- DOD/NBS
- Computer
Security

 Conference

September 24-26, 1984

TABLE OF CONTENTS
Opening Remarks, Dr. Robert L. BrotZman..ccceesscseesoseccsccossscssscscssassesl
Keynote Address, Rep. Dan GLliCKMAN . e 0o eovocasoccsccsssssasescsascscsasanssssesl
Conference Theme, Marvin Schaefer....ceeoeeecsccsccsescscecsssscccccosacsasssll
Computer Security in Practice, Col. Joseph S. GreeNnBesesscrsconcoccssocscssossell

Environmental Guidelines for Using the DoD Trusted Computer
System Evaluation Criteria, Sheila Brand..c.ccseoceeeccscscsccccecscsassl’

Working Towards A1, D. E11iott Belle.eeeeceassosesocsscnsscesssessnsnnsanenss2l
The Practical Aspects of Multilevel Security, Terry S. Arnold.ccesecceccce...30

Rules as the Basis of Access Control in
Database Management Systems, David A. BONYUN.:eeeosesscoscasansesoscsss3d

Structure of a Rapid Prototype Secure Military
Message System, Mark Cornwell and Robert Jacob...ceecsescoscocscacss 48

Communications System Security Evaluation Criteria, Peter C. Baker.....cec...58

Security Issues Involved in Networking
Personal Computers, Alfred Arsenaulf...cccececeecoceccccccococcenscasal?

The Euclid Family and its Relation to Secure Systems,
Glenn MacEwen and David Barnard.cecsececscessesesveccescscosoccsoccceseld

A Comparison of Formal Security Policy Models, J.T. Haighesveeseoecovsonsonsssa88
Extending the Bell & LaPadula Security Model, Dr. Ronald Gove.ceseseeeeessas112
The Security Model of Enhanced HDM, John RUSHDY.eceeeesceosceccrcacosacsaessal20
A1 Policy Modeling, Jonathan K. MilleN.cceececcescseceasasosccoccscsnosnosassosl3l

An Overview of the Kernelized Secure Operating System{KSOS),
Brian M. Hardy €t @lececcccccecssscsssoossasssasassacceaccscsssascacsldd

Future Directions of Security for Sperry
Series 1100 Computers, T.M.P. Le€.cceessesssecscocsssescsssocssansaselbl

Life Cycle Assurance for Trusted Computer Systems: A Configuration
Management Strategy for Multics, Maria M. P0OZZ0...ccesecccecosssssss169

Gould Software Division's Security Program, Gary GrosSsSman...s.esseesssescsss180
Electronic Funds Transfer Security, Dick Bauder...eeceeocecsscosccessseassses188

Authentication of Electronic Funds Transfers, Richard Y. Yen.eceeoeeeecosesss192

Information Systems Security at Security Pacific
National Bank’ Ed Zeitler..'.......".................'..'.O.....IO..195

Computer-Related Fraud in the Banking
and Insurance Industries, Jim WattS..cceeeeeeccscacecrncsccnnnnsass 207

Computer Security in Practice, Robert ROuUSSeY...ccecceereecccccsccccccceess 21l
A Commercial User's Perspective, James A, Schweitzer......... Py 2 -
Computer Viruses, Fred COheN..ceseccssecsssceccseecssscccscsscccsssscsssssss2lO’
Password Management in Practice, Sheila Brand and Mary Flaherty.............264
Computer Security for Today, Bernard Peters....cccccececceccccccessacecseess270

Microcomputer-Based Trusted Systems For Communication and
Workstation Application, Dr. Roger Schell and Dr. Tien Tao0...eee..s..277

On the Inability of an Unmodified Capability Machine
to Enfor‘ee the *-Pr.operty, w.E. Boebert‘..‘.......'.........'..'...'291

A Trusted Computing Base for Embedded Systems, John Rushby..ceeeecevcecoeeeee298
Secure Communications Processor Research, Dr. Derek BarnesS...cceeeeessceceesa3l2

Specifying Multi-Level Security in a Distributed System,
Janice I. Glasgow et al.ccceeececccocccscovescsasoscnccsssenccasssseealld

A Multi-Level Secure Local Area Network, Albert L. DonaldSON..eeceeceseceesseo341

Automated Data Processing Security Accreditation Program,
John S. Cochrane, SP.eeessescoccsscsssccssssesssscscsessssosscscsssssnsseidl

Configuration Management for Certified and Accredited
Operational Systems, Lynne Vidmar and Leslie O'Dell.c.cecececcecssss36l

Analysis of a Kernel Verification, Terry Vickers Benzel.....cceeeseecccessss391
AN ' '
The Automated Risk Profile, Peter S. Brown€.eceececesesssecscccsssssscsessssssd02

A Bayesian Approach to the Assessment of Risk for
Computer and Communications Systems, Ali MoSleéh..eeeeecoccccsccoees 405

44

OPENING REMARKS
ROBERT L. BROTZMAN

DIRECTOR, DoD COMPUTER SECURITY EVALUATION CENTER

I'd like to join Jim Burrows in welcoming you to this, my
first Computer Security Initiative Conference here at NBS. As
Marv mentioned, I assumed responsibility for the Center in mid-
July.

Mine is not the only new face to appear in the Center since
last year's conference. For openers, the Center has grown 40
percent from the 114 we had when Mel Klein spoke to you last
November to our present staff level of about 160. Much of the
Center's personnel growth was to continue staffing a fledgling
organization that began life with a lot of existing pre-Center
DoD responsibilities, including evaluating trusted commercial
products and operational systems, specifying the computer
security requirements for selected trusted system procurements
like the I-S/A AMPE and, of course, writing and publishing the
Orange Book, the Evaluation Criteria.

But ‘as industry, the DoD components and other Federal
Agencies developed greater security awareness and became more
familiar with the Center, requests for our participation in their
activities also grew rapidly. In addition to these conferences
at NBS, we have moved forward in our education role. We have
conducted classes, often with the support of experts from the
private sector and other parts of the Government, on: computer
security policy, evaluation and certification, formal
specification and verification, trusted system technology, and a
special senior-level course on computer security awareness for
government executives. The Center gives several customized
briefings every week to government organizations on classified
and unclassified topics in computer security.

At last year's conference, Dr. DeLauer told you that the
Center would be conducting an extensive study on the DoD's
current computer security posture and its future requirements.
That study has been completed and has been distributed for
coordination and comment within the Department. The study has
already resulted in a close and healthy working relationship
between the Center and the Computer Security Focal Points from
the DoD Components, particularly now that the Criteria are being
incorporated in procurement specifications across the DoD.

You may also recall from last year that both Dr. DelLauer and
John Lane remarked that they had "heard it said that a DoD
computer acquisition has never been won or lost on the basis of
security features." Dr. DeLauer went on to say that "we need to
turn that perception around so that our friends in industry can
know that we are really serious about security.® Well, I can
certainly tell you that we are. Several recent DoD procurements

have now called for products that fully satisfy the requirements
for specific Criteria classes. And, although I can't go into the
details, one DoD organization reported that they hqve
disqualified a major vendor because his proposal did not respond
to the evaluation class requirements designated for their ADP _
procurement. The lesson is clear. The DoD services and agencies
are taking the Criteria and computer security seriously in their
planning.

We have seen a good deal of positive results from the Center .
and from the private sector this year. The Evaluated Products
List now has its first trusted product entries. I am happy to
report that evaluations have been completed on IBM's RACF/MVS
Facility in the Cl1 Class, and SKK's ACF2/MVS Package has fully
satisfied the C2 requirements. Other product evaluations are
being completed and should be published in the next few months.
Among these is the Honeywell SCOMP evaluation. As you know, this
is the first evaluation the Center has undertaken for an Al
product. Penetration testing on the SCOMP was recently
completed, and the long and suspenseful ordeal is essentially
over. There are a few loose ends in the documentation area to
tie up right now, but I take real pleasure in telling you that
all of the technical requirements in the Criteria have been
satisfied by the SCOMP. Both the SCOMP evaluation and the
Honeywell MULTICS/AIM evaluations will be published soon.

I am also able to tell you that we are moving forward with
the transfer of the formal verification tools to the ARPANET.
The developers of FDM, HDM and GYPSY are all under contract to
transfer their verification systems to the Center's MULTICS/AIM
systems. We expect to be offering access and training in SDC's
formal Development Methodology in the near future. Once the
transfers have been completed, the Center will also provide
access and training in the Hierarchical Development Methodology
and the GYPSY Verification Environment.

Many of you were at Conferences here in Gaithersburg when
the BILACKER system concept was discussed by the DoD Director of
Information Systems. The Center has been assigned responsibility
to produce BIACKER as a system that satisfies the Al
requirements. As a network security application, this program is
a challenge to all of us, since the Network Security Evaluation
Criteria have not been completed. A panel session this afternoon
will discuss a number of relevant network security criteria
issues, and may give you some idea of the technical
consideraitons germaine to these applications.

In assuming this new responsibility, the Center has gone
through a reorganization. We still have our original four
offices of Product Evluations and Standards, Application Systems
Evaluations, Research and Development, and Technical Support. In
addition, Dave Bitzer has joined the Center and serves as the
BLACKER SPO. ‘

My last news item pertains to myself and the Deputy Director
of the Center. Many of you know that Mel Klein retired from the
Center following 36 years of service to the Agency, and Colonel
Roger R. Schell retired from the Air Force following the
completion of his tour with the Center. Mel and Roger built the
Center from its beginnings to its current position of technical
expertise and service. Our new Deputy Director, Colonel Joe
Greene and I have been very busy working with the challenges and
opportunities we face in the future. Joe will be speaking to you
following this morning's break, so I will not take the time to
tell you how capable he is and how fortunate we are to be able to
draw on his talents.

I am looking forward to working with you all in the future.
I hope you enjoy and profit from this, the Seventh Computer
Security Initiative Conference.

KEYNOTE ADDRESS
HONORABLE DAN GLICKMAN

CHAIRMAN, SUBCOMMITTEE ON TRANSPORTATION, AVIATION AND MATERIALS
COMMITTEE ON SCIENCE AND TECHNOLOGY
U.S. HOUSE OF REPRESENTATIVES

I am delighted to be here and especially pleased to see the
level of participation in the 7th Conference on Computer Security
sponsored jointly by the DoD Computer Security Center and the NBS
Institute for Computer Sciences and Technology. The subject of
computer security hopefully has emerged from the world of the
specialist and entered into the consciousness of the public.

Computers and the communications links that connect them
pervade our society. Yet, average citizens seldom realize how
computers intrude upon their lives and, further, how much more
intrusive computers will become with each passing day.

Possibly for this reason we have also been largely unaware
of the possibilities for the improper use of computers or
unauthorized access to the information they contain. Even
professional computer people have frequently underestimated the
threat to their systems, often failing to take the most elementary
precaution -- the electronic equivalent of locking the door.
Until recently, it was only a few voices in the wilderness who
even discussed it at meetings such as this.

‘Now, however, with the media attention paid to "computer
hackers," and the popular films, "War Games" and "Superman III,"
the public is finally becoming aware that George Orwell may have
been right. There really is a "Big Brother" -- although he is not
restricted just to the government as in the novel. Intruders into
our personal lives in 1984 can be almost anyone with even
rudimentary knowledge who seeks to make mischief, gain an unfair
advantage, or commit a crime with computers.

Since my subcommittee began its examination of computer and
communications security and privacy over a year and a half ago,
we've found an incredible level of interest. So I can tell you
the public is beginning to hear the message. And your presence
here today confirms it.

My interest in this issue came about because a Science and
Technology Subcommittee which I chair has jurisdiction over
"communications research and development." That interest was
personalized last year when I was ordering tickets for an upcoming
Orioles game, using a system they have which uses the push buttons
on your telephone. And it occurred to me that here was a system
ripe for abuse. So I suggested to my staff and the Library of

4

Congress —-- many of you probably know Louise Becker who was until
recently the Library's expert on computer security --that we look
into it.

) After a few weeks of digging around, we found that there was
indeed enormous potential for abuse, not only of this system but
of all kinds of computer-based information systems. We also found
a subject of immense complexity. There is an R&D component to be
sure, but we quickly found there are great policy, Federal
leadership and national security issues as well. We also
discovered that many of these issues were interrelated. Trying to
organize them into manageable units was a little like trying to
put socks on an octopus.

As many of you know, the Subcommittee held hearings last fall
aimed at covering more comprehensively than ever before all of
these related aspects.

We began by looking at the full range of threats and
vulnerabilities to computer systems. Our first witness was Neil
Patrick, a l7-year o0ld high school student, whose exploits as a
computer hacker had just drawn national media attention, thereby
giving our hearing a timely boost.

He testified that his interest in computers began with an
introductory course in the seventh grade. From there he learned
various computer languages and using his family's home computer
managed to gain unauthorized access to systems around the country,
such as the Security Pacific Bank.

He told the Subcommittee that access to government and
private-sector computers was often made possible by poor control
of passwords. He described how he and other hackers exchanged
information on how to break in to computer systems by using
electronic bulletin boards.

He explained that hackers seldom see their activities as
harmful. The perception that "no harm intended is no harm done"
typifies the computer hacker mentality. The same individuals
would never consider breaking into someone's home, but destroying
an elderly woman's bank record is somehow merely an intellectual
challenge.

In fact, when asked when he first questioned the ethical
propriety of what he was doing, Mr. Patrick replied, "When the FBI
knocked on my door."

And yet, despite all the attention he got, Mr. Patrick
clearly illustrated a point that is often overlooked by the media
who usually portray such youngsters as the modern-day equivalent
of Robin Hood. And that point is that the far greater danger
comes not from hackers, but from insiders -- those that already
have authorized access. :

We received testimony that the great bulk of computer-related
criminal actions in the commercial sector are perpetrated by an
individual who was authorized to interact with the system and who
knew enough about it to exploit it for personal gain.

Furthermore, there is generally little attention paid to
establishing the trustworthiness of individuals in critical and
sensitive positions. Some corporations do effectively nothing to
assure the trustworthiness of critical individuals; others take
the minimal step of requiring that employees are bondable; and
very few, if any, perform comprehensive background investigations
or require specific training to sensitize their employees to
problems in computer security.

To deal with this situation, the Subcommittee concluded that
both the private sector and the federal government should
strengthen clearance procedures for all workers handling
sensitive, non-national security data. As part of their training,
they should receive awareness training on computer abuse,
including the penalities for illegal activities. In addition,
automated information systems and related documentation should
contain explicit warnings regarding unlawful activities or abuse.

Another area that the hearings were designed to address was
the effectiveness of leadershlp by the federal government. And
here we sought to examine several aspects of the government s
responsibility. The first of these was its performance in
protecting the systems used internally by virtually every agency
to carry out its mission.

What we found generally was a depressing picture of drift and
inattention to a potentially serious problem. No doubt, a few
agencies are well aware of the threats to their systems and are
giving high-level management attention to the need for better
security. But in the vast majority of cases, the data kept in
government computers is susceptable to manipulation, penetration
and unauthorized access. And what's worse -- no one seems to be
in charge. The administration's approach is basically to ignore
the problem.

One specific failure is the lack of training to sensitize
both computer and management personnel to the problems in computer
security and to teach good security practices.

To achieve this, I am contemplating legislation early next
year that would require agencies to provide such training. I also
believe the government needs a focal point -- perhaps an institute
within an existing agency or even totally separate -- for
conducting this training and for assisting agencies in selecting
tools and techniques to protect their computers.

Another important element of federal responsibility, I feel,
is the need to secure major, national systems that are computer
based. And I would argue that this responsibility includes not

only federal systems, but also certain private sector systems that
are key to the functioning of our society and which therefore
contribute to the "national security” in a broader sense.

For example, the federal government operates the air traffic
control network, a massive system designed to keep some 15,000
daily commercial flights from colliding with each other -- an
absolutely crucial function. It is a highly automated system and
will become even more so when the National Airspace System Plan is
implemented. The potential consequences of unauthorized intrusion
are enormous.

Clearly the government must assure the security of the ATC
system from such misuse. But what about others, such as the
electric power grid, or the banking system? Obviously these are
private, for the most part, but the country is highly dependent on
thenmn.

For this reason, I believe the federal government should
assume some level of responsibility for their protection. But no
one seems to be worrying very much about it. And I don't find a
whole lot of concern even about the federally-operated systems.

I'm convinced there could be several potential disasters out
there just waiting to happen. A disgruntled employee, a terrorist
group, or someone with criminal intent could easily disrupt or
even cause irretrievable damage to our nation. So we can't allow
the present state of indifference to continue.

The Subcommittee concluded there is an immediate need to
pinpoint responsibility for security of critical national systems
and to implement necessary controls. Such a focus would require
input from a number of governmental areas (including national
security, intelligence, law enforcement, emergency management, and
commerce) as well as the private sector, to assure that all facets
are addressed.

Another area of federal responsibility that the Subcommittee
considered was our role in conducting research and developing
technology for use both by the government and in the private
sector. Here we found that system managers are often reluctant to
invest in technologies that they see as being too costly and which
may hamper performance or limit use. What seems to be needed --
aside from greater awareness of the threats -- is research and
development of low-cost, effective computer and communications
protection equipment.

I believe a cooperative effort among vendors, users and the
government is needed to identify areas that might benefit from
additional research effort and to channel available resources
accordingly. At the federal level, a permanent task force,
consisting of both central management and mission agencies, should
be established to coordinate computer and communications research

(at the DoD Computer Security Center, the NBS Institute for
Computer Science and Technology and NSF).

Turning now to the area of computer crime, the Subcommittee
was interested in examining the dimensions of this type of crime
along with the need for better laws to deal with it. Of course,
this is a tremendously complicated subject and we were only able
to scratch the surface. But there was substantial agreement on
several points. '

The first relates to the lack of adequate definitions and, as
a result, of valid statistics on the size of the problem. The
only way we can characterize it, is through case-by-case empirical
analysis of reported cases. And those probably represent only a
fraction of the actual cases because of reluctance of victims to
reveal their losses.

As an example of how technology outpaces the law, the GAO
pointed to The Crime Control Act of 1968. That law used the
qualifying terms "aural acquisition" -- or acquired by use of the
ear -- to define interception. As a result, only interceptions by
aural means are illegal under this Act. Anyone can conduct
unauthorized non-aural wiretapping of data communications without
a court order and not be in violation of this law.

Another point of more or less uniform agreement was the need
to strengthen existing law to facilitate prosecuting offenders. A
case in point is trespass. ‘

Under current law, it is illegal for someone to enter someone
else's home even if he doesn't take anything or cause any damage.
Unauthorized access to a computer, in and of itself, does not
constitute a federal crime, however.

Furthermore, the concept of damage is not well defined. For
example, has "damage" occurred if the only result of a trespass is
a delay in systems operation or time spent to determine that
nothing was altered?

The answers to this and other legal questions are complex.
Unfortunately, they are being addressed piecemeal by a long list
of new bills which have been introduced over the last two years.

All of these are aimed at valid problems. But the
Subcommittee did not endorse any of them because we feel that a
more global approach is required —-- one that transcends the
boundaries of a particular agency or Congressional committee.

Looking back, what do I think the Subcommittee accomplished
by holding these hearings? Chiefly, I believe we achieved what
most Congressional hearings of this kind seek to achieve. We
focused public attention on a problem of national importance. And
judging by the interest we've received in the Subcommittee's
report, I think it is fair to say we were highly successful in
doing that.

But what happens from here on? Obviously the issues haven't
gone away, nor are the solutions in hand. The break-ins continue.
Recently, as many of you know, hackers struck again -- a familiar
story. This time they got in through the Southwest Bell System in
Kansas City and gained access to computers in major corporations
all over the country, fooling the long-distance billing mechanism
in the process.

Well, several things are going on right now. One thing is a
follow-on day of hearings -- starting at 1:30 this afternoon --
before my Subcommittee. In these, we plan to continue calling the
public's attention to the security and privacy implications of our
dependence on computers. We also intend to keep urging the
Administration to take action.

Another thing which involves me personally, as a Member of
the Judiciary Committee, is an amendment I offered to H.R. 5616,
the Counterfeit Access Device and Computer Fraud and Abuse Act of
1984, My amendment makes it a crime to gain unauthorized access
to financial information and credit reports.

My rationale was that such information is protected by law
from release without authorization from the indivudual. So it
only makes sense that it should be illegal for a hacker to gain
access to it.

H.R. 5616 has so far passed the House; and I am hopeful that
it will also pass the Senate and become law next year.

In the longer term, what happens next depends in large
measure on you, the experts in this audience. The public is
beginning to appreciate the dangers. The Congress is energized.
But, it will be up to you to build on this support by developing
the detailed answers.

DOD/NBS COMPUTER SECURITY INITIATIVE CONFERENCE
MARVIN SCHAEFER

DOD COMPUTER SECURITY EVALUATION CENTER

Welcome to the seventh jointly-sponsored Conference on the Computer Security
Initiatives of the Department of Defense and the National Bureau of Standards.

Since 1979, the year of the first meeting in this series, attendance and
active participation have grown with its progression from seminar to symposium to
conference. A record of more than 500 persons had preregistered for this
Conference by the time these words were being written.

The growth in participation represents a growth in computer security
awareness as well as a parallel maturation of the technology and its use. At the
time of the first seminar, the community perceived less of a need for computer
security than it does today. There had not yet performed their publicized attacks
on systems; the popularization of computer piracy on television and in comic
strips had not yet brought computer crime to the public mind. Nor was there a
Computer Security Evaluation Center with a published Trusted Computer System
Evaluation Criteria or a populated Evaluated Products List.

The combined efforts of the National Bureau of Standards and the Department
of Defense have brought about the progress that has been made in the last five
years. The private sector has begun to produce commercial trusted computer
products for subsequent inclusion in their product lines. Such products are being
developed, generally without government subsidy, in all of the classes defined in
the "Orange Book", which was distributed at our Sixth Conference. In additionm,
the DoD has begun to incorporate precise interpretations of the Criteria in their
procurement specifications for new application systems.

Recognizing the progress that has occured, this Conference represents a
significant departure from the agendas of our previous Conferences. We chose to
issue a Call for Papers to computer security practitioners and researchers in
order to provide a better forum for the exchange of current information about
advances in the state of the art as well as the expression of technological
challenges for the future.

As in previous Conferences, many of the papers deal with issues relevant to
trusted computing bases designed to support military computer applications. It is
clear that the nation's security depends on our ability to protect classified
information for unauthorized disclosure, modification or destruction. Trusted
computing products in Divisions B and A of the Criteria are designed to control
accesses between cleared users and classified data. We in the Department of
Defense will continue to emphasize the need for developing trusted systems in
these Divisions. A primary goal in this Conference series is to disseminate
information on trusted computing system technology to facilitate the general
improvement of security in commercially-available systems.

In this light, it is interesting to recall that this is the year 1984,
Large-scale networks of automated information systems have been realized that
outstrip Orwell's visionary prophecy of a technology having the potential to
destroy the privacy of the individual. Social Security numbers have become
universal identification codes for people living or working in the United States.

10

Electronic banking, electronic mail, and electronic records-keeping have become a
way of life for tems of millions of our population. The national economy has
literally been placed under the control of computers and computer programmers.

It is perhaps surprising to observe that by far the largest application of
computers in the Department of Defense deals not with classified data, but rather
with sensitive but unclassified information. These DoD computers store medical
records and data on patients in DoD hospitals; they process payroll and retirement
funds; control the acquisition, shipment and disposal of equipment; arrange the
transportation of personnel and material on airplanes; etc. Such DoD applications
are no different from the majority of computer applications in the bulk of the
Federal government and in the private sector.

The computer security threats to these computer systems are no different from
those to computer applications in most of the Federal government and in the
private sector. The audit and control requirements for these applications are no
different from those for the bulk of applications in the Federal government and in
the private sector. The traditional control requirement is for the establishment
and maintenance of protected audit trails that contain a record of each 'security
relevant" system event, identifying the individual responsible and accountable for
each of these events along with the context of the individual's actions.

Such audit trails can quickly become a large, sensitive database.
Specialized tools need to be developed to process and analyze such audit trails in
order to help discover evidence of computer fraud or abuse. However, this is
where an Orwellian challenge comes to mind. The very records required by the
auditors can become a threat to individual privacy. It is almost -as though
individuals need to sacrifice their privacy in order to protect their privacy!

Several papers in the Conference Proceedings address these concerns.

Advances in computer security research and technology are addressed in many
of the Conference sessions. Heavy emphasis is given to recent directions in
database management security, network security, and applications of interest to
the private sector. We have attempted to schedule sessions such that participants
can be exposed to reports and discussions of recent progress, to planned thrusts
in computer security, and to current problems that require solution. That
computer security is now in practice should be evident to the participant and to
the general reader of these Proceedings. We look forward to your support in
continuing to advance the technology base.

This Conference resulted from the prolonged efforts of a small group of
dedicated, but relatively invisible, professionals. I would like to acknowledge
the work of the Program Committee; Daivd Bell and Sheila Brand from the Center,
and Denny Branstad and Stu Katzke from NBS have done a splendid job of recruiting,
reviewing, and then selecting the papers and presentations that comprise this
Conference's sessions. The difficult and sometimes thankless task of planming,
coordinating, and organizing the Conference's mechanics and publications was done
by Al Duke, Carolyn Logan, Mimi Vaughn, Tammy Shelton, and Carol Atkinson of the
Center; and Gene Troy, Kathy Kilmer, Sarah Torrance and Jan Kosko of NBS.

Finally, more than sixty individual computer security practitioners and
researchers in the United States and abroad submitted professional papers for
inclusion in this year's program. Despite short notice and publication deadlines,
we received tremendous support from the computer security community. On behalf of
the Program Committee, I would like to express my appreciation for all their
contributions.

11

COMPUTER SECURITY IN PRACTICE

JOSEPH S. GREENE, JR. COLOMEL, USAF

DEPUTY DIRECTOR DOD COMPUTER SECURITY EVALUATION CENTER

On the 2nd of July, I joined the Computer Security Evaluation Center as the
Deputy Director. Although computer software engineering has been a common thread .
through my prior Air Force assignments, the subject of trusted computer base
technology represents a new challenge for me. For this reason, I am particularly
pleased with the opportunity this conference provides to meet those of you who
have a head start on security.

The significant event proceeding last year's DoD Computer Security Initiative
Conference was the publication of the Department of Defense Trusted Computer
Systems Evaluation Criteria in August of 1983. Actually on the first day of the
Conference —-- that was 15 November 1983 -- the Under Secretary of Defense for
Policy published a Memorandum to the Defense Components that authorized and
encouraged use of the Criteria in the performance of security evaluations and as
the basis for system security requirements. The first question we could asked is
what has happened during the past year since the Criteria was published.

In the area of Product Evaluation, I am pleased to report that the Evaluated
Products List (EPL) is no longer an empty set. Two reports have been published.
The IBM Resource Access Control Facility called RACF has been given an overall
evaluation class of Cl, RACF is designed to limit access to resources by
identifying authorized users and protected resources and controlling users' access
to those resources. It appears that RACF could be evolved to meet the C2 level of
evaluation criteria with the addition of the object reuse capability.

The second entry on the Evaluated Products List is the Access Control
Facility II built by SKK, Inc. ACF2 was determined to meet all of the
requirements of class G2 with no exceptions. ACF2's strong discretionary access
controls and audit features provide significant improvements to the security of
the IBM MVS operating systems.

The draft final report on CGA's Top Secret add-on security package assigns a
Cl rating. The package will allow users to protect project or private information
by keeping other users from accidentially reading or destroying that data.
Evaluation of Honeywell's Security Communications Processor, called SCOMP, has
been completed and with the correction of a few items (primarily in the
documentation area) is expected to be placed on the EPL at the Al level before the
end of the year. '

During the past year, the Criteria has also been used for the development of
future military systems security requirements specifications. Procurement
specifications for the BLACKER and the I-S/A AMPE have been prepared based on the
Criteria and call for class Al products. The Center recommends these as good
examples of security procurement specifications. A bad use of the Criteria
combines features from different class levels defining, as it were, a new
evaluation class. We are concerned that this approach, if allowed to continue,
could undermine the DoD strategy of populating an Evaluated Products List by
sending mixed signals to industry as to our requirements.

12

In order to discourage this practice, the Director of NSA has recommended to
the Secretary of Defense that program managers be directed to explicitly state
computer security requirements in terms of a specific objective protection class
as defined in the DoD Trusted System Evaluation Criteria. This recommendation is
currently being reviewed at the 0SD.

During the past year, we have develop an environment doctrine guide to help
system managers analyze their mission and environment to determine prudent levels
of security for their area. The document, to be described in detail by the next
speaker, is being coordinated now.

The Center has used the Criteria and the environment doctrine as the basis
for a standard system evaluation questionnaire. The questionnaire has been used
to conduct a survey to assess the security posture of automated information
systems handling classified and other sensitive DoD information, within the
department. A preliminary analysis of approximately 7000 survey responsives
covering about 15000 computer systems has interesting results. About one third of
these systems process some form of classified data. Of these classified machines,
62% of the systems reviewed are operating outside the region of acceptable risk as
defined in the environment doctrine guidance and 17% of the systems review are
operating today at a level of trust outside of available technology. That
situation is certainly not good. '

We urgently need to get on with the task of developing technologies to bring
current and projected operations within prudent levels of security risk. Although
we have made significant progress since the Center was established in January
1981, it is our assessment that the development of the improved security measures
is not keeping pace with the proliferation of internetted and networked
information systems. In fact our exposure to unauthorized access is probably
greater today than it was four years ago for two reasons: (1) security
technology is not significantly more available and (2) the number of computers
accessible remotely has greatly increased. This very real and growing gap between
operational security need and the existing technology base is one measure of
urgency for a strong research program.

One reason for the slow pace of evaluated product development and, hence the
widening gap derives from the methodology and processes used to certify new
products and systems. Today's approaches are fundamentally human-expert
intensive, manual efforts. Although the Center has initiated an education and
training program, we are not training new people in sufficient numbers to keep up
with the demand for new system evaluations. Once assigned to a product or system
evaluation task, people may be largely unavailable for new work assignments for
several years. The Center has been forced to ask the services and agencies to
prioritize their security evaluation needs and only the most important are
undertaken.

Looking ahead, we realize that we are on the bowwave of a very large
endeavor. There is no reason to expect that once evaluated and certified, systems
and products will remain unmodified. And yet good security practice requires that
modified products must be reevaluated. The second and subsequent recertification
efforts would be expected to go faster if the original team members are still
available, but that may not always be possible.

As a community we have not come to grips with the fact that the availability

of trained, trusted-systems designers, specifiers and developers as well as
evaluators is a limiting factor. The situation can only become more difficult if

13

we do not find new ways of doing business. Although the data are insufficent to
project accurate work load trends, we are confident that the human wave approach
can not keep up with demand. We must find automated supplements and replacements
for the present people-intensive evaluation approaches. The situation is going to
get worse before it gets better. We must immediately add and train more people to
handled the immediate demand for additional evaluations. Simultaneously we must
greatly increase and focus our research initatives on developing and promulgated
trusted computer systems design and implementation approaches that are conducive
to an evaluation process requiring reduced levels of manual effort. System
designs that do not address computer security requirements increase the level of
nanual effort for evaluation and decrease the level of confidence in the resulting
evaluation. Research effort on formal specification, verification and eventually
automated theorem provers must be guided by the goals of acquiring and making
available tools that reduce the personnel burden, as well as providing a high
degree of assurance in computer security. Such tools must be developed and made
widely available to industry so that more of the burden of certification can be
placed upon the system developer and contractor.

Because there are only a handful of trusted software experts in the country,
and even fewer trusted hardware experts, the Computer Security Evaluation Center
must adopt approaches for leveraging the maximum return from the people we have
while we educate more people. In the remainder of my talk, I want to focus on the
leverage opportunities we have identified.

I want you to understand what we are trying to do and why so that you can
help us achieve our objectives. The approach I'm going to discuss, while
completely consistent with the philosphy of partnership with industry on which the
center was chartered, adds a new dimension to the existing approaches that will be
continued. As you examine our ideas, keep in mind that our fundamental objective
is to cause more products to be available soomner. So far, the Center has
attempted to motivate industry to carry the burden of security development through
a indirect route of establishing standards, evaluating products, and providing
access to formal specification and verification tools.

This passive approach gives us no control over capability or schedule. We
are left largely at the choice of industry as influenced by the market-place to
move ahead with trusted products. This passive approach is not leading to the
development of trusted products at a rate sufficent to support DoD requirements,

While continuing to motivate industry through the indirect approach, the
Center will additionally accelerate the process by sponsoring development of
exemplary trusted system prototypes. In this undertaking, every effort will be
made to use software engineering practices that facilitate development of machine
independent products that offer maximum reusability. We will focus effort on the
development of common packages of logic that can be used by many vendors. With
this approach the Government will encourage and foster wider competition and can
therefore more easy justify the associated development cost. We plan to place
Government sponsored exemplary implementations in the public domain with wide
availability to vendors. Of course some parts of the code must deal with machine
dependencies. We will seek to isolate and carefully document these portions in
the expectation that vendors would undertake the task of developing the special-
machine dependent packages that interface the common software to their particular
hardware base. Under this stratgey, industry should be able to design, develop,
and market trusted product with less risk than in the past, since they will be
able to obtain clarification on how well the product is likely to satisfy the
requirements of the criteria and they will be able to draw directly from the

14

common work sponsored by the DoD. The approach promises cost and schedule
leverage opportunities for both government and industry.

Reusable machine independent software requires a tightly controlled language
standard. The DoD Ada computer language standard and the Ada compiler validation
facility make Ada the most tightly controlled standard available today.
Additionally, the DoD has made a major commitment to the Ada computer language.
This action alone will mnaturally give preferential treatment to those vendors that
supply future technology base for our primary and most important DoD mission-

critical customers.

We have decided to undertake as an additional research thrust, a commitment
to develop trusted technologies in and for Ada in order to obtain the maximum
leverage within the department. As you know, some within the security community
have raised concern about the feasibility of using Ada to implement trusted
systems. With our commitment to Ada, the Center is taking on the task of
resolving these questions for the community.., In order to move out in this new
direction, we have already undertaken a number of actions. We will use 15 of the
FY-85 manpower space increases to hire new people with Ada experience. These
people will develop Ada foundation technologies like trusted operating systems
technologies, trusted data management tools, and common telecommunications
protocol in and for Ada. We will also began to develop and make available tools
for validation and formal verification in Ada. We are in the process of
redirecting some of the consolidated computer support program activities toward
implementations in the Ada language. If requested additional FY-85 reprogrammed
funding is approved, we will increase our contractor support in this new
direction.

During the approximately 24 months prior to my assignment to the Computer
Security Center, I helped evaluate over 330 proposals from industry leading to the
award approximately 50 contracts totalling over 15 million dollars. Much of that
work involved development of software in Ada. One of the lessons that I learned
from that effort was the critical importance of contracting mechanisms to
facilitate the rapid advancement of technology. We are working with our
contracting officers to develop the infrastructure to facilitate a responsive
contract award process. We will move out as soon as we can establish these
mechanisms and obtain needed funding. We are exploring the feasibility of
sponsoring briefings for industry on our research objectives. We hope to use
these mechanisms to establish an incentive for creative and new thinking on our
problems.

We believe also recognized that there is considerable leverage opportunity
for the Center by working with standards committees, by taking a more activity
role in the Government review of industry sponsored IR&D security related efforts,
and by encouraging a more active and formal exchange of information on security
work sponsored by other Government organizations. We are establishing points of
contact and mechanisms to facilitate our involvement in these areas.

In order to further strengthen our partnership with industry, we are
exploring ways to protect the market incentive for industry to invest private
sector dollars in security related software products. Today, proprietary software
is generally distributed in machine code form to reduce the opportunity for
piracy. This practice also increases the potential for subversion. The Computer
Security Center will undertgke research to develop ways to accept proprietary
software that reduce the risk of subversion.

15

This may require that software be delivered in source code form, be examined
by the Government, -compiled on Government machine and distributed under Government
control in machine code form. To be practical the approach cannot void vendor
warranties and must be responsive to a reasonable updating process. We believe
the DoD move to Ada will facilitate this goal. If successful, this research could
lead to the establishment of a trusted software acceptance facility for the
department.

As we look at the life-cycle systems implication of security, we recognize
that a related capability needs to be developed to place hardware configurations
deemed applicable to the DoD's most sensitive processing applications under strict
configuration control similar to those used to protect communication security
hardware from subversion. We plan to work closely with vendors to develop the
appropriate controlled-access hardware development environments within industry as
a cost effective alternative to forming a totally Government control hardware
verification facility for each vendor's product. Random sampling techniques in
which the hardware is periodically subjected to scrutiny in a Government
laboratory should serve to provide assurances that the hardware continues to meet
security specifications.

Our recommendations calling for three new initiatives dealing with exemplary
software development, a software acceptance facility, and a hardware verification
capability, represent new directions for the Computer Security Center. These
efforts should accelerate the availability of trusted products and must be
undertaken in a way that foster a growing partnership with industry.

These and other recommendations for greatly improving security measures and

reducing the growing exposure to unauthorized computer access are being examined
within the department.

I hope you will take the opportunity during the conference to introduce
yourselves. I will look forward to getting your view on the ideas that I have
proposed. We are looking for new ways to get on with our common objectives of
increasing the availability of trusted software products.

16

Environmental Guidelines

For Using the

DoD Trusted Computer System

Evaluation Criteria
by
Sheila L. Brand

DoD Computer Security Center

1.0 Introduction

~In August of 1983 the Department of Defense Computer Security

Center (DoDCSC) published the document entitled: Department of
Defense Trusted Computer System Evaluation Criteria, CSC-STD-001-
83.(1) The evaluation criteria defined in that document classify
systems into seven hierarchical classes of enhanced security
protection. They provide a basis for the evaluation of
effectiveness of security controls built into automatic data
processing system products. The criteria were developed for the
following reasons:

* to provide users with a yardstick with which to assess the
degree of trust that can be placed in computer systems for
the secure processing of classified or other sensitive
information

* to provide guidance to manufacturers as to what to build
into their new, widely-available trusted commercial
products to satisfy trust requirements for sensitive
applications

* tc provide a basis for specifying security requirements in
acquisition specifications

Two types of requirements are described in CSC-STD-001-83. They
are: (1) specific security feature requirements, and (2)
assurance requirements. The underlying assurance requirements
can be applied across the entire spectrum of Automatic Data
Processing (ADP) system or application processing environments
without special interpretation. However, though the criteria are
application independent, it is recognized that the specific
security feature requirements may have to be interpreted when
applying the criteria to specific applications or other special
processing environments.

17

ough CSC-STD-001-83 provides the yardstick with which to
 mpasure the degree of trust, it does not provide guidance on how
mjjch trust is needed. That is, it does not provide a mapping of
e criteria classes to protection requirements of processing
environments of varying degrees of risk. In order to fill this
void and thereby provide guidance to DoD system managers and
others responsible for designing or procuring secure systems or
evaluating the effectiveness of controls in operationa] systems,
the DoDCSC has formulated doctrinal guidance for using the DoD
Trusted Computer System Evaluation Criteria.

2.0 Scope

The doctrinal guidance has been developed with the objective of
being applicable to DoD systems that are entrusted with the
protection of a wide range of information. It addresses national
security related classified and unclassified information. It
also covers sensitive and nonsensitive unclassified information
that is not national security related.

3.0 Determination of Risk

In order to determine the minimum criteria class necessary to
protect information processed by a system it is first necessary
to determine the security risk inherent in that system. Looking
for parameters that would be universal to all DoD systems, the
DoDCSC chose two which are commonly used throughout the Defense
community. They are:

* sensitivity/classification of information processed by the
system - which is a measure of the value that DoD places
on information

* clearance of system users - which is a measure of trust
DoD places in users

3.1 Risk Index

Using the parameters of sensitivity and clearance, the DoDCSC
formulated that the inherent risk in a system, to be designated
as the RISK INDEX of a system, is defined as the disparity
between the maximum clearance or authorization of the least
cleared system user and the maximum sensitivity of data processed
by a system. In other words, RISK INDEX is defined by the
disparity between data sensitivity and user trust.

In order to calculate the RISK INDEX for a system it is necessary

to assign numeric rating values to the range of sensitivities and
the range of clearances.

18

Using assigned numeric ratings the risk index can be calculated:
RISK INDEX = Rmax - Rmin

where:

Rmax = rating associated with the system's maximum data
sensitivity

Rmin = rating associated with the maximum clearance of
the least cleared system user

The rules for arriving at Rmax, the rating for maximum
information sensitivity, also take into account the presence of
non-hierarchical sensitivity categories such as NOFORN (Not
Releasable to Foreign National) and PROPIN (Caution - Proprietary
Information Involved). The term "sensitivity categories" also
encompasses compartmented information and information revealing
sensitive intelligence sources and methods.

4.0 Open and Closed Environments

In addition to user clearance and data sensitivity the DoDCSC
formulated that two types of environments had to be accounted for
in arriving at the appropriate Criteria Class. These deal with
the environment in which the application is developed and
maintained.

A system whose applications are not adequately protected is
referred to as being in an open environment. If the applications
are adequately protected, the system is said to be in a closed
environment.

Here application refers to those portions of a system including
portions of the operating system that are not responsible for
enforcing the security policy.

4.1 Closed Environment

A closed environment is defined as one in which both of the
following hold:

* Application developers (including maintainers) have
sufficient clearances and authorizations to provide
acceptable presumption that they have not introduced
malicious logic. Sufficient clearance is defined as
follows: where the maximum classification of the data to
be processed is Confidential or less, developers are
cleared and authorized to the same level as the most
sensitive data; where the maximum classification of the
data to be processed is Secret or above, developers have
at least a Secret clearance.

19

* Configuration control provides sufficient assurance that
applications are protected against the introduction of
malicious logic prior to and during the operation of
system applications.

4.2 Open Environment

An open environment is defined as one in which either of the
following holds true:

* Application developers (including maintainers) do not have
sufficient clearance (or authorization) to provide an
acceptable presumption that they have not introduced
malicious logic.

* Configuration control does not provide sufficient
assurance that applications are protected against the
introduction of malicious logic prior to and during the
operation of system applications.

The objective of differentiating between open and closed
environments, in terms of risk, is to take into account the
possibility of the insertion of malicious logic during the
system's development and maintenance phases. The presumption is
that systems in open environments are more likely to have
embedded maiicious software than those developed and/or
maintained in a closed environment. Today, most systems are
developed and maintained in an open environment.

5.0 System Users

In making the determination of RISK INDEX the analysis must
address two types of possible users. These are: :

* direct users: users with direct access to the system;
that is, users who can provide input to or obtain output
from the system without the intervention of another human,
and

* jndirect users: wusers who do not have direct access to
the system, but who can still provide input or obtain
output from the system.

While it may be obvious why direct users must be accounted for in
the determination of RISK INDEX, the role of indirect users may
not be as obvious. To understand their importance consider the
following example: Suppose that there is a system operating in
the System High Mode at the Secret level and this system
automatically labels its output. By extension, all direct users
are cleared and are trusted to at least the Secret level.

20

Under current DoD policy, all output produced by this system
should, before release, be manually reviewed and assigned the
proper sensitivity markings by a responsible authority. If this
is done, then there are no indirect users, and the Rmin value
used in calculating the RISK INDEX is that associated with the
least cleared direct user.

However, if there is reason to believe that the output will not
be manually reviewed prior to release, the element of trust that
was previously placed in the responsible authority reviewing the
output is now placed in the computer system itself. The labels
that this system places on its output are trusted to be accurate,
and the output is distributed according to the labels. 1In the
example, if a listing is marked Confidential by the system it may
be sent to someone with only a Confidential clearance. This
person should then be considered an indirect user, for he has
received output from the system, and the distribution of that
output was based solely on the label attached by the system.

At this point, the system security officers should carefully
examine the circumstances to determine whether or not they are
truly operating in System High Mode. The assumption was made
that all system users are cleared to at least the Secret level,
and yet someone with only a Confidential clearance has just
received output from the system without it being manually
reviewed. The system, therefore, is being trusted to accurately
separate and label various sensitivity levels of data (at least
Confidential and Secret, in this example). This assumption of
trust is not required of systems operating in System High Mode.

As the example shows, failure to take into account the
possibility of indirect users may result in an underestimate of
security requirements. In this case, calculation of RISK INDEX,
using the direct user's clearance for Rmin, would result in
requirements for a system possessing need-to-know protection.

