollar loss exposure or threat pro
babilities. It also will not consider the
completeness or consistency of controls in
place.

The risk profile system does address issues of
management concern. For example, is a new
transaction processing system vulnerable to
tampering? Does new technology such as net
working require new controls? Is there an
overall need to provide an awareness of risk
and to force the decision to accept or reject
it.

The following uses of the risk profile system
are relevant:

Review of a DP processing center for
lack of security controls

- Analysis of an application system for
sensitivity

- Decision as to whether to attach to a
corporate data base

Security evaluation of a networking
implementation

- Evaluation of risk due to changes in a
business function

The major purpose is to spread security aware
ness by allowing the software and procedures
to be used by a multitude of user and data
processing functional personnel, throughout
the organization.

System Environment

The software resides on an IBM PC. Thus, it
should be available in most organizational
locations. Because its use will involve the
assessment of data processing risk, input will
be interactive. However, for those locations
that do not have a PC, the system will be
capable of accepting input from forms.

The primary user of the risk profile would be
the ADP security officer of the system under
study. However, it is also designed to be used
by various system users, especially if the
scope is to be focused on applications or
operational functions.

Software Functions

402

The software provides five basic functions.
They are to:

- Identify and collect data on the
operating environment, by posing a
series of on-line seeping questions.

The questions are scored, and the user
guided into providing more information
to properly describe the scope of the
problem, the major assets or function
under analysis, and particular items of
concern.

- Develop profiles of applications and
their data, so that the criticality of
the application and the sensitivity of
the data or application to disclosure
or manipulation can be determined. The
process will be similar to current data
and processing classification guideli
nes.

- Relate the physical, processing and
applications profiles in terms of expo
sures, developing an "exposure
quotient" rating for each asset under
consideration.

- Assess risk in descriptive term, pre
senting tables, graphs and charts of
inherent exposure.

- Develop lists of appropriate, tailored
standards or control guidelines to
follow in terms of assessing whether
appropriate controls are in place for
the given application or site.

Approach

The software is menu-driven. There is one
user menu which provides access to the
questionnaires, calculation, reporting, system
installation and delete functions.

The heart of the system is a questionnaire,
which can be tailored to each organization.
Branching logic allows different paths to be
taken based on yes/no questions, or specific
answers of a multiple-choice question.
Results are stored in a file for later
retrieval, risk computation and mapping of
control standards.

Questions are presented in a three level
hierarchy.

- The processing environment level asks
questions about the type of DP system
and its environment.

- The processor level asks questions
about the nature of the individual
hardware, physical environment, commun
cations and access controls.

- The applications level asks questions
about the individual applications
systems, their inherent risk and the
nature of access controls.

The survey may be completed in increments.
There is the capability to stop answering the
questions, store the intermediate results in a
file, and then continue where left off at
another session. A maintenance capability
allos the changing of answers for purposes of
correction or for modeling changes in the
environment, the system, or controls.

Question responses are edited for logical con
sistency, to include required response, alpha
betic or numeric answer, field size, etc. A
series of seven reports are produced. Each
deals with the risk factors of the environ
ment, processor or application.

- R-1 - Describes the processing environ
ment.

- R-2 - Describes the physical profile of
a given processing machine.

- R-3 - Shows all applications under ana
lysis and keys them to their processor.

- R-4 - Describes the overall risk of the
given application.

- R-5 - Summarizes risk across all appli
cations under analysis.

- R-6 - Prints mandatory requirements for
control.

- R-7 - Maps the risk level to data sec
urity standards and guidelines. This
report can be produced at the applica
tion or the individual processor level.

The reports are designed to be printed on any
standard printer.

The following pages show the overall system
flow, and provide a sampling of some of the
user input screens.

403

IISICPAC STIDJ! !\LI!

ol:lo
0
ol:lo

1'''"""'''''"'"'"''.. , 111 ltl•kJIAC 111 .,,,,,,,,,,,,,,.,,,,''"''!Ia& n &a 1•• a& &111&ilan''''''-' a ''aa1 awrn~ a a a a a 1anwa n r•
~ IMITEn INBTALLATIIIII ~

~.. lUffUU U U!!Uitr!l! U U !!!I!UU! I I I I! U I!!! f! I I I ft !"rt! I I If U If I I I I! !I I I~
}Hhiihiililiihliiiii&IH~¥iiiilihiiiHHI'ihiiiiiTIIIiiHTiihliihlhili_

! lela~ Dllk&TTE drive •Ill II•, for ..,...,.,. Ca-c)l c

••t. .DI.aTTI: *"lve •ill tie u_., for 8V8TEtt ,-JL£8 C•-c»t c

Nh•t DIBICETTE ..,,. wUI b• uattd for DATA STORAIIIE C.-c) I C 1~ DTER lnatallaUan Tltiet .-c:JNDD£110 ~
J Enter TITLE ..TION U - daubI• eh:e, 2 - atMte~•~d •la•) t I ~
IIYA'A'Na'lllllllM\'Illlllla'//;'lllllla\'-iWaYlllla'IINa'a'la'lla'llt'a'&'h'I/Na'/N/1~

! '(INI•'a'&'&'/a'a'a'a'a'a'a\'J/&'a'//l/la'la ••• IU UP'AC ••• 'llla'/III&Y&'INa'Na~·,·a•Na'INt.1

) IIEI'Oit1' _, ~

~ I
~ ~
(llt'fa'a'a..-lai'A'aW.'a'•'i/a..-/&'la'a\'l•'f&Y/l/{•\'a'i/laYa.,.llaY/aY/a'/////aY/aY//a'A'//IlN.•

~ . ~
"i 1'1 - - llepart 01 - I"'IICIS81N8 EINIRONIEHl' '1
~ 1'2 - - at.port 02 - PHYSICM. PIIOI' ILII)

~ :! : ::: ::: : : =:~~:::: =~·~:a..ILE •CALOLATIOHS ~ :a FS - - ll.......t OS - APf'l.ICATIOH RISK SLimMY "j
"J. 1'.. - - ...port 0. - MNOATOIIY STANDARDS '!
l............,..;;:,;,;;;!;,:;.!;.;:~.::::~......................

ranaaa&&&&aaarnn••••••awaaaa&aaa&rnnn~n,aaamnunrnl,nrn;vrnwrr•i

) P'l••- ..let a lfUNCTIOII Key)

.............................. ••• .,...,c ~

~nlihllr&UIIihlihll&&uva .,... ,..... ll&&unwarrrm~nanralh.

&.tr _., IDo 001 CREA1'101t DATil 09-12-U l
.. Ent.r II.M\CY NAI'IE•,....TION ftl ...PAC D&elu c:t Enter YOW" HAIC• P, S, ~o.M• D.at.a Dl1kc 'c:
lttrlllfl&!r I I!!!I!IAII! rr f&!!!lt!lftfrrr t!lt!!at rrr t trIll t t r t I r l&llltattlll r•tllltr

jiiliiiftliiiYiiiiiilliliiihliihliiihfil11TiTifffhflhiffft¥11TihUYii\ih•

)
.. .. ~
,I PI - IUII\I£Y C..•Uona&re •1
I)
-,. n --""-'" J
{ 1'4 - IPECII'Y A iiiJMI&Y -)

~ ~
) ~
,I n - .._., a.a..u.. "i
I)·',.,,@Y#f,»Y:,:,~:!!.~~::'.~!j~. ~:0:! !~.~!~~~." '""'"""" •. ·•'
,lhhhiJ, - • & :a iiiliilhhiliihiilitiiTUimtnhhffilfi¥ffiiiiiilff:j

•I PI••- Select a FUC·TJGrll Key J

A BAYESIAN APPROACH TO THE ASSESSMENT OF RISK FOR COMPUTER AND COMMUNICATION SYSTEMS *
Ali Mosleh

Pickard, Lowe and Garrick, Inc.

2260 University Drive

Newport Beach, California 92660

INTRODUCTION

Concern for the security and reliability of information proce~sing and communication systems has been rapidly rising
in recent years. The reasons are obvious. An increasing number of organizations are becoming almost totally
dependent on computers and communication technology without being adequately prepared for the potential risks
involved. These systems are vulnerable to threats, initiated accidentally or deliberately, with consequences beyond
acceptable limits. Managing the new generation of risk to the modern organizations, therefore, has become an
important and challenging task for management.

The first and most important step in effective risk management is to have an assessment of the risks involved. Risk
assessment of any automated environment requires understanding and analysis of the interrelationships among the
system's primary elements as well as the vulnerabilities of each of these elements and the threats that could affect
them. Vulnerabilities affe.cting computers and communication systems generally fall in the following categories:
physical surroundings, hardware, system software, communications links, and organizational personnel and procedures.
Threats to the system can impact one or moreof these areas of vulnerability (also called "exposures"). A risk
analysis is performed to identify the threats and vulnerabilities of the system, assess the likelihood and the
magnitude of their impact, and provide necessary input for decision-making with regard to alternative actions in
dea1i ng 1~i th such threats and vul nerabi 1i ties.