- However, when the indirect user's clearance is used for Rmin the
resulting RISK INDEX indicates a need for mandatory access
control protection.

6.0 Doctrinal Guidance

As of the writing of this paper The DoDCSC had not yet finalized
the document containing the doctrinal guidance. However TABLE 1
is provided in order to give the reader a draft representation of
the guidance.

TABLE 1: Security Index Matrix For Open Security Environments,
illustrates the results of applying the doctrinal guidance to
individual minimum clearance/maximum data sensitivity pairings,
where no categories are associated with maximum sensitivity below
Top Secret.

21

7.0 Conclusion

The DoDCSC has formulated doctrinal guidance to be used with The
DoD Trusted Computer System Evaluation Criteria by identifying
the minimum Criteria Class of system required for a given RISK
INDEX. RISK INDEX is defined as the disparity between the
minimum clearance or authorization of system users and the
maximum sensitivity of data processed by the system.

[

The purpose for developing this guidance was to make it available
for use in establishing -minimum computer security requirements
for the processing and/or storage and retrieval of sensitivity or
classified information by the DoD whenever automatic data
processing systems are employed.

REFERENCE

1. DoD Computer Security Center, Department of Defense Trusted
Computer System Evaluation Criteria, CSC-STD-001-83, 15 August
1983.

22

TABLE 1

SECURITY INDEX MATRIX
FOR OPEN SECURITY ENVIRONMENTS!

Maximum Sensitivity of Data

TS 1C MC

U * * *
Minimum N Al * *
Clearance C
or S
Authorization TS(BI)
of System Users TS(SBI)

1C

MC

1Environments defined in the shaded area are for systems that
operate in system high mode. No minimum level of trust is
prescribed for systems that operate in dedicated mode. Categories
are ignored in the matrix, except for the inclusion of compartments
at the TS level.

21t is assumed that all users are authorized access to all
compartments on the system. If some users are not authorized for
all compartments, then a class Bl system or higher is required.

3where there are more than two compartments, at Teast a class
B2 system is required.

Uncleared or Unclassified

U=)

N = Not Cleared but Authorized Access to Sensitive Unclassified
Information or Not Classified but Sensitive

C = Confidential

S = Secret

TS(BI) = Top Secret (Background Investigation)

TS(SBI) = Top Secret {Special Background Investigation)
1C = One Compartment

MC = Multiple Compartments

23

WORKING TOWARDS Al

D. Elliott Bell

Department of Defense
Computer Security Center

Abstract. Building a system to meet the Al requirements for certification
necessitates scheduling work activities and documentation related to Al
certification within a total system development schedule. This paper proposes
one approach to synthesizing development activities and Al certification
requirements.

INTRODUCTION

With the advent of the '"Department of Defense Trusted Computer System
Evaluation Criteria" CSC-STD-001-83 (hereafter called the "Criteria"), system
developers and system acquirers were put in the position of being able to
specify very precisely degrees of computer security. Initial consideration,
however, identified a gap between the Al requirements in the Criteria and the
process of system development. From a development point of view, it is as if
the Criteria say '"At the end of the development process, the collective
engineering notebooks will contain the following." The Criteria do not (and
probably should not) detail how the activities and their documentation should be
monitored and reviewed, nor even how they should be ordered. This paper will
describe one approach to organizing Al certification activities and
documentation within the framework of a typical system development schema.
First, both the Al requirements and the development process will be summarized.
Then a synthesis that grew out of consideration of two actual programs - BLACKER
Phase 1 and the Inter-Service/Agency Automated Message Processing Exchange (I-
S/A AMPE) - will then be presented along with some unresolved considerations.

Al REQUIREMENTS SUMMARY

The Criteria divide requirements into feature requirements and assurance
requirements. For the purposes of this paper, the Al requirements will be
viewed as quadripartite: system features; assurance formalisms; activities; and
documentation.

The system features that are required concern security policy,
accountability, system integrity, and trusted facility management. Also
included are system architectural features such as domain separation, process
isolation, the object abstraction, segmentation, and layering that have
historically been shown to simplify assurance. One feature (audit) is present
to the extent that it is at least in part to offset a known area of
vulnerability, that of covert channels. - Thus the full list of auditable events
is tied to the successful activity of covert channel analysis and its
documentation. The full set of features required is an amalgam of direct
security transliterations and supplementing preventive and monitoring
techniques.

24

The assurance formalisms include secure system architecture, minimalization
of the Trusted Computing Base (TCB), the principle of least privilege, an
implementation of the reference monitor, and a full design '"certification
chain'". The design certification chain begins at the security policy and
proceeds through the security policy model to both the Detailed Top-Level
Specification (DTLS) and the Formal Top-Level Specification (FTLS) and finally
to the coded implementation.

The activities required for Al certification are of several types. There
is a set of consistency and correspondence activities: show that the FTLS
accurately represents the TCB; show that the FTLS 1is consistent with the
security policy model; and so on. There are also testing and analysis.
Analysis of the specifications for covert channels must be undertaken, results
quantified, and, as directed, channels reduced or eliminated. In addition, an
implemented system must undergo full-scale security testing to discover design
and implementation flaws. Discovered flaws must be rectified. Finally, some
support activities are required, notably configuration management (both of the
usual design documentation and of the special Al documentation) and trusted
distribution.

Documentation to support an Al certification runs a wide gamut £from
definition and justification of the design certification chain to a security
users' guide. 1In general, every feature, every assurance formalism, and most of
the activities are required to be documented.

SYSTEM DEVELOPMENT PROCESS
The system development process, vencompassing both hardware and software

development, is divided into phases normally delimited by formal review of
program documentation. For the purposes of this paper, the paradigm shown in

Figure 1 will be adopted. There are five phases - the definition of
requirements, design, build, test, and acceptance. The phases overlap, the
overlaps highlighted by shared documentation and a program review. The

requirements definition phase ends with the System Requirements Review that
addresses the adequacy of the Functional Description of the system to satisfy
the needs documented in the Statement of Requirements. The design phase begins
at the System Requirements Review and consists of a three-step refinement of the
Functional Description. The three evolving design documents are the System
Specification (reviewed at the System Design Review), the System/Subsystem
Specification (reviewed at the Preliminary Design Review), and the
Implementation Specification (reviewed at the Critical Design Review). At the
Critical Design Review, the development process enters the build phase. The
Implementation Specification is the basis for the building of actual modules,
whether the process is the writing of computer programs or the fabrication of
hardware items. The build phase ends when the modules have been tested
individually and the test phase begins. (The demarcation between the build and
test phases is not as clear as that between the earlier phases inasmuch as the
testing interacts with the building and the progress on different subsystems
proceeds at different rates.) Testing proceeds from modules towards the full
system, culminating with a test of the total system during the Developmental
Test & Evaluation. This test activity and its documentation initiates the
acceptance phase which includes both an Operational Test & Evaluation and a
final acceptance test and a sign—-off document.

25

This representative system development schema can illustrate several
philosophical points about the system development process. First, the
underlying assumption 1is that there 1is a distinction between the system
developer and the system acquirer or '"user" who promulgates the Statement of
Requirements. Even if a system is developed within a single organization, this
assumption tends to be supportable as the developer and user roles are adopted
by different subelements of the organization. Second, the review milestones
within the development process supports a compromise between the developer and
the user. The user needs to be assured periodically that the development is
progressing well. The developer needs some assurance that the user understands
and approves the direction that the development is taking. The development
reviews and the documents that support them (particularly the design reviews)
are incremental program definitions where the developer and user jointly agree
to proceed and to share the risk and the potential cost of good faith errors
that may be found later in the process. All the development activities and
documentation are fit into the same incremental progress schedule. For example,
logistics planning and test plans are undertaken in parallel with the design
activities and the relevant documents and milestones are scheduled so as to fit
naturally into the larger development review schedule.

The Al computer security certification requirements can be viewed as an
additional set of requirements that need to be added to the development schema.
The question is "Where do the Al requirements fit in the larger system
development context?"

PROPOSED SYNTHESIS

Inserting the Al computer security requirements into the system development
process is not nearly as formidable as it seems at first blush. Most of the
requirements fold in neatly as minor additions and extensions to usual design
and documentation tasks. The primary exceptions are the additions of a design
certification chain and of covert channel analysis.

System Features. The system features required for Al certification
constitute a checklist of items that should be reflected in the usual design and
user documentation. This checklist is of use to both the user and the developer
and should, in fact, act as a memorandum of understanding concerning the system
features that will be scrutinized carefully for computer security relevance.
Three particular features deserve more comment. (1) The access control
features are inextricably tied up with the assurance formalisms of security
policy and its enforcement. The review of these features must of necessity be
coupled with a review of the corresponding elements of the design certification
chain. (2) The user functionality features of trusted facility management,
while directly addressing security issues, really embody just one more example
of an identified class of user. The requirement to include such features and to
document them in the trusted facility manual is not, therefore, a new type of
requirement, but rather another application of a standard system development
task. (3) The audit function for a system working towards Al certification is
important, extensive, and incompletely defined at the outset of system
development, The full definition of the audit function itself and of the list
of auditable events is arrived at through several of the activities required in
an Al system development, particularly covert channel analysis and routine
design analysis.

Assurance Formalisms. With one major exception, the assurance formalisms
are supported by computer-security-related activities and are reported in

26

specially tailored design documentation. Such items as the secure architecture,
the definition and justification of the TCB perimeter, the application of least
privilege, and the instantiation of the reference monitor concept fall into this
category. The design certification chain is more complicated. Two elements of
this chain, the DTLS and the software code, are not new requirements. The other
elements are new, as are the links between them. An important point is that the
DTLS consists of a set of design documents, each one a refinement of the one
before. Experience 1in system development has shown that the compromise of
publishing, reviewing, and approving design documentation at several milestones
(design reviews) leads to a better appreciation by both the user and the
developer of the direction and the progress of the effort. In an analogous
fashion, the FTLS is usually not monolithic but consists of levels of refinement
just 1like the DTLS. The Criteria call for an FTLS that corresponds to the
model, that 1is 1internally consistent, and that corresponds to the
implementation. A developer might well prefer to present the FTLS and its
assurances late in the development schedule. That approach would, however, give
the user no ability to gauge the progress of the development of the FTLS. As a
compromise, therefore, it is proposed that the refinement of the DTLS and the
FTLS be kept in rough lockstep. That is, that at the major design reviews a
version of the FTLS comparable in level of detail to the design documents under
review be presented, reviewed and approved. Exactly equivalent risk will be
jointly assumed by the user and the developer, as in the case of the DTLS.
Additionally, by assuring that the developing DTLS and FTLS describe the same
design, confidence 1in the consistency of each set of refinements can act
synergistically to enhance the total confidence in the design. Moreover, the
requirements to show that both the DTLS and FTLS correspond to the model and to
the implementation code should be able to interact to mutual benefit.

Activities. Five major new activities must be added to the system
development schedule. (1) The development of the design certification chain
(particularly the FTLS) should proceed in lockstep with the development of the
DTLS, as described above. (2) The covert channel analysis should be undertaken
after the FTLS and DTLS are available, namely after successful completion of a
Critical Design Review. It is true that any necessary revisions uncovered
during the build or test phases might necessitate repeating this analysis, but
since the probability of a major revision being necessary is low, the risk is
worth taking. (3) Security testing to discover security protection flaws
should be undertaken after a stable system exists. This testing should
therefore be done in parallel either with the Developmental Test & Evaluation or
with the Operational Test & Evaluation. The decision is subjective and is based
on the potential for design change during testing. An important decision that
must be made early in a development is what role the developer will play in the
security testing. '"No role" is probably not reasonable. The spectrum runs from
training the security test team through providing back-up consultant support to
providing team members. The impacts on the "contract" are substantial and the
issue should be resolved as soon as is feasible. (4) A configuration
management program for both normal system development material and for Al-
specific material must be executed beginning at the start of the design phase
and lasting until system acceptance. (5) The trusted distribution activity
should begin late in the test phase and is a direct extension of the
configuration management program.

Documentation. The documentation required for Al certification falls into

two classes: information tht fits naturally into normal system development
documentation and information that is idiosyncratic to Al certification.

27

Figure 2 illustrates one possible packaging for Al documentation. Some of the
new documents (particularly the Design Certification Document) combine several
Al requirements. Since the component topics may be addressed at different
times, a prudent approach to making documentation available when needed while
minimizing unnecessary cost and effort rewriting documents is clearly called
for.

SUMMARY

Adding computer security requirements to the system development process
when working towards Al need not be difficult. The security features form a
checklist to be used in the development process. The assurance formalisms
consist of design analyses and the creation of a design certification chain.
The development of the FTLS and the DTLS should be intertwined, kept in rough
lockstep, and reviewed in parallel during the design reviews. Most of the
required activities fit naturally into the development schedule using standard
design analysis documentation formats. The covert channel analysis has no
traditional analogue, but should be initiated after the Critical Design Review.
Based on the role chosen for the developer in security testing, straightforward
planning will add routine tasks and documents to the schedule. The
documentation requirements are satisfied either by tailoring standard system
development documents or by adding Al-specific documents to the 1list of
deliverables.

This proposal covers all the requirements for Al certification, but it
leaves several issues unresclved. One that has been mentioned is the role of
the system developer in security testing. Another is the exact .manner of
intertwining the FTLS and DTLS development: should the DTLS lead the FTLS or the
reverse? The decision is immaterial to the user but can have a marked effect on
the developer. Managing the effects of activities on features (covert channel
analysis on audit) or of assurance formalisms on features (security architecture
on access control features) is fraught with the possibility for failure.
Clearly this plan can aid the potential developer of an Al system, but it is by
no means the last word about working towards Al.

Statement of Requirements ! Define Requirements
Functional Description ! ! Design System Requirements Review
System Specification ! System Design Review
System/Subsystem Specification ! Preliminary Design Review
Implementation Specification ! ! Build Critical Design Review
Module Build !
Module Test Report ! Test Module Test & Evaluation

1

Subsystem Test Report ! Formal Qualification Test
System Test Report ! Developmental Test &
!
!

Evaluation
Requirements Test Report ! Accept Operational Test &
! Evaluation

Acceptance Document !

Figure 1. System Development

28

- TAILORED DOCUMENTS

System Specification DTLS
System/Subsystem Specification DTLS
Implementation Specification DTLS
Users' Manual Security Users' Manual

Trusted Facility Manual
Security Features Guide

Configuration Management Plan Security Configuration Management Plan
Design Analysis Report Design Analysis

Test Plans, Procedures, Reports Security Test Plans, Procedures, Reports
Code . Code

NEW DOCUMENTS

Design Certification Document Security Policy
Formal Security Policy Model
Model Supports Policy
Model Internally Sound
FTLS
DTLS Cross-Reference
Model-to-FTLS
DTLS~to-Model
FTLS Completeness Proof
FTLS-to-Code

Formal Verfication Document Verification Plan
Verification Tools

Covert Channel Analysis Document ~ Covert Channel Analysis
System Security Architecture Document Security Features
(This document could be included Reference Monitor
in the DTLS documents.) Process Isolation

Al System Architecture

Figure 2. Packaging of Al Documentation

Acknowledgements. My thoughts on organizing Al computer security requirements
within a system development were formed during a variety of discussions with
colleagues. Within the the Department of Defense Computer Security Center, the
contributions of M. Schaefer, J. Houser, T. Losonsky, and L. 0'Dell were
particularly noteworthy. Discussions with C. Savant, G. Cole, J. Hemenway, and
D. Cooper at SDC also proved very valuable.

29

THE PRACTICAL ASPECTS OF MULTILEVEL SECURITY

Terry S. Arnold
Vice President, Technology
Merdan Group, Inc.
4617 Ruffner Street
San Diego, CA 92111

ABSTRACT

The technology base for multilevel secure computer systems has

been evolving over the past 15 years. With appropriate develop-
ment constraints this technology is sufficiently mature to be
incorporated in the current generation of new C3I systems. This

paper addresses these constraints from the perspectives of con-
cept formulation and actual development. The process of defining
these constraints and the pitfalls which must be avoided are
described. The management posture needed for successful multi-
level secure development is presented.

30

INTRODUCTION

The multilevel security issue has been widely discussed over
the past 15 years., The positions taken by various people range
from that "it is possible" to "nothing less is acceptable." This
paper presents the views of one practitioner who believes that it
is currently feasible, as long as appropriate constraints are
applied by management. The emphasis of the paper is to define
the impact of multilevel security on the C3I development process
and, in particular, the management issues involved.

WHY MULTILEVEL

Why we need multilevel secure operation 1s a question that
many people ask. The reasons are very basic and near and dear to
the manager's heart. The basic reason is that C31 is inherently
multilevel due to the fact that compartmentation 1s required for
some of the "I" data. When one thinks of applying a system high
policy where many compartments are involved, it becomes clear
that this type of policy does not make sense. In addition to
this aspect, successful implementation of multilevel security
will allow cost effective sharing of even now expensive computer
resources. One of the biggest benefits lies in that multilevel
secure operation will allow controlled infeormation sharing within
the C3I community.

WHAT DOES MULTILEVEL SECURE MEAN?

For a system to be multilevel secure means several things.
The first and most significant is that we trust a computer to
enforce our security policy with respect to all of our data. The
means by which this security policy is enforced has several
aspects. The primary methods are to separate data based on
differing levels of classification/compartmentation and strictly
control user access. These concepts are not new to the world of
procedural security. The only thing that is new 1is that a
computer is used as a surrogate System Security Officer (SS0).
One of the functions of this automated SSO is to make a log of
all attempted security violations.

NEEDED TECHNOLOGY

The technology needed to support multilevel security covers
most of the computer science spectrum, First and foremost is the
concept of the reference monitor, The reference monitor is the
automated embodiment of the SS0. We need a rigorous expression
of our security policy in the form of a security model. We need

31

methods for verifying that our security policy is, in-fact, being
enforced by the implementation. Lastly, we need computer archi-
tectures which will efficiently support the reference monitor.

CURRENT TECHNOLOGY

The current state-of-the-art in multilevel security 1is
evolving at a fairly rapid rate. While there are still some
holes in the technology base, research is well under way to £fill
in the gaps. We have abstract mathematical models which have.:
been shown adequate to describe most aspects of the Department . of
Defense (DoD) security policy. The Bell-La Padula model devel-
oped at MITRE is the most widely accepted such model. Practical
application of this model quickly revealed that real systems need
some exceptions to this model. "While some people prefer to wave
hands in this area, progress 1is being made in that concrete
models are being put together for real systems. The fact that
concrete models of what it means for a'given system to be secure
(i.e., a rigorous statement of the ‘security policy) are being
constructed bodes well for application of multilevel security
technology in the C3I community. At the present time such con-
crete modeling is not widespread '‘even in the computer security
community, but with time and applied determination, we will carry
the day. The situation in the area of verification methods is
somewhat less rosy. We do have methods for formally specifying
and verlfylng multilevel security at a fairly high level. Prob-
léms arise in two areas. The first is in the area of exceptions
to the Bell-La Padula model, where some of the methods do not
have a means for expressing the allowed exceptions within their
notation, Several research groups are actively working.to elimi-
nate this difficulty. We expect positive results in the near
future. The second area where problems arise is verification of
the actual implementation. Automated verification of software
has been a research topic for a number of years. At the present
time, we do not have viable automated tools to support. verifia-
tion of software implementations., Some research groups are work-
ing in the area, but solid results may be several years away. At
the present time we must use manual methods which are labor
intensive. Unfortunately, the labor resource needed (security
trained software engineers) 1is in short supply and tend to "burn
out" on this type of work. On the brighter side, security kernel
designs embodying the reference monitor concept are starting to
appear. Several have actually been implemented and certified to
operate in the multilevel secure mode. Securable computer archi-
tectures are becoming .common, with securable mlcroprocessors
starting to be produced in productlon guantities,

32

EXPERIENCE TO DATE Vt

The exper1ence w1th 1mplement1ng multllevel secur1ty has met
with mixed success,'although even the failures have added greatly
to the experience base of . the’ computer securlty community.: The
initial effort to.use MULTICS as a base for a multilevel secure
operating system for the. A1r Force Data Serviges Center produced
what has to be con51dered a. classic penetration study The prob-

lems identified were remedled ‘through what :we beliave to be the

first practical operat1onal application of modern: multilevel
security technology. '~ The SACDIN system fostered the development
of much of the technology base that we have to draw.upon. At
this point in time it-is not yet operatlonal, but the prospects
are excellent. The AN/GSC-40 was an effort to 1mplement multi-
level security for a spec1a1 puroose network control application.
It is operational today and represents, to our knowledge, the
first successful app11cat10n of modernfmultllevel secur1ty
technology in an operational . env1ronment.; ‘The :AUTODIN II pro-
ject attempted to apply the then state-of- the-art. of multilevel
security to building a. replacement of AUTODIN.. The project
demonstrated that formal spec1f1catlon and verification are prac-
tical for a large scale system; however, it became clear that the
software development process must be tightly controlled. The
KVM-370 project attempted to apply the reference: monitor concept
to an existing commercial’ operatlng system, The'oroject appears
to have been successful, -but there are reports that performance
is less than optimum.- The 'SCOMP-project is a commerc1al attempt
to produce a multilevel secure operating systems This" effort is
partlcularly notable, sinceiit has been- submitted to the DoD

Computer Security Center for ‘evaluation. at the Al (i.e.,
highest) level. The jury is still out -on SCOMP, but the
prospect for off—the-shelf multilevel secure operating systems
is improving. The pro;ects descr1bed above are onily part of the
experience base of the computer securlty communlty, but they are
all in their own way landmarks in ‘the evolution of this
technology. A number - of “new: programs ‘are underway to
incorporate multilevel ‘security - technology in real world
systems. 1In partlcular, I- S/A AMPE,; Regency Net,'and 'BLACKER.
are rather serious about ach1ev1ng multllevel securlty as partf
of their project. goals. - : :

LESSONS LEARNED

As a result of the’ efforts descrlbed above,:a'great deal has
been learned about what it really takes to achieve multilevel
security. The first and. possibly most 1mportant ‘lesson: is per=
haps typified by the WW 11 expression "Keeg it 51mple stupid." -
The attempts at generallty have eithex resulted in failure or
poor performance. Secur1ty models need to be tallored for the

33

http:describ_.ed

application, since the general models do not address the
specifics of the real world. Formal (in some sense) specifica-
tions of what a given system 1s supposed to do correctly are
needed. In the absence of such specifications we have difficulty
in determining that we have a secure system. Securable computers
are becoming very common, since the architectural features that
are needed for general applications are similar to those required
to support a reference monitor., Painful experience has taught us
that standard software engineering practice is not good enough to,
provide the quality of software needed for multilevel security.
This is not a failing of software engineering technology, but
management of the software development process. Verification of
the product of the software engineering process is needed and
must occur in parallel with it.

TRUSTED COMPUTER SYSTEM EVALUATION CRITERIA

The DoD Computer Security Center (DoDCSC) was established in
1981, The mission of the DoDCSC is to serve as a focal point for
computer security throughout the DoD. One of its major accom-
plishments has been the publication in 1983 of the Trusted
Computer System Evaluation Criteria (TCSEC). This landmark docu-
ment defines eight evaluation categories for trusted computer
systems. While the main thrust of the TCSEC is directed toward
mainframe general purpose systems, they are being successfully
applied to systems which employ embedded computers. The TCSEC
defines fairly specific criteria which a computer system must
meet to be evaluated at a given level. The one criticism which
has been made is that the TCSEC does not define the category that
a given system must fall into for it to be considered adequately
secure. While some may view this as a fatal flaw, it has not
hampered application of the criteria, in that the serious workers
in the field are in agreement about what levels are appropriate
for a given application.

The following evaluation categories are defined in the
TCSEC:

Beyond Al

Al Verified Design

B3 Security Domains

B2 Structured Protection

Bl Labeled Security Protection

C2 Controlled Access Protection

34

Cl Discretionary Security
D Minimal Protection

These criteria call out increasing levels of required secur-
ity features and development regquirements as one proceeds from
category D upward on the scale, Determination of what level that
a given system actually meets is one of the elements of the
charter of the DoDCSC. Unfortunately no commercially available
systems have been completely evaluated with respect to the
Criteria at this time. This state of affairs is going to change
in the near future as several vendors have submitted products for
evaluation. The impact time that this will have on the C3I
community will increase with time, in that some of the major
computer vendors are actively working the problem. However, for
new program starts in the next year or so, the C3I Program
Manager will have to "roll his own" security design and start
from scratch in the evaluation area. While this may seem to be a
somewhat sad state of affairs, it should not come-as much of a
surprise since many of the C3I systems in place or under develop-
ment use custom operating systems rather than computer vendor
supplied "off-the-shelf" operating systems. The DoD efforts
toward standardization of hardware and software should improve
this situation significantly over the next five years. Even when
these products finally are available, a C31 Program Manager is
still going to have to apply good security engineering practice
to build his system on these foundations.

HOW TO DO IT RIGHT

All of this technology would go to waste unless there was a
systematic approach to implementing multilevel security for a
given application. Such approaches have evolved over time and
can be summarized by the following four seemingly simple steps:

DEFINE IT SECURE

BUILD IT SECURE

PROVE IT SECURE

KEEP IT SECURE

The first step is where security models come into the
picture. Defining up front exactly what it means for a given
system to be secure is a very important first step. It is a very

good idea to choose a TCSEC evaluation category at this point in
time. The second step is really the toughest one in that the

35

temptations to cut corners during the development process abound.
Most software developers will strongly object to the constraints
which must be placed on them in order to successfully perform
this step. We will address these constraints in detail below.
The third step will be successful only 1f the second step was
done properly. The term "PROVE" has many interpre=tations in the
computer security community. These interpretations range from
the somewhat naive concept of pure testing to the extreme of
mathematical proof of correctness, The TCSEC play a major role
in that they define levels of checking that are appropriate. The
last step is the simplest in that it consists of little more than
configuration management coupled with procedural security.

DEVELOPMENT CONSTRAINTS

As we mentioned earlier, constraints need tc be placed on
the development process if multilevel security is to be success-
fully implemented. Most of these constraints are derived from
common sense, but the necessity of them has been learned the hard
way. The first constraint is to perform all development in a
secure environment. The importance of this has only very
recently become public with the recent rash of "hacker" break ins
to what many people thought were "secure" computer systems. The
usual means for providing a secure environment is to use a dedi-
cated/closed computer for all development and to treat all soft-
ware as 1f it were classified. The second constraint 1is to
recognize that security must drive the design. This may cause
some difficulty in that most software developers will want to
reuse previously developed programs which were not designed orx
developed with security as a driving requirement. A security
model of the application should be the first order of business.
This model should be a concrete statement of what it means for
the application to be secure, A formal specification of how the
security model will be enforced is the next item which needs
definition., There is a strong tendency for the technical types
to start waving their hands at this stage, since few of them
understand the role of a formal specification. To most of them
MIL-STD-490 is a millstone around their neck to which they pay
only lip service, The degree of formality for the specification
may vary but the emerging technigques which gave a strong
theoretic basis are far and away the best. When a mathematically
based formal specification method has been used it is feasible to
show that the specification satisfies the security model and thus
describes a secure system. Once the specification has been shown
secure then it is appropriate to start detail design. There is a
very strong tendency to start the detail design before the
specification is shown to be secure. This may seem like a time
saver but experience has shown that this is not the case.
Verification of the detail design is a necessary step in that

36

most, if not all, designs initially exhibit significant security
flaws., Verification of the actual implementation should be
performed, since testing has the unenviable record of showing
only the presence of errors and not their absence. In one case,
testing lulled a program manager into believing that a security
flaw exposed by verification in fact did not exist. This PM was
rather shocked when the "test" suddenly displayed the flaw some
months later after a few "minor" software changes.

MANAGEMENT ISSUES

In the material presented above it has become clear that
significant management issues arise when multilevel security is
involved. The first issue 1is whether a computer 1is really
needed. Often there are hardware solutions which can make the
job easier. Hardware solutions are preferable, since they are
better understood and more easily analyzed, The second issue is
what does it mean for your system to be secure., This is clearly
important, since it will almost always have a major impact on the
overall design. The third issue is what are your accreditation/
certification requirements. Each of the services has some form
of accreditation/certification regulation. Figure 1 illustrates
the relationship between these regulations and the Executive
Order which forms the base requirement., A key step is to deter-
mine what your specific requirements are in this area. Getting
the accreditation/certification authority in at the start is a
critical step. Six months before IOC is a bit late if success is
a desired objective. Require the developing contractor/agency to
provide all of the data needed for security evaluation. This
seems like a minor point but the standard data items don't pro-
vide sufficient technical data for security evaluation, Lastly
stick by the rules come hell or high water,

CONCLUSIONS

Multilevel security is feasible today when appropriate con-
straints and technology are employed. The needed technology
exists in that we know what has to be done and how to do it
right., We have a gap in that we cannot just take products off-
the-shelf and use them to solve our security problems. Manage-
ment by the book is required for success. Unfortunately only
part of the "book" exists today. Efforts are underway to flesh
out the "book" particularly in the area of data item descrip-
tions. The light at the end of the tunnel is getting brighter
and it is looking a lot less like a train coming the other way.

37

Rules as the Basis of Access Control in Database Management Systems
David A. Bonyun

I.P. Sharp Associates Limited
600-265 Carling Avenue
OTTAWA, Canada KIS 2El

INTRODUCTIOR

From almost the beginning of the work aimed at the creation of provably
secure computer systems, the application area of databases and their management
has been of interest and near the top of the list of significant peripheral issues
to be pursued. While the primary effort was aimed at operating systems and the
reference monitors which they were to contain, other activity was planned and
executed in the database area. Both Systems Development Corporation [Hinke 75]:
and I.P. Sharp Associates [Grohn 76] were contracted to investigate the DBMS
problem and both chose to limit their research to those databases which were
relationally organized. A secure RDBMS was the elusive goal.

The 1982 summer study session, at Woods Hole, Massachusetts, sponsored by the
Air Force Studies Board of the Kational Academy of Sciences, reviewed the area and
determined that the relational model was the most attractive from a theoretical
(and hence, it was hoped, from a provable) point of view. Three different classes
of database were considered at Woods Hole: the first consisted of data of just
two different security levels; the second consisted of data which was largely
textual -~ e.g. messages or documents; the third constituted the general case. In
each case, DIBMS problems requiring solutions in the foreseeable future were to be
addressed as fully as possible given the present state-of=-the-art.

These three cases were chosen principally because it was believed that they
offered problems potentially solvable in the near, middle, and long terms
respectively. Moreover, each case was an abstraction of one or more real
situations presented to the session’s steering committee by a variety of agencies
of the U.S. govermment.

There was at least one significant common element to emerge from the
briefings prior to the Woods Hole session. Tne agencies who provided the
briefings almost all felt that their data ought to be marked at the data element
level. Neither the SDC work nor the IPSA work had seriously contemplated that
security ought to be enforced at this fine level of granularity. Indeed the IPSA
team had opted for attributes to apply to full relations while SDC chose to assign
attributes to columns (or domains).

The second of the three cases presents a significantly different picture of
the database from the first and third. Databases appear to be separable into two
classes depending upon the degree of volatility which the data structures exhibit.
Whereas the first and third cases, the so-called "binary" and "general" cases,
appear to focus primarily on databases in which the structures are quite rigid,
with variable data within them, the second, textual, case carries with its
definition the corollary that the major data items - the messages or the documents
- are of rather variable structure. If the designation, Atom, is associated with
the smallest unit to carry an independent security attribute, and length is

38

accepted as the count of atoms within the data item, then "paragraph marking" (a
frequently imposed requirement involving designating security attributes for each
paragraph within a document or the textual part of a message) will cause wide
variability in the length of data items. This seems to imply that the structures
holding these data items, or containers, are not really fixed and rigid but
variable to accommodate the variety of different situations which may arise. This
paper will refer, subsequently, to databases of types A and B: the rigidly,
structured ones and the more fluidly structured ones respectively.

During the time which elapsed between the original studies and the Woods
Hole gathering, some manufacturers (notably Intel and Honeywell) proposed
architectures involving the notion of capability. Essentially, a capability is a-
property (or, in many cases, a possession) of a user. It enables him to access a
particular datum or collection of data and may further determine what he may do
with the data so accessed.

It is necessary to delineate the difference between non-discretionary and
discretionary security policy. The former (sometimes called mandatory security
policy) says that information may not be permitted to flow to those persons, or
computer locations, not authorized to receive it. In this context, authorization
usually implies the matching of security attributes (clearances for users and
classifications for data) to determine that those of the recipient or destination
are "higher" than those of the sender or scurce. "Higher" is not usually
interpretable on a linear scale (e.g. Secret is higher than Confidential), but is
more frequently equivalent to the notion of dominance in a partially ordered set
(or lattice). In later parts of this paper we shall say that one security
attribute "dominates" another rather than that one is higher than the other.

On the other hand, discretionary policy usually carries with it the idea
that the contents of the item or items to which it is applied have also to be
given importance in determining access rights or privileges. This follows much
more closely the concept of need-to-know. Its purpose is to screen out from the
class of users whose attributes dominate those of the data all but the (usually
very small) subset who really do have a legitimate requirement to access the data.

Although capabilities may be used to assist in enforcing non-discretionary
access (most simply by denying the capability associated with an object to those
who, a priori, do not have dominating security attributes), they seem to have more
noticeable utility in the discretionary arena. Setting aside the
non-discretionary issue, individual users requiring different forms of access to
an object may be given finely honed capabilities.

Apart from capabilities, the principle means of handling discretionary
access in databases has been the access control list (ACL). This explicit
enumeration of users (or roles which users can play), and the nature of permitted
access associated with each, is usually tied directly to objects. Immediately
implied is the granularity of access control - the grain is the data item which
has its own ACL. Traditionally, these have been quite large objects.

The summer session at Woods Hole highlighted the requirement to take as the
access controlled grain a data element within a relation (thus unreasonably
proliferating the number of ACLs required if this technique were to be employed);
it also brought into focus the fact that, very frequently, accesses may occur only
subject to certain external conditions. Both reading and writing data resident in
a database may be subject to this conditional access. Moreover, these conditions

39

are usually content sensitive (CS): they refer to the current values of the data.

Conditional writing is, perhaps, more clearly recognized. The internal
consistency of the database (sometimes called database integrity) must be
preserved. To achieve this consistency, and for a host of other reasons as varied
as the nature of data housed in databases, the concept of side constraint has been
proposed (quite independently of all security considerations). The purpose served
by a side constraint is the inhibition of database modification or augmentation if
such a change would violate an explicitly defined condition - the constraint.

On the other side of the problem is the requirement, being more acutely felt
because of the study given it by the third group at Woods Hole, that certain data
reads ought to be inhibited or controlled because they constitute viclations of
constraints enunciated to prevent information leakage by means of aggregation or
inference. Conditional reads may be the only feasible answer to these very
difficult issues.

As the result of these considerations, a new and somewhat different approach
to data access within databases is being proposed. This new approach is the Rule.
Borrowing from both the earlier concepts of ACL and capability, the Rule is, in
essence, neither. It provides, in a fundamental way, for the conditional access
of any subset of the database.

The remainder of this paper discusses the nature of a Rule, the issues
raised by the idea of Rules, and, finally, some conclusions about this concept.

WHAT IS A RULE ?
The basic definition of a Rule is a 4-~tuple:

R

<u,D,0,C>

where U is a list of user identifications, user roles, or couples <Id,role>
is a subset of the database (defined context free)

is a set of operations which may be performed on D by U

is the set of (context sensitive) conditions which, jointly, must be
satisfied before U does O to D.

oo w

The list of users (roles) is flexible as indicated. In those situations
where each user is usually designated only by his identifying tag (i.e. name,
machine, or number) U will contain just these tags In systems where roles are
pre~eminent (for example, in tactical situations where the operator of a piece of
equipment is important regardless of who is there at any moment), these alone may
suffice. Newer systems, for example the Military Message System, may require the
pair consisting of user identification and the user’s current role for unique and
unambiguous determination of access requirements. In such cases, the list may
consist of pairse.

The subset of the database designated as D may be any (proper or improper)
subset. Although the database is considered to be relationally organized, it is
-not intended that the relational operators necessarily be used to define the
subset, D. Because it will usually, though certainly not necessarily, be the case
that each Rule will be associated with a particular task or subtask in some
on-going activity, there may be suitable pre-defined conceptual subschema (views)

40

associated with these tasks. Whatever method of defining the subset seems most
appropriate ought to be employable, at least in the first instance - with one
major caveat: the definition of D must be achieved in a totally context-free (CF)
way. This implies that no reference to the continually changing data may be made
at this stage; all context sensitivity is handled by the conditions, C. This is
the principal reason that D (for "database subset") was used to designate the
second element of a Rule instead of V (for "view", implying use of all the
relational operators equally).

In practice, D is more likely to refer to fields or domains than to tuples
(projection rather than selection) while C will handle the contents of the tuples.
Databases of type B (those with fluid structures) will usuvally have wider ranging
subsets defined in D; this is because the structure becomes fluid, and therefore
difficult to describe in context free terms, specifically because of its contents.

The operations which might be invoked over a subset of a database are, when
examined at a low level, very few in number. Complex, user-friendly commands will
usually translate into a number of primitive operations. These primitives, rather
than the more complex (and meaningful) aggregates of them, form the domain from
which O is drawn. In an implementation of Rules, it is expected that groups of
Rules will be used conjointly to permit users to perform their tasks over their
subschema .

The domain of 0 is {read,replace,add,delete}. These activities refer to
tuples. It will be argued that a suitable structure within the database makes
this domain, slightly augmented, sufficiently powerful to permit all the usual
activities to be controlled in a satisfactory manner. This is true for even the
more application specific situations.

It is in the area of conditions that major difficulties arise. Any software
written to use Rules to mediate access to a database must have, as a significant
part of it, a condition interpreter. By their very nature, conditions are context
sensitive. They are predicates which are either true or false, based upon, in
most cases, the present state of the data in the base. HNot infrequently other
entities besides those found in the database must also be referenced; these may
include the system clock or other elements of the operating system domain, or data
items intended for introduction to the DB. For the required access to occur, the
conditions must be checked at the time the operation is requested.

If, indeed, interpretation of the condition is to take place in tempo, the
question arises as to how it is to be expressed to expedite not only its
interpretation but the execution required to determine its truth value. This
question, to some degree, harkens back to the previously raised concern about the
definition of the subset, D; it is precisely here that the context sensitive
relational operators do, indeed, come into play. The fact that entities not in
the DB must also be referenced indicates, however, that these operators are not
sufficient.

Another obvious difficulty is the possibility that conditions might refer to
parts of the database to which the user is denied access for reasons arising from
non-discretionary policy. The potential for information leakage here seems very
great. However, in the following discussion of issues it is argued that this
channel may be blocked by using suitable techniques. Recognition of this problem
is essential as a first step in controlling it.

41

DISCUSSION OF ISSUES

In order to test the feasibility of Rules as the basis of access control in
DBMS, the Military Message System Security Model was chosen as the example system.
This system addresses the notion of multi-level entities; that is, atoms and
containers interact to form a hierarchy. As well, the second class of database,
the textual stream, at Woods Hole took the same model as its starting point and
produced a tentative paper design for a secure document system.

Applicability Issues

The present section will explore points that are applicable to type B
databases, which are essentially textual, and consider the degree of applicability
each may possess to those databases which are more rigidly structured and
essentially numeric.

The container/atom model developed in the paper {Bonyun 83] indicated that
the Rule concept is sufficiently powerful to handle the type B databases, which
are more fluidly structured than type A. Implied are two related beliefs: (1)
that type B is more general and more difficult, and (2) that if our concept of
Rules can be used here there is every reason to believe that it can be employed to
advantage in simpler, more conventional cases.

Five generic relational forms were assumed to form the basis of the database
system. These are Atom, Link, Container, User, and Rule. While there is some
question about the direct applicability of these ideas to type A databases, it
ought to be remembered that besides message systems, document handling systems
and word processing applications fall into type B; consequently, they are subject
to the same kind of considerations. We take it as axiomatic that all type B
databases, besides being largely textual, have the multilevel requirement
realizable by the container/atom model.

Three points were derived from the example:
1. Distinction between reading and using an existing data item

The use of a data item for arithmetic purposes is nearly the same thing as
the use of an existing sentence in building a new paragraph. One can imagine
instances of data being available for output purposes alone and being forbidden as
direct computational elements. BEecause of this, the list of operations, 0, in
Rules ought probably to be permanently augmented by use.

2. Actions within Conditions

A small percentage of Rules seem to require some modification to existing
data, as well as the determination of the truth of the predicate, in order that
the operation on the data be permitted to proceed. This action constitutes a side
effect. Perhaps consideration ought to be given, likewise, to the idea that the
basic definition of Rule be augmented to include a fifth (optional) part, Actions.

42

3. Universal and Specific Rules

Two kinds of Rules emerged - the universal and the specific -~ those which
handle the overall system and its individual elements, respectively. The use of
universal Rules was shown to be useful as a means of enforcing the policy, or
assertions given by the security model. These assertions constitute the heart of
the model; the universal Rules, if enforced, assure their validity. The
recursive nature of Rules (Rules which talk about Rules) may also be a useful
notion when universal Pules are being developed for security models.

Specific Rules are the chief means of enforcing, and even stating,
discretionary access control; the Rule is, primarily, a technique with the ability
to manage discretionary access limitations to data. In the area of very finely
granulated discretionary access control, specific Rules are the appropriate
vehicle. :

Theoretical Issues

Two problem areas are related respectively to the D and C parts of the Rule.
Questions arise about the various methods which might be employed to define the
subset of the database, and about the nature and required power of the condition
interpreter.

Database Subset Definition

The design of a logical substructure and the consequent thorough knowledge of
it will materially assisted the writing of Rules.

If access control is to be at the data element level, then not only must the
non-discretionary attributes be attached to each data element, but discretionary
access must also operate at this level. As the Rule is intended to be the primary
vehicle for this control, it must have the capacity to designate any collection of
data elements for this purpose. It is for this reason that we believe the usual
relational operations are not sufficiently powerful. The result is the contention
that the definition of D ought not to have to rely solely on relational
operations.

When collections of primitive operations are required to perform a single
logical task, the definition of D is again important. Many Rules are likely to be
involved (and sequentially ordered), and two external conditions must be
satisfied:

1. the extension of the complex operation over the database must be shown to lie
totally within the I' of the Rules; and

2. all the operations in the sequence must be treated as a unit for purposes of
timing: other uses of the subset D must be shut out for the duration of the
activity.

It is desirable to have, as part of the complex operation definition, any
global internal consistency check which may seem required as well as a way of
backing out while still in the critical zone, if this becomes necessary because
the check fails. The use of well structured type managers to define complex

43

operationséwould appear:toibejthe best way of accomplishingvall this.

The Condition Interpreter

The condition interpreter (CI) must have sufficient power to be able to:
ascertain the truth or falsity of the predicate parts of the conditions and also
to effect the required actions. The nature of this power is ‘the understanding of
the variable names used in the statements of the conditions and the capacity to do
the requisite computations involving them. : :

The following overall conclusions have been drawn about the nature of the CI:

1. It must be efficient and this efficiency will likely be achievable only if a
- suitable formalism can be foundj while nothing has been. said about candidate
formalisms, the author’s prior éxperience with APL makes this seem to be a
very suitable potential medium for the expression of " conditions, particularly

as APL has a number:of very efficient interpreters already written for a
variety of hardware including micrOprocessors, and

2. It must be able to accéss not only every part’ of the database, by direct.
address and by content, but also.a vide variety of other data items outside
the databasej a full enumeration of these outside items is desirable in any
particular implementation. o SR ~

Security Issues

Prior to any attempt to: deal with security matters, it is possible to
hypothesize that every part of the database ought to- be accessible to the CI at
all times. We must' now- explore the’ consequences’ of - ‘the ‘fact that every data item
within the database, and the outside data elements-also known to and accessible by
the CI, all have the1r .own individual security attributes.'

The real issue 1s the fear that the CI in order to check a condition
predicate, will access subsets of the database which .are outside the normal access
rights of the user’ requiring the checking. A conflict is imminent between the
requirements of database integrity and non-discretionary. access.