Risk assessment methodologies currently in use fall into two general categories: qualitative and probabilistic.
Qualitative methods (Reference 1) consist of identifying all the threats to the system and then establishing to which
of the system's resources they apply. Although threats and vulnerabilities may be compared using qualitative
methodologies, no measure is. provided to evaluate the threats according to their seriousness, and there is no
indication of how cost effective it will be to correct various vulnerabilities. Although·qualitative methods are
useful in identifying threats and vulnerabilities, little value can be attached to them as aids to meaningful
decision-making and risk management. It is worth mentioning that there are other "qualitative" techniques which, in
addition to identifying the threats and vulnerabilities, provide a subjective ranking of their risk significance.
Although such techniques are of more practical value to a decision-maker they do not provide the necessary information
about the magnitude of risk for cost-benefit analysis and evaluation of alternative courses of action.

The probabilistic methods, on the other hand, provide a full measure of the seriousness of each threat and the
magnitude of its impact. This is done by recognizing that risk is composed of two basic elements: (1) a damage or
loss, and (2) the uncertainty about whether the damage or loss will be received. Each of these elements is quantified
based on the best available evidence for each threat and vulnerability.

The critical element. in determining the validity, appropriateness, and accuracy of a quantitative risk analysis is the
manner in which the uncertainties are accounted for. Unfortunately, most probabilistic methodologies used today
employ point estimates; i.e., one specific number is used to represent the frequency of an undesirable event rather
than calculating a probability· range for the varying degrees of certainty in the estimated frequency (References 2
and 3). Any methodology that relies solely on point estimates of quantitative data is too sensitive to possible
variations in the basic input to risk models. Errors in calculating the level of risk occur because a fixed frequency

~ @ 1984·, ':.Jy Ali M:>sleh

405

or magnitude of frequency (high, low, moderate) is assumed for the rate of occurrence of the various threats to the
system, and because the formulation of loss estimates requires that the cost of recovery be a specific dollar figure.
Unfortunately, threat frequencies can vary considerably and it is often impossible to predict recovery costs precisely

beforehand.

In contrast, the probabilistic risk assessment methodology of this paper is based on Bayesian statistics and can deal
with a range of threat frequencies as well as a range of safeguards or recovery costs, and its mathematical
formulation is capable of taking into account multiple threats against a given vulnerability over a given period of
time in the system. For selected levels of computer security, this methodology provides a decision-making tool by
displaying the range of cost-benefit options as readily understandable "risk curves" and/or in tabular format. The
quantification of the variation in the cost, benefits, and risks associated with each option provides a much stronger

basis for decision-making.

BAYESIAN PROBABILISTIC RISK ASSESSMENT

Bayesian risk assessment methodologies were originally developed for use in the nuclear power industry where
consequences can be devastating and risk analysis models must be of unquestioned mathematical validity (Reference 4'.
This methodology can also be used as a systematic, quantitative approach to the evaluation of financial risks. The
quantitative understanding of risk is obtained by providing answers to four fundamental questions:

1. What can go w~ong?
2. How frequently can it be expected to happen?
3. What would be its consequences?
4. How certain are we about the answers to the first three questions?

The computer system of an organization is subject to many threats. To answer the first question, a number of
potential threats can be enumerated, such as fraud, malicious vandalism, fires, earthquakes, system unavailability due
to component failures, etc. Although each of these threats may or may not materialize in a given organization,
historical evidence and industry experience indicate that each one is real and can be expected to happen to any
computer facility. This evidence can be used to provide estimates for frequency of the ~hreats and the magnitude of
the losses due to any of these threats (Reference 5).

For a number of reasons, such as lack of sufficiently extensive historical data or variations of the parameters of the
problem with time, it is not always possible to provide totally accurate estimates of threat frequencies and damage
levels. (In fact, there is always some degree of uncertainty regarding the real magnitude of these quantities.) As
pointed out before, although many methodologies currently available for risk assessment ignore the issue of
uncertainty in various steps of a risk analysis, it is clear that uncertainty is a component of risk and is essential
to its conceptually correct quantification. Therefore, question 4, concerning the degree of certainty, must also be
dealt with. To do so, a Bayesian analysis is made of the available statistics to develop a mathematically appropriate
"spread" for estimating the frequency and the consequences of a given undesirable event. The mathematical model is

described in the following.

MATHEMATICAL MODEL

We will assume that there are N. potential threats to the system and each threat occurs with a specific frequency.
According to our discussion in the previous section, the exact frequencies of threats are not usually known. Let

406

f(Ai) be a distribution representing our uncertaiDtY about the actual value of the frequency of occurrence of
threat type i. Later, we will discuss how various types of information can be used to assess such distributions.

We further assume that the threat arrivals follow a Poisson process. That is, the probability of having ki threats
of type "i" during a time period of "t" is (Reference 6)

k. -Ait1 1Pt(k. I A .) = ---,-,- (A . t) e k • = 0, 1, •• •"' (1)
1 1 "'; : 1 1

If the value of A; is known exactly, the above equation gives the probability of ~i· The unconditional
probabi 1i ty of having k; threats of type "i" is then given by

Pt(ki) = f"' P(k;IAilf(A;) dAi (2)
0

Suppose now that for each threat occurrence we have a potential loss of Cij (for the jth occurrence of type
threat). The total cost is then

ki
:E c .. (3)
j=1 1J

Again, we need to model our uncertainty about the magnitude of the loss due to occurrence of each threat. Let
g(C;jl represent the uncertainty on Cij• The distribution of c1, the total loss due to threat i, can then be
obtained by convolution of g's based on Equation 3. Note that the resulting distribution [call that (Cilki)] is
conditional on the number of occurrences of type i threat. The unconditional probability of loss due to threat i

can be calculated from

(4)

This distribution cannot be found analytically and the computations should be performed by numerical methods.
The cumulative distribution of Ci is given by

co

:E ~(Cilki)Pt(k;l (5)
k ;=o

where

ci
<P(C.Ik-) = f f(C! lk.)dC! (6)

1 1 0 1 1 1

The risk curve from type i threats is now

Figure 1 shows a typical risk curve. From this curve one can read the chance of exceeding a certain level of loss in
a specified time period in the future.

One may also find the total risk from all types of threats by calculating the distribution of the following random
variable

N
C = :E Ci (8)

i=l

This can be obtai ne.d by convo1uti on of the di stri buti on of Ci 's which we have a 1 ready calculated. This type of
calculation can be easily done by computers for different time periods and the final result would look like Figure 2.

407

Loss

FIGURE 1. A TYPICAL RISK CURVE

Loss

FIGURE 2. FINAL RISK CURVES FOR DIFFERENT TIME PERIODS

To compare the risk from different threats, the decision maker can plot the corresponding risk curves on the same
graph and examine them with his or her risk acceptance criteria (see Figure 3).

Risk acceptance criterion

Loss

FIGURE 3. RISK COMPARISON FOR VARIOUS THREATS

In Figure 3, as we can see, threat type III is the most serious and totally unacceptable, whereas type I has a lower
pr~bability of causing high loss and is mostly acceptable according to the risk acceptance line.

To observe the effect of applying protective measures for each threat, a second risk curve for each threat type is
needed which includes the initial cost of the protective measure as well as the changes in the total cost due to the

408

presence of that protective measure. A typical case is shown in Figure 4. The mathematics are basically the same as
before and will not be repeated here.

(1) 	Risk without the protective measure
1.0 t---,..._

(2) 	Risk in the presence of protective
measure

FIGURE 4. THE CHANGE IN RISK FOR THE NEXT t YEARS DUE TO

APPLICATION OF PROTECTIVE MEASURES

ASSESSMENT OF THE PARAMETERS OF THE MODEL

The validity of the results of a risk assessment is a direct function of the accuracy of the input to the risk model.
The input parameters in the modes of this paper are the threat frequencies and the value of loss for each threat.
Depending on the type of environment being analyzed and the availability of information, estimates for such parameters
may be difficult to obtain. For example, although the frequency of physical threats such as fires or floods may be
assessed with a reasonable degree of accuracy, information on the likelihood of deliberate impairment of the system or
malicious misuse of its resources is not easily obtainable. Similarly the assessment of the value of tangible assets
is a much simpler task as compared with_ the evaluation of the value of information loss or denial of access.

Quantitative risk assessment methods currently in use have, unfortunately, failed to provide an adequate framework for
dealing with situations •11here uncertainty pi ays a key role and where there is a need to be ab1 e to make use of both
the statistical evidence and the opinion of experts.

The advantage of the Bayesian methods in this respect is that they provide powerful and systematic approaches to
handling information about uncertain quantities for which little "hard" evidence is available.