Rather than have to choose between the two, we are suggesting that a solution
exists which simultaneously satisfies both requirements. The solution proposed
permits the unrestricted use of Rules: and their® conditions without fear that a
leakage path is thereby being forged. We claim that there does not exist any
channel back to the user about data in the env1ronment to which he does not have
legitimate access. : : ;

The proposed solution is- to. hide the: conditions (in fact, the complete Rule)
from the user. When presumed to be a part of the database, a rule has its own
security attributes.: These. may be forced to be the least upper bound of the
attributes of any data mentioned- by them. In conjunction with the absence of any
specific Rule permitting anyone to read or use Rules, this assignment of
attributes is almost’ enough.,'ﬂissing is the capacity, assumed. to be present in
the general case, . “of users making Rules: to embody the discretionary aspects of
security. :

i

',44

The puzzle becomes solved :if one realizes that the problem of conditions
referring to unauthorized data elements arises mainly in the area of database
integrity. This is a system problem which almost always requires universal Rules.
Discretionary access, on the other hand, the main use of Rules which are presented
and installed by users, Ought not to have such far-reachlng conditions.

The price. to. be pa1d, therefore, seems to be to perm1t the creation of Fulesg
involving data items of .a higher c1a551f1cat10n only.to those possessing :
sufficiently high clearances. 1In the case of integrity Rules, this probably means:
either the SSO or the database manager, both of whom are expected to have
clearances which dominate every data element.

The only remaining issue involves what the user will be told when a condition:
fails. It would seem that ‘the best course of action is to tell the user as little
as possible: nothing more than that the requested activity cannot be completed.

If there are a number of adjacent primitive accesses contingent on this success,
then this simple failure condition must be recognizable by the type manager or
other subprogram defining the complex operatlon, any requlred backing out should
then be begun as a consequence. : : . -

Without any knowledge about, the .various elements in the conditional part of
the .applicable Rule(s), or even which Rule may have failed, -the user cannot
possibly make any inferences. All he/she will know is that the proposed activity
cannot proceed. Multiple attempts may be tried; but even if a later one is
successfully completed, there is no inference possible because the reasons for
earlier failure are not known.

Implementation Issues

The location and availability of Rules and certain other design decisions
will need to be considered in order to make the invocation . of the Rules as smooth
and rapid as possible. It seems to be .essential, if Rules are to be handled
expeditiously and cheaply, to have handy an enumeration of those Rules which will
have to be invoked so that excess or repeated "seeking' within the database is not
required. v v : : :

It would be a timesaver if :the Rules themselves, and not just their /
identification, were readily available without a retrieval from the database being
necessary; but, as a general case, this will probably be impractical and each
database access will require one or more Rules to be fetched and sent to be
interpreted. If there is some form of faster peripheral memory available, it
seems clear that the Rules ought to reside therein.

As has been found in other areas of computer security, it is apparent that a
system to employ Rules must be designed, from its beginnings, with this in mind.
Retrofitting. Rules to existing systems seems to be impractical and undesirable.

Issues in Distributed Systems
When data (and/or‘processing)'is physically remote, there are time delays. .
If the notion of criticality is extended to systems which are distributed, then

the delays which one must expect become crippling. Locking out other users while
a collection of primitive operations takes place is conceivable only if the period

45

of time of lockout is small. When all required data elements are close by, this
is probably reasonable to expect. When the elements are scattered over a
distributed system, no such reasonable expectation can be made.

Clearly, this problem is not unique to Rule based systems. What makes the
matter worse for such systems is the very general nature of the conditional part
of Rules. The CI must be able to access a great many data elements in order to be
effective. When these elements are widely distributed, the picture becomes
intolerable.

A number of implementation strategies may be suggested to help alleviate the
problem; the design of distributed systems in general has enjoyed a great deal of
study [Lampson 81]. Yet, until some of the basic problems associated with
distributed systems are completely under control, the extension of the notion of
Rules to such systems would seem to be best deferred.

CONCLUSIONS

The conclusions which may be drawn from the discussion above are largely the
result of personal and subjective analysis of the many problems and issues raised
(and of some not made explicit). The following short list is a synopsis of the
main ideas held by the author: readers are encouraged to differ in their
conclusions and to communicate their differences to the author.

l. A Rule seems a suitable generalized way to manage both discretionary access
and the controlling aspects of specialized systems such as the MMS

2. The security issues seem to be under control if the Rules are, in general,
hidden from the user and if only minimal information is given back to the user
in the event that a Rule has caused an access to fail.

3. The primitive operations and the observation that user activities will usually
employ several of these primitive operations collected into clusters (handled
by a type manager) raised the idea of critical regions of code so that
database integrity be maintained. The extension of this concept over
distributed systems seems to be a particularly difficult task requiring more
time and results from research into distributed systems.

All in all, we believe that Rules are powerful tools which have a legitimate
place in the future design of secure database systems.

REFEREHNCES

[Bell-LaPadula 75] Bell, D.E., and LaPadula, L.J., "Secure Computer System:
Unified Exposition and Multics Interpretation,' M74-244, MITRE
Corp., Bedford, Massachussets, July 1975.

[Bonyun 83] Bonyun, D.A., "Rules as the Basis of Access Control in

Database Management Systems,'" TR-83-5060-01A, I.P. Sharp
Associates Limited, Ottawa, Canada, June 1984.

46

[Denning 76] Denning ,D.E., "A Lattice Model of Secure Information Flow,"
Lommun. ACM19(5), 236-243 (May 1976).

[Grohn 76] Grohn, Michael J., "A Model of a Protected Data Management
System," ESD-TR-76-289, I.P. Sharp Associates Limited, Cttawa,
Canada, June 1976.

[Hinke 75] Hinke, T.H., Schaefer, ., "Secure Data Management System,"
RADC-TR-266, Rome Air Development Centre, AFSC, Griffiss AFE,
N.Y., Nov. 1975, (NTIS AD AC19201).

[Landwehr 82] Landwehr, C.E., Heitmeyer, C.L., '"Military Message Systems:
Requirements and Security Model," NRL Memorandum Report 4925,
Washington D.C., 1982.

[Lampson 81] Lampson, Paul, M., Siegert, H.J., (Editors), Distributed
Systems - Architecture and Implementation; Advanced Courses,"
Springer (Berlin-Heidleberg) Verlag, N.Y., 1981.

47

Structure of a Rapid Prototype
Secure Military Message System

Mark R. Cornwell
FRobert J. K. Jacob

Computer Science & Systems Branch
Naval Research Laboratory
Washington, D.C. 20375

ABSTRACT

Past attempts at building multilevel-secure systems have
resulted in human-interfaces that were difficutt to understand and
use. We posit that part of this difficulty results from a poor fit
between conventional security models and the intuitive notion of
security users apply to their application. The Secure Military Mes-
sage Systems project attacks these problems by defining a secu-
rity model intuitively closer to the application and testing this
model by constructing rapid prototype systems and trying them
out. Techniques used to construct these rapid prototypes include
the definition of abstract data types, an intermesdiate command
language, and an executable formal specification of the human-
interface. Features of the MMS security model are presented using
examples from a rapid prototype system.

1. The Problem

The Secure Military Message Systems project is building rapid prototypes in
order to learn about techniques for building secure computer systems. In the
past, secure systems have been built frormn general-purpose security models.
While this yields an internal model that is elegant and easy to understand, the
user interface of the resulting systemns is often confusing, because it enforces
security restrictions that appear counter-intuitive from the perspective of a
user. Our solution to this problem is to deflne a security model that attempts to
capture the user’s intuitive notion of security in a military message system [1].
Then, we examine the effects of that model on the system behavior visible at the
user interface by building and studying a =eries of rapid prototype systems that
implernent the model. A sample session with one such rapid prototype is given
in the appendix. We have designed message systems offering a representative
range of functions for composing, reading, distributing, and processing military
messages. While the present security rnodel was motivat:d by message systems,
it has been found to be adaptable to other similar types of document systems.

Our definition of security is embodied ii: a security model fur military mes-
sage systems. This model is described in detail by Landwehr [1]. The MMS secu-
rity model consists of a set of definitions, assumptions and assertions. It differs
from some conventional models of security such as that of Bell & Lapadula [2]
in that it directly models multi-level objects, such as a SECRET message contain-
ing CONFIDENTIAL paragraphs; and recognizes message system operations such
as RELEASE, rather than the generic READ, WRITE, EXECUTE.

48

2. Design Goals of the Rapid Protolype Sysiems

The rapid prototype systems are intended to exhibit the user-visible
behavior of secure message systems conforming to the MMS model. To make ocur
prototyping effort feasible we have chosen to concentrate on the security model,
functional requirements, and user interface. We have tried to implement these
aspects of the design faithfully, while other concerns that could be important for
a production system are not addressed. For example, time and space efficiency
are not a concern as long as they are acceptable for demonstration purposes.
The rapid prototypes support only a few users and a low voluine of message
traffic. Genuine security was not addressed, but the normal behavior of the
rapid prototype is just like that of the corresponding secure system. Some
other concerns are irnportant for the rapid prototypes but not necessary for a
production system. For example, the rapid prototypes themselves should be
designed and built quickly. They should be easy to modify to reflect changes
both in functionality and in the underlying security model. At this stage, obtain-
ing a genuinely secure implementation is not as important as obtaining an
apparently secure one quickly.

The software decomposition of the M2 rapid prototype (earlier prototypes
were called MO and M1 [3]) does address problems of building a system that
satisfles the MMS security model. The internal design has incorporated lessons
learned over several generations of rapid protolype systems. In MO and M1,
security checks were widely scattered throughout the code. The decompositicin
we present here identifies and localizes many of the mechanisrns that enforce
the MMS security model. This locality increases the promise of a verifiable
implementation of the design.

3. Structure of the Rapid Prototypes

The M2 system is partitioned into two components, a user interface com-
ponent and a semantic action component as shown in figure 1. The user inter-
face handles the details of transforming sequences of keystrokes, mouse clicks,
and other user input into requests in an Intermediate Command Language {ICL)
and presenting the results of such requests as output to the user. The ICL
requests themselves are processed by the sermantic action component.

The user interface component is specified as a set of state diagrams after
the manner described by Jacob [4]. In the state diagram model, an automaton
reads from a stream of tokens and makes a transition to another state based on
the token read. Actions may be assoclated with state transitions; whenever such
a transition is made, its associated actions are performed. In the present sys-
tem, the actions condist of ICL commands, which are transmitted to and exe-
cuted by the semantic action component. The user interface component is
implemented by an interpreter that executes the state diagram specifications
[5]. It traverses the diagrams and performs the actions associated with each
transition. ‘

This division permits new systems with different user interfaces to be con-
structed from the existing system convenizntly. If the design of the user inter-
face is changed, only the user interface component must be modified so that it
will translate from the new cornmand language into the same ICL commands; the
semantic component of the system need not be changed. The division aiso pro-
vides a useful decomposition of programming tasks. Given a stable description
of the ICL, the user interface and semantic components of the system can be .
developed in isolation from one another, since the only communication between
them is via the defined ICL commands. In fact, the M2 prototype was coded in
just this fashion, by the authors working in paralle!. Our experience showed

49

Message

System

/__L_—\ /__j—ﬁ

Sematic
Actions

User
Interface

P el 1 |
State j [Diagram j Secure iCL
Diagrams interpreter Evaluator Pr

l 9 P) (ograms

| 1
Reference Access h Precondition Database h
Checker Checker y Checker Objects

fig. 1. System Decomposition

that, with this decomposition, it was possible to make major changes to either
component of the system without affecting the other component or even telling
the person writing it.

The user interface itself is designed to be easy for naive users to learn (in
contrast to being easy for experienced users to operate). A command typically
consists of a verb (such as Display), an object {such as "the file named inbox"),
and, possibly, some extra parameters (in this example, a display filter). The
verb is selected from a menu; objects and other parametiers are selected from
menus where possible or else typed in a window. For each item, a default value
is avallable with a single keystroke. After the user interface component has
accepted an entire ICL command with all its arguments and found it to be syn-
tactically correct, it issues the complete command to the semantic component.
Finally, there are some user-level operations that do not correspond to ICL com-
mands, such as the eommands to abort a command, scroll the windows, select
special-purpose menus, and exit. These are piaced on function keys and may be
entered by the user at any point in the dialogue.

The semantic action component of the system is itself partitioned into a
secure evaluator and a set of ICL programs. The ICL pregrams perform the
actions requested by the user. The secure evaluator ensures that ICL programs
never get a chance to perform actions that would viclate security. It performs
all the security checks necessary before an ICL program is invoked.

The actions taken by ICL commands are the user’s means for inspecting
and manipulating the sensitive information in the system. Fach command avail-
able to the user corresponds to one of these ICL programs. The ICL programs
manipulate objects in the message system database, such as directeries, mes-
sage files, citations, and messages, which embody the sensitive information in
the systemn. ICL programs are written in terms of operations on these lower
level objects. Unlike the ICL commands, the user does not have access to these
lower level operations directly. Users can cnly invoke them indirectly by invoi-
ing 1CL commands.

50

http:commar.ds

The secure evaluator is made up of programs to perform three kinds of
security checks. The reference checker enferces security constraints while
determining what objects in the system a r=quested ICL operation would act
upon. The access checker compares the access permissions of these objects
with the privileges of the user supplying the request. A precondition checker
uses its knowledge of the semantics of the ICL programs to determine if a
request should be denied or allowed to proceed. -

In the interest of building the system rapidly, we decided to use an existing
text editor, Emacs [6], for composing and editing messages. Emacs is an exten-
sible text editor with its own language for defining new commands and modifying
its user interface. We took advantage of this extensibility to tailor it to approxi-
mate a secure editor for messages and to integrate it into our rapid prototype.
It protects some fields of a message from modification and it provides some
prompts and syntax checking on messages.

4. Abstract Types, Inheritance and Locality

Most of the implementation is oriented around abstract data types. Our
notion of abstract data types is fairly conventional but includes operator inheri-
tance and overloading concepts similar to those of Smalitalk {7], and Flavors [8].
An abstract data type characterizes a class of data by associating a type name
with a set of values and ‘a set of named access operators. The access operators
may alter values, return information about values, or both. A type may be a
subtype of another type. If 5 is a subtype of A then by default P inherits the
access operators of A B’s definition can then add new access operators not
associated with A By overloading operator names (defining new operators with
the same names as inherited operators) B can hide inherited operators.

This notion of types, and operator inheritance in particular, helped in
implementing security. A type ENTITY was associated with the security specific
information (e.g. classification, access set, CCR mark). Other types such as MES-
SAGE were defined as subtypes of type ENTITY. The security checking programs
were written for ENTITY, and thus didn’t depend on specifics of type MESSAGE,
only type ENTITY. We found it possible to add new secure types to the system by
defining new subtypes of ENTITY without adding new security checking pro-
grams.

Our design uses abstract data typesﬁ to define a wide variety of data classes.
Some are visible to users: ENTITY, ACCESS_SET, MESSAGE, MESSAGE_FILE. Oth-
ers are used internally: STATE_DIAGRAM, TRANSITION, REQUEST.

5. Security Model and Mechanisms for Security Checking

This section describes some specific technigues used to implement the MMS
security model in the semantic componeni of the M? prototype. Our presenta-
tion of the model will be in t=eirms of the techniques we have chosen tec imple-
ment it, though other implementations could satisfy the model without using
these particular techniques. Concepts from the model will be briefly described
as necessary. A complete definition and explanation of the model is given by
Landwehr [1]. '

The MMS security model provides a set of definitions and assertions charac-
terizing a secure system. Fnfifies are units of information in the system that
are associated with protection infermation. Every entity has a classification, an
aecess set, a fype and a value. User ID’s represent the human users of the sys-
tem. Every user ID has an associated clearance and a set of roles. Users indi-
cate the entities they access by providing references to them. A dirzct refer-
ence {e.g., MSG1190) is an atomic identifier that denctes exactly one entity

51

http:existi.ng

independent of the values of any other entities. Entities may contain »ther enti-
ties. An indirect reference indicates an entity by referriuig to an entity that con-
tains it. {e.g., "the fifth message in Cornwell’s inbox file'"). Say, an entity e? con-
tains an entity e2. If el is marked container clearance required (CCR), then a
user can’t use e in an indirect reference to €2 unless the user is cleared for e 1.

granted
requests

™y reguests (Secure
L Evalusator

User
Interface [exceptions
v o

ICL
Programs

responses \,

fig 2. Security Medialion

The division of Lhe semantic action component into a szcure evaluator and
ICL programs separates security checking from the normal case sernantics of
user commands. The secure evaluator rnediates the access of the user interface
to the ICL programs as shown in figure 2. The user interface constructs ICL
requests and sends them to the secure evaluator, which either grants the
request, by invoking an ICL program, or sends an exception back to the user
interface. After a request is granted, the requested ICL program can run to
completion without the need to perform any other run-time security checks.
This obviates the need to consider problems that occur when a operation
encounters a security exception after it has begun its execution, such as restor-
ing state or translating low level security exceptions into meaningful responses
to the user.

A request that enters the secure evaluator must pass three kinds of secu-
rity checks before it is granted. Each kind is handled by a different component
of the secure evaluator, these components being a reference checker, an access
checker, and a precondition checker. A request <op r! ... *N> consists of an
operator followed by a sequence of references and possibly other parameters.
The requests goes through the following checks:

1) Reference Checker. Any violation of constraints imposcd by CCR marks
is detected at this step. Each of the indirect refercnces is derefer-
enced. This vields a structure of the form <op el ... e N> where the ei
is the the entity denoted by #i.

2) Access Checker. For each entity ei in el...eN we check to see that the
access set of the entity permils the user to apply the operator with
that entity as its ith parameter.

3) Precondition Checker. Finally, we perform a check to determine
whether performing the requested actions the current state will main-
tain the security assertions. If so, we apply optoel.. eN.

Failure to pass any one of the above checks will cause the request to be denied
and a security exception to be generated. A brief explanation of why the request
was denied is passed back to the user interface which conveys it to the user.

With this outline of run-time security checking in place, we examine each

52

component of the secure evaluator elaborating on the checking each performs.

The reference checker evaluates the references in an ICL request based on
the classifications, values, and types of the entities appearing in each indirect
reference. Every type of entity that can contain other entities is associated with
a selector function S that given an entity and an index returns the entity con-
tained by the given entity at that index. For exaraple, if e denotes a directory of
message files and 4! is the name of a file in that directory, then S(e,i1) denotes
that file. Each indirect reference <g,i1,...,ik> is a sequence whose first element
is an atomic identifier for an entity and whose remaining elements are indices.
There is a procedure for evaluating a reference to determine the entity it
denotes. This dereferencing procedure maps references to direct references. It
acts as an identity on direct references. For indirect references it replaces the
first two elements of its argument with the entity denoted by applying a selector
function to e and i1, and applies itself recursively to the result.

The dereferencing procedure also perforins some security checks and will
generate an exception if attempted violations occur. An exception will occur if
the reference is indirect, the entity heading that reference is marked CCR and
the user’s clearance does not dominate the classification of that entity. Notice
that it is possible to dereference an indirect reference that depends on entities
for which the user is not cleared without generating an exception.

The access checker compares the access sets of the requested entities with
the operator name and the privileges of the user making the request. {perators
are the commands users may invoke {directly) to change or inspect the entities
in the database. In the M2 rapid prototype, these operatcrs are defined to be
the ICL programs. The access set of an entity determines what operators may
be applied to it and by what users. An access set for a given entity e is a set of
triples of the form (userlD or role, operator, k). A user can use entity e as the "
kth parameter of an operator if a triple with the user’s userlD {or one of the
user’s roles), that operator and k is in the access set of e.

The precondition checker compares the state of the system with the
requested action to determine whether the action can take place without violat-
ing any security assertions not already addressed by the reference checker and
access checker. One such assertion is the hierarchy assertion, which states that
the classification of every entity must dominate the classification of every entity
it contains. For example, a message file contains a set of citaticns and each
citation contains a message. The message file must be classified higher than any
of its citations and each citation in turn must be classified higher than ils mes-
sage. Another assertion states that only a user acting in the role of system secu-
rity officer can change the clearance associated with a user ID.

In order to guarantee that such assertions remain invariant, every operator
op is associated with a precondition pre(op) characterizing the conditions under
which applying op will leave the system in a state satisfying the security asser-
tions. Before applying any operation, this precondition is checked and. an excep-
tion is generated if the precondition does not hold. Assuming the preconditions
are correct, an operation never causes an action that will invalidate the security
assertions. -

Preconditions are attractive because mathematical techniques (weakest
preconditions, predicate transforrners [9] ,Hoare logic [10]) exist to derive
them from a specification of the semantics of the operator and a specification of
the security invariants. Dijkstra [9], Gries [11], and others have argued convine-
ingiy that deriving programs from specifications yields benefits that verifying
programs after they are written doss nol. In deriving precondition checks for
our rapid prototype, we applied the concepts of invariant assertions and weakest

53

preconditions informally to specify and program the system. Using thiz
approach, we could then attempt to prrvide iormal proofs thal precconditions
are sufficient to insure that the operations maintain the security invariants.

The use of an external text editor poses some problems to our security
design. Within the message system, messages are represented in linked strue-
tures laden with security information. A message sent to the editor is translated
into a text form visually familiar to users but with much of the security informa-
tion {e.g. access sets) stripped off. The system should prevent users from edit-
ing certain fields, corrupting the security labels on entities, cr entering ill-
formed messages into the system. To this end, we partition the message being
edited into an editable and noneditable part, displaying the latter in a window
where the user cannot modify it. In Emacs, the user edits a textual representa-
tion of a message in the absence of any security checking. When Emacs exits,
the message system parses the message, checking it for well-forinedness and
conformity with the security constraints before we allowed it to be stored in the
message system data types. For example, a message might fail the well-
formedness check if a user mistypes a field name or leaves off a security label
on a paragraph. The message would not conform to security constraints if, say,
a CONFIDENTIAL text field held a SECRET paragraph.

B. Future Directions

The rapid prototype described hzre is one of a series cf systerms being built
to investigate secure message systems. The next sleps in this work include:

a) Obtain feedback from real message system users using the M2 proto-
type.

b) Develop a user interface incorporating a bitmapped display, graphics
and mouse. This will be done by modifying the user interface com-
ponent (and moving it to a different host), while leaving the semantic
component unchanged.

c) Investigate formal techniques for deriving precondition checks from
the specifications.

d) Build a genuinely secure full-scale prototype based on the current
rapid prototype.

7. Summary

We have observed that conventional security models, while intuitively
appealing to designers, can appear confusing and inappropriate when viewed
through the user interface of a finished systemn. To overcome these problems, a
specific security model has been defined to conform to an intuitive notion of how
the user interface to a secure message system should behave. A series of rapid
prototype systems has been built to allow us to observe directly the interactions
between this security model and a user interface. The M2 rapid prototype
demonstrates a particular approach to the implementation of a system that
incorporates this security model. The techniques used in building it are applica-
ble to other application based security models.

B. Acknowledgments

Carl Landwehr, Connie Heitmeyer, and John Mclean developed and formal-
ized the MMS security model. Jean Tschohl. Ken Pon, and Brian Tretick contri-
buted to building and testing the rapid prototypes. This work was supported by
the Naval Electronic Systems Command under the direction of H.O. Lubbes.

54

http:prrJgrc.rr

Appﬂnr’lx. A session wilh the H2 Rapid Prototype

The following scenario, based on the M2 prototype, illustrates some funda-
mental ideas of the Sezure Military Message System Design. In this exainple a
user, Jones, logs cnto {he messagz systein and reads some incoming mail. The
session illustrates some of the data cibjects the users manipulate and how mes-

sage processing is integrated with the security policy.

To gain access tec the system, Jones must first log irn. Jones does this by
providing a userlD, the classification that the screen is to assume, in this case (T
cnwdi nato crypto), and and a password. A menu appears on the screen from
which Jones selects active roles for the session. The system checks to see that a
user with userID Jones and the given password is authorized to use the system,
and that Jones is authorized for each of the roles selected. With this precondi-
tion satisfied, the login operation proceeds.

The screen has a current classification at the level specified at login. Cita
tions from Jones’s message file "inbox" are displayzd on the screen (fag. la.)

Display Message Fite inbox
DISPLAY | CREATE | OELETE

UNDELETE| CCPY | m&ve | EXPUNGE | EDIT

f .

Msg/File/| Msg/File/| Msg/File/! Msg | Msg | Msg | File | Msg/Text
Text/Bir | Text | Text I i i i I
1IN W

From: (U) Dwork Subj: (1) Ada Conference
2 N (SECRET crudi cryptal

From: (U) Adams Subj: (S) Beethoven Combiner
3 N (CONFIDENTIAL crnudi nuciear)

From: (U) JPL Subj: (C) Dense Pack Simulator
4 N (UNCLASSIFIED)

From: (U) NSA Subj: (U} Security Evalustion Stancards

fig. al.

At this point the screen (an entily) contains a sequence of citations {alsc
entities). Fach citation contains the From, Subject, and Security fields of the
message to which it refers. Only citations below the the classification of the
screen are displayed.

Displaying the second message, Jones can see all of its fields {fig. a2)
Notice that the message classification dominates the classification of each of its
fields. Similarly, the text field classification dominates the classifications of
each of its paragraphs.

55

Cisplay Message incux 2 ail

OISPLAY | CREATE | DELETE | UNDELETE} CGPY | MOVE | EXPUNGE | EDIT
Mag/Fite/| Mea/Fiie/! lNisg/File/, Msg Mao | Msg | File | Msg/Text
Text/Dir | Text | Text ; ! : !

Security: (S crmudi. crypto)

From: U} Adams
To: U} Jones
Subjs-. (S} Beethoven Combiner

Text: (S cnudi crypto)
(U) first paragraph
(S) second paragraph

(S ernudi crypto) last paragraph

fig. a2

Jones’s directory contains all of the message files belonging to Jones. The mes-
sage file names are displayed along with the file classifications (fig. a3.)

Dispiay Directory Jones

DISPLAY | CREATE | DELETE | UNDELETE| COPY | ™MOVE | EXPUNGE | EDIT
Msg/File/| Msg/File/| Meg/File/] Msg | Msg | Msg | File | Msg/Text
Text/Oir | Text | Text | | | |

Cryptography (T cnudi crypto)

Dense Pack (T cnudi nuclear)

Misc)

Nato MRM (C nato)

Sensor Project U}

Specifications ()

Submar i nes (C cnudi nuclear)

inbox (T nato crypto cnudi nuclear)
fig. ad.

Accidental violations of the security model are prevented. Jones is
informed of denied requests in terms of familiar message system concepts. For
example, if Jones attempted to save the second irbox entry (displayed earlier)
into the file "Nato MRM", the system would deny the request. A brief explanation
would appear in the error window {just below the inenu) saying that the message
was classified to high to be inserted in the given message file.

Jones may move the message in the file Cryptography, since that file's classifi-
cation dominates that of the message. Jones does so and logs out leaving the
terminal ready for another login.

56

References

1. C.E. Landwehr. C.L. Heitmeyer, and J. MclLean, A Security Model for Militury
Message Systems, Naval Research Laboratory, Washington, D.C. (May 1954).

2. D.E. Bell and L.J. Lapadula, **Secure Computer Systems: Mathematical Foun-
dations and Model,”” MTR-2779, Mitre Corp., Bedford, Mass. (July 1975).

3. C. Heitmeyer, C. Landwehr, and M. Cornwell, “The Use of Quick Prototypes
in the Secure Military Message Systems Project,” Soffware Engineering
Notes 7(5) pp. 85-87 (December 1982).

4, R.J.K. Jacob, *““Using Formal Specifications in the Design of a Human-
Computer Interface,” Comm. ACM 26 pp. 259-264 {1983).

5. R.J.K. Jacob, *“An Executable Specification Technigue for Describing
Human-Computer Interaction,” in Advences in Human-Computer Interac-
tion, ed. H.R. Hartson, Ablex Publishing Co., Norwood, N.J. {1984). in press.

6. J. Gosling, Uniz Emacs, Unipress Software, Inc., Highland Parl, N.J. (Janu-
ary 1983).

7. A. Goldberg and D. Robson, Smallfalk-80 The Language and [fs Implementa-
tion, Addeson Wesley (1983).

B. D. Weinreb and D. Moon, LISP Machine Maonual, Massachusetts Institute of
Technology, Cambridge, Mass. (March 1981). .

9. E.W. Dijkstra, A Discipline of Programming, Prentice-Hail, Edgewood Cliffs,
N.J. {1978).

10. C.A.R: Hoare, “*An Axiomatic Basis for Computer Programming,” Comm.
ACM 12 pp. 576-580 (1969).

11. D. Gries, The Science of Programming, Springer-Verlag, New York (1981).

57

Communications System Security Evaluation Criteria
Peter C. Baker

Ford Aerospace & Communications Corporation

ABSTRACT

This paper presents justification that there are sufficient differences
between operating systems and communications systems to warrant separate
criteria for evaluating the security properties of communications sys-
tems. The criteria address those types of communications systems that
handle sensitive information and therefore must comply with DoD security
policy. The criteria require the DoD security policy be stated in terms
of acceptance/delivery criteria and an internal control criteria. 1In
addition, the proposed criteria requires, for higher assurance classes,
that the design and implementation of the communications system be
evaluated in terms of a systematic decomposition strategy in order to
provide insight into the internal security properties of the system. A
summary of the proposed evaluation criteria for communications systems
is presented.

1. Introduction

The benefits of remote resource sharing between operating systems has
promoted growth in the development of supporting communications systems.
In cases where these operating systems must process and exchange sensi-
tive information, additional requirements for protecting this informa-
tion is placed on the communications system. Security criteria have
been developed and are being applied in the evaluation of the individual
operating systems and their supporting hardware bases. Because of some
significant differences between operating systems and their supporting
communications systems, it is not appropriate to attempt to apply
operating system security evaluation criteria to these communications
systems. Therefore, to insure that the total information system, com-
posed of both operating systems and communications systems, is protected
from disclosing sensitive information, appropriate security evaluation
criteria for the communications systems must be developed.

Section 2 describes the bounds of the communications environment for
which the criteria was developed. As motivation for the development of
communications system evaluation criteria, Section 3 describes important
differences between operating systems and communications systems, and
provides criteria objectives for such Communications Systems. Section 4
describes the requirements for a Communications System Evaluation Cri-
teria. Section 5 describes the proposed criteria and provides a

~ This effort was partially funded by RADC Contract F30602-81-C-0233.

58

description of the assurance classes. Finally, section 6 raises some
issues that result from this effort.

2. Scope

The range of communications systems can be very broad; this section
establishes the scope of communications systems that are candidates for
evaluation.

2.1 Layered Protocols

For the purposes of this proposed evaluation criteria, communications
systems refer to message, packet and circuit switching systems that are
structured according to the concepts of either the ISO or DoD Reference
Model [1,2] for layered protocols. Also, the criteria is aimed pri-
marily at communications systems that implement the lower protocol
layers of these models.

2.2 Protocol Verification

The proposed criteria, at the higher assurance classes, require the for-
malization of certain security functions. It is expected that these
functions will be implemented by various processes throughout the sys-
tem. The extent to which a given protocol process implements these
functions will determine the amount of security verification commen-
surate with the assurance class.

2.3 Security Functions

The criteria address data compromise, data integrity, denial of service,
audit, accountability and authentication as security functions. Of
these functions, the protection of sensitive information from compromise
must be modeled by formal methods, at the highest defined assurance
class.

2.4 Operating System

By the term operating system is meant a multi-user, time-sharing operat-
ing system in a single-host environment.

3. System Differences

The differences between operating systems and communications systems are

sufficient to motivate the effort to develop a communications system
evaluation criteria. These differences are discussed below.

59

3.1 Distributed Structure

Operating systems are not necessarily distributed. Communications Sys-
tems are, of necessity, distributed systems. Communications system com-
ponents can be communications systems in their own right, and. each level
can exhibit a broad range of functional, performance and physical
characteristics. These characteristics are in contrast with operating
systems, which are typically implemented in single-host environments.
Most single-host systems have been developed with a single abstract
view., This single abstract view is not appropriate in communications
systems when attempting to understand and model their security proper-
ties. Multiple layers of abstraction are essential to understand the
security properties and security implications of such systems and their
myriad components.

CRITERIA OBJECTIVE: The capability to evaluate the security properties
of designs and implementations that represent distributed systems
displaying a range of functional, performance and physical characteris-
tics.

3.2 Protocol Structure

There are significant protocol structure differences between operating
systems and communications systems. Operating systems implement more of
the upper protocol layers in terms of the DoD or ISO Reference Model,
and they are all end-protocol functions. Communications systems imple-—
ment generally only the lower layer protocols, and these tend to be both
link and switching protocol functions. Operating systems also tend to
treat these protocol functions peripherally and consider them as one
entity. Protocol functions are central to a communications system, and
are a major factor in a communications system architecture. Although
fewer layers are supported, more functions within a given layer are
present, due to the possibility of different protocol sets implemented
by different hosts. Functionality, not present in hosts, includes pro-
tocol switching and routing as well as various conversion functions to
allow host interoperability.

As in the argument for distributed systems, single abstract views of
protocol structures and hierarchies are no longer appropriate. Charac-
teristics of these protocol structures include the concepts of protocol
layer hierarchy, protocol function independence and protocol layer hid-
ing. Components of a communications system may implement different pro-
tocol suites, depending upon the host operating system they support. Due
to the hierarchical nature of the protocol architecture, some nodes may
be hidden from other nodes at a given protocol layer. Again, multiple
layers of abstraction are essential in attempting to understand the
security properties of existing and anticipated protocol architectures.

CRITERIA OBJECTIVE: The capability to evaluate the security properties

of designs and implementations that represent hierarchical protocol
structures.

60

3.3 Internal Security Policy

In typical operating systems the security policy seen by the users is
the same as the internal security policy. Communications systems may be
required to implement different internal security policies. For exam-
ple, certain protocols do not support sensitivity labels in their
headers, the label being at a different protocol layer. In these cases,
the policy should be the isolation of every data-unit known to that par-
ticular protocol function. As another example, some protocol functions
have the capability to fragment and reassemble data-units. The reassem-
bly security policy could be an exact-match, since it may not be
appropriate for the protocol function to reassemble data-units using a
dominance relationship even though the comnected host supports such a
policy.

CRITERIA OBJECTIVE: The capability to evaluate designs and implementa-
tions that support different security policies by component, protocol
layer and protocol function. :

3.4 External Security Policy

As discussed above, a uniform security policy is applied across the
entire operating system. Communications systems may be required to
adhere to several implementations of the DoD security policy mandated by
the individual security requirements of the hosts they support. For
example, the delivery criteria to a connected host may be an exact-match
policy (data-unit sensitivity level must be at exactly the classifica-
tion level of the host), rather than a dominance policy (data-unit sen-
sitivity level must equal to or below the host classification level).

As another example, some hosts have the authority to send data-units at
a certain sensitivity level, but are not authorized to receive this
level.

CRITERIA OBJECTIVE: The capability to evaluate designs and implementa-
tions where the system security policy is selectively applied to indivi-
dual hosts attached to different parts of the system.

Operating systems lend themselves to a centralized reference monitor for
mediating all access to data. This concept may not be appropriate for
distributed communications systems where it it may not be acceptable to
have all packets (or service requests) flow through a single component.
The notion of distributed acceptance and delivery mediation with indivi-
dual internal control mediation is more appropriate for communications
system.

CRITERIA OBJECTIVE: The capability to evaluate designs that provide

either centralized or distributed access control in the form of accep=-
tance and delivery checks.

61

3.5 Verification Assurance

The criteria objectives of decomposition in terms of distributed com-
ponents and protocol structures will only provide clear insights into
the internal security properties of systems if there is means to verify
these properties in a clear and consistent manner. The objective is to
minimize the amount and types of verification evidence by limiting
verification requirements to a small set that can be applied to any com-
ponent or set of components identified in the decomposition process.,
Another objective is to reduce the amount of complexity by applying the
criteria in a uniform manner in the decomposition process.

CRITERIA OBJECTIVE: The ability to apply the criteria recursively in the
decomposition process, in terms of required security features and verif-
ication evidence.

3.6 Why Not the Existing Criteria?

The existing security evaluation criteria require excessive interpreta-
tion when applied to communications systems. The DoD Trusted Computer
System Evaluation Criteria [3] (known as the Orangebook) are aimed at
evaluating operating systems in the traditional sense. The application
of these criteria to communications systems rely heavily on interpreta-
tion, since they were not specifically developed for evaluating systems
with distributed components and/or hierarchical protocol structures.

In the future, operating systems will be evaluated against the Orange-
book and their supporting communications systems will be evaluated
against a communications criteria. To ensure consistent evaluation of
the systems as a whole, there must be compatibility between the two cri-
teria.

CRITERIA OBJECTIVE: Compatibility with the existing operating system

criteria in terms of security features, verification evidence and
assurance classes.

4. Communications Criteria Requirements

The criteria objectives can be integrated into a set of criteria
requirements as follows:

a. Capability to evaluate communications systems based on a combina-
tion of distributed component and hierarchical protocol struc-

tures.

b. Capability to evaluate communications systems that implement dif-
ferent external(user-visible) and internal security policies.

c. Capability to evaluate communications systems that implement
either centralized or distributed external security policies.

62

d. Capability to evaluate communications systems based upon well-
defined and uniform design and verification evidence for both com-
ponents and protocols. *

s
e. Compatibility with the existing operating system criteria.

5. Proposed Criteria
Three concepts are central to the proposed criteria:

a. The criteria defines the decomposition approach to be taken and
defines the level of decomposition based on the assurance class.

b. The criteria requires that the security policy be stated in terms
on an Acceptance/Delivery Criteria and an Internal Control Cri-
teria.

c. The criteria defines the structure, contents and level of detail
for security features and verification evidence required for the
various assurance classes,

5.1 Decomposition Approach

The specific decomposition requirements for communications systems is
shown in Figure 1. For lower assurance classes, the decomposition
approach begins at the level that identifies the Communications System,
External Systems and associated intercomnects. A Communications System
Security Boundary is defined that encloses the Communications System.

To be evaluated for a higher assurance class, the Communications System
is to be decomposed into individual Nodes, and associated interconnects.
A Node Security Boundary is defined for each Node. This first level
decomposition supports the distributed nature of the Communications Sys-
tem.

To be evaluated at the highest assurance classes, the level of decompo-
sition extends to the protocol layers, and the associated interconnect
between these layers. This level of decomposition supports the layered
protocol nature of communications systems.

5.2 Security Policy Definition

The Security Policy consists of an Acceptance/Delivery Criteria and an
Internal Control Criteria. The Acceptance/Delivery Criteria determines
how data-units are sent or received across the security boundary (Com-
munications System, Node or Protocol). The Internal Control Criteria
determines the relationship between data-unit while inside a particular
security boundary. The two types of criteria must be complementary and,
in combination, must be shown to implement correctly the stated Formal
Policy Model.

63

5.3 Documentation

A uniform set of design documentation is used to support the evaluation
process (see Figure 2). The set of documentation consists of design and
verification documentation that is hierarchical starting at the top with
the DoD Security Policy, and ending with a description of the underlying
"virtual machine'"., Each piece of documentation produced is assumed to
include the supporting evidence that it correctly represents the docu-
ment above it. The documentation set has been structured such that it
is additive, each higher assurance class requires additional documenta- .
tion, but is supported by that documentation required by lower assurance
classes. The documentation set is applicable to each component as it is
identified in the decomposition process.

Appendix A is an example of the proposed decompoSition and verification
strategy.

5.4 Summary of Assurance Classes
The proposed criteria must be complementary to the existing criteria;
therefore the communications system criteria closely parallels the

existing criteria in terms of assurance classes.

The corresponding assurance classes of the two criteria is shown below.

Orangebook Criteria Communications System Criteria
Assurance Class: Assurance Class:

Cl X1

C2 X2

Bl Y1

B2 - Y2

B3 Y3

Al Z1

The communications system assurance classes are summarized as follows:

Assurance class X requires that data must be segregated in accordance
with some stated security policy; however, no Acceptance/Delivery Cri-
teria is imposed due to the lack of security labels. The principle
difference between assurance class X1 and X2 is the amount of additional
testing and documentation required.

Assurance class Y introduces decomposition in order to provide addi-
tional assurance. In this class data must be labeled.

64

Assurance class Yl requires that a security policy and model must exist
that accurately describes the communications system at the level seen by
the External User. The security policy model must be stated in terms of
an Acceptance/Delivery Criteria applied to the Communications System
security boundary and an Internal Control Criteria that defines data
segregation inside the Communications System.

Assurance class Y2, in addition to the Communications System security
policy model, requires that a security policy model exist that accu-
rately describes each physical node and link of the Communications Sys-
tem and must describe how the c¢ombination of these security policy
models completely satisfies the Communications System Security Policy
Model. The lower-level Security Policy Models are also stated in terms
of an Acceptance/Delivery Criteria and Internal Control Criteria appli-
cable to each node and link.

Assurance class Y3, in addition to the Communications System and
Node/Link policy models, requires that a security policy model must
exist that accurately describes each of the protocol layers implemented
by the Communications System or Nodes. As above, these policy models
must be shown to completely satisfy the upper level policy models. Cri-
teria includes the use of existing specification and verification tech-
nology in the demonstration of the consistency among the policies,
models and system components.

Assurance class Z requires no further mechanisms, but the level of
assurance is raised by extensive use of formal methods, including formal
specification and verification, the application of which is clearly
identified and incorporated into. the overall system development method.

6. Issues

A. Should the decomposition approach be directed by the criteria?
That is, should the criteria force a designer/implementer in a
specific direction that may skew the design or have other undesir-
able effects? The rationale basically is a desire for con-
sistency; the decomposition requirement is central to the evalua-
tion process and comparisons between two communications systems
should be on an equal basis.

B. Should there be latitude for further decomposition?

C. 1Is the notion of an abstract TCB and supporting virtual machine
sound? 1Is it helpful in the evaluation process?

D. Should the integrity of sensitivity labels in the protocol headers
be modeled by formal methods? Clearly integrity issues are
involved to the extent that the sensitivity labels in the various
protocol headers must be protected from modification. Where sen-
sitivity labels must be transferred from one protocol layer to

65

another the possibility of translation of such labels must be
addressed.

E. What constitutes a valid protocol header? The format and content
of a protocol header defines the location and (perhaps) the mean-
ing of the sensitivity label. The validity of the sensitivity
label therefore depends upon the validity of the format of the
header.

F. What do we do about the higher protocol layers with additional
functionality? This is where the Orangebook and proposed criteria
meet. '

G. Can the criteria be applied to commercial communications systems,
where, perhaps, data corruption and authentication are more impor-
tant than prevention of data compromise.

7. Conclusions

We believe there is sufficient justification for a security evaluation
criteria for communications systems. The requirements for such cri-
teria, as presented in this paper, are based on evaluation objectives
suited to the characteristics of communications systems. The intent of
the proposed criteria was to include as broad a range of such systems as
possible. 1In that respect, the criteria have been used by Ford
Aerospace as a basis of evaluation on current and proposed designs for
several projects, including the Multinet Gateway, the WWMCCS Information
System (WIS) and the Inter-Service/Agency Automated Message Processing
Exchange (I-S/A AMPE). As communications systems, these projects
represent a broad range of services and functionality. The criteria
were found to be applicable to all three project designs. The proposed
criteria require the incremental use of formal methods to provide
increasing confidence in the validity of the system security properties.
The rigor imposed by these methods is considered essential in evaluating
and certifying complex communications systems.

8. Acknowledgements
The author wish to thank A. Paul Cook, George W. Dinolt, James W. Free-
man and Richard B. Neely for their helpful and perceptive comments.
9. References
[1] Proposed Draft Recommendation X.200, Reference Model of Open Sys-

tems Interconnection for CCITT Application, CCITT SG VII/WP5, Spe-
cial Rapporteur of Layered Models, December 1982.

66

{2] DoD Protocol Reference Model, TM~7172/201/02, System Development
Corporation, January 1983.

[3] DoD Trusted Computer System Evaluation Criteria, CSC-STD-001-83,
DoD Computer Security Center, 15 August 1983.

Figure 1 - Decomposition Requirements

Environment
I
|
I
I I [I
I I I I
External . . . External Communications System
System System System Interconnect
I
I
I
[[[
I I I
Node Node Node
I | Interconnect
I I
I I
I |
| I I I | I
[I I | I |
Protocol . . . Protocol Protocol Protocol . . . Protocol Protocol
Interconnect

68

Interconnect

Figure 2 - Communications Criteria Documentation Tree

Informal Evidence: Formal Evidence:

| —==> DoD Security Policy
| |

Convincing |
Arguments |
| v
| {=—- ——— English Description
the of
| ~—m e ————— -—> Security Policy
I I
Convincing |
Arguments |
| A
| {=====w—— e eee e —— Formal
[—————=> Policy Model {—~——————————mmmm—— |
I v | l
| : | Proof
Convincing | of
Arguments | | Consistency
| v v |
| {===—=—==——=————— Descriptive Formal --———————==>|
| ==—=---> Specification Specification <-|
| I | |
I | | |
Convincing |] Consistency
Arguments | Mapping
I v |
j {mmm e e e Trusted Computing ————————=—>|

| -~—===—===—~—-—-> Base

Convincing |
Arguments |
| \
|{====—=——=~ Virtual Machine

69

Appendix A - Example of Decomposition/Verification Approach

A. The System (s-Component) is covered first:

1. The s-English Description of the Security Policy is
developed and is shown by convincing arguments to satisfy
the DoD Security Policy.

2. The s-Formal Policy Model is developed in terms of the s-
Acceptance/Delivery Criteria and s-Internal Control Criteria
and is shown by convincing arguments to satisfy the s-
English Description of the Security Policy. The s-Formal
Policy Model is proven internally consistent.

3. The s-Descriptive/Formal Specification is developed and is
shown by convincing arguments and/or proof of consistency to
satisfy the s-Formal Policy Model.

4. The s-TCB is developed and is shown by convincing arguments
and/or proof of consistency to satisfy the s-
Descriptive/Formal Specification. (The s-TCB is probably
abstract.)

B. The Node (n-Components) are covered next:
1. The s~Component is decomposed into one or more n~Components.
2. An n-English Description of the Security Policy is developed

for each n—Component and they are in combination shown to
satisfy the s-English Description of the Security Policy.

3. An n-Formal Policy Model is developed for each n-component
in terms of the n-Acceptance/Delivery Criteria and n-~
Internal Control Criteria and is shown by convincing argu-
ments to satisfy the respective n-English Description of the
Security Policy. Each n-Formal Policy Model is proven
internally consistent. The combination on n-Formal Policy
Models are shown to satisfy the s-Formal Policy Model.

4. An n-Descriptive/Formal Specification is developed for each
n-Component and is shown by convincing arguments and/or
proof of consistency to satisfy the respective n~-Formal Pol-
icy Model. The combination of n-Descriptive/Formal Specifi-
cations are shown to satisfy the s—Descriptive/Formal
Specification.

70

“An n-TCB-is developed for each n-Component and is shown by
“convincing arguments and/or proof of consistency to satisfy

the respective n-Descriptive/Formal Specification. The com-—
bination of n-TCBs are shown to satisfy the s-TCB. (The n-
TCB may be abstract.)

C. The Protocol (p-Components) are covered next:

1.

4.

Each n-Component is decomposed into one or more p-
Components.

A p-English Description of the Security Policy is developed
for each p-Component and they are in combination shown to
satisfy the n-English Description of the Security Policy.

A p-Formal Policy Model is developed for each p-component in
terms of the p-Acceptance/Delivery Criteria and p-Internal
Control Criteria and is shown by convincing arguments to

satisfy the respective p-English Description of the Security

Policy. Each p-Formal Policy Model is proven internally
consistent. The combination of p-Formal Policy Models are
shown to satisfy the n-Formal Policy Model.

A p-Descriptive/Formal Specification is developed for each

" p~Component and is shown by convincing arguments and/or

proof of consistency to satisfy the respective p-Formal Pol-
icy Model. The combination of p-Descriptive/Formal Specifi-
cations are shown to satisfy the n-Descriptive/Formal
Specification.

An p-TCB is developed for each p-Component and is shown by
convincing arguments and/or proof of consistency to satisfy
the respective p-Descriptive/Formal Specification. The com-
bination of p-TCBs are shown to satisfy the n-TCB.

71

SECURITY ISSUES INVOLVED IN NETWORKING
PERSONAL COMPUTERS

~Alfred Arsenault-

DoD Computer Security Center

INTRODUCTION

In recent months, there have been several preliminary
attempts made at writing trusted computer network evaluation
criteria, similar to the standards established in the Department
of Defense Trusted Computer System Evaluation Criteria. One of
the goals of a trusted network evaluation criteria should be to
be as widely applicable as possible. If possible, it should
apply to both long haul networks, such as ARPANET, and local area
networks, or LANS. 'Also, it should apply to cases in which hosts
attached to the network are mainframes, as well as when hosts are
microprocessor—-based personal computers, or PCs.

A major difficulty encountered in writing trusted network
evaluation criteria is that the definition of a "secure network"
is not fully agreed upon. In attempting to define what is meant
by a "secure network", it is necessary to consider the issues
involved in network security. It has been discovered that there
are several cases in which a security issue relates to only one
particular type of network. One of the types of networks which
has a large number of unigque problems is the case in which
several personal computers in a close geographical area are
linked together, possibly with other devices, to form a local
area network. It is on this special case that this paper will
concentrate,

CAUSES OF SECURITY PROBLEMS

There are two basic causes for most of the security problems
that arise specifically because most of the hosts on a LAN are
PCs: first, because a PC is a single state machine, and second,
because where PCs are concerned, communication protocols have
traditionally been weak from a security standpoint, with few or
no security features designed in.

Problems Caused by Single State Machines

First, consider the problems caused by the fact that PCs are
single state machines. A single state machine has no dominance
domain. A dominance domain, also called a supervisory state, is
a characteristic of most large main frame computers that
restricts the ability of certain users to access certain
locations in the machine's memory. Thus, a PC has no capability
to support a Trusted Computing Base, or TCB, because no
hardware/software security mechanisms can be tamperproof. For
this reason, any single state machine is a division D systenm,
according to the Department of Defense Trusted Computer System
Evaluation Criteria.

72 -~

Currently, in many LANs having PCs as hosts, many crucial
network functions are implemented in the PC itself, and, since
the PC has no dominance domain, there is no way to prevent a
penetrator from accessing those network functions ‘and changing
them to allow violations of the network security policy. Thus, a
penetrator can evade any security mechanism that is implemented
in the PC. This is clearly not desirable in the operation of a
secure network.

Problems Caused By the Network

There are two characteristics of most LANs that account for
many security problems. First, particularly where PCs are
concerned, communication protocols historically have tended to be
very weak from a security standpoint, with few or no security
features designed in. Second, the transmission method in many
LANs is broadcast. :

From a security point of view, the protocols are among the
most important functions of the network. The problem is that
most PC communication protocols are very simple in comparison to
those used in mainframes. They are usually designed only to
insure that a message sent from one host to another is
transmitted properly, and, upon arrival at the destination host,
is received properly. From a purely operational or functional
standpoint this is sufficient in most cases, but from a security
point of view it is less than desired. Well designed, security-
oriented protocols tend to be slow, and to take up much memory
space. This has resulted in their being unfeasible for use in
many microprocessor-based PCs, which have had slow processing
speeds and small memories. The situation should be improving,
however, because PCs now have much larger memories and higher
speeds than they used to. This development improves the
capability of the PC to handle sophisticated protocols, with much
more security designed in.

.~ LANs having PCs as hosts using broadcast transmission is a
second cause of many major security problems. This is true
regardless of whether the actual communications medium is twisted
pair wire, coaxial cable, optical fiber, or even satellite
transponders. Broadcast transmission can lead to spoofing,
wiretapping, and the surreptious entry of messages into the
communications medium in an attempt to violate the security of
the network. These problems appear to exist on any LAN using
broadcast communications, regardless of whether ring, bus, or
some other architecture is used.

73

ISSUES AND PROBLEMS: SOME EXAMPLES

Consider now some of the actual security issues and problems
that arise from the networking of computers. There are four
areas in which the interconnection of PCs to form a LAN causes
problems that either do not exist in other types of computer
networks or are significantly different in the case under
consideration. These areas are: access controls, spoofing,
wiretapping, and auditing. Each of these topics will be
discussed in turn.

Access Controls

Access controls are one of the principal mechanisms used to
prevent the compromise of data. Access controls are used to
restrict the ability of users to read from or write to a specific
memory location. ' Access controls are vital to the security of a
network; however, there is no way to implement either mandatory
or discretionary access controls in a single state machine, since
any user with access to a single state machine can access any
memory location known to the machine, regardless of what is
stored there.

This lack of access control extends not only to the host
being directly accessed by a penetrator, but also to any host
which can be remotely accessed. That is, if a user can access
another PC over the network, that user can access any memory
location known to that remote PC, usually including anything
stored on any disks located in the system's disk drives at that
time.

On the type of network under consideration, access controls
cannot be used to prevent a penetrator from accessing network
functions that are implemented in the PC itself. As an example,
consider a LAN using a contention scheme or collision detection
algorithm., A penetrator can subvert the contention algorithm on
his host, and send out a continuous stream of messages. This
will deny use of the network resources to other, legitimate
users, some of whom may have urgent messages to send. The worst
part of the scenario discussed here is that it may be impossible
for other network users to determine exactly what has happened.

Spoofing

Another common network security problem is spoofing.
Spoofing occurs when one user pretends to be another user, an
operating system, or even the network, in an attempt to cause a
second user to violate the security of the network. Spoofing is
usually relatively easy to do in the case under consideration,
and is very difficult to detect.

74

Spoofing plays a part in data integrity violations. Suppose
that "host #22" sends a message to "host #5", but labels the
message as if it came from "host #19". This is a spoof, because
"host #22" is pretending to be something it is not; namely, "host
#19". 1In the type of network under consideration, it is likely
that the recipient of the message, "host #5", will not be able to
detect the spoof. "Host #5" may then proceed to perform some
action for which "host #22" has no authorization to request, but
for which "host #19" does.

Wiretapping

Although wiretapping can occur on all networks, the fact
that the transmission method is broadcast makes it an even more
serious problem than usual. Each host on the network sees all of
the messages being transmitted across the network, instead of a
fraction of them, as is the case in a packet switched network.
This greatly increases the damage that can be done by one
penetrator: he can cause the compromise of all data sent on the
network, instead of a fraction.

For example, suppose that a message is sent by one host, and
is addressed to "host #22". While the message is passing along
the network, "host #19" copies the message off of the network.
("Host #19" must at least look at the header of the message to
determine whether or not is is the intended recipient.) Since
all hosts are essentially taps on the communications medium, it
is quite likely that the fact that the message has been copied
will not be detected. This is a compromise of data.

Auditing

Consider now the problem of auditing a LAN composed
primarily of PCs. There are two basic strategies for auditing a
network: auditing the actions of each node at that node itself,
or auditing the traffic flow at a small number (possibly one) of
centralized locations. If auditing were implemented such that
each node kept an audit trail of its own actions, a user could
then alter the audit trail of his actions. A penetrator could
then incur numerous security violations, and erase any record of
their having occurred. Therefore, any audit trail obtained for
the network from the nodes themselves would be essentially
worthless, since it would contain records of only those actions
which the users wanted others to know about.

The alternative scheme would be for auditing to take place
at a small number of centralized locations. However, in this
scheme, the audit mechanism could not detect much of the
surreptitious copying of messages taking place. That is, it
would not be able to detect a large number of the security
violations that could be occurring throughout the network. Since
it is important that some type of audit trail be kept of the
activities occurring on the network, detecting all security
violations is an important objective, and auditing is a very
difficult problem.

75

POSSIBLE SOLUTIONS

Now that several of the security problems associated with
connecting PCs in LANs have been outlined, consider several
possible solutions, along with some of the advantages ‘and
drawbacks of each.

"Network High" Mode

One solution currently in common use is to keep all PCs
connected to the LAN operating at the same "network high" level,
and only allow communication at a single sensitivity level. That
is, all hosts attached to the network can be physically accessed
only by people who are trusted to at least the "network high"
sensitivity level, and all communications over the network are
considered to be at that level. This is analogous to the system
high operating mode of stand-alone computer systems., This
strategy results in letting only trusted users have access to the
LAN, and in basing our trust in the network users rather than the
hardware/software mechanisms. While this method is more secure
than simply allowing unrestricted access and communication over a
range of levels, it can lead to instances of multiple LANs when
communications are necessary at more than one level. This is
generally less efficient and more costly than open
communications. It should be remembered that the primary purpose
of a LAN is to facilitate communication between users, and too
many restrictions on communication would defeat this purpose.

Better Protocols

A second possible solution is to design a "better" set of
protocols that would allow multilevel communication; i.e., would
allow messages to be sent at one of several distinct sensitivity
levels., This would allow wider communication among users, and
would lead to greater efficiency. For example, good access
controls can be designed into communications protocols. A
protocol could contain the mechanisms necessary to Support
mandatory access controls., Therefore, all data coming from a
host would be appropriately labeled, as would all access requests
arriving at that host. Any access request-arriving without an
appropriate sensitivity label would be refused. One major
problem with this approach is that well designed, security-
oriented protocols that allow for labelling, access control
decisions, and auditing tend to be very slow and take up a great
deal of memory. This may be overcome shortly, due to the rapidly
expanding memory sizes and processing speeds of newer PCs.
However, as long as these protocols are implemented in the PCs
themselves, they are susceptible to subver51on, and thus do not
completely solve the problem.

76

Encryption

A third possible solution is the use of encryption. All
messages sent between hosts can be encrypted with a suitable
encryption algorithm. This can help solve the data compromise
problem - a spoofer may still be able to copy messages without
being detected, but may not be able to decipher and understand
the stolen information. Encryption might also help solve the
data integrity problem since messages which have been changed
during transmission can be detected, and a good encryption scheme
would help validate the authenticity of return addresses on :
messages received. However, encryption will do nothing to help
prevent certain types of integrity or denial of service problems.
A penetrator can still inject an endless stream of messages onto
the transmission medium. Encrypting the message does not prevent
this, and in fact has no effect on the entire situation. .

Trusted Interface Devices

Another solution would be the use of a trusted interface
device, or front end, between the PC and the communications
medium. This could definitely help solve the data compromise
problem, because the front end could prevent a PC from spoofing
the system by only giving the system messages actually intended
for it. It would also help solve the data integrity problem if
it attached the message headers itself and was trusted to attach
only the proper ones. A trusted front end may also provide help
in solving the denial of service problem. For example, if the
network used a contention scheme, and the front end enforced the
backoff time algorithm and could not be reprogrammed by the user,
the penetrator could no longer send an endless stream of messages
onto the network. The denial of service problem could be
lessened in that respect.

The key factor in this solution would be the fact that the
user could NOT reprogram the trusted front end to subvert its
security features. This method, alone or in combination with
some of the others previously mentioned, 1is probably the best
hardware/software solution to the problem of LAN security
currently under consideration. It is, however, one of the most
expensive, since each host on the network would require a
complete (hardware and software) front end device, and these
would not be cheap to develop in such a manner that they would be
considered to be trusted.

77

Current Best Strategies

The best security strategies currently in use are
administrative, physical, and "common sense" strategies. These
include letting only "trusted" users have access to the network,
keeping disks locked up when not in use and out of the machine
when not necessary, and paying close attention to the
classification and compartmentation of messages sent and received
over the net. ©Until one or a combination of the above solutions
is fully implemented, these strategies will continue to be the
best available.

78

<

The Euclid Family and its Relation to Secure Systems

Glenn H. MacEwen
David T. Barnard

Andyne Computing Limited
Kingston, Ontario

and

Department of Computing and Information Science
Queen’s University, Kingston, Ontario

Abstract

This paper discusses the cvolution of, and the technical differences between, the
various versions of the Euclid programming language that have appeared since the original
publication of a language designed for verfiable systems programs. In addition, some
current work directed at transporting verified Euclid programs into Ada systems is
described. The motivation for this transporting work is to provide trusted software within
Ada systems. '

Introduction

The language Euclid was first developed for use in secure operating systems. How-
ever, it never was used for that purpose and since its original introduction it has evolved
through several variants. As Euclid was evolving, the Ada language has appeared as a
military standard raising the question as to the relation of secure Euclid systems to Ada
environments.

This paper reviews the current variants of Euclid very briefly and then looks at the
question of the Euclid/Ada relationship. The approach of transporting Euclid programs
into Ada environments is discussed in the context of two experimental projects. Finally,
some observations regarding the requirements for concurrency support in Euclid and its
associated verifiers are made.

79

Esuclid

The original definition of Euclid was published in 1977 [Lam77, Lon78, Pop77]. That
report states that the language is intended for the expression of system programs that are
to be verified: '

"By a verifiable program we mean one written in such a way that existing formal
techniques for proving certain properties of programs can be readily applied; the
proofs might be either manual or automatic, and we believe that similar considera-
tions apply in both cases. By system we mean that the programs of interest are
part of the basic software of the machine on which they run; such a program
might be an operating system kernel, the core of a data base management system,
or a compiler.”

The language explicitly is not a general-purpose onc, and does not address the prob-
Iems of constructing very large programs.

Euclid is based on Pascal. The main changes are restrictions, thus allowing stronger
statements about the properties of a program to be made based on compiler analysis. The
main differences from Pascal include:

There is explicit control of identifier visibility (via import and export specifications
in programs) rather than implicit inheritance of containing scope.

Aliasing (referring to the same or overlapping variables by two identifiers in the
same scope) is prohibited.

Pointer variables are constrained to refer to an object in a specified collection.
Dynamic allocation is under program control, but is constrained.

A type can have a formal parameter allowing arrays with bounds fixed at creation,
and type-safe variant records.

Modules are an encapsulation mechanism for variables, types, and routines.

The concept of a constant is extended to include a variable whose value cannot
change in the present scope.

A module can be a generator, producing values to be used in a for statement.

There are explicit mechanisms to access the underlying machine, and to override
type checking.

Assertions can be inserted in programs, and code to check them can be generated.

Some features present in Pascal are omitted, including input and output, real
numbers, multi-dimensional arrays, (arrays of arrays are permitted) labels and gotos, and
functions and procedures as parameters.

Other considerations in the design were the need to run programs on several
machines (thus several code generators would be required), the need for efficiency of gen-
erated code without excessive compilation cost, and the need to keep run-time support to
a minimum so that verification could be done.

80

In addition, the language design was intended to be based on current knowledge of
programming languages and compilers, and thus not include features not understood or
difficult to implement. This, as later developments showed, was not achieved. In particu-
lar, the first completed implementation (see the following section) uncovered several prob-
lems. A revised language definition, call Full Euclid (FE), was published in 1981 [Lam81].

Toroato Euc_lid

The first successful implementation of Euclid was a joint effort of I.P. Sharp Associ-
ates and the University of Toronto [Hol78a, Hol80, Wor81a, Wor81b, Pasg0]. The work to
produce this compiler resulted in a version of the language named Toronto Euclid (TE),
and pointed out a number of problems with the original definition.

TE is best characterized as a subset of FE, although there are a number of minor
extensions or modifications to the language. For example, machine code routines are Unix
assembly code (for the PDP-11); this feature is not part of FE. There are some restric-
tions such as requiring expressions in assertions to be enclosed in parentheses, and ignor-
ing case in the spelling of identifiers.

Some features of the FE language are not included in TE. For example, finalization
routines for modules are not allowed, there is no inline expansion of routines, types
returned by functions must be scalar or set types, there are no parameterized types, there
is no range checking on assignment, separate compilation is not supported, and variant
records are not allowed. Most of these are relatively minor as far as security is concerned.

A relatively successful research project to translate TE programs into Ada was car-
ried out between 1982 and 1983 by Andyne Computing [Lee84]. The rationale for this
investigation is that critical software, such as trusted secure components, can be verified in
Euclid and then transported to an Ada environment in which they are required to run due
to language standardization. The important issue of the security of the Ada run-time sys-
tem was not addressed. This TE/Ada translator, built by modifying the TE compiler, is
able to translate a significant subset of TE. We call this subset Kingston Euclid (KE).

Although an axiomatization for Euclid was produced [Lon78] (see also [Cra82b]), no
work on support for verification of TE programs has been done.

Concurrent Euclid

Concurrent Euclid (CE), was developed by the team at the Computer Systems
Research Group at the University of Toronto that had been involved with the Torento
Euclid project [Cor81, Hol83]. CE can best be explained as a subset of FE, together with
a set of extensions based on monitors to support concurrency.

The sequential subset is very similar to the TE variant of the language. One area of
difference is in passing parameters to routines. CE allows the upper bound of an array
index type to be the word paremeter thus signifying that any array with the appropriate
clement type and an index type with the appropriate lower bound can be passed. CE also
allows the type of a parameter to be maiversal thus signifying that any type can be passed,
and that the object will be viewed as an array of StorageUnits.

The concurrency features of CE are based on monitors as described by C.A.R. Hoare
[Hoa74]. Each module can contain any number of processes. A process is declared like a
parameterless procedure, and begins execution following the initialization of the module.
Processes can alter global variables. The approved way for processes to communicate is
via monitors; a menitor is a special kind of module. A monitor exports procedures and
functions, which are called entries. The implementation guarantees that at most one pro-
cess is executing inside a monitor--i.e., is executing one of the monitor’s entries--at any

81

time. Thus, a process is guaranteed exclusive access to the monitor’s variables when in an
entry, since a monitor cannot export variables. A process attempting to enter the monitor
when another process is already executing inside the monitor, is blocked.

Variables of type condition are provided, along with the operations wai# and sigmal so
that processes can explicitly block themselves until some logical condition obtains, and can
send notification to other processes that the condition on which they are waiting has been
established.

There is also a busy statement so that a simulated time can be advanced. Programs
run in zero elapsed simulated time. CE also provides support for separate compilations
(via the extermal attribute of a unit) and linking of separately compiled units.

A project is currently underway at Andyne Computing to provide a mechanism to
move compiled CE programs into an Ada run-time environment. This provides an alterna-
tive to the translation method used in the TE/Ada project.

We are currently able to produce, using a modified CE compiler, a load module that
can be linked and run with Ada programs. (The system in use in an Intellimac 68000-
based machine running Telesoft Ada under Unix.) The language interface that we expect
to support is a CE module/Ada package with exported procedures and functions having
only primitive typed parameters: integers, booleans, characters, and strings. We also
expect, in follow-on work, to provide internal concurrency by building on the Ada run-
time kernel. That is, the CE module will probably be a monitor providing mutual exclu-
sion for its operations. We say more about this issue of concurrency later.

Some preliminary work has been done toward an axiomatization of CE and the con-
struction of a verification condition generator (VCG) [Mat82]. However, concurrency was
not addressed in this work and it has not been continued beyond the initial prototype. We
are not aware of any effort to pursue support for verification of CE programs.

Orttawa Euclid

During the development of CE, L.P. Sharp Associates procceded in a different direc-
tion that resulted in Ottawa Euclid {(OE), which can be described as FE with extensions to
support verification [Cro81,Cro82,Cra83a). In particular, an extersal modale mechanism for
specification and a theory facility were added [Cra83b).

The unit of specification in OF is the Euclid module, represented by an external
module declaration containing routine specifications, invariant specification assertions, and
variable and constant declarations. Functions and constants for proof purposes only can
also be declared.

The theory construct provides linguistic support for the encapsulation of reusable
definitions of mathematical objects and their properties. The need for theories follows
from the necessity to provide, in a program verification, axioms, lemmas, and theorems
about the domain of computation of the program under scrutiny. For example, a program
manipulating tree data structures requires definitions of the meaning of tree operations.
Since tree manipulations are common in many programs it is clearly desirable to define the
required tree properties once and for all in a way that is useful in many different pro-
grams. OE theories provide a way to define such domain specific knowledge so that it is
reusable across many programs.

A named theory can be included in a program and referenced in a similar way as is a
Euclid module. Details of the language of external modules and theories are described in
[Cra83b}.

A concurrency mechanism was not considered for inclusion among the OE exten-
sions for two reasons. First, it was judged that the task of formalizing Euclid satisfactorily
was sufficiently difficult that to attempt to incorporate concurrency would significantly

82

reduce the chances of success. Second, it was not clear what mechanism would be
appropriate and that there was a good chance that the mechanism chosen could very well
end up simply interfering with the specialized kinds of software that were envisioned as
typical for OE applications.

The OE compiler, which is based on the TE compiler structure except for the
replacement of a more machine-independent code generator [Lan82], is expected to be
compieted during 1984.

Although the extensions from FE to OE are intended for verification, it is not
intended that full OE be supported with verification tools. Consequently, I.P.Sharp is
currently completing the definition of a set theoretic model to express formally the seman-
tics of a subset of OE which will be supported.

Verifiable Ottawa Euclid

I.P Sharp is currently finalizing the definition of Verifiable Ottawa Euclid (VOE), a
subset of OE suitable for verification [Cra83c,Cra82b]. A set theoretic mathematical for-
malism based in part on the notion of state relations is being developed by I.P. Sharp to
define the semantics of VOE. A verification logic and a VCG will be produced for the
analysis of OE programs. It then will be possible to prove the soundness of the logic and
the VCG with respect to the semantic definition of VOE.

VOE is to be a part of the Euclid-based Verification and Evaluation Systcm (EVES)
which will provide, in addition to VOE, a theorem prover, and a variety of programming
support tools [Bon82,Cra84]. The VOE subset is expected to be completely defined by the
fall of 1984; the statement semantics are described in [Cra83c] but expressions and, partic-
ularly, data types have not yet been finalized.

An initial application of EVES is to be the formal verification of the LSI Guard
[Cra82a] which has been implemented in TE and specified in OE. The implementation
incorporates a simple run-time kernel with primitives for voluntary context switching of
processes.

Some Observations

The two Euclid/Ada transporter projects have been based on different variants of
Euclid, TE and CE. Both projects kave been successful in the sense that in each we have
accomplished what we set out to do with less difficulty than we were prepared for. It is
now clear that if this approach is to be useful and to be carried further we must consider
what Euclid is appropriate for further development. To do this, we must identify poten-
tial target applications and carefully consider the requirements for them. This will accom-
plish two things: (a) validate the need for such a mechanism, (b) help in making the
language decision based on these requirements.

After considering several potential circumstances where a verified Euclid module
could be useful, it has been concluded that most useful examples fall squarely into the
reference monitor abstraction. Any application which involves secure access to shared
resources falls into this category. Isolation of subjects (processes) and concurrent access
to resources are .inherent.

Another potentially useful, and simpler, model is the verified procedure. This is sim-
ply a sequential procedure, linked with an application program, which performs some criti-
cal computation such as the authentication of a password or a critical user command. This
seems much less useful, however, since the correctness of the calling Ada code is of equal
importance to the procedure.

83

Figure 1 illustrates a plausible structure for the design of a reference monitor written
in Euclid but running in an Ada environment.

subjects

3577

CE reference
controlled monitor Shared Euclid code
access to
resources

Ada run-time
kernel

Figure 1 A Euclid Reference Monitor

A number of Ada tasks are shown running on the Ada kernel. Each task has been
linked with a Euclid reference monitor (RM). For efficiency, it is assumed that only one
copy of the RM is used so that is implied in the diagram. Conceptually, however, each
task has its own copy of the RM. The procedure call interface is used because that is
what is provided by the CE/Ada system. This structure has some inherent assumptions
that are significant.

Assumption 1: An Ada program and the RM can be linked in a secure way.

This assumption is nécessary to ensure the isolation of the tasks from each other and
from the resources. The only interaction of a task with its environment must be via RM
or the Ada kernel.

Assumption 2: The Ada run-time kernel is secure.

This assumption is necessary to ensure that the RM has exclusive control over and
access to the resources. It is also necessary for the isolation of tasks.

Assumption 3: RM has a secure way to authenticate the identity of calling subjects.

For example, certain of the resources may be subject terminals which produce an
authentication (password) message and are then associated with a task.

All of these assumptions require more detailed analysis to define precisely what
"secure" means in each case. Qur intent here is not to do that, but to identify the implica-
tions of this structure on the Euclid/Ada transporter mechanisms.

The major implication is that such an RM is a shared concurrent program. Conse-
quently, a minimum requirement is for some form of mutual exclusion. Since the RM is
to be verified then this, in time, places requirements on the verification system.

84

The most direct approach is to use CE monitors. The CE/Ada system would need
only to use a semaphore-like facility from the Ada kernel to support the monitor con-
currency mechanism. The verification system must, of course, be capable of handling
monitors.

The final conclusion, then, is that most useful applications will require concurrency
and so this should be addressed in the design of the Euclid/Ada system as well as in the
design of a suitable Euclid verification system.

Acknowledgement

Dan Craigen of L.P. Sharp read a draft of this paper and made many helpful sugges-
tions and clarifications.

References

[Bon82}

Bonyun, D, et al.

A Blueprint for a Verification and Evaluation Environment based upon Euclid
IPSA Technical Report FR-5017-82-1, 1982.

[Cor81]

Cordy, J.R., Holt, R.C.

Specification of Concurrent Euclid
Computer Systems Research Group
University of Toronto

Technical Report CSRG-133, August, 1981

[Cra82a]

Craigen, D.

A Forma) Specification of the LSI Guard

IPSA Technical Report TR-5031-82-2, August 1982.

[Cra82b]

Craigen, D.

The Euclid Proof Rules: A Critique

IPSA Technical Report FR-5091-82-1, September 1982,

[Cra83a]

Craigen, D.

Towards a Formal Semantics for Ottawa Euclid
IPSA Technical Report FR-5140-83-1, August 1983.

[Cra83b]

Craigen, D. .

The Theory Construct in Ottawa Euclid

IPSA Technical Report FR-5146-83-1, September 1983.

[Cra83c]

Craigen, D., Saaltink, M.

A Formal Semantics of VOE: Part 2

IPSA Technical Report FR-5172-83-1, November 1983.

[Cra84]

Craigen, D.

Ottawa Euclid and EVES: A Status Report
IEEE Symposium on Security and Privacy
Oakland, Ca, April, 1984.

85

[Cro81}

Crowe, D. R.

Ottawa Euclid language specification

IPSA Technical Report TR-5613-81-7, November, 1981

[Cro82}

Crowe, D.

Ottawa Euclid Reference Manual

IPSA Technical Report TR-5163-81-7, December 1982,

[Hoa74]

Hoare, C.AR.

Monitors: an operating system structuring concept
CACM 17, 10(Oct 74), 549-557.

[Hol78a]

Holt, R., et al

The Euclid Language: A Progress Report

Proceedings of ACM National Conference, December 1978,

[Hol80]

Holt, R.C., et al

The Toronto Euclid Compiler Project Workbook
IPSA Technical Report, March 1980.

[Hol83]

Holt, R.C.

Concurrent Euclid, The Unix System, and Tunis
Addison-Wesley, 1983.

[Lam77)

Lampson, B.W., et al

Report on the Programming Language Euclid
ACM SIGPLAN Notices 12, 1(Feb 77).

[Lam81]

Lampson, B.W_, et al

Report on the Programming Language Euclid
XEROX Parc Technical Report, October 1981.

[Lan82]

Landwehr, R., et al

Experience with an Automatic Code Generator Generator
SIGPLAN Symposium on Compiler Construction

June, 1982.

[Lee84]

Leeson, D.A., Barnard, D.T., MacEwen, G.H.

Issues and Experience in Building a Euclid-to-Ada Translator
in preparation.

[Lon78]

London, R., et al

Proof Rules for the Programming Language Euclid
Acta Informatica 10, 1978.

[Pas80]

Pase, B.

Toronto Euclid Language Specification »
IPSA Technical Report TR-3819-80-2, January 1980.

86

[PopT77]

Popek, G.J., Horning, J.J., Lampson, B.W., Mitchell, J.G., London, R.L.
Notes on the design of Euclid

Proceedings of ACM Conference on Language Design for Reliable Software
SIGPLAN Notices 12,3 (March 77), 11-18.

[Wor81a]

Wortman, D., et al
Euclid - A Language for Compiling Quality Software
National Computer Conference, Chicago, May 1981.

[Wor81b])
Wortman, D., Cordy, J.

Early Experiences with Euclid
5th International Conference on Software Engineering, March 1981.

87

A COMPARISON OF FORMAL SECURITY POLICY MODELS

J.T. Haigh
Martin Marietta Aerospace
Denver, Colorado 80201

Abstract

This paper complements the work of Taylor presented at the 1984 IEEE Symposium
on Security and Privacy. It presents a formal analysis of the similarities
and differences among three models and policies for multi-level security
(MLS), the Bell and LaPadula Model, the SRI model developed by Feiertag,
Levitt, and Robinson, and the non—interference model developed by Goguen and
Meseguer. . The major difficulty encountered is in translating one model and
policy into the language of the model with which it is to be compared. The
main result is that the Bell and LaPadula policy is the most restrictive of
the three, while the Goguen and Meseguer policy is the least restrictive.
Under certain conditions the three policies are equivalent.

FOREWORD

This report was prepared by Martin Marietta Denver Aerospace. The effort was
conducted in the Computer System Engineering Section of Systems Engineering,
Space and Electronic Systems Division under Project Authorization D-72R of
calendar year 1983.

88

I. Introduction

In the DoD Computer Security Center's "Trusted Computer System Evaluation
Criteria” the requirements for certification at the B2 or higher level include
the requirement that a formal security policy for the system be maintained and
érguments be given which show the top level specification for the system is
ébmpatible with the formal security policy. These arguments comprise what is
known as the verification of the top level specification with respect to the
security policy. In this paper three different formal models and policies for
muiti—level security (MLS), based on informal natural language security
policies which differ in their control objectives, are examined. The models
and policies are those due to Bell and LaPadula [1], Feiertag, Levitt, and
Robinson [4], and Goguen and Meseguer [5] respectively. A natural question.to
ask is: Are these policies equivalent? That is are they really the same
policy in disguise? If they are not, what are the differences among them? If
they are, what are the desirable and undesirable features of each of the
formulations? The first published study of these questions is that of Taylor
[15]. The main result of this paper is that the three policies are, in
general, different. The first policy‘is most restrictive and the third is
least restrictive. However there are circumstances in which the policies are

equivalent.

Goguen and Meseguer distinguish between a formal security policy and a model
for the system to which the policy should apply. This distinction is
maintained here. The security policy is formally described in terms of the
elements of the model, and normally an attempt is made to prove the model
satisfies the policy. One of the difficulties in comparing the security
policies is that each is formulated in terms of a different model of the
system. It is necessary to translate a policy formulated in terms of one
model into a formulation in terms of another model before the policies can be
compared. In an abstract setting the interpretation is somewhat subjective
since there is no way to prove an interpretation is correct except in the
context of a particular system, when the mappings from the system to each
model can be compared. In a very nice series of draft reports, Rushby [10,
11, 12] develops a set of assumptions for the Bell and LaPadula policy which
he uses to show it implies an instantiation of the Goguen and Meseguer
policy. Similiar assumptions are made, either implicitly or explicitly, in

this paper. These will be indicated in the text.

89

http:question.to

Each of the models refers to a lattice, K, of security levels. In order tc
orient the reader, each security level will be thought cf as a DOD

classification level, unclassified to top secret, alcng with a set of
categories 6f information. The security level of a user, u, will be denoted
by K(u). It indicates u has some sort of rights to information at certain
classification levels, contained in the set of categories of K(u). However it
is important to remenber some other lattice could be used. In particular the
lattice could be an integrity level lattice as described by Biba [2] or a more
comprehensive protection level lattice incorporating both security and
integrity levels. The paper by Grohn [7] develops the notion cf protection
level very nicely. The formal policies and the results discussed in this
report apply to any lattice of "security" levels. Each of the policies and
the differences among them will be described informally in the bedy of this
report. The aprendix contains formal descripticns of the models as well as
proofs of the relationships among them. While the proofs themselves are quite

simple, the descriptions of the models do require extensive notatior.

II. The Bell-LaPadula Policy

The Bell and LaPadula policy [1] is based on the notion of access control. It
is essentially a formalization of the DOD paper and file cabinet policy
adapted to an automated environment. The primitive elements of the model

are:

1) Subjects: the active entities of the system, including users and

processes acting on behalf of users;

2) Objects: the passive entities of the systems, the high-level data

structures in which information is stored;

3) Ckserve, modify: the modes of access which sukjects may have to okjects,

denoted o0 and m respectively; and

4) K: the lattice of security levels for the subjects and objects.

90

These elements and relations on them are used to define the state of the
system. For this report the crucial component of the state is the current
access list which consists of the set of all triples of the form (subject,
access mode, object) such that the subject can currently access the object in
the given mode. The multi-level security policy, denoted BL, consists of two
properties of the current access list, the simple security and * (pronounced
star) properties, as well as three properties which essentially keep the
security levels of objects constant from their creation to their deletion and

the levels independent from one creation to the next. For this paper BL is:

Definition: A state is multi-level secure if for each triple

(subject, x, object) in the current access list, the following properties are

satisfied.

ss) The level of subject is at least the level of object

whenever x = o.

*) The level of object is at least the level of subject

whenever X = m.

T) During each incarnation of a subject or object, its level remains

constant.

The conditions expressed by (ss) and (*) are illustrated in Figure 1. 1If sub
is any subject, then 0Sub and Msub are the cones of objects which are
respectively observable and modifiable by sub., Since the set K is only

partially ordered, there will presumably be objects outside both cones.

M = Jobijects modifiable by sub;
sub
O _ = :{objszts observable by sub:
sub - -
FIGURE 1

91

Condition (T) is a slightly stronger version of the Tranquility Principle of
BL. In the absence of (T), certain covert storage channels described by
Rushby [10] are permitted by the model. Essentially (T) implies the cones

M and OSub do not change unless sub or an object in one of the cones is

sub
created or deleted.

The model also includes a set of rules for creating/deleting objects,
granting/rescinding access rights of subjects to objects, etc. This set of
rules constitutes the inputs for a finite state machine. The output and next
state (state transition) functions are juxtaposed to form a results function.
A system is said to be multi-level secure if any state which can be reached
from a secure initial state is also secure. The theorem asserting a system is
multi-level secure is known as the Basic Security Theorem [1]. It is proved
by induction on ﬁhe length of the string of operations performed. The mapping
of an actual computer system to the elements of BL is fairly straight

forward. Perhaps for this reason variations of it have been used in the
design of several systems including MITRE's prototype [3], Ford's KSOS {9],
SDC's KVM/370 [6], and Honeywell's SCOMP [3], the only one being developed as
a commercial product.

ITI, The Feiertag—-Levitt—Robinson Policy

The Bell-LaPadula policy has been criticized as too inflexible. Also, since
it is an access control policy, it is not as amenable to automated
verification techniques or to checks for covert channels as are flow control
policies. The policy developed by Feiertag, Levitt, and Robinson, [4],
denoted FLR, is a more flexible policy based on flow control. It was
formulated to be used with SRI, International's Hierarchical Development
Method (HDM) [8] for the design and verification of software. The components

of the finite state machine are more immediate in FLR than in BL., These are:

1) The set of state variables. These correspond to the objects of BL. The

state of the system consists of a value for each of the state variables.

2) The set of function references, that is, a function along with a set of
parameter references for the function. These are the inputs to the finite
state machine. They include the operations of observe and modify, but
also include state changing rules analagous to those to those in the model

of Part 1II.

92

3) The set of outputs to users which result from function references.

4) The next state and output functions which map a state and function

reference pair to a state and output respectively. Ard

5) The set of security leveis for state variables and function references.

If each function reference is assumed to have a subject which invckes the
function, then the level of the function reference can be equated with the

level of the subject.

The fcrmal definition of multi-level security involves quite a bit of

notation, however an English language version of the policy is stated here.

Definition: A system is multi-level secure if the following statements are

true:

a) The results (output) of each functicn reference can be inferred from
values of state variables at levels less than or equal to the level of the

function reference.

b) After each function reference the values of all the state variables at a
given level may be inferred from the values before the functicn reference

of state variables at levels less than or equal to the given level.

c) Each function reference can only affect the values of state variables at

levels at or above the level of the function reference.
It is fairly clear property (a) is the analog of (ss) from BL. Both (k) and

(c) incorporate restrictions akin to (*). 1In fact (k) is the analog of an

early version (*) [1].

93

The following example of the differences between BL and FLR is given in

reference 4. Suppose a user (subject) at the confidential level, wished to

modify the value of state variable (object) at the top secret level using the
(See Figure 2.) This would

value of a state variable at the secret level.
violate (ss) of BL since the subject would have to observe the contents of the

secret level object. On the other hand this would not violate any of the

TS

BL.SS prohibits ¢

£ is allowed by FLR

~

[§=]

Fy

(@]

FIGURE 2

properties of FLR, if there were a function which would allow a subject to use

one object to modify another object without observing the first object. In

FLR the set of objects which may be used to modify another object is

independent of the function performing the modification. This fact is

illustrated in Figure 3. The cones of objects observable and modifiable by

sub remain the same, but if obj is an object in M , the cone, M . ., of
sub obj

objects which can be used to modify obj may be larger than Osub' This

allows an upward flow of information from which no compromise is possible,

since the subject initiating the flow is at a level less than or equal to the
From this discussion it is clear that in

levels of any objects modified.
It is true that BL

general the two policies, BL and FLR, are not equivalent.

implies FLR. That is, any system which satisfies BL automatically satisfies

FLR., This assertion is proved in the appendix.

94

Rushby states the following Object Monitor Axiom [10] which he later

formalizes in the language of Goguen and Meseguer [11].

Definition: A system satisfies the Object Monitor Axiom (OMA) if:

a) The output of an operation may only depend on the values of objects to

which the user who executes the operation has observation rights.

b) The new values assigned to objects as a result of executing an operation
may only depend on the values of objects to which the user who executes

the operation has observation rights.

c) An operation may only change the values of objects to which the user who

executes the operation has modification rights.

He uses this axiom to show BL implies the Goguen and Meseguer version of

MLS. 1In this paper a similiar set of assumptions are implicit in the proof
that BL implies FLR. In fact, the similarity between OMA and FLR along with
Figure 1, which is a consequence of (ss) and (*), constitutes the proof of the

implication.

. = {objects that can be used to modify obj}

FIGURE 3

95

This pollcy, FLR, defines multi- level securlty for the system rather than for
a state of the system. This means an analog of the Ba51c Securlty Theorem is
contained in the statement of the security pollcy. Hence, one would expect a
proof that a model satisfies_FLR to be lessvobviohs thsn ats;mllar proof that
a model satisfies BL. On the cther hand, it is not necessary tc state and
prove a separate Basic Security Theorem. The SCOMP, kernel was originally

verified using a variation of FLR [3].

IV. The Goguen—Meseguer Policy

As motivation for the third policy, it is useful to conttest the situation
illustrated by Figure 2 with the one illustrated by Figure 4, in which a user
at the top secret level uses an object at the confidential level to mcdify an
object at the secret level. This is prohibited by both the previous
policies. 1In BL (*) prohibits the user from mod1fy1ng a lower level obJect.
In FLR (c¢) prohibits any function reference which would modlfy a state
variable at a level which is not greater than or equal to level of the subject
of the function reference. In both examples the_pvert flow of information is
upward, which one might expect to be permissible. However in the second
example the top secret user could signal information to a secret user with o
access to the secret object by the manner in which the information in the
confidential level object is used to modify the secret level object. Stated
another way the difficulty with the second example is that a high-level user
could potentially interfere with a low-level user. This presents the

potential for a covert channel running from the high-level to the low-level.

BL.* .prohibits m

i
: © ' FLR.c prohibits £
|
|
c

FIGURE 4

96

1f the response of the system for each user were only dependent on the

‘activities of users at or below the level of that user, then no information

‘could flow from a high to a low-level either overtly or covertly. Morecver

the mechanisms enforcing security would be essentially transparent to the user.

The policy of Goguen and Meseguer [5] is based on this notion of

non-interference. Its nctation and formalization are simpler than those of

FLR, and its statement is more elegant than either of the previous policies.
The elements of the model are: ‘

1) 'The set of possikle states of the system.

2) 'The set of users of the éystem.

3) The set of commands which the users may issue. The set of function
references in FLR corresponds to the Cartesian product cof the set of users
with the set of commands.

4) ‘he set of outputs to the users. .

5) The next state and output functions.

6) 'The set of secﬁrity levels for users.

Definiticn: User 1 is said to be non-interfering with user 2 if for any two
strings of user-command pairs, which are identicial except for
pairs involving user 1, the outputs to user 2 are identicial.

Definition: The system with a given initial. state is multi-level secure, if

user 1 is non-interfering with user 2, unless the level of user

1 is less than or equal to the level of user 2.