The key issue in developing distributions for the parameters of the probabilistic risk assessment models is to
guarantee that the informatio'n regarding each parameter, its relevance, and its value as viewed by the analyst are
presented correctly and_that various pieces of information are integrated coherently. "Coherence" is preserved if the
final outcome of the process is consistent with every bit of information used and all assumptions made. This is done
by utilizing the fundamental tool of probabilistic inference; i.e., Bayes' theorem (Reference 8). Mathematically,
Bayes' theorem is written as

(9)

where

P(x!E,E0l : 	probability of x being the true value of an

unknown quantity in light of new evidence E and

prior body of knowledge E0•

L(E!x,E 0) _likelihood of the new evidence E assuming that

the true v"alue is x.

409

P(xiE l _ probability of x being the true value of the unknown0

quantity based on the state of knowledge Eo prior to

receiving E.

Finally, k is a normalizing factor defined as

k _ J LIE Ix,E0 lP!xiE0ldx (10)
all x

Recent advancements in techniques for using expert opinion for assessing unknown quantities (Reference 9), combining
statistical data with subjective information (Reference 10), and improving "generic" estimates by incorporating new
system specific evidence (Reference 11), have proven to be useful in quantitative assessment of risk in other
technologies. Such techniques can be, and to a limited extent have been, used in the data processing and
communication networks, as discussed briefly in the following example application.

EXAMPLE APPLICATION

The methodology of this paper was used in the analysis of the communication security environment of a large computer
network (Reference 7). The focal point of the analysis was the encryption keys used for communication. As a result
of the investigations, several threats and vulnerabilities were identified and the magnitude of the potential
consequences was quantified. For each threat, a distribution of frequency was developed based on available
statistical evidence (Reference 5). Figure 5 is an example of how uncertainty regarding the frequency of one of the
threats was represented by a probability distribution (Reference 8). Figure 6 presents the calculated risk for two
identified threats in the form of risk curves that give the probability of various levels of loss in a 1-year period.
It can be seen, for example, that there is a 75% chance that the annual loss due to threat 1 exceeds $1,000,000. At
the same time, the chance of losing $1,000,000 due to threat 2 is essentially zero.

100% .------------":::>"---,

FREQUENCY

FIGURE 5. ANNUAL FREQUENCY OF BANK FRAUDS PER BANK EMPLOYEE

"'
~ 1

~

100%
~--~--~~ ·-Q- THREAT

-.--THREAT?

LOSS IN MILLIONS OF DOLLARS

FIGURE 6. RISK CURVE FOR TWO DIFFERENT THREATS

410

REFERENCES

1. 	 Brafman, M. J., "Evaluating Computer Controls Using the Matrix Approach," The EPD Audit,· Control and Security
Newsletter, December 1981.

2. 	 Courtney, R. H., "Security Risk Assessment in Electrical Data Processing Systems," Proceedings of the National
Computer Conference, 1977.

3. 	 Lobel, J., "Risk Analysis in the 1980's," Proceedings of the National Computer Conference, 1980.

4. 	 Kaplan, S., et al, "Methodology for Probabilistic Risk Assessment of Nuclear Power Plants," Pickard, Lowe and
Garrick, Inc., PLG-0209, 1981.

5. 	 Pickard, Lowe and Garrick, Inc., Proprietary Data, 1982.

6. 	 Cinlar, E., Introduction to Stochastic Processes, Prentice-Hall, Englewood Cliffs, N.Y., 1975.

7. 	 Winkler, R. L., and W. L. Hays, Statistics, Holt, Rinehard and Winston, N.Y., 1975.

8. 	 Lindley, D. V., Introduction to Probability and Statistics. Part 1: Probability, Part 2: Inference, Cambridge
University Press,

9. 	 Mosleh, A., and G. Apostolakis, "Models for the Use of Expert Opinions," Proceedings, workshop on
Low-Probability/High-Consequence Risk Analysis, Arlington, Virginia, June 15-17, 1982, Plenum Press, New
York, 1983.

10. 	 Apostolakis, G., and A. Mosleh, "Expert Opinion and Statistical Evidence: An Application to Reactor Core Melt
Frequency," Nuclear Science and Engineering, 70, 135-149, 1979.

11. 	 Apostolakis, G., "Data Analysis in Risk Assessments," Nuclear Engineering and Design, 71, pp. 375-381, 1982.

12. 	 Mosleh, A., E. R. Hilton, and A. F. Gersman, "ATM Key Man,agement Risk Analysis," Pickard, Lowe and Garrick, Inc.,
PLG-0233, prepared for Target Bank, 1982.

411