97

This policy is very similar to the general MLS policy formulated in reference
4, Any system which satisfies FLR automatically satisfies GM. The proof is
contained in the appendix. Since no counterexample has been produced, it is
possible GM is equivalent to FLR. It would be nice to have either a proof of
their equivalence or a description of the differences between them. With GM
as with FLR, an analog of the Basic Security Theorem is inherent in the
definition of the policy. Since the definition of non-interfering involves
arbitrary finite strings of user—-command pairs, one approach to proving one
user is non—interfering with another is to use induction on the length of the
string. This means the mechanics of the Basic Security Theorem have not
disappeared, they have simply been moved. Rushby [12] has developed a series
of unwinding theorems which provide the inductive tools necessary to verify a

model satisfies GM.
V. Conclusions

Three formal policies for multi-level security of a computer system have been
examined and compared. Each policy is stated as a definition in terms of a
finite state machine model of the system. The statements of the policies
differ because the components of the machine are defined differently for each

model and also because the control objectives differ for the three poliéies.

BL is based on access control. It is the most specific and appears to be
the easiest policy to use in the design of a system. FLR controls information
flows. It allows for greater flexibility in the manipulation of data and
lends itself nicely to verification techniques utilizing automatic theorem
provers. This is not surprising since it was developed for use with SRI's
HDM. GM is based on the control of interference among users. It is the most
general and most elegant of the three. It is relatively new, 1982, and has
not been used for the design or verification of any system. It does provide a
nice language for high-level discussions of formal security policies. It is
possible to interpret the components of one model in terms of the components
of another model. By doing this one can see the policies are not, in gemneral,
equivalent. Rather any system which satisfies BL also satisfies the other
policies, and any system which satisfies any one of the policies also
satisfies GM, All three policies appear to enforce the DOD mandatory security

policy for the control of information accessible to users of the system.

98

Although the policies are generally distinct, there are conditions under which
they are equivalent. These conditions reflect assumptions made on the
behavior of the system or on the level of use being modeled. One such
assumption is that there is no way for a process to use one piece of
information to modify another piece of information without the user on whose
behalf the process is acting acquiring the capability to observe something
about the first piece of information. If the assumption is true, the three
rolicies are equivalent. Proofs of this equivalence as well as of the other

implications are contained in the appendix.

References:

1.

Bell, D.E. and L.J. LaPadula, "Secure Ccmputer Systemé': ‘
Mathematical Foundations and Model", MITRE Corp, Bedford, MA (September,
1974).

Biba, K.J., "Integrity Considerations for Secure Computer Systems", MITRE
Corp., Bedford, MA (April, 1977).

Fonneau, C.H., "Secure Communications Processor Kernal Software:
Detailed Specification, Part I, Rev. D.", Honeywell, St. Petersburg, FL
(1980C). ’ '

Feiertag, R.J., K. N. Levitt, and L. Robinscn, "Proving Multi-level
Security of a System Design", in Proceedings, Sixth ACM Symposium on
Operating Systems Principles, pp. 57-€5 (1977).

uen, J.A. and J. Meseguer, "Security Policies and Security Models", in
eg Y

Proceedings, 1982 IEEE Symposium on Security and Privacy, pp. 11-20
(April, 1982). '

Gold, B.D. et.al., "A Security Retrofit of VM/370", in Proceedings of the
AFIPS National Computer Conference, Vol. 48, pp. 335-342, Arlington, VA,
AFIPS Press (1979).

Grchn, M.J., "A Model of a Protected Data Management System", I.P. Sharp
Associates Ltd., Ottawa, Canada (June, 1976).

Levitt, K., L. Robinson, and B. Silverberg, "The HDM Handbook", Computer
Science Labortory SRI International, Menlo Park, Ca (1979)

McCauley, E.J. and P.J. Drongowski, "KSCS: The Design of a Secure
Operating System", in Proceedings of the AFIPS National Computer

Conference, Vol. 48, pp. 345-353, Arlington, VA, AFIPS Press (1979).

100

References: (continued)

10.

1.

12.,

13.

14,

15.

Rushby, J.M., "The Bell and LaPadula Security Model”, Draft report,
Computer Science Laboratory, SRI Internmational, Menlo Park, CA (1984).

Rushby, J.M., "Comparison Between the Bell and LaPadula and the SRI

Security Models”, Draft report, Computer Science Laboratory, SRI

International, Menlo Park, CA (1984).

Rushby, J.M., "The SRI Security Model”, Draft report, Computer Science
Laboratory, SRI International, Menlo Park, CA (1984).

Schiller, W. L., "The Design and Specification of a Security Kernal for

the PDP 11/45", MITRE Corp., Bedford, MA (March, 1975).

Silverman, J.M., "Proving on Operating System Kernal Secure”, Honeywell,
Minneapolis, MN (April, 1981).

Taylor, Tad, "Comparison Paper Between the Bell and LaPadula Model and
the SRI Model”, in Proceedings 1984 IEEE Symposium on Security and
Privacy, PP 195-203, (May, 1984).

101

APPENDIX

Formal Descriptions of the Policies and Prcofs of the Implications

Throughout this appendix K will refer both to the set cf security levels of
the security level lattice and to the function associating a security level
with each of the appropriate entities in the model of the system. Thus in EL
function, K has as its domain the union of the sets of subjects and objects of

the system. The range of function K is always the set K of security levels.

I. Description of BL

The primitive elements of the system are:

SUB = the set of subjects.

OBJ

the set of cbjects.

A = set of access modes. These modes are g_and m.

These are used to define the state of the machine, which consists of

b = the subset of (sub, x, obj) in SUB x A x OBJ such that sub has x
access to obj.
K = the security level function, and other components irrelevant

to this discussion.

102

4

Pefinition 1. A state is secure if both of the following are true.

ss)- Whenever (sub, o, obj) is in b, K(suk) 2 K(cbj).

*) Wwhenever (sub, m, cbj) is in b, K(sub) £ K(cbj).

The inputs to the machine are a set of requests to alter the state of the
system including the creation and deletion of objects. The response of the
system tc each of these requests is a next state and a message to the subject,
which made the request, lbased on the security level of the subject and the
current state of the system. OCne state can be reached from another if there
is a string of requests which transform the first state into the second via
applications of the next state function with successive elements of the

request string as inputs.

Definition 2. A system is secure if every state which can be reached from a

secure initial state is also secure.

The Basic Security Theorem states that if each operation transforms a secure

state into a secure state, then the system is secure.

II. Descripticn of FLR

The elements cf the model are

<
I

the set of state variables. These correspond to the objects cf HL.

S = the set of states. An individual state, s in S, is composed of one

value for each state variable, v in V. The value is denocted v(s).

I = the set of function references. A function reference is a function
with a full set of parameter references. The set of function
references, includes the okserve and modify operations as well as the

state changing coperations of the model in I.

103

O = the set of outputs which result from the invocation of a function
reference to a particular state. These correspond to what an

individual user sees after invoking a function.

N, and N, the output and next state functions. These map SxI into O and

S respectively. Far economy of notation later
sf:= NS(s,f).

In order to state FLR several preliminary definitions are required.

Definition 1. If k is a security level in K, then for each state s in S,
a) s = set of state variables at level k.

b) = set of state variables at levels less than or equal to k.

SL(k)

c) Sg(k) = set of state variables-at levels greater than or equal to k.

Definition 2. Given a security level k, define the following functions with

domain S:

a) P which maps each s in S to Sy s

b) Qk which maps each s in S to sL(k)’ and

c) E which maps each s in S to (SG(k))C'

Py

respectively, and E, may be thought of as filtering SG(k) from S, where

and Qk may be thought of as projections of S onto sets Sk and SL(k)

Sk’ SL(k)’ and SG(k) are defined in the cbvious manner.

104

The FLR pqlicy can now be stated.

Definition 3. A system is secure if each of the following is true.

a) For each £ in I and each k in K, there is a function, j, so that if s

is in .S, then

N (s,£) = 3(Q(8)).

b) For each £ in I and each k in K, there is a function, j, so that if s

is in S, then
P (sf) = §(Qu(s)).

c) For each f in I and each s in S,
EK(f)(sf) % EK(f)(s).

In (a) and (E) the expression A = j(B) should be interpreted as A can be

inferred from B.

III. Description of GM

The elements of the model are:

= the set of states.
= the set of users.

= the set of commands the users can issue. In terms of FLR, UxC = I.

©C O ¢ wm

= the set of outputs to the users

do = the neit state function, which has domain SxUxC and assumes values
in S.

out = the output function, which has domain SxU and assumes values in

0. Out (s,u) is the value the user u sees when the system is

in state s.

105

Several definitions are useful in stating the rolicy.

: *
Definition 1. (UxC) is the set of finite strings

(ul,cl)°..°(un,Cn) where each (uj,Cj) is in UxC.
*
Definition 2. Do* is defined on S$x(UxC) inductively by
a) do*(s,u,c):= do(s,u,c), and

k) do*(s,w (u,c)):= (do*(s,w),(u,c)) if w is in (UxC)*.

*
Definition 3. If s, is the initial state of the system, w is in (UxC) ,

and u is in U, then
a) [w]:= do*(so,w), and
o= * ;
L) [w]u. out(do (so,w),u).

Definition 4. If w = (ul,cl)ﬂ..O(un,cn) is in (UxC)* and u is in U,

then Pu(w) 3= Wpe..ow

where for i = 1l..n,

W, = iﬁ(ui,ci) if u; = u.

the null string if u; = u.

106

Definition 5. User, u', is interfering with user, u, if
[wl, = LB, (w)]

for some string w in (UxC)*.

With all this notation the security policy can be stated quite simply.

Definition 6. The SYSTEM WITH INITIAL STATE S IS SECURE if whenever u' is

interfering with u, K(u')< K(u).

Notice with this definition the system may be secure for some initial states
but not for ‘others. Also, as noted in the text, the mechanics of- the proof cof
the Basic Security Thereom are contained in the proof that if K(u') K(u),

then u' is not interfering with u.

IV. BL Implies FLR

Theorem. If a system is secure in the sense of EL, then it is secure in the

sense of FLR.

Before proving the theorem, it is necessary to interpret the model for FIR in

terms of the model for EHL.
i) The state variables of FLR correspond to the cobjects of BL.
ii) Each function reference, f, has a sukbject, sub, and K(f) = K(suk).

iii) N (s,f) correspcnds to an o cperation by the subject of £ on a set

of state variables, Vs for i = 1..n.

107

Proof :

. for i = 1l..n, then for i = l..n

a) If Nt(s,f) depends on \Z]

(sub, o, v;) is in b, where sub is the subject of £,
and so (ss) implies
K(%) = K(sub)z K(v;).

Therefore

Nr(srf)_, = j(QK(f)(s))'

c) 1If v is a state variable and f is a function reference for which

v(sf) wv(s), .then (sub, m, v) is in b, where sub is the subject of f.
And (*)implies
K(f) = K(suk)< K(v).
Therefcre if K(f‘)si" K(v) then v(sf) = v(s).
That is Ek(f)(sf) = Ek(f) (f).
L) Ifk ¥ K(f), then as a-consequer}ce of (c)
P, (sf) = P (s).

If k K(f), v is in V with K(v) = k, and v* in V:is used by f to
nodify v, then, '

K(v') € K(£) < K(v) by (*).

108

Therefore reyardless of the relation between k and K(f),

B, (sE) = 3(g ().

It is interesting to notice (c) implies (L) if the following condition is
satisfied.

H) The expression "use v

5 to modify vl" means "dpbserve v, and modify

vy".
This condition will be referred to later. Given this condition (E), (c) and
(*) are equivalent. There is an earlier formulation of (*) which is
equivalent to (L). The two (*) corditions are equivalent [1] if the security

level of a subject is taken to be its current security level, defined as:
K(su.b)‘ = max ' K(obj')/(sub“,"g,oﬁj) is in b} -

as opposed to its maximum security level. In this report subjectstare

assigned their current security levels. Thus if (H) is satisfied, (*), (L),

. . . . a w . . , .
and (c) are equivalent, and in figure 3, MObj Cok whenever K(ckj)
K(suk).

V. FLK Imngplies GN

Theorem. If a system satisties FLR, it also satisfies GM for every initial
state.

The corresponderice between models is fairly direct.
i) Out(s,u) corresponds to Nt(s,f) for £ = (u,c) for some c in C, and

ii) Lo(s,u,c) corresponds to Ns(s,f) for £ = (u,c) in UxC.

109

Proof:

Suppose u' is interfering with u. That is, for some w in (UxC)* and some

function invocation £ = (u,c) with ¢ in C,
N_(sw,£) # N_(sP_.(w),£f).
If v is a state variable which affects the output, then

v(sw) F v(sP . (w))

and by (a)
K(v) £ K(f) = K(u).

So w contains at least one function reference, g, with subject u', which

changes the value of v, hence by (c)
K(u') = K(g) < K(v).
Thus

K(u') < K(u).

VI. GM Implies BL if (K)

Theorem. If (H) is satisfied the three policies are equivalent.
The interpretation here is fairly straight forward

1) If the value of ob]j affects the value of out(s,u), then

(u, o, cbj) is in b, and

110

~

2) 1If the value of obj is changed by do(s,u,c), then (u, m, obj) is in b.
It must alsc be assumed that if u creates obj, then
3) K(u) = K(dkj) ard
4) (u,0, cbj) is in L.

Proot:

ss) Suppose (subl, o, obj) is in b, and cbj was created by sub,. Then

sub2 is interfering with subl, sO
K(subl)z K(subz) = K(obj).

*) Suppose (suby, m, obj) is in b and obj was created by sub,. Then

(subz, o, okj) is in b, so sub, s interfering sub2 Therefore
K(eub,)< K(sub,) = K(cbj).

Thus if (k) is satisfied, BL implies FLR implies GM implies BL. So the

three policies are eguivalent.

111

EXTENDING THE BELL & LAPADULA SECURITY MODEL
Dr. Ronald A. Gove

DoD Computer Security Center

In this paper we propose an extension of the Bell & LaPadula computer
security model (henceforth referred to as BLP) as presented in [B&LP1,2,3,41. By
enlarging the state space of BLP we will show that the information flow concepts
(non-interference statements) of Feiertag, Goguen and Meseguer, and Rushby
([Feier], [GM], and [Rush1]) can be included in the BLP model. Rushby's formal
version of the Feiertag model is referred to as the SRI model and will form our
point of reference. We will assume throughout this paper that the BLP model is
secure. That is, the initial state is secure and the rules are in effect. In
order to simplify the presentation we will assume a fixed set of objects at fixed
security levels; i.e. the rule change object_security level will not be allowed,
and we will not, in this paper, concern ourselves with the addition or deletion of
objects. We also will not utilized the hierarchy concept of [B&LPU].

Recall the following terms from BLP:
S = set of subjects
= set of objects

= set of states

0
\'/
L = partially ordered set of security levels (order relation <)
A {_r_-, W, 3, €, g} = set of attributes

F

‘{fs, fo, fc} = set of clearance functions

Recall that the elements of set A correspond to r=read only, w=read/write,
a=append (write only), e=execute and c=control. The clearance functions are the
subject level fg:S-->L, the object levels fg:0-->L and the current subject level
fe:S-->L. The BLP states are of the form v=(b,f,M) where b is the current access
set, f F, and M is the access matrix.

In order to formulate non-interference concepts it is necessary to enlarge
the BLP model by introducing the notion of the contents of an object. Let
"values" be an abstract set representing the contents of all objects in O. The
contents of an object will be identified by means of functions mapping into
"values", e.g. h:0-->values. In order to emphasize the dependence of b, f, and M
on the state v we will use the following notation: If v=(b,f,M) then,

access[vl = b
current_subject levellv] = f

matrix[v] = M

112

Note that, since our model will not allow the maximum level of subjects and
objects to change, we have assumed that f is Jjust the current subject 1level
function: fo. Finally, we define a new state space for the extended BLP model,
BLP¥:

V¥ :.-{(v1,v2,v3,vu):(v1,v2,v3) V and vu:O-—>va1ues].

Note: The contents function v, is state dependent; different states can have
different contents. Following the notation used above, V) will usually be written
as contentslv].

The BLP model affects state transitions by means of request and rules of
operation. We will reinterpret these concepts through the concept of "commands"
in order to follow the Rushby formulation of the SRI model. The command set,C,
will contain two types of commands: the requests of BLP which act only on the
access portion of the states and the operations which act only on contentslivl.
The way the commands act on the states is through the state transition function
next :V¥xSxC-->V¥, For example, a get_read request of BLP would be represented by
a command c=(get_r'ead,o). In this case, next(v,s,c) would represent the next
state, when subject s requests read access to object o when the system is in state
v. For reference we will list the applicable requests of BLP and show the. effect
when those requests are granted. When requests are not granted, the next state is
always unchanged. We will denote the current state by v and the next state by v¥.
State components that are not mentioned are not changed.

Requests 1, 2, 3, U4: get__read, get_append, get_execute, get write

Semantics: subject s requests x-access to object o, where x is r, a, e, or w.

Effect: access[v¥] = accesslviv{(s, o, 5)}.

Request 5: release read/write/execute/append

Semantics: subject s requests x-access to object o be deleted,
where X is r, a, €, W.

Effect: access[v¥] = access[v]e {(s,o,x)} .

Request 6: give read/write/execute/append

Semantics: subject s gives subject t x-access to object o,
where X = r, w, €, Or a.

Effect: for (u,p) EV*¥ X 0,

matrix[v](u,p) if (u,pl)#(t,0)
matrix[v¥] (u,p) =
matrixivl (t,o)v {x} if (u,p)=(%t,0).

113

Request 7: rescind_read/write/execute/append

Semantics: subject s removes x-access to object o from subject t,
where X = r, W, €, Or a

Effect: for (u,p)t V'X 0,
matrix[vl(u,p) if (u,p)#(t,o0)

matrix[v¥] (u,p) = i
matrix[v](t,o)°~{xi if (u,p)=(t,0).

Request 8 and 9 of BLP deal with the creation and deletion of objects. Since
we have omitted this aspect of the BLP model in this paper, we have no need
to list them here. Request 11 is also omitted because it deals with changing
object levels which we have also omitted. Request 10,
"change subject_security level", requires some modification in order to fit
our enlarged state space.

Request 10: change current_subject_level

Semantics: subject t requests that its current clearance level be changed
to L.

If the request is not in the correct form the system responds with ? and
leaves the state unchanged. Otherwise, the following conditions are checked.

(i) fg(t) > L
‘(ii) the star property will hold in the new state. i.e.
(t,o0,a)¢access[v] ==> fglo) > L
(t,0.w)€accessvl ==> fplo) = L
(t,o,r)eaccesslv] ==> L > fg(o)

(iii) for any s &S such that ~(current subject levellvl(t) < fg(s)),
it is the case that ~(L < fg(s))

If any of these conditions fail, the rule give a "no" decision and the state
v is unchanged. If they are all true then the new state is v* where for any s€S,

current_subject levellv](s) s#t

current_subject_levellv¥](s) =
' L if s=t

access[v¥] = accesslv]

matrix[v*] = matrix[v].

114

It is clear that next preserves the simple security properties and the ¥ -
property. Thus V¥ is secure if V is.

The "operation" or contents altering commands will be 1left undefined.
Instead we will give an axiom that characterizes their behavior.

AXTOM T
Let veV¥, 0 €0, s€S, c&C, and v¥ = next(v,s,c).

If accesslv] does not contain (s,o,w) or (s,0,a) then
contents [v¥](o) = contentslvl(o).

NOTE: 1In words this says that if in state v user s does not have write or append
access to object o then no command by s can change the contents of o.

In the SRI model an "output" function 1is needed in order to talk about
information flows. Its exact formulation really does not matter as long as it
satisfies the following condition: if a user, s, has read or write/read access to
exactly the same set of objects when the system is in state v or in state u then
the outputs must be identical. We need some additional notation to describe this
precisely. Let v € V¥, Given s € S we form the local (or subject) contents
function lelv,s]l: O --> values by the rule

contentslvl (o) if (s,o,r) or (s,o,w) € access [v]
lelv,sl(o) =
otherwise

NOTE: In words, the local contents of o with respect to subject s and state v is
the contents of o if s has read access or write/read access to o and is the null,
an undefined contents, #, if s does not have read or write/read access.

We then characterize the output function as any function out: VxSxC =->
outputs (outputs an arbitrary set) that staisfies the following axiom:

AXTOM IT
Let v, u€V, c&C, s&S, v¥ = next(v,s,c), and u* = next(u,s,c).
If lelv,s] = lelu,s] then
a. out(v,s,ec) = out(u,s,c)
b. contents[v¥] = contents[u*].

NOTE: In words, if in states v and u, s has r or w access to exactly the same set
of objects with the same contents then the outputs have to agree, and the contents
function of the next states have to agree.

Now we can define a security policy for BLP¥ as in the SRI model. Following
[Rush1l, we state the policy in terms of non-interference assertions denoted t-+4->s
(read:subject t does not interfere with subject s). Informally, t-4->s if nothing
that t does can affect the "view" s has of the system. (This is developed
formally in [Rushi1l, we omit the details). The security policy for the system is
set, PCSXS with certain properties. The BLP¥ system will be secure in the SRI
sense if for each (t,s) &P it can be shown that t-£->s.

115

The security policy, P, we want is:
, (t,s)&P if

1.‘ t s

2. ~ (fg(t) < fs(s))

and 3. If vg is the initial state then ~(current subject levellvpl (t) < fs (s))

In words, (t,s). P if the maximum level of t dominates (or is non-comparable to)
the maximum level of s and in the initial state, vp, the current subject level
of 't dominates (or is non-comparable to) the maximum level of s.

In order to show that BLP*¥ is secure in the SRI sense, we have to show that
(t,s)eP implies that t-4->s. This will be done via Theorem 6 of [Rushil, the
"unwinding theorem". We first need to show that condition 2 above also holds for
all reachable states as well as the initial state vg. (A state w is reachable
from v if there is a sequence of commands ¢1, cp...ck and subjects s{, S2...sk
such that w = next (...next(next(v, s1, c¢1), s2 ¢2)..., sk, ck)).

Lemma. 1. - If veV* and t, s &S and if -~ (current_subject level [vl(t) < fg (s)),
then for any r&S and c&C,

~s (current_subject_level [next (v,r,c)](t) < fg(s)).

Proof. An examination of the rules shows that the only command that affects the
current_subject level function of a state is command c: change current subject
level to L. If next leaves the state v fixed we are done trivially. If next
changes the state, then from rule 10 above

current_subject_level [vI(t) if t # r
current_subject level [next(v,r,c)I(t) =
oo Lif t =

In the case t#r we are done as current subject level [next(v r,e)l =
current_subject levellvl. If t = r, current subject level [next(v,r, c)](t) = L
and by condition iii of rule 10 (which must hold since next was assumed to have
caused a state change) we conclude: ~/ (L < fg(s)).

By induction we have,

Lemma 2. IfveV¥, t, seS and weV* is reachable from v and
~ (current_subject levellvl(t) < fs(s)) then

~ (current_subject_levellw] (t) < fg(s)).

In order to apply theorem 6 of [Rush1] we need to specify an interpretation
of the abstract view of the system. Let v&V¥ and s&€S. Then the "view" s has of
‘the system in state v is simply lelv,sl; just the local contents function for s in
state v. We will use view[v,s] and lclv,s] interchangebly. It follows trivially
from Axiom II above that the view function is internally consistent. That is, if
viewlv,s] = viewlu,s] then out(v,s,c) = out(u,s,c).

116

We now state Rushby's

Theorem 6: Let M R=(V¥, S, C, P, next, out, view) be an internally consistent
system such that P is not empty and for all v, ueV¥, s, t, reS, ceC

1. (t,s) €P ==> viewlnext(v,t,c),s] = viewlv,s]
2. viewlv,t] = viewlu,t] => viewlnext(v,r,c),t]l = viewlnext(u,r,c),t]
then M R is secure (in the SRI sense).

We will show the Rushby-type system that we have constructed out of BLP
satisfies the conditions of Theorem 6. This is done in lemmas 3 and 4.

Letma 3. If vg, veV¥ s, t &S, (t,s)é€P, ¢ €C and v is reachable from the
initial state vg, then .

viewlnext(v,t,e),s] = viewlv,s]
Case 1 ¢ is an operation.

In this case access[v] = access[next(v,t,c)] since operations can only change
the contents function.

Let 0 €0 be an arbitrary object
subcase 1.1 (s,o,r) and (s,o,w) 4 access[v]

- It follows immediately that (s,o,r) and (s,o,w) & accesslnext(v,t,c)] and
viewlv,sl(e) = 1Iv,sl(o) = # = lelnext(v,t,c),s] = viewlnext(v,t,c),sl(o).

subcase 1.2 - (s,o,r) or (s,o0,w) £ accesslv]

Without loss of generality, assume (s,o,r)é€ accesslv]. Then alsb,
(s,0,r)eaccess[next(v,t,c)] and lelv,sl(o) = contentslvl (o) and lclnext(v,t,c),s](o) -
= contents[next(v,t,c),sl (o)

claim: contentslnext(v,t,c),s](o) = contents[v]l(o)

This will follow from Axiom I if we show that accesslvl does not contain
(t,o,w) or (t,0,a). Otherwise assume (WLOG) (t,o,w) & accesslvl. As we have
assumed that BLP started in a secure state, v is a secure state and so the ¥ -
property holds for V. Thus (t,o,w) & accesslvl implies that fg(o) =
current_subject levellvl(t). Since the simple security condition also holds and.
(s,0,r) €& accesslvl, fs(s) > folo). We conclude that fg(s) >
current_subject_levellvl(t). But this contradicts lemma 2 and the claim is
proved. ’

From the claim and the definition of view subcase 1.2 is proved.
Case 2 ¢ is a request.
subcase 2.1 c¢ is a request of type 1, 2 or 3. Then access[next(v,t,c)]

is just accesslvl with the addition of at most (t,o,x), x A. Thus (s,o,r) or
(s,0,w) are in accesslvl if and only if they are in accesslnext(v,t,c)] and the

117

local contents is defined by contents in both states. Since requests cannot
change contents the view of o is the same in both states.

subcase 2.2 ¢ is a request 5. Then accesslnext(v,t,c)] is accesslv]
with, at most, the removal of (t,o0,x). As t # s the proof goes through as in
subcase 2.1.
subcase 2.3 ¢ is request 6 or request 10
access[v] = accesslnext(v,t,c)] and the proof is like subcase 2.1
subcase 2.4 ¢ is request 7

similar to 2.2

This concludes the proof of the lemma.

Lemma 4. viewlv,s] = viewlu,s] ==> viewlnext(v,t,c),s] = viewlnext(u,t,c),sl]

Proof: The hypothesis is that lclv,s] = 1lclu,s]l. From axiom II we conclude that
contentslnext(v,t,c)] = contentslnext(u,t,c)l. The views will be the same if we
show that s has the same access to all objects in both states next(v,t,c) and
next(u,t,c).

Case 1 ¢ is an operation. Then accesslvl = accesslnext(v,t,c)] and accesslul =
accesslnext(u,t,c)]. Since s has the same access in states u and v, by hypothesis
s has the same access in states next(v,t,c) and next(u,t,c).

Case 2 ¢ is a request. Since the access for s are the same in both states v
and u, each request will be granted or denied the same way in each state and the
next state will have the access changed identically.

Theorem 1. The Rushby MLS policy, P, defined above is secure.

Proof': Lemmas 2 and 3 give the hypothesis of Rushby's theorem 6 and the
conclusion follows.

118

REFERENCES

[B&LP1] Bell, D. Elliott and LaPadula, Leonard J., "Secure computer Systems:
Mathematical Foundations", MIR-2547 (ESD-TR-73-278) Vol I, The MITRE Corporation,
Bedford Massachusetts, 1 March 1973.

[B&LP2] Bell, D. Elliott and LaPadula, Leonard J., "Secure Computer Systems: A
Mathematical Model", MTR-2547 (ESD-TR-73-278) Vol II, The MITRE Corporation,
Bedford Massachusetts, 31 May 1973.

[B&LP3] Bell, D. Elliott, "secure Computer Systems: A Refinement of the Model",
MTR-25U47 (ESD-TR-73-278) Vol III, the MITRE Corporation, Bedford Massachusetts,
December 1973.

[B&LPL] Bell, D. Elliott and LaPadula, Leonard J., "Secure Computer Systems:
Unified Exposition and MULTICS Interpretation", MTR-2997, The MITRE Corporation,
Bedford Massachusetts, 1 March 1973.

[Feier] Feiertag, R.J., "A Technique for Proving Multilevel Systems Secure", Tech
Report CSL109, SRI International, January 1980.

[GM] Goguen, J.A. and Meseguer, "Security Policies and Security Models", Proc.
1982 Syggsium on Security and Privacy, Oakland California, IEEE Computer Society,
April 1982.

[Rush1] Rushby, John, "Mathematical Foundations of the MLS Tool for Revised
SPECIAL", to be published.

[Rush2] Rushby, John, "The Bell and LaPadula Security Model", to be published.

119

The Security Model of Enhanced HDM

John Rushby

Computer Science Laboratory
SRI International

Abstract

The Enhanced HDM Specification and Verification System being developed at SRI
International includes an “MLS Checker” that automatically verifies the security of

a certain class of system specifications.

This paper gives a brief and informal overview of the security model on which the
MLS checker is based and discusses its application and its relationship to other

~ security models and to the requirements of the DoD Trusted Computer System
Evaluation Criteria.

1. Introduction
SRI's Enhanced HDM Specification and Verification System will include a subsystem
known as ‘“The MLS Checker” that determines whether system specifications are consistent

with the DoD Multilevel Security (MLS) policy. In order to do this, the MLS Checker

embodies certain assumptions about:

e The ‘“‘meaning” of specifications written in Revised Special (this is the specification
language of Enhanced HDM),

ovThe sort of systems whose specifications are to be checked, and
o The interpretation of ‘‘security’’ that is appropriate to that class of systems.

The first of these assumptions concerns the semantics of Revised Special and will not be

discussed here; the other two assumptions constitute the security model of Enhanced HDM

and are the subject of this paper. The security model of Enhanced HDM is the same as that of

“Old” HDM, which was developed by Feiertag, Levitt, and Robinson in 1977 [3] and which
provided the basis for the original MLS Checking Tool developed by Feiertag [4]. The

description of the model has been improved over the years (notably by Goguen and

120

Meseguer [5]), the informal presentation ‘given here is based on the current technical
~ description [11]. It should be stressed that it is only the MLS Checker that has this (or any‘
other) security model built into it; the rest of the system is a general specification and
verification environment that may be used to state and verify arbitrary system properties —

including those derived from other security models.

Security models are abstract descriptions of computer systems that concentrate on matters
relating to the protection and security of information. Such models are helpful in two aspects
of the system design process: synthesis and analysis. By emphasizing just the features
relevant to security, a security model can serve to clarify and guide the design (i.e. synthesis)
of a-secure system; and, by providing a formal basis for the notion of “security”, a model can
provide the foundation needed to conduct a rigorous informal analysis, or a formal verification,
of the security of a system design. Because of its application to the design of the MLS
Checker, it is this second aspect that is emphasized in the security modei for Enhanced HDM.

As indicated above, a security model has two components: the first embodies assumptions
about the sort of systems that are to be considered, while the second defines a notion of
security that is appropriate to that class of systems. I will call these, respectively, the system
and the security components of the model. The utility of a model is closely related to.the
realism of the assumptions that constitute its system component; the correctness of a model

is a function of its security component.

In order to understand what is meant by the ‘“utility”” and “correctness” of a model, it is
necessary to understand how a system is verified with respect to a security model. Essentially,
verification consists of a demonstration that the system is a valid interpretation of the model;
that is to say, one must establish a correspondence between the elements of the system" and
those of the model and must show that the elements of the system interact only in ways that
are consistent with the model. A model is of limited utility if few, if any, systems of interest
can be shown to be consistent with it; a model is incorrect if a system that has been shown to

be consistent with the model fails, nonetheless, to meet its security requirements.

Since one of the main purposes of a security model is to capture security requirements

formally and unambiguously, there will generally be no independent formal description of a

121

system’s security requirements against which to evaluate the correctness of its model.
Furthermore, testing is a notoriously unreliable technique for discovering subtle flaws in a
system, and this is especially true in the case of security — where flaws may become manifest
only under conditions of sophisticated and deliberate abuse. Thus there is no reliable way of
determining whether a system meets its security requirements other than by verifying its
compliance with a formal security model. It follows that incorrect security models cannot be

countenanced: they just have to be right.

The best way to ensure that a model is correct is to make it so simple that it can be totally
comprehended by suitably skilled persons. In this way, the correctness of a model can be
established by the social process of peer review — just as the correctness of a mathematical
theorem is established. This requirement for simplicity argues for very abstract security
models: ones from which all irrelevant issues, and all details peculiar to a given system, have

been stripped away so that the single issue of security is isolated and exposed to scrutiny.

Unfortunately, the desire for highly abstract security models conflicts with one of the
realities concerning their application. In practice, the demonstration of consistency between a
system and its security model is rarely accomplished in a single step — the ““gap’’ between them
is just too great to bridged so simply. (The details of the interpretation would be so complex
that they would, themselves, be prone to error). Instead, it is generally an abstract
speci fication of the system that is verified with respect to a security model. The step of
showing that the actual system is a valid interpretation of its verified specification is generally
performed informally. (Formal techniques do exist, but they are hugely expensive). The
informality, and possible unreliability, of this second step raises the possibility that undetected
security flaws may be introduced during the implementation of a secure specification. In order
to reduce the likelihood of such flaws, it is desirable that the specification should be “‘close” to
the implementation — so that complexity of the informal verification step is reduced as much as
possible. In particular, the security mechanisms to be employed in the implementation should
be described, in all essential details, in the specification. Formal verification of the
specification with respect to a security model, followed by informal verification of the system

with respect to the verified specification, then gives considerable confidence in the security of

the final system.

122

The desire to verify detailed, concrete, system specifications argues for a detailed, highly
concrete, security model - since otherwise the interpretation from model to specification
becomes complex and error-prone and we will be back where we started. Unfortunately,
however, such concrete security models often raise the very doubts they are meant to allay: if
the model is highly detailed and its definition of security correspondingly so, then one naturally
wonders whether that definition is correct. The discovery of subtle quirks and outright flaws

in certain well established security models shows that these doubts are not idle [9, 15].

Thus we are confronted with a dilemma: in order to be sure that it is itself correct, a
security model should be simple and highly abstract; but in order that it can be used to verify
usefully detailed system specifications, a model must be detailed and concrete. In my view, the
correct escape from this dilemma is through the horns: rather than argue that abstract models
are superior to concrete ones, or vice versa, we should recognize the need for both. Having said
that, however, I also claim that abstract models should be given primacy. My reason is that
abstract models can be used to verify the correctness of concrete ones — this is
accomplished by showing that the axioms of the abstract model are provable as theorems of
the more concrete one. Furthermore, although abstract models cannot be used directly to
verify the security of a detailed specification of a system’s implementation, they have a useful
role to play in verifying an abstract specification of its interface. This is useful in its own
right, since a system may be unsecure for (at least) two reasons: either its specification may
include inherently unsecure operations (i.e., its inter face speci fication may be unsecure),
or its mechanisms may fail to correctly implement otherwise secure operations. It is somewhat
heavy-handed to detect flaws of the first kind using models intended to detect those of the
second kind. For example, it is surely better to discover immediately if a file system contains
operations that permit unclassified users to read classified files, rather than wait until the
internal mechanisms of the file system are found to be inconsistent with a concrete security
model. An abstract security model can be used to perform the useful task of verifying the
security of system interface specifications before resources are committed to its

implementation.

The security model of Enhanced HDM is a highly abstract one. Its merits are its simplicity
and elegance: it is easy to see that it is correct (as far as it goes — and I will discuss the issue of

its completeness later). Its applications are the verification of system interface specifications

123

(performed automatically using the MLS Checker of Enhanced HDM), and the verification of
more concrete security models (currently performed by hand). An informal description of the

HDM model is given in the next section; technical details may be found in [11].

2. The Model

As explained in the introduction, there are two components to a security model: the system
and the security components. The system component of the HDM security model is a
conventional finite automaton. That is to say, a computer system is regarded as a ‘‘black box”
that consumes input ‘‘tokens’ one at a time and, with each token consumed, changes its own
internal state in a manner that depends upon its current state and the value of the input token
consumed. At the same time, an output token, whose value is determined in the same way, is
emitted and returned to the user who sent the input token that initiated the activity. The
internal state of the system is not visible outside; all that can be observed is its input/output

behavior.

This automaton model captures the essential characteristics of many types of systems, and
system components, quite accurately. Consider, for example, a file server that receives
requests from users to save and retrieve files and that returns files and status information to
users in response to those requests. The requests sent to the file server can be identified with
the input tokens of the model, while the results that it returns can be identified with the
output tokens. The internal state of the file server consists of the file system that it maintains.
The receipt of a request from a user will cause it to update the file system on the basis of
information sent with the request, and to return a result determined by the contents of the file

system and the nature of the request.

We now need to add a security component to this system model. The first step is simply to
interpret the system model a little differently. Instead of tokens being sent by, and returned
to, human users directly, we now recognize that those users may be supported by untrusted
computer systems or processes. Whereas a human with legitimate access to classified
information may be trusted not to reveal that information to unauthorized persons, a computer
system cannot. We indicate that the users of the system are now identified with untrusted
computer systems or processes by using the term subject instead of “user”. We associate a

sensitivity label with each subject to indicate the clearance of the (human) user identified

124

with that subject. The sensitivity labels are assumed to be partially ordered by a dominates
relation! that defines the security policy to be enforced by the system. This policy requires
that no information may flow from one subject to another unless the clearance of the recipient
dominates that of the sender. The heart of the security component of the HDM security model
is the way in which it gives a precise definition to what it means for information to ‘‘flow”

from one subject to another.

Thisbdefinition is beautifully simple: an input from one subject causes information to
flow to another subject if the outputs subsequently seen by the second subject are different
from those that he would have seen if the input concerned had not been present. The security
component of the HDM model then simply requires that information may flow, in the sense
just defined, from one subject to another only if the clearance of the recipient dominates that

of the sender.

In the case of the file server example, a request to delete a file obviously causes information
to flow to all those subjects who may subsequently determine that the file has been deleted.
But our definition of information flow is much stronger than this: it says that information
flows to all subjects for whom the file server will subsequently behave differently than it
would have done if the delete-file request had not been issued. Thus, if the delete-file request
causes some disk space to become free and another subject can subsequently discover that the
amount of free space has changed, then information has flowed to that subject from the one
that sent the delete-file request — and this is to be allowed only if the clearance of that subject
dominates that of the subject that sent the delete-file request. It can be seen that this
in formation-flow characterization of security is very powerful: it embraces covert storage

channels (though not timing channels) as well as direct disclosure.

I claim that this formulation of what is meant by security captures clearly, and correctly,
the intent behind other formulations of the property. There is, however, a serious charge that
can be brought against the model. The charge is that a valid security model should be based

on established government regulations regarding the handling of classified information. This

1Security Level S1 is said to dominate security level 82 if the hierarchical classification of S1 is greater than or
equal to that of S, and the non-hierarchical categories of S, include all those of S,, as a subset [2, p110].

125

would suggest the introduction of objects as the repositories of information ‘‘within” the
system state and, by analogy with the regulations of the “pen and paper” world, we should
demand that 'objects be labelled with the sensitivity level of their contents (i.e. their
classification) and that subjects may only read objects whose classifications are dominated
by their own clearances. My objection to this approach is that the regulations that would be
taken as the starting point in the construction of our model are not a statement of the intent
of security procedures, but are a particular set of mechanisms that are appropriate for
safeguarding security in the “pen and paper” world. In effect, they are a security model whose
(unstated) system component is a set of assumptions about the way in which the “pen and
paper” world operates. Computer systems do not correspond to these assumptions (they are
not passive entities like paper and vaults) and this invalidates the security component of the
“pen and paper”’ model. That this is true is manifest by the need to introduce additional
axioms (e.g. the ‘“*-property” [1]) into those computer security models that follow this

approach.

The attempt to base computer security models closely on established regulations is a
laudable one; my objection is to taking this approach as a starting point - for then we have no
“higher-level” notion of security to appeal to in cases where these mechanisms prove
inadequate. The ‘“‘trusted processes’ of the Bell and La Padula model [1] are a case in point.
These processes are not constrained by the #-property because they are trusted not to violate
the intent of that model property. The problem. is then to establish the security of these
processes in the absence of a precise description of just what the “intent” of the model is:
because the Bell and La Padula model describes a particular set of security mechanisms, it

provides no guidance in cases where its mechanisms prove inadequate.

Instead of identifying security with a particular set of mechanisms, I argue that it is
preferable to first enunciate a principle of security that attempts to get at the ¢ntent behind
such mechanisms. Once this has been done, we can introduce particular security mechanisms
into our model — mechanisms based on government regulations — and attempt to verify them
with respect to our more abstract model. If this attempt succeeds, then we have the
satisfaction of knowing that two fairly independent efforts to formalize the same set of
concerns have converged on the same (and therefore presumably correct) point; if it fails, then

investigation of the discrepancy between the models will sharpen our understanding of the

126

issues concerned and may lead to the discovery, and subsequent correction, of errors in one or

both of them. I will describe an experiment of this kind later.

Although I claim that the HDM security model, as formulated so far, provides a useful
definition of security, it is too abstract to give much practical guidance in the construction or
analysis of secure systems. The treatment of a computer system as a ‘“‘black box” with no
internal structure is not helpful to those who must design or analyze the internal mechanisms
of a computer system. Furthermore, the definition of information flow is quantified over all
sequences of future state transitions: that is, information is considered to flow from one subject
to another if the presence of an input from the first subject can cause any change whatever in
the subsequent behavior of the system as perceived by the second. What we wovuld really like
is a characterization of security that applies to single state transitions, rather than to

sequences of transitions.

Both these deficiencies in the most abstract formulation of the model can be remedied by
adding more structure to its system component. Instead of treating the system state as a
““black box’ with no internal structure, we will now assume that the system state is a record of
the values held in objects. We will further assume that each object is assigned a fized
sensitivity label called its classtfication. We also need a little more terminology: we will
say that the individual steps performed by the system are called operations. An operation
consumes an input token, causes a state change, and produces an output token. The
sensitivity level of an operation is taken to be that of the subject that sent the input token that

invoked it.
Given these elaborations to the basic model, it is possible to prove the following result.

Theorem: A system is secure if each of its operations satisfy the following three conditions.

1. The output produced by an operation at sensitivity level ! depends only on the

values of objects whose classifications are dominated by [.

2. An operation at sensitivity level ! changes only the values of objects whose

classifications dominate /.

127

3. If an operation changes the value of an object at classification [/, then the new value

assigned to the object depends only on the prior values of objects whose

classifications are dominated by [.

This result is the one on which the MLS Checker is built. I will discuss its interpretation

and application in the next section.

3. Applications
The theorem quoted at the end of the previous section provides the basis for the MLS
Checker of Enhanced HDM, and for a similar tool developed earlier by Feiertag [4]. These

tools process system specifications that have been augmented with information concerning the
sensitivity labels associated with the objects and operations defined in the specifications and
then check the specifications of the operations to see that they comply with the three
conditions stated in the theorem. This checking involves the generation and proof of putative
theorems (called verification conditions) concerning relationships among the sensitivity
labels of the operations and objects defined in the specification. The Checker also ensures that
the specifications are sufficiently complete that they define the behavior of the system under
all conditions. Individually, the conditions that need to be checked are conceptually simple,

but they are so numerous and detailed that it is unreliable and uneconomic to attempt the

process by hand — it is the existence of automatic MLS Checkers that make this a viable
method of security analysis. SRI's original MLS Tool [4] has been used in the analysis of
several operational systems, including Honeywell’'s SCOMP [14]. This section considers what is

accomplished by such analysis.

The first point to note is that, as stated earlier, it is only the inter face speci fication of the
system that can be verified in this way. Because the model requires all objects to be assigned
fized classifications, it does not address one of the major problems faced in the development of
secure systems: the design and verification of mechanisms that permit system resources to be
multiplexed securely among entities belonging to different security classifications. In effect, the
HDM model assumes that each security classification operates in its own virtual system. Itvis
possible to modify the security model so that the security classifications of objects are not fixed
(the Mitre Corporation has built flow analyzers that do this) but this does not completely solve

the problem. Instead, the correct solution to the problem is, in my view, to deny that there is

128

one! Checking interface specifications for security is an important process in its own right.
Ensuring that those interface specifications are implemented correctly is an equally important,
but different, problem that is best approached as a separate issue using techniques (based on

more concrete security models) that are specialized to that problem.

The next point to note is that the system component of the HDM security model assumes
that input tokens (i.e. requests for operations to be performed) are ‘“‘tagged” with their correct
sensitivity label. As I have explained earlier, this is a reasonable assumption for certain
“application level”’ systems, or system components, such as file servers. It is not a valid
assumption, however, for reaﬂy basic system components such as an operating system nucleus.
This is the component at the heart of a security kernel that establishes and maintains “process
isolation through the provision of distinct address spaces’” as required by the DoD Trusted
Computer System Evaluation Criteria [2] for Evaluation Classes Bl and above. Requests
arriving at the interface of the operating system nucleus are not associated with sensitivity
labels provided by some outside agency: it is the task of the nucleus to establish this
association. Also, operations do not arrive at the nucleus in an orderly, one at a time, fashion.
Instead, it is the responsibility of the nucleus to respond to asynchronous interrupts and to
establish the orderly transmission of operation requests to the processes that it supports. In
short, the nucleus creates an environment for its client; processes that is consistent with the
HDM security model, while it itself operates in a }far more complex and demanding
environment. Once again, Ido not see it as a weakness of the HDM model that it does not

address these issues — that is the task of other, specialized security models (6, 10].

Just as it does not address the issue of the secure implementation of verified interface
specifications, nor the security problems of an operating system nucleus, so the HDM security
model does not confront securify issues other than disclosure through information flow. In
particular, the discretz’onaryk aspects of security policy are not addressed, nor those of
in ference and aggregation. Neither are the problems of specialized systems and components
such as databases and downgraders considered. Specialized models are needed in all these

cases.

In summary, the HDM security model focuses on just one aspect of the general security

problem — but within that limited domain, it does a pretty good job. For the rest, let us have

129

lots of specialized security models that each focus on an individual problem with comparable
clarity and precision, and let us learn how to combine these different models in wéys that give

comprehensive guidance and assurance to the developers of trusted computer systems.

4. Comparison with other Models

One of the most influential of security models is the one developed by Bell and La
Padula [1]. Recently, some security flaws have been found in the model [9, 15] - some of its
rules have been found to admit covert storage channels. In this section, I will show how the
attempt to verify the Bell and La Padula model with respect to the HDM model provides a

systematic technique for detecting such flaws.

In order to verify the Bell and La Padula model, we must demonstrate that it is a valid
interpretation of the HDM model. The details of this demonstration are quite complex, since
the two models use different mathematical formalisms. The following is a very inforrnal,
outline description of the process; those who desire the technical detail are referred to the

appropriate reports {12, 13].

The Bell and La Padula security model is a concrete one, in that it describes explicit
security mechanisms. Basically, the system state is partitioned into two components: the
value state and the protection state. The first of these is the (usual) record of the values
stored in objects, while the second records the current and maximum security level of each
subject, the classification of each object, and the type of access each subject is allowed to each
object. In the simplest case, only two types of access need be distinguished: read and write.
If a subject has read access to an object, then it may use the value of that object when
computing the output of an operation or the value to be stored in an object; it may only
change the value of an object if it has write access to that object. These mechanisms are

assumed to be provided by the system’s ‘“‘hardware”.

The operations of the system are divided into two classes: the (regular) operations, and
the rules. Operations access only the value state and are constrained by the ‘““hardware’ in
the manner described above; operations correspond to the ordinary functions like ‘‘add”,
“load” and ‘‘store” etc. Rules, on the other hand, access only the protection state; they
perform functions such as ‘‘give this subject read access to that object”, and ‘‘change the

classification of this object to that level”.

130

i

The security component of the The Bell and La Padula model identifies security with the
following two (slightly simplified) conditions:

simple security property: a subject may have read access only to objects whose

classifications are dominated by its own clearance, and

*-property: an untrusted subject may have write access only to objects whose

classifications dominate its own clearance.

It is quite easy to prove that these two conditions imply those of the theorem given earlier
— the simple security property (henceforth abbreviated to ss-property) guarantees the first and
third conditions in the statement of the theorem, while the *-property guarantees the second.
Thus we deduce that the Bell and La Padula model is consistent with the HDM model in the

case of the regular operations. The rules are a different matter, however.

Bell and La Padula gave a representative set of rules (based on those found in Multics) and
argued that they were secure because they preserved the ss- and the *-properties. However,
covert storage channels have subsequently been discovered in some of these rules. (A channel
in the rule change-subject-current-security-level is described in [9], channels in the rule
change-object-security-level are described in [12, 15]). These channels arise because the ss- and
*-properties only consider the problem of information flow through the value component of the
system state — the possibility of information flow through the protection state is not considered
explicitly.? If one attempts to prove that the rules of the Bell and La Padula model are secure
with respect to the HDM model, then the system state of the HDM model must be identified
with the conjunction of both the value and the protection states from the Bell and La Padula
model and the proof fails because certain of the rules permit unsecure information flows
through the protection state. Although I have described this process as one performed by
hand, it is possible (though I haven’t tried it, nor thought through all the details) that it could
be accomplished mechanically by constructing a specification of the Bell and La Padula model

in Revised Special and then submitting it to the MLS Checker.

an fact, many of the rules perform checks additional to those necessary to preserve the ss- and *-properties.

The effect of these checks is to prevent covert storage channels that would otherwise have arisen, but the model
does not explain why these checks are necessary, nor how to construct them systematically. It is the inadequacy
of the checks in the two rules named above that admit the covert storage channels.

131

The lesson to be learned from this exercise is that the construction of concrete security
models is a difficult and error-prone task and that informal review may not be an effective
technique for uncovering subtle problems or oversights in such models. (The Bell and La
Padula model is nearly ten years old, yet Millen and Cerniglia, who attribute the discovery of
the covert storage channel in the rule change-subject-current-security-level to P.S. Tasker of

the Mitre Corporation, observe that this channel was found only ‘“‘recently’.)

As I noted earlier, the rules present in the Bell and La Padula model were based on
functions found in Multics. In order to model other systems, it may be necessary to introduce
different rules that correspond more closely to those present in the systems of interest. For
'some application areas, completely specialized security models have been developed (see [7, 9]
for examples), and this trend is likely to continue as novel applications are contemplated. In
all these cases, whether they are new variations on established models, or completely new
models, it is highly desirable that some objective, formal analysis of their correctness should be
undertaken. In many cases, it seems that part of this analysis can be accomplished by

verifying these new models with respect to the HDM model.

In comparison with other security models, the HDM model is much more abstract: it has no
security mechanisms built in. However, these other security models can often be viewed as
more detailed elaborations of the HDM model. Establishing this connection formally is a good

way to evaluate some aspects of the correctness of these other models.

5. Relation to the DoD Trusted Computer System Evaluation Criteria

The DoD Trusted Computer System Evaluation Criteria [2] require the use of a formal
security model for Evaluation Class B2 and above. For Evaluation Class Al and beyond,
formal methods are required in the analysis of covert channels (Paragraph 4.1.3.1.3) and a
combination of informal and formal techniques must be used to demonstrate consistency
between the Formal Top-Levell Specification (FTLS) and the model (Paragraph 4.1.3.2.2). The

Glossary to [2] provides some guidance on what constitutes an acceptable security model:
“... to be adequately precise, such a model must represent the initial state of a
system, the way in which the system progresses from one state to another, and a

definition of a ‘‘secure’” state of the system.

“... the model must be supported by a formal proof that if the initial state of the

132

system satisfies the definition of a ‘‘secure’ state and if all the assumptions required
by the model hold, then all future states of the system will be secure.”

A theorem satisfying the requirement of the second paragraph in this quotation is often called
a Basic Security Theorem after a theorem of that name due to Bell and La Padula. A
_significant criticism of this requirement is that a Basic Security Theorem says essentially
nothing about security — as McLean [8] demonstrated by proving just such a theorem for a
model that clearly violates any reasonable notion of “security”.3 In fact, it should be clear that
if @ is any effectively decidable property of the system state, then an analog to the Basic
Security Theorem can be constructed for that @#. As McLean observed, a Basic Security
Theorem is really a property of the finite-state system model employed (in that states can be
indexed to support proof by induction), rather than of the particular definition given for

security.

Bell and La Padula actually made very modest claims for their Basic Security Theorem
(and made no subsequent use of it after they had proved it). They observed merely that it
established [1, p21]

“the relative simplicity of maintaining security: the minimum check that the

proposed new state is ‘‘secure’ is both necessary and sufficient for full maintenance

of security’’.
In my view, the intent behind the requirements stated in the DoD Criteria is sound, but the
particular requirement for a Basic Security Theorem is poorly chosen. If I may be permitted
to interpret the intentions of the authors of that document, I would say that their real
requirement was for a concrete security model. A concrete model is one, such as that of Bell
and La Padula, that describes particular security mechanisms, as opposed to the HDM model,
which describes only security policy. A security mechanism must obviously maintain some
state information (recording who may access what, and in what way), and not all states will be
equally ‘“‘secure’’. Thus, it is natural (indeed, necessary) for a concrete model to prescribe a set
of ‘“‘secure states” and a set of rules which are proven (by a Basic Security Theorem) to be

sufficient to guarantee that all state transitions are secure-state-preserving.

3Basically, McLean turned the *-property around, so that subjects may transfer information from higher to

lower classification levels.

133

The identification of a set of secure states and the proof of a Basic Security Theorem do
not, however, guarantee that a model enforces a useful form of security — they simply est‘ablis‘h
the internal consistency of a set of security mechanisms. A separate (preferably ‘forvmal)
justification is required in order to establish that those mechanisms enforce a more abs‘fract
statement of required security policy. As I have already observed, the HDM security: model

will serve well in this latter capacity.

Given that the verification of compliance between an actual system and its F TLS will be
performed only informally, the requirement that a concrete security model be used for the
verification of the FTLS is entirely reasonable — for we certainly wish to be sure that the
security mechanisms of the system are included in the formal stage of its “analysis.
Nonetheless, and as noted earlier, the security verification of interface specifications provided
by the MLS Checker of Enhanced HDM can also make an important contribution to overall
security assurance, especially since it is the only formal technique able to detect covert storage
channels. It would seem that the DoD Computer Security Center accepté this view since the
verification of the Honeywell SCOMP kernel was.largely accomplished with-the aid of the MLS
Checker of “Old” HDM. Also, the HDM security model continues to apply in those cases
where the mechanisms of a concrete model prove inadequate, and trusted process are found to
be required. Clarification of the Center’s requirements and guidelines on all these topics would

be welcome.

6. Summary

I have given an informal description of the security model employed by the MLS Checker
of Enhanced HDM. This model is a highly abstract one that has no particular security
mechanisms built in. The model gives a precise, formal definition of an information-flow
interpretation of security that covers covert storage channels as well as direct disclosure. The
model is so simple that there can be no doubt about its correctness. The applications of the
mode] are the verification of system interface specifications and the analysis of more concrete

security models.

134

References -

1.

10.

11.
12. -
13.

14.

DE ‘Bell and L.J. La Padula, “Secure Computer System: Unified Exposition and

- Multics Interpretation,” Technical Report ESD-TR-75-306, Mitre Corporation, Bedford,
~ MA., March 1976.

- Department of Defense, Computer Security Center, Department of Defense Trusted

Computer System Evaluation Criteria, 1983, CSC-STD-001-83.

R.J. Feiertag, K.N. Levitt and L. Robinson, ‘“Proving Multilevel Security of a System
Design,”” Proc. 6th ACM Symposium on Operating System Principles, pp. 57-65,

‘November 1977.

R.J. Fveiertag, “A Technique for Prbving Specifications are Multilevel Secure,”
Technical Report CSL109, Computer Science Laboratory, SRI International, Menlo
Park, CA., January 1980.

J.A. Goguen and J. Meseguer, ‘‘Security Policies and Security Models,” Proc. 1982
Symposium on Security and Privacy, Oakland, CA., pp. 11-20, IEEE Computer
Society, April 1982.

B.A. Hartman, “A Gypsy-Based Kernel,” Proc. 1984 Symposium on Securily and
Privacy, Oakland, CA., pp. 219-225, IEEE Computer Society, April 1984.

C.E. Landwehr, “A Survey of Formal Models for Computer Security,” Computing
Surveys, Vol. 13, No. 3, pp. 247-278, September 1981.

J. McLean, “A Comment on the ‘“Basic Security Theorem’ of Bell and La Padula,”
Informal Note, Naval Research Laboratory, 1983.

JK. Millen and CM. Cerniglia, “Computer Security Models,”” Working
Paper WP25068, Mitre Corporation, Bedford, MA., September 1983.

J.M. Rushby, “Proof of Separability - a Verification Technique for a Class of Security
Kernels,” Proc. 5th International Symposium on Programming, Turin, Italy, pp.
352-367, M. Dezani-Cianaglini and U. Montanari, eds., Springer-Verlag Lecture Notes in
Computer Science, Vol. 137, April 1982.

J.M. Rushby, “The SRI Security Model,”” Draft Report, Computer Science Laboratory,
SRI International, Menlo Park, CA., July 1984.

JM. Rushby, “The Bell and La Padula Security Model,” Draft Report, Computer
Science Laboratory, SRI International, Menlo Park, CA., February 1984.

J.M. Rushby, “Comparison between the Bell and La Padula and the SRI Security
Models,” Draft Report, Computer Science Laboratory, SRI International, Menlo Park,
CA., February 1984. ‘

JM. Silverman, ‘Reflections on the Verification of the Security of an Operating
System,” Proc. 9th ACM Symposium on Operating System Principles, pp. 143-154,
October 1983.

135

15. T. Taylor, “Comparison Paper between the Bell and LaPadula Model and the SRI
Model,”” Proc. 1984 Symposium on Security and Privacy, Oakland, CA., pp. 195-202,
IEEE Computer Society, April 1984.

136

Al POLICY MODELING
Jonathan K. Millen

The MITRE Corporation
Bedford, MA

INTRODUCTION

Many formal models of security policy and secure systems have been created over
the last ten years. Some were aimed at expressing the DoD security policy, so that
a formal specification of a planned system could be shown to support that policy.
Others were aimed at investigating more fundamental issues such as information flow
and the propagation of discretionary access rights.

R§cent1y, the question of the proper function and design of a model has come
under intense scrutiny, largely because of the publication of the Department of
Defe?se Trusted Computer System Evaluation Criteria [CSC83]. A formal model of the
applicable DoD security policy is required for systems to be rated in the higher
protection classes.

It has been recognized that no one model will serve the needs of all
applications. Modifications and extensions in policy are necessitated by
differences in the type of system, e.g., a general purpose operating system as
opposed to a network, and by differences in the operating environment or
classification system used.

‘Nevertheless, it 1is felt to be bemeficial to have a model that addresses the
policy stated for Al systems, the highest class included in the Criteria. It is
anticipated that such a model could be used in two ways. It could be the model of
the security policy supported by a proposed TCB (Trusted Computing Base), as
required in the Criteria. It could also serve as a "kernel" around which more
elaborate models can be built.

A model with those objectives is necessarily constrained in style and
applicability. First, its subject matter and content are constrained to express the
Al security policy as stated in the Criteria. Hence, it deals with subjects,
objects, security classifications and categories, and must include a particular
restriction on the ability of subjects to read or write objects on the basis of
their respective security levels. Like the Criteria document itself, the model will
be limited in application to general purpose operating systems. While it is
possible to build a secure message system, data management system, guard system, or
network switch on top of a secure general purpose operating system, one would expect
the security policy in each case to have various unique features. In some cases
they could be added to the Al model in the form of a superstructure or concrete
interpretation, but in other cases it may be more practical to construct a different
model altogether.

The Criteria document suggests that the Bell-LaPadula model [BLP75] would be
acceptable as a formal model. It is doubtful, however, that it is the best choice
for a model for a new TCB to be submitted for Al certification. One reason is that
it is unnecessarily restrictive - it includes specific "rules" for system functioms,
which may be incompatible with the desired TCR functions, and it includes a
Multics—-directory-like object hierarchy. The set of rules "...is in no semse
Work supported by the Department of Defense under contract no. F19628-84-C-0001.

137

unique, but has been specifically tailored for use with a Multics-based information
system design" [BLP75, p. 19].

To the extent that rules determine functionality, they can suffer from the
kinds of security problems that crop up in formal specifications. In fact, one of
the rules in [BLP75] has a built-in covert storage channel for compromising
information. This channel, a variation of a well-known one, will be discussed in
detail as an example of one of the more subtle pitfalls that model designers should
look for. '

The Change-Subject~Current-Security-~Level Channel

There is a rule in [BLP75] called "change-subject-current-security-level" by
which a subject can change its current security level to any value that will satisfy
the simple security property and *-property. In particular, it is possible for a
subject to downgrade itself, as long as its read accesses are only to objects at or
below the new, lower level.

The channel works as follows. When the subject is at the initial, higher
level, it can read one bit of classified information at that level, and then decide
to get read access to a fixed lower—level object or not, depending on the value of
that bit. After releasing read access to the higher-level object, it can then
downgrade itself to the lower level. At this point, the subject is not supposed to
know any higher-level information; yet, it can determine the value of the higher-
level bit by testing whether it does or does not have read access to the lower-level
object. The result can then be written into some lower-—level object.

The problem is more serious than its single-bit version suggests. First, it
might be possible to repeat it rapidly, perhaps hundreds of times per second, with
successive bits. One can also devise more complex versions involving several
lower-level objects, to transmit larger words at a time.

This channel works despite the assumption that the subject is "memoryless",
i.e., it has no implicit memory of its own. The information has not been stored in
the subject, but rather in the state of the system.

Of course, one could prevent this channel by requiring that the subject forget
its accesses when it is downgraded. This is quite correct, but it is unfortunately
excluded by the rule, which states that the access set "b" is unchanged.

Technically, a system can still avoid the channel and obey the model if it
never permits a change-subject-current-security-level call by itself, but only
allows the call in a compound request in which the subject first releases its
accesses. But this device defeats what is probably the best argument in favor of
having specific rules, namely, that they might act as design guidance to avoid
security problems.

AN Al MODEL

In designing a new model to address Al security policy, the initial objective
was to create a "minimum model", one that covered the Criteria requirements and
nothing more. Consequently, the suggested Al model below, while it resembles the
Bell-LaPadula model in having subjects, objects, accesses, and a form of the *-
property, does not have rules for specific functions or an object hierarchy.

138

As other authors have discovered, however, there is an overwhelming temptation
for a model designer to add new features in response to perceived deficiencies in
other models. The model described below has two innovations. One expands the
treatment of trusted subjects in a way intended to be more flexible and effective;
the other incorporates discretionary security into the mandatory security level.

Trustedness of subjects is dissected into a collection of separate privileges
which must be inherited by the subject from the objects to which it has execute
access. Objects possessing such privileges are required to have high integrity,
enforced by a component of the security level.

Discretionary security is handled by adding user-list components into the
security level. Since security levels can be changed only by privileged software,
the effect is to prevent individual access control from being subverted by Trojan
horses.

INFORMAL STRUCTURAL DESCRIPTION

System State

The system state consists of a set of subjects, a set of objects, and some
functions defining their current status. Each subject and each object has a
security level and a (possibly empty) set of privileges. Associated with each
subject is a set of objects to which it has read access, a set to which it has write
access, and another set to which it has execute access.

A security level has the following components: classification, category set,
integrity class, integrity category set, distribution list, and contribution list.
The partial ordering "dominates'" of security levels is based on the ordering of each
of the components. The third through fifth components are ordered inversely, i.e.,
a greater level has a smaller value in those components.

Transitions

A transition is a state change in response to a request from some subject,
called the requestor. There will be security conditions defining restrictions on
secure transitions as well as on secure states.

Some transitions create subjects or objects. Mathematical entities are never
really "created", of course; this just means that the set of subjects or objects
associated with the next state is larger. Subjects or objects can also be deleted.
Note that, since every "existent" subject and object has a security level and other
attributes, any creations or deletions imply a change in those components of the
state as well.

SECURITY CONDITIONS

Several of the security conditions given below are waived for subjects having
an appropriate privilege; those conditions are starred (*). Subjects inherit their
privileges from the objects they execute. Privileged subjects and objects must have
a particular integrity category, called "Trusted", in order that their
trustworthiness may be preserved.

139

A subject can grant a privilege p to an object only if it has a special
privilege (Create-p) to do so. In an effort to control the propagation of
privileges, we require that no privilege can create itself, either directly or
indirectly. (To ensure this, define a function "Create" such that Create(p) =
Create-p, satisfying the restriction that, for any set A of privileges, Create(A)
cannot be a subset of A.) '

Secure State Conditionmns

The Read and Write conditions below are derived from [CSC83, section 4.1.1.4,
p. 451.

* Read: The level of a subject dominates the level of any object to which it
currently has read or execute access.

* Write: The level of a subject is dominated by the level of any object to which
it has write access.

Privilege: The privilege set of a subject is included in the privilege set of
any object to which it has execute access.

Trust: If a subject or object has any privilege, The integrity category
component of its security level includes the Trusted category.

Secure Transition Conditions

Transition conditions are waived only when the requestor (rather than any other
subject mentioned) has the appropriate privilege.

* Tranquility: The security level of a subject or object can not change.
Note that a change has different effects on different components of the security
level. Separate privileges may be required for changes in different components of
the security level.

* Creation: The security level of a new subject or object dominates that of the
requestor.

* Access change: Only the accesses of the requestor can be changed.

Privilege change: A privilege p can be entered into the privilege set of an
object only if the requestor has the privilege Create-p.

SECURITY LEVEL COMPONENTS AND ORDERING

A security level has five components, the first two having to do with
information sensitivity, the next two with integrity, and the last two with
individual access control. A security level dominates another if its sensitivity
and contribution list components are greater (or equal) and its other components are
less (or equal). The general principle is that a higher security level implies a
greater restriction on access.

The partial ordering for each component is given below with the component
description.

140

4

Classification

Usually one of the following: Unclassified, Confidential, Secret, and Top
Secret. However, eight classifications are required for some National Security
applications, according to guidance in [CSC83]. The classifications given above are
linearly ordered, Unclassified being the least and Top Secret the greatest.

Category Set

Individual categories vary with the community, but a given system should
support at least 29 categories to represent document compartment markings, according
to guidance in [CSC83]. Furthermore, some additional categories may be needed to
represent dissemination controls and other distribution limiters. Category sets are
ordered by set inclusion, the empty set being the least and the set of all
categories the greatest. .

Integrity Class

Because the integrity class is an inversely ordered component, a subject can
only read from a higher or equal-integrity object and write into a lower or equal-
integrity object, so copying and computational operations cannot increase integrity.
This form of integrity control, using the Read and Write conditions on a "dual" or
inversely ordered integrity classification, comes from Biba“s "strict integrity"
model [Bib77]. Incorporating an integrity component into the security level was
done first in the I.P. Sharp Protected Data Management System Model [Gro76].

There is some support for the idea that security classifications also carry a
connotation of integrity. This idea can be implemented by having integrity classes
Unclassified through Top Secret, with the understanding that the integrity class is
not necessarily equal to the security classification. Typically one would expect
that the security classification dominates the integrity class.

Integrity Category Set

Integrity category sets are ordered by set inclusion just like (sensitivity)
category sets. Because it is an inversely ordered component, copying and
transformation operations can only reduce the set of integrity categories.

In this model, there is a "Trusted" integrity category, which is intended to be
used for objects containing software that will be executed by privileged subjects.

It might be asked why the individual privileges could not be implemented as
integrity categories. The Read condition would then require that subject could not
have a privilege unless the object to which it had execute access also had that
privilege. The problem is that all the objects to which the subject had read access
would have to have that privilege as well.

Distribution List

This is the set of names of users who are permitted to read an object.
Distribution lists are ordered by inclusion, the empty set being the least and the
set of all users being the greatest.

Because the distribution list is one of the inversely ordered components of the

security level, it follows from the Read and Write conditions that an object can be
copied or transformed only into another object with a smaller or equal distribution

141

list. This prevents information from receiving a wider distribution than originally
intended.

It may be surprising that a subject has a distribution list. The intent here
is that the subject”s distribution list represents a mode of operation during a
temporary session, and it places an upper limit on the distribution of information
it is currently handling.

There is no notion within this model of a particular user on whose behalf a
subject is operating. In order for the distribution list to have the desired effect °
of limiting the users who can receive information, there is an assumption we have to
make about how the system being modeled is interfaced with the outside world. We
assume that an output device being operated by a user is an object (or more than one
object); and its distribution list should include that user. This assumption would
be included in the security requirements for a trusted login process. The role of
users 1is explained further below in a separate subsection.

In view of the fact that the distribution list is part of the security level,
and the security level cannot be decreased by an unprivileged or untrusted subject,
there may be some question whether this mechanism satisfies the intent of
"discretionary" security.

The guidance for discretionary security in [CSC83], which is extracted in turn
from DoD regulations, mentions two points: access control on an individual basis,
and need-to-know. The distribution list mechanism clearly qualifies on the first
point. As far as need-to-know is concerned, one thing is certain: authorization of
need-to-know cannot be left to a Trojan horse. We know that Trojan horses are a
concern, because they were the rationale for introducing the *-property, which
reappears in this model in the form of the Read and Write conditions. Only a
trusted, specifically privileged process can be expected to reflect the intent of an
appropriate user when the distribution list is expanded.

The difference between a mandatory label like classification and a
discretionary one like the distribution list is that a specific system administrator
or operator must be consulted to change the former, while the custodian or owner of
the object has sufficient authority te change the latter. This security policy
should be embodied in the specifications for the privileged software for each of
those tasks. It is not embodied in the model because of the difficulty of capturing
the intent of a user. In the model, a user could be identified as an owner of each
object, but this was not done because there is no formal axiom that explains the
meaning of the relationship.

The term "discretionary" is confusing here, because changes in the security
level are normally the province of "mandatory" or "non-discretionary" control.
Perhaps the distribution list mechanism should be referred to as "individual"
control instead.

Another possible objection is the apparent need to specify users one-by-one on
the distribution list; The Al security policy calls for the ability to specify
access for whole groups at a time. The apparent discrepancy is due merely to the
level of abstraction of the model. A system implementing this model can specify
sets of users symbolically in any desired way, as long as it is clear which
individual users are included.

142

Contribution List

The contribution list is a set of users, like the distribution list, ordered by
set inclusion. It is intended to implement individual control on write access. As
in the case of the distribution list, we need an assumption about the external
interface: the name of any user operating an input device must be on the
contribution list of the object representing that device.

The Read and Write conditioms imply that the contribution list of any object
contains all users who may have influenced it, or will be permitted to influence it
in the future.

INPUT, OUTPUT, AND USERS

Users were previously mentioned in the context of individual access control as
elements of distribution lists and contribution lists. They have a role in modeling
the external interfaces to a system, to explain the source of input and the
destination of output.

When a model like this is considered in a larger context of network security,
it becomes important to have a more precise notion how input and output are handled.
For this reason, we will now give more detail on how users may be incorporated
formally into the model.

Let us say that users are actually special subjects. They are exceptional
because they cannot have execute accesses, and because they cannot have both read
and write accesses. This split between a user as an output sink and as an input
source reflects the lack of a deterministic circuit between the outputs to a user
and its subsequent inputs to the system. A human operator would be modeled as a
pair of users (eyes and hands respectively). A full duplex network connection is a
pair of simplex connections.

Naturally, the distribution list of an output user consists only of that user;
the contribution list of an input user is also just that user. The distribution
list of an input user and the contribution list of an output user are, by
convention, all-inclusive, so as not to interfere with users” source and sink roles.

Users are also exceptional in that they cannot directly request changes in the
system state, such as access or level changes. Requests of this kind do not really
come from users; they come from processes running software that has interpreted the
user’s keystrokes. This is why we cannot say, for example, that any user, as a
subject, has the privilege to change the individual access components of any object
it owns.

INFORMATION FLOW AND ACCESS

The comment is often heard that "read" and "write" access. are meaningless terms
in security models; one could exchange them systematically, or rename them "Brenda"
and "Charlie", and the resulting model is logically equivalent to the first. Behind
the comment is the fear that one could misinterpret the model and implement an
insecure system.

Another problem with formal models is that, if they are at all complex, their
consequences are not obvious in terms understandable to the user community. They

143

may even be internally inconsistent.

In partial response to these concerns, one can prove theorems about the model.
For example, the Criteria document requires that a model be "proven consistent with
its axioms," and it mentions in the Glossary, as part of the entry for "Formal
Security Policy Model”, that the transitions of an acceptable model must be proved
to preserve the security of system states. These requirements address the potential
internal inconsistency of a model possessing both general axioms and specific rules.

There are other kinds of gemeral properties ome might wish to prove about a
formal security policy model. If the model has capabilities, i.e., access tickets
that can be passed from one subject to another, one might ask whether it is possible
to determine which subjects could eventually receive a particular capability
originally in the possession of some given subject. A similar question could be
asked about the propagation of privileges in the Al model above.

One might also wish to prove that information cannot be compromised. That is,
there should be no "information flow" from a high-level source to a lower-level
destination. The.simplest formal expression of this requirement is given in an SRI
model [FLR77]. 1looking only at the inputs and outputs of a system, it says that
lower-level outputs do not depend on higher~level inputs. If all inputs that are
not below a given level were eliminated from a system history, the outputs at that
level should be unchanged. This is an example of a non-interference assertion, and
it is referred to as the multilevel security property [GoM84]. An attempt to prove
the multilevel security property for a system is referred to as information flow
analysis,

Information flow analysis is usually applied only to formal specifications or
programs, in an effort to detect covert channels. It is contended that there are at
least some models that could also benefit from information flow analysis. It seems
likely, for example, that the change-subject-current-security-level channel could
have been caught this way.

For an access control model, that is, one in which subjects have read and write
access to objects, information flow analysis clarifies the meaning of the access
modes. Write access means that the data content of an object can change; read
access means that changes in another object can depend on the data content of one
read.

Multilevel Security for the Al Model

The formal statement of the Al model, with the appropriate information flow
assumptions, and the proof of a multilevel security property, are beyond the scope
of this paper. At the time of writing this paper, the multilevel security property
for the Al model has been proved under some simplifying assumptions, e.g., that no
privileges are invoked and that no changes occur in subject or object security
levels.

The information flow analysis affected the design of the model by adding
several new ingredients, such as object values, but it also had the retroactive
effect of forcing the inclusion of the Creation and Access Change conditioms for
secure transitions. These latter additions are expressed without reference to the
new ingredients, so they could be retained in a simplified version of the model from
which those new ingredients had been deleted.

144

CONCLUSIONS

The model described in this paper is too complex to qualify as a "minimum Al
policy model", but it embodies some suggestions about what is needed in models and
leads to some conclusions about what is still missing.

A minimum Al policy model could be obtained from the one given, by leaving out
all security conditions except Read, Write, and Tranquility; and dropping the
integrity components of the security level. The result would still have an
unusually restrictive interpretation of discreticnary security.

The requirements for proving the model "consistent with its axioms', and for
proving that state security is preserved, are not believed to be relevant for models
not having specific transition rules. Specific transition rules were omitted
because they would restrict the applicability of the model unnecessarily to an even
smaller class of TCB”s than that implied by the access control approach. The design
guidance afforded by specific rules can be left to the formal specification of a
system.

What modeling needs is the formal expression of high-level policies, which can
be used to evaluate concrete models aimed at more specific policies, like that for
Al-class TCB“s, or military message systems [MLH84]. The simple requirement for
internal consistency is a good example. Another is the SRI multilevel security
property, though it is not quite right because it does not reflect various
privileged actions, such as downgrading by appropriate authorization, that are
permissible under DoD policy.

It is hoped that the ideas presented here for handling individual access
control and privilege will be uséful in future modeling efforts. At the same time,
it is important to push forward in the development of new models in areas not
covered by the Criteria: applications, new system architectures, and networks.

REFERENCES

[Bib77] K.J. Biba, "Integrity Considerations for Secure Computer Systems,"
ESD-TR-76-372, The MITRE Corporation, Bedford, MA, April 1977.

[BLP75] D.E. Bell and L.J. LaPadula, "Secure Computer System: Unified
Exposition and Multics Interpretation," ESD-TR-75-306, The MITRE
Corporaticn, Bedford, MA, July, 1975.

[CSC83] "Department of Defense Trusted System Evaluation Criteria,"
CSC-STD~001-83, 15 August 1983,

[GoM84] J.A. Goguen and J. Meseguer, "Unwinding and Inference Control,"

Proceedings of the 1984 Symposium on Security and Privacy,
84CH2013-1, IEEE Computer Society, pp. 75-87.

[Gro76] M.J. Grohn, "A Model of a Protected Data Management System,"
I.P. Sharp Associates, Ltd., Ottawa, Canada, June, 1976.

[MLH84] J. McLean, C.E. Landwehr, and C.L. Heitmeyer, "A Formal Statement of
the MMS Security Model," Proceedings of the 1984 Symposium on Security
and Privacy, 84CH2013-1, IEEE Computer Society, pp. 188-194.

145

An Overview of the Kernelized Secure Operating System (KSOS)

Tom Perrine
John Codd
Brian Hardy

Logicon - Operating Systems Division

INTRODUCTION

This paper will present the Kernelized Secure Operating System (KSOS) as it
exists today, with emphasis on its security policy, architecture, and its ability
to support secure applications, specifically the ACCAT GUARD multi-level-secure
application. A discussion of plans for its future development and qualitative per-
formance information are also included.

Description of KSOS

KSOS is a multi-level-secure (MLS) computer operating system consisting of a
security kernel, Non-Kernel Security-Related (NKSR) utility programs, and an
optional UNIX application support environment. A KSOS software development environ-
ment will also be provided.

KS0S was designed to be a.provably secure replacement for the UNIX operating
system, Version 6. The system runs on an unmodified Digital Equipment Corporation
PDP-11/70. The KSOS system enforces a formally specified security policy, encom-
passing mandatory access, integrity, and discretionary access models. Application
programs that have been developed for the non-secure UNIX operating system may be
ported to the highly-secure KSOS environment with minimal effort.

The KSOS system has been informally evaluated by the DoD Computer Security
Center (CSC) and has been characterized as "an excellent base for developing into
an Al system."[1] This is especially significant, as KSOS was designed many years
before the DoD CSC Trusted Computing System Evaluation Criteria [2] was published.

KS0S Functional Architecture

The KSOS system is made up of the following functional areas: the Kernel, the
Non-Kernel-Security-Related (NKSR) software, and the Kernel Interface Package
(KIP). The security kernel provides the basic operating system functions of the
system and enforces the security policy. The NKSR programs provide additional
operating system functions and utility operations. The KIP is a UNIX-compatible
run—-time environment for running UNIX application programs. In the future, KSOS
will include a fourth area: the KSOS development environment,

This work was sponsored by Naval Electronics System Command (NAVELEX) contract
number N00039-83-0144. UNIX is a trademark of AT&T Bell Laboratories. DEC, PDP,
and VAX are trademarks of Digital Equipment Corporatiomn.

146

History of the KSOS project

KS0S was originally intended to be the first production-quality multi-level-
secure operating system and to provide a secure UNIX replacement.[3] It was based
on the results of the UCLA Data Secure UNIX [4] and MITRE security Kkernel experi-
ments. [5][6]

The KSOS project began in 1977 at Ford Aerospace and Communications Corpora-
tion (FACC). Since 1981, Logicon has continued to support and develop KSOS.

While KSOS was being developed to prove the concept of a buildable security
kernel, the Advanced Command and Control Architectural Testbed (ACCAT) GUARD appli-
cation was developed to prove the concept of a multi-level-secure "guard" program
to provide a verifiably secure access to multi—~level all-source databases distri-
buted on ARPANET-like networks. [7] Initially, a UNIX prototype of ACCAT GUARD was
developed in anticipation of a secure UNIX replacement, to serve as the base
operating system for GUARD, '

The KSOS Kernel Interface Package (KIP) was developed to allow the migration
of the UNIX-based GUARD prototype to KSOS with minimal software changes. This
package has since been used to port other UNIX software to KS0S, and has demon-
strated significant performance improvement over the previous UNIX compatibility
supported by the original KSOS UNIX Emulator.

ACCAT GUARD, using the KIP, is currently undergoing accreditation review as a
multi-level-secure system. It has shown that KSOS is robust and capable of sup-
porting a rigorous Security Test and Evaluation (ST&E).

KSOS also served as a testbed for many (then advanced) features of secure
systems. KSOS has helped to prove many of the concepts embodied in the DoD Trusted
Computer Evaluation Criteria.

KSOS SECURITY POLICY

The KSOS security policy encompasses three orthogonal policy models, one for
mandatory security, one for integrity and one for discretionary access protection.
These models are defined in terms of objects (data containers) and subjects
(processes acting on behalf of a user) and the rules under which subjects may
access objects. If any of the three models would deny access to an object, the
access 1s denied, i.e. all of the assertions of all of the models must be main-
tained at all times. All accesses to objects are mediated by the Kernel, ensuring
mandatory access controls. It is not possible for a subject to access an object
without Kernel intervention.

Every object in the system is marked with trusted labels, which consist of a
security level, an integrity level and discretiomary access permissions. Every
object is labeled (marked) by the Kernel when it is created. These labels are used
by the implementations of the security policy, within the Kernel, to permit or
prevent accesses, as specified below.

Mandatory Security Model
The KSOS mandatory security model is the Bell-LaPadula model [8], which is in

turn based on Department of Defense policies for the handling and dissemination of
classified material. It is described in terms of the "simple security property,"

147

which determines what information a user may see, and the "security *-property,"
which prevents a wuser from lowering the classification of information (downgrad-
ing). The KSOS model includes both security classification 1levels, such as
"SECRET" or "TOP SECRET", and "need-to-know" categories, such as "NO FOREIGN" or
""NO CONTRACTOR". - '

Integrity Model

In this model, integrity is defined as the mathematical dual of security, and
the intent of the model is to protect the system”s information from modification,
while allowing it to be read by any process.

As the mandatory security model controls who may obtain data stored in the
system, the integrity model controls who may place data into the system, and how
that data may be combined with other data.

There are two integrity properties which control object accesses: the "simple
integrity property" and the "integrity *-property". The simple integrity property
prevents a high-integrity process from reading low integrity data, which might then
be written into a high integrity object. [9] The integrity *-property prevents a
low integrity process from writing into a high integrity object. These properties
keep low integrity ("less trusted") information from propagating into high
integrity ("more trusted") objects.

An example is the KSOS mount table. Every process in the system may need to
read this database, but only the operator or system administrator may change it.
This database is assigned an integrity level of OPERATOR, which prevents user
processes (running at the lower integrity level USER) from writing to the database
file.

Discretionary Access Model

The KSOS system also includes a discretionary access model, which is derived
from the UNIX discretionary model. [10] As in UNIX, every persomn using the system
is assigned a user identifier, and every user is a member of at least one group of
users. Every object has a permission set for the objects” owner, other members of
the owner”s group, and other users of the system. There are gthree permissions;
"read", "write" and "execute", indicating the ability to extrdét information from,
send information to, and (for files) the permission to load the file into memory -as
an executable program. These permissions are established at the discretion of the
objects” owner.

KS0S KERNEL

The heart of the system is the KSOS Security Kernel. The Kernel is a com-
plete operating system which provides a secure environment for the execution of
user programs. It supports multiple isolated processes, a file system and a set of
"supervisor" services. The Kernel is based on a reference monitor concept, wherein
every access to every object is mediated by the Kermel according to its security
policy.

148

Kernel objects and subsystems

The Kernel supports the following objects: processes, memory segments, dev-
ices, disk extents, files, and file subtypes. These objects are created and des-
troyed only by the Kernel, and all accesses of the objects are controlled by the
Kernel in accordance with its security policy. Each object is the responsiblity of
one of the major subsystems of the Kernel, described below. All Kernel objects are
labeled with their security and integrity levels and discretionary access informa-
tion. All Kernel objects are assigned a unique identifier called a Secure Entity
IDentifier (SEID, pronounced "seed") which is a binary quantity. The SEID can be
thought of as the Kernel”s "name" for an object. A SEID is not a capability, and
having the SEID does not imply any access privileges to the object. The only way
to manipulate the Kernel objects is through the use of Kernel calls, identifying
the object by its SEID.

The KSOS Kernmel is split into four major functional areas: Process Manage-
ment, Memory Management, Input/Output, and the Reference Monitor. Each of these
areas are responsible for maintaining internal Kernel databases reflecting the
state of all objects under the control of the Kernel.

Processes

All KSOS processes are managed by the Kernel Process Management Subsystem.
This subsystem creates and deletes processes from the system, schedules them for
execution and controls all interprocess communication. The real-time clock is also
implemented in this subsystem, as are pseudo-interrupts and software trap handlers.
Some of these sub~subsystems are visible to a user process by means of Kernel
calls, others, such as the scheduler, are acting "behind the scenes," and are
invisible to the user process,

The Kernel process is the only active object (subject) in the KSOS object
space. Processes are the means by which programs are executed on the machine. A
process performs its work by manipulating KSOS objects, i.e. reading and writing
to and from files or devices, or communicating with other processes. A process
consists of a program image, process context information, a memory address space,
and a processor state.

New processes é%me into being at the request of other processes through use
of Kernel calls. '

A process may execute with special privileges. Such a process is a "trusted"
process and may violate the KSOS Kernel security policy or use system control func-
tions. These processes can become privileged only through the actions of the Sys-
tem Administrator.

Memory Segments

The Kernel Segment Management Subsystem is responsible for allocating, deal-
locating, swapping and controlling access to the segments of the primary memory of
the system. The details of physical memory management and swapping are typical of
many operating systems, and will not be discussed here. We will concentrate on the
novel features of the KSOS segmentation subsystem,

149

Memory segments are an abstraction of the virtual memory visible to a pro-
cess. Memory is made up of segments, each of which resides in either the Kernel,
Supervisor, or User domains. (The domain structure 1is provided by the PDP-11
memory management hardware.) The KSOS Kernel resides in Kernel domain, NKSR pro-
grams typically reside in Supervisor domain and user application programs reside in
User domain. A process program image and its data reside in a single domain, but
transfers of control may span domain boundaries (under Kernel supervision).

User memory is organized into named segments. Like processes, segments - are
named by their SEIDs. A user process can have up to 16 segments resident in memory
at any time, eight of which are allocated by the hardware architecture for instruc-
tions (I-Space) and eight of which can contain only data (D-Space). Each segment
is limited in size to 8K bytes. Therefore, there is a limitation of 64K bytes of
instructions and 64K bytes of data per memory management domain, per process. The
maximum of 64K bytes address space can be spanned by the memory management system
only if every segment is of the maximum size.

The Kernel permits a process to manage its data segments in a manner that can
be used to best fit the application. For example, a process can dynamically create
and destroy data segments, as well as determine which of its known segments are . to
be resident in main memory, and where, at any given time.

One of the more novel (and useful) features of the KSOS segmentation subsys-—
tem involves the use of shared segments. A process may create a segment, specify-
ing that it is to be "sharable". Any other process may then "rendezvous" with the
segment, under Kernel mediation. At this point, both processes have the same phy-
sical memory mapped into their virtual address spaces. This feature permits a very
high bandwidth communication path for cooperating processes.

Input/Output Management

The KSOS I/0 Subsystem is responsible for managing devices, disk extents,
files and file subtypes. Devices, disk extents and files are increasingly abstract
representations of physical input/output devices. File subtypes provide an exten-
sion of the Kernel defined object types.

Devices

Devices under KSOS are handled by the low-level device drivers within the
Kernel 1I/0 Management Subsystem. It is at this level that interrupts are handled,
device commands and data are sent to and from the devices, and data buffers and
device status registers are examined. Storage device contents are addressed by
logical block number. Non-kernel programs are unable to perform I/0 directly, but
must make requests to the Kernel to have it perform I/0 on their behalf.

Devices have minimum and maximum security levels that indicate what classifi-
cations of data may be sent to or received from it.

User terminal devices are handled in a novel fashion, There are several
"yirtual paths" to each terminal, each of which can be at a different
security/integrity level. One of these paths is reserved for use by the system and
is called the "Secure Path." This path provides a trusted communications path from
the user to the Kernel, for use in invoking trusted functions. When the user wuses
the '"secure attention" key, it is guaranteed that he is communicating with trusted
software, and not a program that may have been left executing at the terminal by

150

another user. This secure path is used during login, logout and any time that the
user must be communicating with trusted NKSR software.

Disk Extents

Disk extents are the next higher level of abstraction of devices, specifi-
cally mass-storage devices such as disks. An extent is a named set of contiguous
blocks on a given disk device, which can be used as a private, logical storage dev-
ice. As a "device" (and an object), an extent has security and integrity informa-
tion governing information flows to and from the extent. The contents are selected
by relative block number from the beginning of the extent. Disk extents are
intended for use by programs that wish to manage their own storage space, without
the imposition of any file structure by the Kernel. They might be used, for exam-
ple, by a relational database, which uses its own special internal "file" format on
top of am extent.

Files

The KSOS Kernel proviies a "flat" file system. There are no directories or
links and files are named only by their SEIDs. All of the security and integrity
information is checked and maintained at the Kernel level. A file system resides
in an extent on a disk, and may be "mounted" (made known to the system) or
"unmounted". Files are allocated in 512 byte blocks, the blocks of which need not
be contiguous. Both random and sequential access are supported. As files are
created, they are marked by the Kernel with the security and integrity levels of
the process that created it. Files may be opened, closed, read or written only by
making requests to the Kermnel.

File Subtypes

File subtypes allow a System Administrator to define a special type, or fla-
vor, of file for special handling by the system. These are called "file subtypes,"
and may be thought of as a private object. They can be used in support of object-
oriented programming, to implement special-use reference monitors on top of the
Kernel.

File subtypes are a special object in KSOS. They have security, integrity
and discretionary access information, just like other objects. They also have an
owner. In practice, the discretionary access allows write access to the owner
only. This becomes a '"private type" of the type manager (the owner). Only the
owner may open the subtype for writing.

When a file is created, a subtype may be specified. At this point, the sub-
type 1is entered into the Kernel”s information about the file. Later, when a pro-
cess attempts to open the file, it must have already successfully "opened" the sub-
type with the same mode, or the file open will fail. As the owner is the omnly pro-
cess which may open the subtype for writing, only the owner may open the "subtyped"
file for writing.

For example, the UNIX Directory Manager (UDM) implements the hierarchical
UNIX-like file system from the more primitive Kernel file system. The UDM creates
Kernel files with a subtype that only it may write. These files are them used by
UDM as UNIX directories.

151

Later, any process that attempts to open the directory file, for writing,
must have already opened the subtype for writing. As the UDM is the only process
which may open the subtype for writing, no other process may open the directory
file for writing. This ensures the integrity of the information in the directory
file. However, any process may open the directory file for reading (subject to
other access constraints, of course). Subtyped files can be thought of as a 'non-
discretionary, discretionary access model", where there are permissions for read-
ing, writing and executing, but the permissions are set and maintained by the Ker—
nel, and may not be changed at the discretion of a user program.

This feature of KSOS is very useful for implementing special-purpose data-
bases where only a single process which "owns" the database is to be allowed to
update it. It has also been used for the TCP/IP network daemon, to protect files
used by the network manager, and will be used to implement multi-level-secure mail-
boxes for the Secure Mail Facility.

Reference Monitor

The KSOS reference monitor has been mentioned in passing in the discussions
of the other Kernel functional areas. The reference monitor ensures that all
accesses to the objects protected by the Kernel are permissible under the KSO0S
Security Model. This module is invoked by the other functional areas to determine
the validity of the attempted accesses (or information flows).

NON-KERNEL SECURITY-RELATED (NKSR) SOFTWARE
The NKSR software that is part of the KSOS system falls into four functional
areas: Secure User Services, System Operation Services, System Maintenance Ser-
vices, and System Administration Services.
Secure User Services
The Secure User Services NKSR programs are responsible for initializing the
KSOS system and providing a secure path from the user to all of the trusted NKSR
services. Programs in this area include:
* Initial Process
This program is responsible for initializing the security levels of the
KSOS system objects. It 1is the first process to execute after the
bootstrap process.
* Secure Server Process
This is the command processor of the system. It manages the different
virtual paths to the user”s terminal and invokes other NKSR services at
the request of the user.
* Login and Logout
Login is responsible for performing user authentication functioms and

creating the initial user environment. Logout destroys the user’s pro-
cess and makes the terminal available to other users.

152

F

System Operation Services

These programs contain functions that are necessary to support a general pur-
pose operating system. Such functions include:

* Line Printer Daemon
This is the "daemon" process that performs line printer spooling.

* Mount/Unmount
These facilities control the mounting and unmounting of file systems.

* Network Daemon
This daemon process handles the TCP/IP DDN or ARPANET connections.

* UNIX Directory Manager (UDM)
UDM implements a hierarchical, UNIX-like file system from the more
primitive Kernel "flat" file system. Text string names and directories
are implemented by this program.

System Maintenance Services

These programs provide the necessary functions to maintain the KSOS file sys-
tems in a usable state, such as:

* Storage Consistency Check (STC)

STC checks the consistency of the Kernel file system, reporting any
lost blocks, duplicated blocks, etc.

* Directory Consistency Check (DCC)
DCC checks the consistency of the UNIX file system maintained by the
UNIX Directory Manager, reporting directories that are in an incon-
sistent state, etc.

* File System Dump/Restore

These utilities provide backup and restore of KSOS file systems.

System Administration Services
This class of programs provides the functions needed to assist the System

Administrator in easily managing a multi-user, multi-level system. These functions
include:

153

* User Registration and Removal

This program allows the System Administrator to add new users, remove
users and identify the clearances of the users to the system.

* System Profile Maintenance

This program maintains the system profile database, which describes the
particular KSOS installation in terms of software versions, site name,
etc.

* Audit Capture Process (ACP)

The Kernel and NKSR software generate audit events for several reasons,
including user login, logout, object creation, access failures,
activity on possible covert channels, etc. The Audit Capture Process
receives these messages and writes them to an audit file.

KERNEL INTERFACE PACKAGE (KIP)

The Kernel Interface Package (KIP) provides a UNIX Version 6 system-call com-
patible interface, except for those system calls which have been identified as
security flaws of UNIX. (The functions of the latter system calls have been sub-
sumed into the NKSR software.)

The KIP is a library of subroutines and functions, one for every supported
UNIX system call, which are linked with the user program. These library functions
invoke KSOS Kernel calls to carry out their functions. Very little data is main-
tained by the KIP from call to call. The KIP can be viewed as a UNIX to KSOS call
translator. ‘

The KSOS KIP allows the easy migration of existing software written for the
UNIX environment to the multi-level-secure environment of KSOS. This method of
providing a UNIX environment allows source-level compatibility, and better perfor-
mance than the original UNIX Emulator.

KS0S DEVELOPMENT ENVIRONMENT

At the present time, the KSOS software development environment requires a
PWB/UNIX system. All programs are prepared using the UNIX development tools.

There are plans to provide a full KSOS development environment running on
KS0S. This will give the KSOS system the ability to maintain itself. Initially, a
minimum set of software development tools will be installed on KSOS., As a prelim-
inary feasibility study, the "ed" editor was ported with very few changes, making
use of the KIP,

The next phase is to select the set of tools that will be ported from UNIX,
Some candidates for UNIX software to be ported are the UNIX "shell", the "C" com-
piler, the UNIX assembler, the loader and the Source Code Control System. A screen
editor will also be chosen and ported.

+ 154

ACCAT GUARD on KS0S

The Advanced Command and Control Architectural Testbed (ACCAT) GUARD applica-
tion is a multi-level-secure application developed for the Naval Electronic Systems
Command (NAVELEX).

ACCAT GUARD will provide a certifiably secure interface between two computers
or subnets on the Defense Data Network (DDN) which are operating at different secu-
rity levels.

The GUARD system is respomsible for secure exchange of information between
HIGH 1level and LOW level network connections. The boundary between these HIGH and
LOW levels is guaranteed through the KSOS multi-level security protection mechan-
isms in accordance with the DoD security policies.

ACCAT GUARD allows the passing of information from the LOW to the HIGH net-
work automatically, but ensures that all information passing from the HIGH network
to the LOW network is subjected to manual sanitization and manual review for down-
grade. The downgrade is performed by a formally specified, trusted program, the
Downgrade Trusted Process (DGTIP), which is the only component of the GUARD applica-
tion software which is trusted (or privileged) to perform the downgrade (by the
KSOS security mechanisms).

The ACCAT GUARD system has passed Security Test and Evaluation (ST&E), and is
under accreditation review by the Defense Intelligence Agency. The ST&E has shown
the robustness of the Kernel and the application, by executing under a wide variety
of load conditions for extended periods of time. Most importantly, no security
weaknesses were discovered during the ST&E.

ACCAT GUARD was developed with several goals in mind. Its primary goal is to
validate the concept of a guard as a buildable multi-level-secure application. But
in addition it validates the concept of KSOS as a production—quality security ker-
nel, and demonstrates the capability of KSOS to host an application which was ori-
ginally written for execution on UNIX, using the KIP.

KSOS - FUTURE PLANS

KSOS development is continuing at Logicon, in support of the ACCAT GUARD sys-
tem. Additional areas of research include developing KSOS into a DoD CSC Al cer-
tifiable system, porting KSOS to alternate hardware architectures, and providing
performance and functional enhancements to the existing system.

DOD CSC Al Certification

KS0S was designed to be a secure system before the DoD CSC published the
Trusted Computer System Evaluation Criteria. The security policy was not an add-
on, and security was the prime design goal. The KSOS Kernel is described by a For-
mal Top Level Specification (FTLS), expressed in SPECIAL. An informal review of
correspondence between the FTLS and the KSOS implementation has been performed, but
the formal document has not yet been produced. KSOS has been characterized as an
excellent base from which to build a secure system.

Over the lifetime of KSOS, several verification efforts have been performed

by the MITRE corporation. The results of these efforts are available from MITRE.
The most recent effort [11] involved the Kernel FTLS, which was examined using the

155

Hierarchical Design Methodolegy (HDM) [12] tools.

. This effort produced 1638 theorems, 939 of which were proven trivially and
431 of which were eliminated as duplicates. This left 268 theorems, of which the
theorem prover was able to prove 47, leaving 221 unproven theorems. The number of
unproven theorems can be further reduced to a minimum by several methods, including
adding additional assertions to the specification. Any remaining unproven theorems
which are shown to indicate covert channels may be handled by limiting the
bandwidth of the channel, or auditing the use of the channels.

Since this verification effort, however, the Kernel has had minor changes.
The current FTLS correctly reflects the state of the KSOS implementation, but needs
additional work. in the area of specifying more assertions, to allow more of the
theorem proving to be performed automatically.

Although Logicon is not currently under contract to develop KSOS to the Al
level, we expect this effort to proceed in parallel with further development of the
system, i.e. all changes that are made will be designed with eventual Al certifi-
cation in mind. According to the Computer Security Center, "KSOS is an excellent
base for developing into an Al system." All of the areas in which KSOS is deficient
have been identified, and the necessary development activities have been specified.

New hardware architectures

One of the original design goals of KSO0S was to pfovide an easily portable
system that could be moved across machine architectures with minimal re-design
effort.

We are currently investigating the migratiom of the KS80S system to other
hardware architectures, specifically, the Digital Equipment Corporation VAX. Most
limits of KSOS performance are imposed by the architecture of the PDP-11., Migra-
tion to a VAX will provide many benefits, especially allowing KSOS to reside on a
wide price/performance range of machines, all running functionally identical Kermel
software, with only minor changes to support different central processors.

It is expected that we will be able to move KSOS to the new PDP-11/73
hardware which is a less-expensive, single-board implementation of the full PDP-11
architecture. This could be accomplished with little or no effort providing a
low-cost hardware base for the current PDP-11 kernel.

Other architectures which may be examined in the future include the Motorola
68000 family, National Semiconductor NS32000 series and other high-performance
microprocessor families.

Performance and Functional Enhancements

Several opportunities for performance and functional improvements have been
identified within the KSOS system. In particular, there are plans to improve the
Kernel Input/Output Subsystem, specifically in the areas of terminal handling,
asynchronous I/0 and device request handling. /

The current KSOS design allows multiple processes to share a single copy of
read/execute~only instruction spaces. However, the implementation of shared
instruction segments is incomplete. Shared instruction space will also decrease
the swapping load on the system and increase throughput dramatically.

156

The current KSOS KIP supports a UNIX Version 6 environment within the MLS
environment of KSOS. Other system call translators will be written for other UNIX
versions. For example, interface packages could be written to support the 4.2BSD
or AT&T System V system call interfaces. Once the system calls are available,
application software can be ported with minimal effort.

PERFORMANCE

This section reports the results of some informal, qualitative performance
measurements which were performed recently., The figures are not intended to state
absolutely the performance differences between the environments, but to give a feel
for the performance of a security kernel and point out that applications that are
intended to run on a kernel will benefit if written to use the native environment
of the kernel. Applications can be ported directly, using the KIP, but performance
will be traded for ease of migrationm.

These programs use the following environments: the KSOS Kernel native-mode
run—time environment, the UNIX Version 6 environment as provided by the Kernmel
Interface Package on top of the Kernel, and the PWB/UNIX environment. All systems
were run on the same PDP-11/70 at Logicon.

Tasks

The following types of programs were identified as being "interesting",
because they exercise various parts of the different environments and are typical
of the tasks of application programs.

* CPU intensive

This task is to repeatedly compute the prime numbers less than 10000,
using a relatively inefficient algorithm (Sieve of Eratosthenes).

* Interprocess Communication (small messages)
This task is to pass many 10-byte messages from one process to another.
* Interprocess Communication (large message)

This task is to repeatedly pass a single large (1000-byte) message from
one process to another and back again.

* File Input/OQutput Intensive

This task is to open an existing file, write 64 blocks of data, rewind
the file and read the data.

* Process Creation
This task times the various process creation mechanisms. A process is
loaded into the system. This process starts off a child process, and

then exits. The child does the same thing. This continues for 100 pro-
cess creations.,

157

Experimental Results

The selected test cases have been chosen to correspond to the types of opera-
tions typically performed by application software. Test programs were written in C
for execution under UNIX, These UNIX-based programs were executed under KSOS/RIP
environment with no changes to the software. Finally, each program was modified to
execute directly with the KSOS Kernel. For each test case, the total elapsed time
required to complete the test was measured. The test results were normalized with
respect to the time required to complete the same functional test under the UNIX
operating system. These results are summarized in the following table.

Performance Characteristics Ratio - KSOS vs UNIX

Test Scenario UNIX Ksos (KIP) KS0S (Kernel)
CPU-bound 1.0 1.0 1.0
IPC (10 bytes/msg) 1.0 25.0 3.9
IPC (1000 bytes/msg) 1.0 65.0 1.7
IPC (5000 bytes/msg) 1.0 325.0 0.3
I/0-bound 1.0 1.6 1.4

| File Creation 1.0' 139.0 13.9
Process Creation 1.0 .67.6 30.8

Software portability versus desired performance characteristics continues to
be the topic of intense debate and trade-off analyses. This issue is especially
significant when developing application software which will operate under a secure
system such as KSOS. As shown in the table, rather significant gains in perfor-
mance can be achieved by tailoring the application to the features provided by the
kernel. In particular, the ACCAT GUARD system performance was improved by approxi-
mately a factor of three by applying this concept to a small set of carefully
chosen application modules.

It is interesting to note that for CPU-bound application software, the KSOS
Security Kernel does not impose any performance penalties when compared to UNIX,
As for the CPU-bound software, I/0-bound software only has a marginal decrease
in performance. This result was anticipated due to the differences in the I/0
design philosophy between UNIX and KSOS. Furthermore, the version of the test that
executed directly under the KSOS Kernel was only slightly improved over the perfor-
mance of the similar test which executed under the KSOS/KIP enviromnment. There-
fore, for this case of application processing, the UNIX-based software can be
migrated to KSOS with relatively small performance penalties.

158

1

In applications which required a high degree of interprocess communication,
the tests clearly indicate that wusing the features of the kernel will provide
rather significant increases in performance, particularly when rather large mes-
sages must be exchanged. It is interesting to note that as the message size
inceases, the interprocess communication features provided by the KSOS Kernel will
permit a higher effective throughput rate than UNIX.

Finally, new object creations, particularly processes and UNIX file systems
managed outside the KSOS Kernel, will require considerably more computational
resources than non-security kernel-based operating systems such as UNIX. Again,
this result was anticipated due to significant differences in the design between
UNIX and KSOS.

CONCLUSION

KSOS is a demonstrated, full-featured operating system built according to the
latest philosophies in computer security. It runs on commercially available
hardware and holds the promise of providing secure processing on a family of
hardware that spans the spectrum of computers from micro to mainframe. With KSOS,
a system implementer may easily port existing operational software to a secure
environment and not necessarily pay a great performance penalty. KSOS is an ongo-
~ ing software project that offers a solution to the MLS problem while continuing to
improve its features and performance.

159

REFERENCES

[1] Letter to Commander, NAVELEX, 25 June 1984, subJect KS0S-11
Security Assessment . . ,

[2] €SC-STD-001-83, "Department of Defense Trusted Computer
System Evaluation Criteria,” 15 August 1983.

[3] E.J. McCauley and P.J. Drongowski, "KSOS: The Design of a Secure
Operating System," in Proceedings, AFIPS National Computer Conference,
AFIPS Press, Arlington, Va., 1979, Vol 48, pp. 345-353.

[4] G.J. Popek, M. Kampe, C.S. Kline, A, Stoughton, M. Urban, and E.J.
Walton, "UCLA Secure UNIX," in Proceedings, AFIPS National Computer
Conference, AFIPS Press, Arlington, Va., Vol 48, pp. 355-364.

[5] W.L. Schiller, "Design of a Security Kernel for the PDP-11/45," MITRE
MTR-2709, MITRE Corp., Bedford, Mass., June 1973,

[6] K. Biba, J. Woodward, and G. Nibaldi, "A Kernel Based Secure UNIX
Design," MITRE ESD-TR-79-134, MITRE Corp., Bedford, Mass., May 1979

[7] D. Baldauf, "ACCAT GUARD Overview," MITRE MTR-3861, MITRE Corp.,
Bedford, Mass., Nov. 1979

[8] D.E. Bell and L.J. LaPadula, "Secure Computer System: Unified
Exposition and Multics Interpretation,' MITRE MTR-2997, MITRE Corp,
Bedford, Mass., July 1975.

[9] Biba, K.J. "Integrity Considerations for Secure Computer Systems,"
MITRE MTR-3153, MITRE Corp., Bedford, Mass., June 1975.

[10] D.M. Richie and K. Thompson, "The UNIX Timesharing System,” in
Communications of the ACM, Vol. 17, No. 5, pp. 365-375. (May 1974)

[11] K.E. Rirkpatrick, "KSOS Verification Part I: Analysis of the
Specifications and Use of the Verification Tools," (working paper),
MITRE Corp., Bedford, Mass., February 1982

[12] B.A. Silverberg, "The HDM Handbook, Volume II: The languages and
tools of HDM," SRI International, 1979.

160

FUTURE DIRECTIONS OF SECURITY FOR
SPERRY SERIES 11#¢ COMPUTERS

T.H.F. Lee

Program Manager, Systems Security
Sperry Corporation
Computer Systems
Roseville, Mn.

ABSTRACT

At the third of these seminars — four years ago —— we
discussed the evolution of computer security features in our
past and present products. With the first delivery this last
April of the large—-scale 1186/99 computer, which includes a
new addressing and protection architecture especially enhanced
for security and integrity, we can now discuss the direction
the Series 116@ Operating System will be taking over the next
half—-decade or so. fAs in the past many improvements will be
‘made in direct response to specific marketplace requests — in
this case, both individual customer recommendations and the
various steps needed to progress up the levels of the DaoD
Trusted Computer System Evaluation Criteria.

INTRODUCTION

I am pleased to be able to make an announcement. Two months ago
Sperry computer systems began a multi-million dollar research and
development program in computer security. This program will result in
D5/116¢, the operating system for our Series 1188 family of computers,
being certifiable at the Bl level in early 1987, and BZ as guickly as
possible thereafter.

The purpose of this report is to describe the changes and
enhancements we will be making to the system as part of this program.
To a large extent the report has been prepared for an audience not
familiar with our systems and terminology; many details of interest
only to people such as system analysts (or our evaluation team) will
not be covered. It does cover four topics:

1) the functional software changes to meet Bl requirements

2} a number of additional changes recommended by our users

3} the new hardware architecture just delivered in our 11868/98
that will make it possible to do a B2 and B3-level
restructuring without suffering unacceptable performance
penalties

4) how we intend to use that architecture.

Those of vyou familiar with other systems will recognize a number of
the features discussed here as similar to those in other systems or in
the literature. This report will not attempt toc make a comparative
analysis, but we do of course freely acknowledge our debt to the

l6l

accumul ated wisdom of others.

The two-vyear estimate for attaining Bl is real, for the three maost
important reasons —-— we know fairly accurately Ffrom a detailed
technical plan how many man—years of work it is going to take, we have
the funding in place to get that much work done by that date, and we
have just about completed getting the right number of people in place
to do the work.

To Ffurther emphasize our commitment to trusted computer systems,
and ow faith in the underlying approach, as scon as a certified
Bl-level system is released we plan to institute a new policy towards
the handling of user reports dealing with potential secuwrity defects.
Any properly documented and reported design or implementation flaw
that permits a credible breach of security will be handled at the
highest possible ‘level of priority within owr software maintenance
organization. For those familiar with our procedures, this means
that a fix to eliminate, repair, or render the flaw unexploitable will
be developed in response to a Priority 4 SUR {(Software User Report.)

During the interval of responding to the flaw report, knowledge of
the flaw will be carefully controlled and limited. It might be
appropriate, in fact, to notify all users as quickly as possible of
the existence of the flaw, even before we have a fix +or it, but we
need to think that through a bit more. At the least we would
certainly notify the DoD Computer Security Center, and would hope it
would reciprocate by telling us about the vulnerabilities reported to
it through its procedures.

CURRENT IMFROVEMENTS

We have to walk before we can run. Those of you who have been to
several of these seminars before, and certainly that includes our
competitors, are well—-aware, even though it has never been publicly
announced, that we have been involved in what used to be called an
"informal evaluation" of 05/118@8 by the DoD Computer Security Center.
The draft report of that evaluation carried no surprises — anyone who
knows our system can compare it against the DOrange Book — but it did
make mutually clear a few things that needed to be done to reach level
CZ2. Owr user’s meetings have also recommended to us a number of other
desirable enhancements in roughly the CZ2 area, most of which will be
implemented.

The main thing missing from the C2 requirements was an approach to
discretionary access controls that clearly met the spirit of the
Orange Book. What had been in our system could have been successfully
argued as having met the requirements, but it would have been a tour
de force. Software is now being integrated into the system that
associates with each file (and eventually other classes of protected
objects) the identity of its owner;: previously the closest notion of
ownership we had was that of the project or account the file belonged
to. The owner of a file will have the ability to explicitly give a
list, which he, and only he, can later change., of which other users
are able toc access that file, and in which ways. If no list is given,
the file can only be accessed by its owner. {By the way — these

162

access control lists are named entities and thus the same list can be
easily attached to several files at once.)

finocther major change necessary for even Cl1 level accreditation
arises in our transaction processing system. For many years 085/116@

has supported what one might think of as a special-purpose
high-performance sub-—operating system designed primarily to handle
applications 1like airline reservations or customer ingquiries. This

sub—operating system {(called TIP, for Transaction Interface Processor)
does not fit the computer science model of one process per user, but
in +fact much better +fits the model of one process per kind of
transaction. The TIF system itself has no notion of the identity of a
user, although application programs under TIF may choose to identify
and authenticate their users.

It is clear that for a clean accreditation at the C levels, and
even more =so at the B levels, this way of doing business is
unsatisfactory, since it forces part of the TCB to be in applications
programs. Accordingly we have in the works a number of changes to
ensure that all users must logon {(uniquely identify and authenticate
themselves) in an effective and uniform manner, no matter what kind of

application {time—sharing, transaction, or real-time) they are
comnecting to. This ensures that any security-relevant activity ——
recorded in an audit trail — can be traced to the paricular person

regsponsible. Other changes in the TIP environment will also occur as
part of the level Bl enhancements.

Bl ENHANCEMENTS

Most of what we have to do to meet the level Bl requirements can
be easily stated: files and other protected objects need to have
security levels and compartments associated with them, and hard—copy
output needs to be labelled with human-readable security labels. Our
present mechanisms, which have a notion of security level and a kind
of compartmentation, will be modified to conform strictly to the
lattice policy outlined in the Orange Book and elsewhere. At this
time we are not sure about how many compartments to supports a number
in the range of 32 to 64 can be done easily, but we also have under
consideration an alternate, less straight—forward approach that could
handle thousands of compartments, provided no single user or file
deale with toco many at once.

As part of the task of implementing and enforcing security
labelling of files we are alsoc extending the concepts to objects other
than files. Tape and disk volumes will be able to bear over-all
security labels. A terminal and communication line will be able to be
marked as to the highest security level and set of compartments
accessible from it. Messages over communications media will be marked
with the appropriate security labels, either by treating an entire
session as being at a given level or by tagging each message,
whichever is appropriate to the protocol involved.

fAis mentioned earlier, the TIP environment will also be modified to

enforce access controls based on security labels, in addition to the
current mechanisms. ‘

163

At this point it 1s appropriate to mention that all our
enhancements —— including those to be discussed below as part of the
path to BZ and beyond — are being done in a way that is upward
compatible with existing user applications. This is not easy and has
on occasion forced us to make uncaomfortable design and implementation
choices. In particular, under the new hardware architecture described
below it will be necessary for quite some time to run a machine that
has code operating in both the old and the new architectures.

OTHER SHORT-TERM ENHANCEMENTS

Although all are not strictly necessary to meet the letter of the
Orange Book requirements, over the two—vyears or so it will take to do
the primary level—-Bl enhancements we will alsoc be making a number of
other changes and improvements in the security features of the system.

One set of enhancements and changes are associated with password
management . The password Ffile will be encrypted as a further
protection against unauthorized access to it. We recognize in addition
the need to provide further tools that encourage proper password use
and discourage improper use. Tentatively it looks 1like we. will
support expiration times on passwords {(to force users to change them)
and system—generated passwords (to discourage users +rom picking
easily—guessable passwords.) Unfortunately this is an area that
seems to be frought with emotion: we have customers with very
firmly—-held views on the right way to manage passwords, and, as ought
toc be expected, a number of those views are incompatible.

One reguirement {initially at the Bl level, but now at the C2
level) of the evaluation criteria {(and of common sense) 1s that
residue in storage media be erased before the space it occupies is
allocated For a different purpose. The most efficient way to do this
would be to ensure that a block of storage must by written by the user
before it 1is read; an alternative is to scrub storage when it 1is
de—allocated. A third alternative would be to allocate storage in
poocls, each poocl of a single security level and compartment set. We
haven™t decided which approach to use for each of the various kinds of
storage media concerned, but in each case not yet covered at least one
acceptable approach has been identified.

Finally, to make the list complete, we are integrating the various
parts of system administration, including security administration,
into a common, system—wide interface.

TOWARDS B2 AND BEYDND —— NEW HARDWARE

Those of yvou who have studied the Orange Book know that the main
feature that distinguishes the B2 and higher levels from Bl and the
lower levels is the need to remove as much non—-security relevant code
and data from the Trusted Computing Base as possible, and., structuring
what is left into independent modules. The strong implication of
these reqguirements —— and even more so at the B3 level —— is that the
separate modules of the TCB be isolated from each other by hardware

164

mechanisms, not just software engineering.

. ..To meet this requirement —— although at the time it was only
intuitively felt to be one, the Criteria not yet firm — as well as
other integrity and reliability needs, a number of significant changes
were made to the hardware architecture of the 1188 series of
computers; the first model of the series incorporating these changes
was the 11883/9@, which was first shipped to a customer last April.

Without going into a lot of detail, which you can read in the
hardware manuals, 1 will outline the main changes relevant to this
discussion. There are many other changes that make all this work
efficiently, such as instructions to rapidly change addressing and
protection context.

Base Registers

The 1188 ceries is a base-register machine, although those of you
who have only a casual assembly-language reading knowledge of it may
not be aware of that. The address space visible to a program is
‘defined by four "bank" registers. A storage-referencing instruction,
possibly after indexing, results in a "relative" address. Each bank
register describes a region of the entire possible relative address
space and a translation of that space into real, physical memory
space. The relative address generated by an instruction is translated
into a physical address by finding the bank register that includes
that relative address; there are some subtleties to the algorithm that
are exploited and some that are possible points of confusion, but the
details are not important here.

What is important is that in the new architecture, called
"extended mode", the user’s addressing environment is now described by
16 base registers. {There is also a separate set of 16 base registers
for use by the kernel of the operating system.) Storage referencing
instructions operating in extended mode now contain a fow-bit field
explicitly selecting which base register to use. The physical address
is formed by adding the relative address to a base value contained in
the base register (after a limits check.) :

Bank Descriptor Tables

In both the old architecture {(called basic mode) and the new, the
contents of base registers are protected. The operating system
provides the user with a set of "bank descriptor tables"” that describe
all the possible banks it is legal for him to access. {Obviously,
only the operating system can change the contents of a bank descriptor
table.? The user has a set of instructions that load base registers
from bank descriptor tables. One can think of the base registers as
defining the user’s current window into storage; the bank descriptor
tables define everything he could potentially be allowed to see at any
moment, and the load-bank instructions allow him to move his window
around the visible portion, but only the visible portion.

165

In extended mode there are four bank descriptor tables that a user
can load base registers from. (Incidentally, the four tables are in
fact defined by four of the kernel’s 16 registers.) Kernel software
will structure the use of these to shape the entire virtual address
space into a four—level tree. The top level contains banks which any
user in the system can potentially see; the second 1level contains
banks private to a single application, where an airline reservation
system is an example of an applications; the third level contains the
banks +for a program; and the fourth is private to a single process.
The intention is that if a bank is to ever be shared by more than one
part of the system, there will only be one copy ot its descriptor, and
that of course must reside high enrough up in the tree for all
potential users to be able to reference it.

Domains

The astute reader at this point will ask, "what about banks, such
as those 1in the operating system, that must be accessible to all
processes, but only when those processes are running in the operating
system?" Associated with each bank (contained in its bank descriptor)
is an access—control lock and two access permission fields, called
general access permission and special access permission. Part of
process state is an access—control key. Each access permission field
encades whether no access, read access, write access, or enter access
is allowed. {Enter access is described below.) If the access—control
key matches the lock, the access granted by the special access
permission Ffield is allowed, otherwise the general field applies.
Thus the access to any bank can be differentiated into two kinds —-
that allowed anvone who can reference the bank {(which might be no
access at all), and that allowed only when the process is running with
the proper access key. The access lock and key are composed of a
two-bit ring field and a seven-bit domain field. The two match i+
either the ring of the key is strictly less than the ring of the lock
o if the two domain fields are equal. {1+ the domain field of the
key is all zero, all forms of access regardless of the settings of the
permission fields are granted.)

Gates

Obviously, control over when and how the access key can be changed
is important. The key can only be changed by a Call or Jump
instruction whose address is not an instruction itself, but rather a
special construct called a Gate. The hardware knows the target of a
Call is a Gate because contained in a bank descriptor is a field to
indicate what type of bank is being described; for our purpose here,
the main distinction is between gate banks and all other kinds. A
Gate then is the means for making a controlled transition between
domains of different privilege; one cannot enter a different domain
without going through a gate, and one can only go through the gates
for which one currently has Enter access permission. {Note that a
Gate contains in addition to the access key to be used the instruction
location to start at as well as bits controlling other parts of
processor state.)_

166

‘ " The hardware also supports a Return Control Stack, protected from
any direct access by ordinary programs, on which is saved the
privilege state, instruction location, and other information needed to
return to the proper environment aftter a Call.

TOWARDS BZ AND BEYOND —— NEW SOFTWARE

To reach B2 and higher the main concept that we will be
implementing beyond those needed for Bl is that of the software
subsystem. Software subsystems are the means for structuring software
into separate domains. A software subsystem is very much like a user:
it has an identity, can be the ocwner and socle accessor of files and
banks, and has security properties. It has its own dynamic 1linking
environment and its own set of routines to respond to error conditions
and software interrupts. When a process running in one subsystem
attempts to 1link to another, the appropriate security rules are
checked to see if the link is permitted; if so, and only if so, a gate
only accessible to the calling subsystem is built that permits it to
call into the second subsystem. Each subsystem is assigned a domain
number, which is used to keep separate the banks belonging to the
different subsystems.

The proper coupling between the software concept and the hardware
mechanisms 1s being done very carefully. Just as an example, one
would think that 7 bits of domain number would severely restrict the
number of domains possible. In practice this is not true because it
must also be remembered that in order for a bank to be accessed its
descriptor must be in the part of the address tree that is
addressable; in effect, each domain number is qualified by the node in
the address tree it belongs to. There can thus be some fraction of
the possible domain numbers that are shared across all parts of the
system, a different fraction by each application, another by each
program, and yet another by each process.

Ordinary users can write and use software subsystems, but those
subsystems cannot have any special privileges — i.e., they can access
no more than their creator. Security administrators, however, can
designate particular subsystems as being trusted, with the specific
kind and degree of trust carefully controllable, ranging from merely
permitting the subsystem to downgrade infarmation to allowing it to
execute with privileged hardware instructions.

With these software constructs we will be able to gradually
restructure the system. More importantly, perhaps, users will be able
to easily create their own protected subsystems and write multi-—-level
applications. In both cases, whether or not the facilities are needed
for and wused for enforcing a security policy, they will certainly
improve the integrity of the system and make software maintenance
easier. Some parts of the software subsystem concepts will in fact be
available long before the major BZ-level restructuring.

167

CLOSING COMMENTS

There are two obvious omissions in the above: there 1is no
discussion of security in our data management system, and there is no
clear indication of when the B2 or higher level systems will be ready.
Those omissions are deliberate.

We have some ideas on how to do data management security, but so
far it is clear that our customers don’t really know what they want or
need above and beyond what is currently available. The National
Academy of Sciences Summer Study on Secure Data Management Systems has
been some help, but there is a lot of conceptual work yet to be done.
As an interim step, we are considering having a single 1188 system
support several data bases. each managed by one of our data management
systems {(we have both a relational and a CODASYL data management
system), with sach data base at its own security level separated from
all the rest by the application—-level nodes of the address tree.

We are getting a feel for what it is going to take to restructure
the system to meet level BZ and above, but are not vyet completely
confident about it, nor about what priority we should place on 1t.

We are committed to continuously enhancing the trustworthiness of
our systems. This report has covered the first few steps, in some
detail. As you can see, we still have some choices to make and some
priorities to set. We particularly welcome and solicit comments and
advice in these areas and thank you for the advice we have already
received, whether you think we have heeded it or not.

168

LIFE CYCLE ASSURANCE FOR TRUSTED COMPUTER SYSTEMS:
A CONFIGURATION MANAGEMENT STRATEGY FOR MULTICS

Maria M. Pozzo

Honeywell Information Systems, Inc.

1 ABSTRACT

The goal of this paper 1is to discuss the control objective
outlined in the Department of Defense Trusted Computer System
Evaluation Criteria for the area of Life-Cycle Assurance in
particular, Configuration Management. In addition, this paper
will describe the Configuration Management Strategy for the
development and maintenance of the Multics Operating System, and
how it evolves over the 1life of the system, as the need for
assurance of security mechanisms (documentation, source code,
test procedures, etc.) becomes more prevalent.

2 INTRODUCTION

According to the Department of Defense Trusted Computer System
Evaluation Criteria(1), six fundamental requirements are specified in
the definition of a secure computer system. Of the six, four deal
with the mechanisms needed to control access to information, while the
remaining two discuss a means for obtaining assurances that these
control mechanisms are provided and remain consistent throughout the
life of the trusted computer system.

A control objective 1is a statement of intent with respect to control
over some aspect of an organization's resources, or processes, or both
[DOD 831, [FIPSP 80]. The Criteria outlines control objectives in
three basic areas: security policy, accountability, and assurance,
The intent of these control objectives is to provide a set of
guidelines for developing a strategy for a specific system in order to
meet the requirements of the Criteria.

Section 3 provides an overview of computer security and discusses the
need for and definition of control objectives. Section 4 defines the
control objective for Configuration Management, and discusses the
various areas which must be covered 1in any such plan. Section 5
presents the current Configuration Management Plan for Multics and
describes statistics that are gathered throughout this process. The
gathering of statistics <can help to identify success or failure of
specific aspects of the plan so that they can be improved. It is in

(1) Order number CSC-STD-001-83, referred to as the "Orange Bodk" or
"Criteria",.

169

this way that the Multics Configuration Management Strategy evolves,
as does the system 1itself, in order to continue to meet the
requirements of both the Criteria and the expanding wuser community.
Section 6 discusses the on-going evolution process for Multics
‘Configuration Managment.

3 COMPUTER SECURITY

3.1 Background

Because the availability of computers has greatly increased in both
the public and private sector, computer security is needed to protect
against events that have adverse effects during computer processing.
Towards this effort, the DoD Computer Security Center was founded to
provide guidance and encouragement to vendors who develop and maintain
commercially available secure computer systems. According to the
Criteria, a secure system is one that provides specfic mechanisms,
both automated and manual(1), which control access to information such
that only authorized individuals, or processes running on behalf of
individuals, have access to read, write, create or delete such
information. In a broader sense, computer security also includes
assurances that the system functions properly and is maintained in
such a way as to prevent harmful side-effects [FIPSP 80].

3.2 Security Objectives

During the initial planning stages for any system, it is necessary to
first define the objectives of the system. For a secure computer
system, the Criteria defines three such objectives: security policy,
accountability and assurance. Each objective defines a set of one or
more controls which must be present in a system in order to achieve a
particular security objective. The first area, security policy
control objective, defines four such controls, To achieve this
objective, a system must provide controls with respect to the system's
security policy in general, the system's mandatory access controls,
the discretionary access controls, and the system's policy on marking
information. Each. of these <controls is 1identified as a control
objective., The accountability and assurance objectives each have one
such control to achieve the respective objective. Therefore, acording
to the Criteria, there are six control objectives: Security Policy,
Mandatory Security, Discretionary Security, Marking, Accountability,
and Assurance.

Each control objective defines a set of requirements which provide a
framework for meeting the security control objective. For example,
the Criteria defines an accountability objective for secure systems.

(1) Manual mechanisms are those procedures recommended by system
documentation in order to maintain a trusted environment in which
the system must be operated in order to provide a specific level
of security.

170

There are several requirements, 1) individual wuser identification,
2) authentication of the user 1identification, and 3) dependable audit
capabilities. The accountability control objective as defined in
Section 5.3.2 of the Criteria provides a framework that 1is flexible
enough to encourage a variety of mechanisms that will meet this
security control objective.

Section Y4 will provide an in-depth discussion of the Assurance Control
Objective as defined by the Criteria.

4 LIFE CYCLE ASSURANCE

The control objective as stated by the Criteria for assurance is
stated Dbelow. The Criteria specifies two requirements for the
assurance control objective: operational and 1life-cycle assurance.
This paper deals only with life-cycle assurance.

ASSURANCE CONTROL OBJECTIVE

Systems that are used to process or handle <classified or other
sensitive information must be designed to guarantee correct and
accurate interpretation of the security policy. Assurance must
be provided that correct implementation and operation of the
policy exists throughout the system's life-cycle.

The 1life-cycle of a computer system has three phases: initiation,
development, and operation (that phase at which the system is accepted
and used as 1intended). After some period of operation, the system
will be expanded or revised and the life-cycle begins again [BRAND
821]. Security must be considered at each phase of the computer
system's l1ife-cyecle [FIPSP 80].

4.1 Configuration Management Strategy

Configuration Management 1is a policy statement which controls an
organization's resources and procedures during a computer system's
life-cycle. In order to meet the requirements of the Criteria, a
Configuration Management Plan must cover all aspects of the computer
system's 1life-cycle from initiation to operation. Specifically, a
Configuration Management Plan applies to expansions or revisions of a
computer system. The following section describes the areas that must
be covered under such a plan and provides possible suggestions for
developing a Configuration Management Strategy.

4.1.1 INITIATION PHASE

During the initiation stage, a variety of alternatives must be
considered with respect to the intended revision or expansion.
Feasibility studies and cost-benefit analysis should be conducted.
The impact on the computer system's security mechansims must be
evaluated during this phase. [FIPSP 80]. For example, suppose a
revision is needed due to a system bug, customer request, or general
enhancement, The initiation phase should first perform a feasibility

i71

study to determine a set of alternatives for making the change (one of
which might be not to make the change). Each alternative includes its
cost and hardware, software and security implications. It is then
possible to perform a cost-benefit analysis. The set of alternatives
will be 1larger for a new system than for one already 1in existance,
which will be restricted by 1its current implementation. See [FIPSP
80] for more details on the initiation phase.

4.,1.2 DEVELOPMENT PHASE

Once a commitment has been made to revise a -system, the development
phase can begin. This phase has the following stages: definition of
the high-level description, detailed design, implementation and
testing. A Configuration Management Plan defines procedures for all
stages of this phase from high-level description to testing.

4.1.2.1 High-Level Description

As a first step, the developer provides a high-level description of
the revision, documents it and submits it to management and peers for
review. This description 1includes any relevant security issues and
their implications as well as areas of the system that c¢ould be
affected by the change. Since this is a high-level description,
details of interfaces are not necessary. This stage should be
completed prior to any prototyping. ’

4,1.2.2 Detailed Design

Subsequent to the high-level description, it may be necessary to
perform some initial prototyping. A prototype is a skeletal
implementation which aids the developer in building the design and may
greatly impact it. The prototype is not part of the implementation
and is usually discarded once the design is completed. With the aid
of prototype results, the high-level description, and a thorough
knowledge of the area of the system being revised, the developer
proceeds with the detailed design. A detailed design document
describes the current state of the area to be revised, the reason it
is being changed (such as known problems), and a detailed description
of the change. All interfaces should be specified, particularly those
interfaces external to the area being changed. If the change is for a
part of the system which involves the security mechanisms or may have
some 1impact on overall system security, these issues should be
described in detail. Testing procedures should also be included.
Lastly, a plan for completing the change should be specified. This
plan should include the effort required for each 'phase of the
revision.

4.1.2.3 Design Review
Once the design document has been completed, a design review is

conducted. The design should be reviewed by several different groups
of individuals. One or more persons knowledgeable in security issues

172

should conduct a review geared towards the security implications. A
peer review should consider the technical aspects of the design.
Finally, a management . review should determine if the design is
acceptable. This stage is complete when the design document has been
updated to reflect the results of the design review. ‘

4.1.2.4 Implementation and Testing

Implementation should adhere to the organization's programming
standards. Programming standards specify the language(s) which can be
used, correct programming formats and conventions, and development
tools which are recommened. Programmers should be sure to implement
only that which 1is specified in the design document. If this is not
the case, the design document must be updated and reviewed as stated
in the previous paragraph. Finally, complex or overly sophisticated
code may cause more problems than are justified by the efficiency they
are intended to achieve. In most cases, simple, straightforward code
provides the best implementation.

Testing should proceed as specified in the design document. There are
many ways to accomplish testing. One example 1is to test at the
interface level. When a system is tested through its-interface, its
behavior is tested to insure that it performs those functions and only
those functions that it is intended to perform. Testing can be
accomplished manually or automatically. However testing is conducted,
a test plan should be provided which states the tests to be made and
their expected results.

There must be a set of procedures for exposure. One thing that must
be considered is where in the file system the development work is to
be accomplished. Depending on the nature of the work, it may be
necessary to provide security mechanisms so the code under development
cannot be tampered with. : If modifications must be exposed, there must
be a standard place in the system where such experimental code can
reside. The 1length of time for exposing such code must also be
specified.

4.1.2.5 Audit

When testing and implementation have been completed, the code should
be audited. For security-related areas of the system, it may be
necessary to have the code audited by a security expert initially,
followed by a technical audit. The auditor should consider
programming standards to insure that the developer has followed the
organization's conventions and recommended procedures during
implementation. The auditor should wunderstand what has been changed,
compare it to the design document, run the tests, etc. Part of the
Programming Standards document should state the procedure to follow
during audit. ‘

173

4,1.2.6 Completion of the Development Phase

Before the development phase can be completed, documentation must be
provided or updated as appropriate. The developer must insure that
any design documentation clearly reflects the implementation. All
user documentation must also be written or updated.

Lastly, a set of procedures must be provided for installation of the
new code as well as release to customers, Installation may be
different depending on the reason for making the change. It is
important, however, to keep records of installations so future
modifications to the same area of code can be performed correctly.

4.1.3 OPERATION PHASE

During normal operation, there are many reasons for revising or
expanding a computer system. The Configuration Management Plan nmust
provide procedures for the different types of changes. For example,
if the modification 1s emergency in nature, there may not be time to
follow all the above-outlined steps to the same level of detail as for
an enhancement. The strategy must c¢learly identify the procedures to
follow for all such cases.

5 MULTICS CONFIGURATION MANAGEMENT

During the early days of Multics, various parts of the Configuration
Management procedures were documented in separate Multics
Administrative Bulletins (MABs)(1). Over the years, the MABs have
been updated, revised and new ones written. In more recent times,
these MABs have been consolidated 1into one definitive document and
published internally as a Multies Technical Bulletin (MTB)(2).
Currently, this MTB is being expanded and revised for eventual release
as an official Multics Administrative Bulletin on Configuration
Management Procedures and Policies.

5.1 Initiation Phase

Individual members of the Multics community (contributors) start
changes for one of several different reasons: 1) they have an idea
for an improvement to the system, 2) they respond to a requirement
formally presented through management channels, 3) they respond to a
reported bug or suggestion.

Upon receipt of a change request, management determines its
feasibility and assigns the change to a particular developer. The

(1) Multics Administrative Bulletins contain Honeywell proprietary
information and are not available to the public.

(2) Multics Technical Bulletins contain Honeywell proprietary
information and are not available to the public.

174

developer's responsibility is to perform any research necessary to
produce the appropriate design documentation.

5.2 Development Phase

5.2.1 DESIGN DOCUMENTATION

To propose a change a developer produces an MTB, which is a detailed
description of the proposed design, or a Multics Change Request (MCR),
which formally requests technical approval of a change. An MCR must
always be wWritten while an MTB need only be written under certain
conditions: 1) the modification will cause a change to the central
design philosophy of the system, data structures, or security policy
of the system or one of its subsystems, 2) the change will add a new
subsystem to the system(1), 3) the documentation required will be more
than several pages, U4) the change involves design 1issues where the
developer 1is unsure of the correct solution, or where others are
likely to disagree.

In either case, the design document must describe any new or changed
user interfaces to the system; any new or changed internal interfaces
that are wusable outside of the subsystem; any significant new or
changed data structures, design philosophies, in particular
security-related issues. The level of detail supplied by an MTB is
often dependent on how crucial the changed area is to the system, for
example, MTBs for areas of the system where a problem exists often
provide a description of the current state and reasons for the
intended change.

As described above, some implementation, in the form of a prototype,
is often done prior to completion of the design.

5.2.2 DESIGN REVIEW

A draft of the MTB is made available to peers for technical review,
and to an individual knowledgeable in security for security issues.
When all resulting questions, complaints, and suggestions have been
resolved by the developer, the MTB is updated to reflect the results
of the design review and published internally.

The next step is to fill out the standard MCR form and submit it for
approval. In the event that the change did not meet the criteria
outlined above for writing an MTB, this would be the first document
specifying the design for the change. Changes that only require an
MCR are usually small and do not effect a large portion of the system.
The MCR form requires the signatures of two individuals, the
developer's manager and a sponsor. The sponsor checks that the MCR is

(1) A subsystem is a significant body of code that provides a set of
related functions, and has a clear modularization that separates
it from the rest of the system.

175

complete and takes responsibility for its technical plausibility. If
the change has security implications, the sponser 1is wusually an
individual with knowledge of security issues.

When the MCR has been completed and approved according to the above
steps, the MCR is submitted to the General MCR Board (GMCRB) on which
all developers in the Multics organization can participate. The GMCRB
discusses, reviews and votes on the MCR. If the vote indicates a lack
of consensus, the MCR is submitted to the Executive MCR Board (EMCRB),
which is a much smaller group, appointed by management, and has the
final authority to resolve technical issues. '

5.2.3 IMPLEMENTATION

Once the MCR Board approves the MCR, the developer c¢an begin
implementation being careful to implement only that which is specified
by the design documentation. Because of the nature of the Multies
Trusted Computing Base (TCB), that portion of the system which
implements and protects the security-relevant code, it is imperative
that developers follow proper programming practices. The Multics
Programming Standards System Designers' Notebook (SDN) (Order Number
AN-82) provides guidelines for writing efficient, readable Multics
PL/I(1) programs. Currently, this document 1is undergoing revision,
since guidelines for writing ALM programs, and programs that run in
special environments, are not included in the SDN. ‘

The implementation phase includes’ testing and 1limited exposure.
Generally, developers can expose their code on the CISL Multics
System, or 1in experimental 1libraries on MIT (Cambridge, MA), CISL
(Cambridge, MA), ACTC (Calgary, AB), or System-M (Phoenix, AZ).

5.2.4 AUDIT

The audit verifies that the implementation meets its requirements as
specified in the design document. An auditor must first review the
MTB and/or MCR provided by the developer. The auditor then insures
that the code conforms to the design and proper programming practices,
has no apparent bugs and has been adequately tested. If the change
has security implications, the code may also be audited by a security
expert. Prior to installation, the developer must fix any problems
found by the auditor.

5.2.5 INSTALLATION

Multics Administrative Bulletins are available which provide a set of
standards and procedures for preparing installations to be made by the
Installation Group in Phoenix. The developer must first fill out the
proper installation forms which contain the changed or new modules,

(1) Most of Multics 1is written in the high-level 1language PL/I while
the remainder is written in Multics Assembler (ALM).

176

the approved MTBs and/or MCRs, and the signatures of the developer,
auditor, and the developer's manager. All new or changed
documentation must be sent to the Documentation Group and, where
appropriate, the installation forms must include a signature from the
Documentation Unit manager.

The installers examine the forms for completeness, verify that all
affected modules have been included and recompile the sdéurce code
provided by the developer. Tests provided by the developer as well as
any other appropriate tests are run prior to installation into the
System-M libraries.

5.3 Operation Phase

A new release of Multics occurs approximately once every 12 months.
During the release cycle, a number of problems can arise that warrant
changes to the system prior to the next formal release.

5.3.1 EMERGENCY PROCEDURES

Emergency Change Requests (MECRs) are used to submit emergency changes
to exposure sites while Critical Fixes are wused to make emergency
changes available to the field. MABs are available internally which
specify the procedures to follow for emergency changes.

Fixes of the above nature are generally done without any design phase
since rapid response 1is often imperative, however, an audit is
performed prior to installation on System-M in Phoenix. Once the
change has been installed, the developer must provide an MCR, conduct
a design review and resubmit the change as a normal installation.

5.3.2 STATISTICS

Gathering statistics during the life-cycle of a system can help to
identify areas of the Configuration Management where there are

weaknesses. One such measure is to examine the number of MTBs and
MCRs that are rejected or submitted to the EMCRB due to controversial
issues. If this number is large, it can be an indication that a

high-level description was not provided or thoroughly reviewed prior
to any prototyping and formal design work. Another measure is the
number of times emergency procedures must be invoked. If emergency
procedures are used often, testing procedures may be inadequate, and
more stringent policies for testing changes must be developed.

If the available documentation is largely out of date, this is a sure

indicator that the procedures for supplying sufficient, up-to-date
documentation are inadequate.

If auditors are «continually rejecting code there may not be a
consistent understanding among developers of proper programming
practices. Overall, managers must keep a close watch for indications
that there are problems in any of these and other areas. '

177

6 GROWTH OF THE MULTICS CONFIGURATION MANAGEMENT PLAN

Multics is currently wunder evaluation by the DoDCSC; as of this
writing, the evaluation is not yet complete. 1In order to provide a
system according to the Criteria, and to meet the needs of the growing
Multics community, several areas of the Multics Configuration
Management Plan are under consideration for revision and addition.

For Multics, adequate documentation for code within the TCB 1is an
important addition. For future design documentation, the format of
Program Logic Manuals (PLMs) has been modified <c¢ontain a chapter
describing the overall subsystem, how it interfaces both internally
and externally; and a chapter that discusses the security policies and
implications of the subsystem.

The Criteria requirements specify that testing must be performed at
the. interface to the TCB and provide adequate assurance that the
system performs <those functions that it 1s intended ¢to perform.
Multics Configuration Managment Policies are being expanded to include
a set of procedures for providing tests which satisfy the requirements
of the Criteria more adequately than current testing procedures.

Currently, a proposal 1s under consideration that would require
developers to submit a high-level description of the proposed change
prior to generating a detailed design. A review of the high-level
description would provide developers with input as to the technical
feasiblity and possible acceptance of the future MTB and/or MCR before
a substantial amount of work has been done.

7 CONCLUSION

This paper has attempted to show areas that must be considered when
developing a Configuration Management Plan. Such a plan for Multics
has been presented as an example. Any such plan must be open to
modification as the needs of the organization and 1its user community
change. For Multics, the evaluation process conducted by the DoDCSC,
has helped to point out areas for improvement. "Much of what needs to
be done to 1improve security 1is not clearly separable from what is
needed to improve usefulness, reliability, effectiveness, and
efficiency of the computer...[system]". [FIPSP 80]

178

REFERENCES
[BRAND 82]

[DOD 83]

[FIPSP 801]

Brand,

DoDCSC

S. L. "An Approach to Identification and Audit
of Vulnerabilities and Control in Application
Systems," in Audit and Evaluation of Computer
Security II: System Vulnerabilities and
Controls, Z. Ruthberg, ed., NBS Special Publi,
#500-57, MD78733, April 1980.

"Trusted Computer System Evaluation Criteria",
CSC-STD-001-83, August 1983.

Federal Information Processing Standards Publication,

(FIPS PUB) 73, Guidelines for Security
of Computer Applications, 30 June 1980.

179

GOULD SOFTWARE DIVISION'S SECURITY PROGRAM

Gary Grossman
Vice President, Researeh and Development
Gould Software Division
Urbana, lilinois

INTRODUCTION

Gould Software Division (GSWD) began as Digital Technology Incorporated (DTI) in 1977, It
became Compion Corporation in 1882, and was acquired by Gould, Inc. in 1983. As DTI and
Compion. GSWD primarily produced network front ends for the U.S. Defense
Communications Agency. This work formed the basis for the Secure HUB™ Executive, a
formally verified multi—level secure operating system, and the Communications Operating
System Network Front End (COS/NFE), a formally verified multi—Ilevel secure network
front end. The experience gained through participation in verifying the HUB™ and the
COS/NFE was applied in producing the VERUS™ formal verification system.

GSWD has a continued commitment to security technology and security products. VERUS™ is
a fully supported product with an aggressive enhancement program. The Protector™, the
first in a series of security products aimed at the commercial computer and communication
security market, will be released late this year. Enhancements to the Secure HUB™
Executive are being investigated. GSWD has expanded the security properties of UNIX™ for
use in the DoD and in the commercial market. A further security—enhanced version of
UNIX™ is scheduled for release in 1985. And GSWD is developing a formally verified
multi—level secure version of UNIX™.

HISTORY

Non—Secure Network Front Ends

As DTIl, GSWD's business was primarily producing network front ends for the Defense
Communications Agency. A network front end (NFE) is a computer system interposed
between a mainframe computer and a resource sharing network (see Figure 1). The NFE may
also support terminals that can connect to both the mainframe and the network. ODTI
personnel were involved in three non—secure NFE projects intended to connect World Wide
Military Command and Control System (WWMCCSi Honeywell H6000 hosts to various
networks:

1. The Experimental Network Front End' was developed at the University of Illinois to
connect an H6000 with the ARPANET. Its hardware base was a Digital Equipment
Corporation PDP—11/70; its software base was the UNIX™ time—sharing operating

180

Network Front End
Figure 1.

system?, with software added to implement the ARPANET protocols and to augment
the UNIX™ interprocess communication facilities.

2. The Interim Network Front End® (INFE) was a prototype developed at DTI to connect
an H6000 with the AUTODIN Il network. 1t was also based on the PDP—11 and on
UNIX™, with the DoD standard TCP/IP protocols and with a new interprocess

. communication mechanism called Attach [/04.

3. The WWMCCS Network Front End® (WNFE), also produced at DTI, was designed to be
fielded as an NFE that connects an H6000 with the WWMCCS intercomputer
Network. It used the same hardware and software bases as the INFE.

GSWD's network front end projects are summarized in Figure 2.

Security Projects

As DTl and Compion, GSWD completed two formally verified secure software projects: the
Secure HUB™ Executive and the COS/NFE; Compion also developed the VERUS™ verification
system.

Secure HUB™ Executive. The Secure HUB™ Executive® was developed by DTI in 1980 as a
formally verified secure operating system oriented toward supporting communications and
other real—time applications. The HUB™ was designed to support DoD multi—level security
while providing better performance than had been available through performance—enhanced
versions of UNIX™, HUB™ interprocess comifuhication was twice as fast as that of UNIX™;
overall system performance was 20% better with the HUB™. The HUB™ was designed to be
portable; it was first implemented on the INFE hardware base and also on a Motorola
™M668000 microprocessor.

181

Project Org. | O/S Network Goal

ENFE | CAC | UNIX | ARPANET |Prove concept

INFE DTI | UNIX [AUTODIN 1l | Interim
WNFE DTI | UNIX | WIN Deployable

COS/NFE § DTI | HUB | AUTODIN Il | Secure

GSWD Network Front End Projects
Figure 2.

COS/NFE. The COS/NFE? was completed by Compion in 1983. It was designed to provide
the same functions as the INFE, but with formally verified multi—level security based on the
Secure HUB™ Executive. These goals were met, with increased performance. on the INFE
hardware base.

VERUS™. The VERUS™ formal verification system® was developed by Compion in 1982, It
then consisted of a parser for a specification language that was based on the first order
predicate calculus with types, and a theorem prover. VERUS™ was used to respecify and
reprove the Secure HUB™ Executive and the COS/NFE.

STATUS

GSWOD has built on the technology it has developed to produce products that are now on the
market or are soon to be released. These include the Secure HUB™ Executive, the
Protector™, VERUS™, and security—enhanced UNIX™.

Secure HUB™ Executive

The HUB™ is a product that is available under license as a building block for secure systems.
It has been implemented on a variety of supermini—, mini—, and micro—computers.

182

The Protector™

The Protector™ is a communications and security product that is based on the technology
developed for the COS/NFE. It provides a tamper—proof audit of computer use to deter
abuse through threat of exposure.

The Protector™ Concept

Figure 3.

Conceptually, the Protector™ is interposed between a host and its terminals, much like a
network front end (see Figure 3). The Protector™ provides a tamper—proof audit trail of
user input based on positive user authentication. The audit trail for each user is captured
according to data patterns entered by a site administrator or security officer. The audit
trail is stored on disk, where it can be selectively examined on—line by the security officer.
The security officer can also copy the audit trail, or selected portions of it, to a printing
device. The Protector™ controls access to the host by individual user and by other criteria
such as time of day and physical location of the user terminal.

In actual implementation, a Protector™ system consists of a set of access nodes and a
security server, all interconnected by a local area network (LAN) (see Figure 4). The access
nodes are connected to hosts and terminals via standard interfaces and protocols. They
interconnect the terminals with the hosts via logical connections over the LAN. The security
server makes all security—relevant decisions regarding user authentication and access
control, and provides storage for access control information and the audit trail itseif.

VERUS™

VERUS™ is a fully—supported product with complete documentation, maintenance, and a
newsletter. Integers have been added to the specification language as a type, and theorems
about them are handled by the prover. A specification checker has been added to ensure that
all requisite theorems for a given specification are stated and proven.

183

FHHH:

HH

SHHY

A/N: Acces;;s Node = ‘
S/S: Security Server

The Protector™ Implementation
Figure 4.
UNIX™ Security Enhancements

Substantial enhancements have been made to the security support provided by Gould's

UTX—32 operating system, which is based on Berkeley 4.2 BSD UNIX™ with additional
features of AT&T's System V. These enhancements include

1. security labels on files, directories, directories, devices, users, and processes;
2. additional rules controliing access of processes to files;
3. expanded user authentication procedures; and

4. expanded accountability facilities.

184

FUTURE PLANS

GSWD has planned an aggressive program of enhancement of its current security—related
products, as well as introduction of new products.

Secure HUB™ Executive

The HUB™ security palicy and verification evidence will be re—examined in the light of the
security evaluation criteria that have been developed since the HUB™ was compieted.

Protector™

The Protector™ will be enhanced to prevent user input from entering the host if the data
matches patterns specified by the security officer on a per—user basis. Traffic on the
Protector™ LAN will be encrypted to further secure communication within the Protector™
system. Additional communications media such as long—haul networks will be supported.
Provision will be made for securing individual remote terminals.

VERUS™

Expert system technology will be employed to enhance the ease of specification and proof,
possibly extending as far as automatic proof construction. Extension of VERUS™ to source
code proofs will be _investigated.

UNIX™ Partitions and Capabilities

UNIX™ security will be further enhanced through two features, partitions and capabilities,
now under development at GSWD (see Figure 5).

A partition encloses a portion of the UNIX™ hierarchical directory tree; it appears to a user
as if the enclosed portion were the entire UNIX™ file system. The highest node in the
hierarchy within the partition appears to be the root (*/") of the file system. It is not
possible for the user to access anything outside the partition because all file pathnames are
interpreted relative to the apparent root within the partition. This is true even for users
with “superuser™ privileges. The partition facility is currently used at GSWD to permit
outside users to dial in to company UNIX™ systems that contain sensitive corporate data.
Each outside user group is given its own partition; data and programs that are to be shared
with these users must be copied into the appropriate group's partition by a privileged
company user,

If every user of a system were given a unique partition, then users could not share data at all.
In fact, each user’s partition would have to contdin a copy of all the command programs and
system data files that the user was to access. This would consume a large amount of disk
storage space to support even a moderate number of users.

185

BIN MNT
s/

MAIL CC VI NROFF i aRIG SAB

Capabilities

Partition = -

.................................

.UNIX Partitions and Capabilities
Figure 5.

The capability facility provides a solution to these problems by providing a controlled means
of accessing directories and files outside a user’s partition. A capability is an object in the
directory tree within a partition that names a directory or file outside the partition.
Capabilities would be placed in each user’s partition that name only those files and
directories that the user is to access. This would permit a privileged user such as a security
officer to selectively grant individual user access to certain system files while denying access
to other files. For example, a user could be given access only to programs that provide text
editing and mail facilities, but no access to program creation facilities such as compilers or
link editors.

A capability provides a separate access control specification that may be more restrictive
than the access control that is directly associated with the directory or file itself. For
example, a log file that is specified to be readable and writeable by anyone on the system
might have to be accessed by a particular user via a capability that permits only writing.
This would permit the user's activities to be logged without giving the user access to log
information about other users.

Multi—level Secure "UNIX™"

GSWD is studying the problem of developing a UNIX™—based system that would be governed
by the full Bell and LaPadula security madelS. This system would be intended for evaluation
by the DoD Computer Security Center'? initially as a candidate for Class B2, and eventually
as a Class A1 system.

Developing a system of this kind involves more than formal specification, careful
implementation, and formal verification. UNIX™ contains many mechanisms that are
antithetical to features of the full Bell and LaPadula model, particularly the "*—property”.

186

Discussion of these issues is beyond the intended scope of this paper, but it appears that a
fully muiti—level secure system would retain many basic paradigms and features of UNIX™,
but would differ significantly in visible mechanisms and in the details of use.

GSWD intends to aggressively seek solutions to these problems and to pursue a program
leading to a multi—level secure UNIX™—like system.

REFERENCES

1. Holmgren, S.F., et. al., Experimental Network Front End Functional Description, 7502,
Command and Control Technical Center, WWMCCS ADP Directorate, Defense
Communications Agency, Washington, DC, January 1977.

2. Ritchie, D.M. and K. Thompson, "The UNIX Time—Sharing System”, Communications of
the ACM, Vol. 17, No. 7, July 1974, pp. 365—375.

3. Grossman, G.R., S.F. Holmgren, and R.H. Howe, INFE Functional Description Overview,
Document 2. Digital Technoliogy incorporated. Champaign, IL. March 1978.

4. Attach I/0 User Manual, 78019.C—INFE.12, Digital Technology Incorporated, Champaign,
IL, October 1978.

5. Allen, E.R. and R.H. Howe, WNFE Functional Description, 81045.C—WNFE.19,
Champaign, 1L, April 1982.

6. Grossman, G.R., "A Practical Executive for Secure Communications”, Proceedings of the
1982 Symposium on Security and Privacy, IEEE Cat. No. 82CH1753—3, Oakland, CA, April
1882, pp. 144—-1355.

7. Grossman, G.R. "COS/NFE — A Multi—Level Secure Network Front End”. Proceedings of
the Digital Equipment Users Society, Atlanta, GA, May 1982, pp. 1205—-1221.

8. Marick, B., "The VERUS™ Design Verification System”, Proceedings of the 1983
Symposium on Security and Privacy, IEEE Cat. No. 83CH1882—0, Oakland, CA, April 1983,
pp. 150—157.

9. Bell, D.E., and L.J. LaPadula, Secure Computer Systems: Mathematical Foundations and
Model, M74—244, The MITRE Corp., Bedford, MA, May 1973.

10. Department of Defense Trusted Computer System Evaluation Criteria,
CSC—STD—001-83, DoD Computer Security Center, Ft. Meade, MD, August 1983.

187

http:045.C-WNFE.19
http:78019.C-INFE.12

ELECTRONIC FUNDS TRANSFER SECURITY

Dick Bauder
U.S. Treasury

Securing Government Electronic Funds Transfers

Current payment systems
Current EFT security
Treasury Directive 81-80
Impact on current systems
EFT security implementation

Current Payment Systems

Standard payments

- SF 1166
- payment distribution - check/ACH

Treasury Financial Communications System (TFCS)
- host-to-host interface - FRBNY

- host/slave with federal agencies,
- DLA host-to-host pilot

Current EFT Security

ID and password

ID restricted to individual terminal ID
ID restricted by functions

Automatic disconnect

Encryption

Treasury Directive 81-80

«ee« all EFT's must be properly authenticated.”
~ ANSI X9.9 - financial institution message authentication
- equivalent authentication techniques

Who does directive apply to?

"... All systems which originate, transmit, relay, receive or process,

federal government EFT transactions..."
Equipment guidelines

"Equipment designed and used to perform the authentication function must
comply with Federal Standard 1027..."

Effective Date

- all current systems by June 1, 1988
- all systems implemented after August 16, 1984 must comply immediately

188

EFT SYSTEMS

Federal Payments Systems Impacted by the Policy

Treasury Financial Communications System (TFCS)
Automated Clearing House (ACH)

Direct Deposit (DD/EFT)

Checks

Electronic certification program

Army ATM pilot

Federal collections systems impacted by the policy

Treasury general account cash concentration system
Farmers home administration cash concentration system
Treasury tax and loan account system
Treasury lockbox system
Treasury financial communications system (TFCS)
Automated clearing house (ACH)

- preauthorized debits

- corporate to corporate

- home banking

Federal securities systems impacted by the policy

Commercial book entry systems at Federal Reserve Banks
Treasury direct access book entry systems

Other payments systems that may elect to adopt the policy

Federal Reserve Communications System after 1980 (FRCS-80)

Clearing House Interbank Payments System (CHIPS)

The Society for Worldwide Interbank Financial Telecommunications (SWIFT)
Bankwire

Bankers Automated Clearing Services (BACS)

Clearing House Automated Payments System (CHAPS)

Postal money transfer system (GIRO)

Impact on Current Systems

ACH

electronic certification
- message authentication

TFCS

initial implementation - point-to-point
enhanced implementation - end-to-end, center

189

ELECTRONIC CERTIFICATION SYSTEM CONFIGURATION
USING MESSAGE AUTHENTICATION AND ENCRYPTION

Program Agency Disbursing Center

DATA encrypt/ _ encrypt/ DATA
decrypt ‘\\\‘\\ decrypt

BASE device ** data transmission device *¥ BASE
r = r————-=-=—==77
' l | \
| authentication ' authentication
| device ¥ } device * |

| F '
| | |
| under | | under l
kontrol of control of '
pertifying l l disbursing
officer l i officer |
l l | ‘ I
| terminal l ' terminal ‘
b - o4 b e e - - J

* This component may or may not be an integral component of the Data Terminal

** Required if data is sensitive and must be protected from a monitoring threat

EFT Security Implementation

Equipment certification - Treasury/NBS/NSA
Certification guidelines

Implementation task force - Treasury/NBS/NSA/FRB/GAO
BGFO is executive agent

Implementation schedule

190

T6T

EFT SECURITY IMPLEMENTATION

Proj. No. and/or Description 12 lslals)elalsloliol 11 12)13lialis] 1s
work to do; action to take
Memorandum of understanding °
1. between Treasury/NSA/NBS
2. Certification Guidelines LA e s
3. Treasury Task Force e—r——Ir~—Te
4, Certification of Equipment o-t+--t+--b+----bocpogoeJ R
5. BGFO System Implementation
o System Design o-t--F-----teo
6. o Systems Development e~ rr——tr—F——F—-—"—-tft-eo
o Install Initial System Pilot ofF——-1-e
7. . 0o Test and Evaluation oL ---| L
o Production System Plan
8.
9.
10.
11.
12.
13.

14,

AUTHENTICATION -
of
ELECTRONIC FUNDS TRANSFERS

Richard Y. Yen -
The Chase Manhattan Bank, N.A. °

s

TESTREY SYSTEM | ‘

TESTKEY
MATERIALS

TESTKEY/
TESTWORD

ALGORITHM

Present Testkey System Provides:

o redundancy check on value(dollar amount)

o information on message loss or duplicate message(if sequence number
is used) S :

o limited security

Operationally it is Difficult to Exchange Testkey Materials
often to Ensure Security

What are the Alternatives?

192

MESSAGE AUTHENTICATION

DATA XEY

o A data key.is selected

o Text editing rules are app11ed for the entire message text or
selected authentlcatlon elements

o Edited data are processed by the DEA algorithm
o The resultant MAC is_added'to the message before transmission

o The recipient selects the same data key and repeats the extraction
and computation processes, and accepts the message as authentic if
the MAC is identical to that in the received message

' THE ANSI FINANCIAL INSTITUTION MESSAGE
AUTHENTICATION STANDARD (FIMA)

FIMA can prdtect-either selected fields or entire messages

FIMA can be used for funds transfers or textual messages (such as
syndicated 1oan agreements)

FIMA can be used w1th'any data communication system

Within an institution -

- branch-to-braach :

- customer cash management services

- programs(including downline load and audit)

Inter-institution

~ fedwire

- bankwire -

- swift o

- common carriers PR
- packet networks, etc.

193

o FIMA provides very high security against message modification and
message insertion for those message elements protected

o FIMA uses the NBS Data Encryption Standard(DES) to compute a message
authentication code(MAC). The MAC replaces the testkey function.

MAJOR CONTROLS FOR IMPLEMENTATION
Key Management
o Security is provided by keeping key secret

o Key management is the most difficult problem for users of authentication
and encryption systems

o This problem is especially difficult for geographically widespread
computer communications networks

Physical Security of the Equipment
The equipment shall be protected against
- unauthorized access to keys

- unauthorized operation of the equipment
- unauthorized modification of the equipment

194

INFORMATION SYSTEMS SECURITY AT SECURITY PACIFIC NATIONAL BANK

Ed Zeitler
Security Pacific National Bank

Information Systems Security Division

Organization

Scope

Authority

Strategy
Responsibilities
Policy Documentation
and User Awareness

oNeloNoNoNe)

Organization

O Major Data Processing Capabilities are Centralized
0 Security Pacific Automation Company
O Information Systems Security Division (ISSD)

o Staff Function: must not be responsible to a line
organization

o Line Function: must have some operational
responsibilities

o Three Functional Groups

o Software Security
O Security Management Services
o Contingency Planning

O Staff of 20

195

SECURITY PACIFIC AUTOMATION COMPANY

PRESIDENT

PERSONNEL

TELECOMMUNICATIONS

FINANCIAL

MANAGEMENT
&
CONTROL

INFORMATION

SYSTEMS
SECURITY

DIVISION

BANKING
&
OFFICE

SERVICES

COMPUTER
TECHNICAL |

i SERVICES

BANKING

SERVICES

INFORMATION
SYSTEMS

SECURITY

DIVISION

ED ZEITLER

ELECTRONIC

WORLD

BANKING

SERVICES

SOFTWARE

SECURITY

SECURITY

MANAGEMENT

SERVICES

196

CONTINGENCY

PLANNING

Scope

O Policy Maker For Bank
o All Information Systems Issues
o Information Systems Security Manual (ISSM)
o User Guides For RACF, IMS, CICS, etc.
o Specific Procedures
0O Control of Access to Mainframes
o 4 MVS Centers, 1 VM Center
o Issuance of Userids and Passwords
0 Access to Resources

o RACF (MVS)
o DIRMAINT (VM)

o On-call with Home Terminals
O Control of Cryptographic Materials

-0 Key Generation and Distribution
o Key Management Procedures

O Direct Support
o0 SPAC Organizations
o Contingency Plans
o Provide Implementation Recommendations or
Specific Products for Line Organizations
O Represent SPAC in Disagreements with Audit
Department
o Consulting
o Bank Departments
o Corporate Subsidiaries
O Industry Involvement
o0 Industry Committees: BAI, ABA, ANSI, CBCHA,

CCTF, etc.
o Consulting Services

197

Authority

O Data Processing Security Committee (DPSC)

o Official Bank Committee
o Charter

0 Responsible for establishing Policy, ;
Standards, and Guidelines on all matters
‘relevant to the security and privacy of the
information processing of customer, employee
and corporate information and data.

o Simple majority required to pass voting
issues

o Membership

o Audit Department
o Banking Office
o Corporate Security
o SPAC
o Banking Office Services
o Computer & Technical Services
o Electronic Banking Services
0 World Banking Services
0 Telecommunications
o Information Systems Security Division

0 Authority to Establish Standing Subcommittees

o Monthly Meetings

o0 Provide Avenue for Organizations to Obtain Waivers
to Security Policies

O Information Systems Security Division
o control of critical functions
o0 Issuance of Userids and Passwords to
Mainframes
o Control of Cryptographic Materials
o Limited Formal Authority
o No Directives: always a business case

o Prudent, Responsible and Effective
Organization

198

Line Management is responsible for security (each
operating center & application).

Audit Department provides enforcement.
ISSD provides value added support.

o Responsible to SPAC Management for the
development of sound security policies.

o Support to Line Management in meeting security
policies.

Major Responsibilities

Security Management Services

OO0 O0O00OO0O © ©

Establish Security Policies, Standards, Procedures and
Training

Develop Network Security Measures, including Encryption
and Message Authentication

Manage Cryptographic Keying Materials

Coordinate Personnel Security Programs

Perform Physical Security Reviews

Perform Risk Analyses on Application Development
Projects and Recommend Security Measures

Coordinate Proper Data Processing Insurance Coverage
Provide Audit Report Tracking and Analyses for Internal
and External Audits

Software Security

o)

0

Develop Data and Software Security Policies and
Procedures

Develop Access Controls for SPAC Data and Software
Resources

199

Administer MVS and VM Access Controls
Evaluate and Test New Security Packages

Support System and Application Programmers with
Security Issues

Contingency Planning

o)

Provide direct support to each data center by
developing contingency plans which ensure the
continuous processing of SPAC's critical applications
in the event of a major catastrophe at one of the data
centers.

Provide assistance with the planning, coordination and
evaluation of the testing of contingency plans.

Ensure that SPAC Contingency Plans are current by
scheduling periodic reviews and plan updates.

Provide a consulting service for any bank organization
or bank subsidiary requiring expertise or support for
data processing contingency planning.

Policy Documentation and User Awareness

o)

0]

Primary Documents
o Information Systems Security Manual (ISSM)
o Contingency Plans
o User Guides
Information Systems Security Manual
o Bank Policy Manual
o ISSD writes
o0 DPSC approves
o Central Services publishes

o Active Document

o First publication September 1982
o Updates, Additions, and Revisions every Six
Months

o Contents
O General Information and Policies
o0 Responsibilities of Employees and Specific

Organizations
o Risk Analysis Program

200

(o]

Personnel Security

Sensitive Information Systems positions
Personnel Practices

Security Education and Training
Contractor Personnel

co0o0o0O

o Physical Security

000000O0O0CO0C

o Data

00O

00

Access Control

Fire Protection

Electrical Power

Air Conditioning

Facility Design and Construction

Remote Terminals

Training, Drills, Maintenance and Testing
Data Storage and Media Protection

Security of documentation, blank instrument
stocks, and other sensitive forms

and Software Security

Resource Classification and Ownership
Access Control _

Specific Policies for Online Access Controls
in the MVS environment

Logging and Audit Trails

Violation Reporting and Follow-up

0 Network Security

0O00O0OCOC

Configuration Management
Dial—-up Controls

Message Authentication
Encryption

Network Contingency Planning

o Contingency Planning

(o]
(o}
o]

0000

Contingency Planning Activities
Contingency Plan Maintenance Activities
Contingency Plan Activation and Recovery

o Computer Insurance

Purchased and Leased Equipment
Information Processing Media Insurance
Business Interruption Insurance

Staff Member Dishonesty

Insurance for Errors and Omissions

201

0 Outside Data Processing Services

O Microcomputer Security
o Glossary
o Guidelines & Procedures
o Waiver Procedures
O ADP Security Indicent Reporting Procedure
o Access Control Guidelines
o Etc.

Contingency Plan

O Introduction and Organization

o Policy Statement

o Assumptions

o Contingency Phases (Notification, Mobilization,
Emergency Operations, Recovery)

o Contingency Organization (list of teams and org.
chart)

o List of Critical Applications

o Control Group Responsibilities

Contingency Manager
Management Coordination
Damage Assessment
Personnel

Public Relations

00000

o User Liaison Coordinator
o Computer Operations Group Responsibilities

Data Entry
Computer Operations
Offsite Storage
Backup Site

0000

O MICR Operations Group Responsibilities

o Check Processing

o Transportation and Logistics
O Micrographics

o Printing

o Technical Support Group Responsibilities

Systems Software

Applications

Data and Voice Communications
Data Security

Physical Security

00000

202

Contingency Plan (cont.)

O Notification
o Notification Procedures
o Notification Task List
o Emergency Telephone Numbers (Security, Medica
Services, Badge Reader, etc.)
O Mobilization

o0 Mobilization Procedures
0 Mobilization Task List

O Emergency Operations

o Backup Site Preparation

o Emergency Operations Considerations (Work in
Progress, File Reconstruction, etc.)

o0 Emergency Operations Task List

o Emergency Communications

O Recovery

©0 Recovery and Restoration Guidelines
o Recovery Planning Task List
o0 Return to Normal Processing Task List

O Appendix

Notification List

Team Member List

Call Sequence

Vendor Contact List

Contingency Supply Requirements
Contingency Kit Guidelines

Backup Site Agreements or Contracts

000000

RACF Users Guide

O Overview

o0 RACF Environment
o Verification of Users

o Profile Structures: Userid and Group
o0 Resource Access Protection

o Data Set Profile
O General Resource Profile

203

RACF Users Guide (cont.)
o RACF. Password Rules
o RACF Access Authorities

e RACF Data Set Access Authorltles
o, RACF Group Authorities :

o RACF Validation During "OPEN"
O Resources to be Protected
o Productlon Data

o Env1ronmental Data
o Control Group Data -

o Non-Production Data

0 RACF Terminal Protection
O How to Protect Data

o Prdduction bata

o RACF Profile Modeling “
o ;RACF GDG-Profile Modeling

o Non—Productlon Data

Protectlng User Data Sets

Permitting Access to User Data Sets
Listing RACF User Data Set Profile
Function of RACF Commands

Protecting VSAM and Non-VSAM Catalogs
Non-VSAM Data Base Data’ Sets

VSAM Data Sets

000000 O

o Accessing Production Data in Batch

Access by Production Jobs

o

o0 Access by Non-Production Jobs

o Userids in Batch

o Jobs Submitted From: ' Local Batch Reader, VM,
RJE, TSO | i

o . Group Structure

o Access1ng Onllne Data

o Obta1n1ng TSO/IMS/CICS Userids.
o Program Control Fac111;y II (PCF II)

204

RACF Users Guide (cont.)

o Revoking and Resuming TSO/IMS/CICS Userids
o Changing RACF Passwords

o TSO Logon
o RACF PASSWORD Command
o Password Changes in Batch

o Trouble Calls
o S913 Trouble Calls
O Procedure

0 Responsibilities
o Documentation

o Non-S913 Trouble Calls

O Procedure

User Guide to Online Security for IMS and CICS

O Production IMS/CICS Security Policies
O Online Access Control Facilities

o Preventive Controls
o Detective Controls

O Transaction Categofies and Required Controls

o TranSaction Categories
0 Generic Transaction Types
o Controls Required by Risk Level

O Procedures for Resource Protection

IMS/CICS Transactions & Transaction Groups
CICS DL/I-PSBs and PSB Groups

Physical Terminals -

IMS Logical Terminals

IMS Transaction Passwords

Non-VSAM Data Base Data Sets

VSAM Data Sets '

Oo0o00OO0OO0CO

O Procedures for Online Userid Administration

Security Administrators

User Profiles

Obtaining, Revoking and Resuming Production IMS &
CICS Userids

00O

205

O User Terminal Operation

o IMS & CICS Sign On

o New and Normal User Sign On
o Changing Passwords

O Forms Instructions

206

Loz

DEFINITION
“COMPUTER-RELATED FRAUD”

. . . ANY INTENTIONAL ACT OR SERIES,
OF ACTS DESIGNED TO DECEIVE OR
MISLEAD OTHERS. SUCH ACT MUST
IMPACT OR POTENTIALLY IMPACT THE
FINANCIAL STATEMENTS AND A :
COMPUTER SYSTEM MUST BE INVOLVED'
IN THE PERPETRATION OR COVER-UP OF
THE SCHEME.”

(SOURCE: AICPA EDP FRAUD REVIEW TASK FORCE)

SATILSAONT FAONVINSNI
ONIINVE HHI NI dOVid AIVIHI-HAINJR0D

N
o
(o]

DEFINITION

“COMPUTER-RELATED FRAUD”’

COMPUTER SYSTEM MIGHT BE INVOLVED

THROUGH IMPROPER MANIPULATION OF:
— INPUT OR TRANSACTION DATA,

OUTPUT OR RESULTS, |

APPLICATION PROGRAMS,

DATA FILES,

COMPUTER OPERATIONS,

COMMUNICATIONS, OR

COMPUTER HARDWARE SYSTEMS

SOFTWARE, OR FIRMWARE.

(SOURCE: AICPA EDP FRAUD REWEWTASK FORCE)

N
O
O

APPLICATION SYSTEMS AFFECTED
FREQUENCY BANKING | | INSURANCE

HIGH DEMAND DEPOSITS ACCIDENT & HEALTH CLAIM
PROOF AND TRANSIT LIFE INSURANCE (PREMIUMS,
DIVIDENDS, AND
INSTALLMENT LOANS ~ SURRENDERS)
CREDIT CARD LOANS
SAVINGS ACCOUNTS

MEDIUM COMMERCIAL LOANS PROPERTY & CASUALTY

PREMIUMS
AUTOMATED TELLER
MACHINES
LOwW CHECK CREDIT LIFE INSURANCE LOANS
CASH CONTROL PROPERTY & CASUALTY
CLAIMS

MORTGAGE LOANS
WIRE TRANSFER

)
-
o

FREQUENCY

SCHEMES

BANKING

HIGH

MEDIUM

LOwW

CREATION OF FICTITIOUS LOANS

DIVERSION OF CUSTOMER
DEPOSITS

DEFERRAL OF POSTING OF
CHECKS AND CHARGES

EXTENSION OF CREDIT LIMITS
EXTENSION OF LOAN DUE DATES

INTERNAL TRANSFERS BETWEEN
CUSTOMER ACCOUNTS

FORGERY OF CHECKS
EXTRACTIONS FROM ATMS
ADJUSTMENTS TO DEPOSITS
DIVERSION OF LOAN PAYMENTS
SEVERAL OTHERS

INSURANCE

CREATION OF FICTITIOUS
CLAIMS

UNAUTHORIZED REFUND
OR REDUCTION OF
POLICY PREMIUMS

CREATION OF FICTITIOUS
LOANS

UNAUTHORIZED DIVIDEND
WITHDRAWAL

N
et
[

PERPETRATORS

FREQUENCY BANKING

HIGH CLERKS (DATA ENTRY,
PROOF, OPERATORS,
OTHER)

MEDIUM MANAGERS (LOAN
OFFICERS)

DATA PROCESSORS
(OPERATORS, SYSTEMS
AND APPLICATION
PROGRAMMERS)

LOW ITEM PROCESSORS
TELLERS

INSURANCE

CLERKS (CLAIMS
PROCESSOR, POLICY
SERVICE, OTHER)

SUPERVISORS (CLAIMS,

POLICY SERVICE,
OTHER)

INSURANCE AGENT
SYSTEMS PROGRAMMER

DOLLAR SIZE VS PERPETRATOR

NUMBER OF CASES BY DOLLAR RANGE

(THOUSANDS)
PERPETRATOR UNDER $25 $26-100 §$101+ TOTAL
BANKING CASES |
CLERICAL 37 0 1 38
MANAGERS 7 4 6 17
. DATA PROCESSORS 9 2 2 13
> TELLERS 5 2 1 8
OTHERS 5 2 2 9
INSURANCE CASES | |
CLERICAL 17 3 1 21
- SUPERVISORS 2 5 9
OTHERS 1 2 1 4

TOTAL 83 17 19 119

|

N
[
w

METHOD OF DETECTION

METHOD

CONTROL AND AUDIT
INTERNAL CONTROLS
ROUTINE AUDIT

CUSTOMER
COMPLAINT/INQUIRY

UNUSUAL OR NON-ROUTINE
EVENTS

ACCIDENT, TIP-OFF,
UNUSUAL ACTIVITY OF
PERPETRATOR

-NON-ROUTINE STUDY

CHANGE IN OPERATIONS,
EDP, OR FINANCIAL
STATEMENTS

UNIDENTIFIED
TOTALS

BANKING

INSURANCE

12
17

24

11

10

15

85

34

TOTAL

22
21

28

26

N ~N

119

COMPUTER SECURITY IN PRACTICE

Robert S. Roussey
Arthur Andersen & Co.

The planning committee for the conference has asked me to describe our
firm's approach to security and to discuss several case situations. In doing
this, I will be using a fairly new medium, computer generated graphics, to help
in the presentation.

I will be talking about paths for authorized access to computer assets, as
well as discussing unauthorized access. I only wish stopping unauthorized
access were as easy as I have now depicted on the screen.

You're all aware of the recent destruction of the log-in and log-out filés
at the NASA Marshall Space Flight Center and how a hacker was able to penetrate
the systems at Sloan Kettering and Los Alamos National Laboratories.

These are just illustrations of some of the key symptoms of the security
problem.

And they're symptoms that will grow in importance. For instance, business
is placing an increasing dependence on the use of computers for vital operations
(sometimes referred to as survival or critical systems); on the use of micros
for end-user systems (for communications and for access to the central
mainframe); and on the linking of computers with customers and vendors.

This proliferation of micros in business is starting to have an effect on
the centralized data center, where information once was generated and stored on
a mainframe and was accessible only to a handful of authorized personnel. Now
hundreds -- and in some companies even thousands -— of microcomputers are used
everywhere. This is the start of the end-user system revolution —— where
information, once under centralized control, is now being made available to
users, management and others. At Arthur Andersen, we have as many as 2,000
microcomputers in our worldwide organization, and that number will probably
double over the next year or so as we implement new worldwide distributed
accounting, office automation and professional work station systems. Within
five to eight years, we expect that most professional and clerical personnel in
our organization will be working in automated environments. Security is,
indeed, a concern to us.

The micro is fast becoming a key path to mountains of confidential data.
This path needs to be protected in this changing business environment.

While the number of microcomputers now in use is causing concerns, so is
the increased power of each new generation of these machines. Over the past few
years, phenomenal increases in computer power and decreases in its cost have
made it poss1b1e for even the smallest company to have computer power that
wasn't even in existance only 30 years ago.

As you may know, the classic definition of "balance" in this context is
that the cost of security should be less than an expected loss. This expected
loss is usually quantified as the Annual Loss Expectancy, or A.L.E. It is
calculated as the likelihood of a potential risk occurrence, multiplied by the
expected loss from such an occurrence.

214

Ideally, the annualized cost of security would be less than the A.L.E. by
exactly the amount that an organization is willing to accept as a '"self-
insurance" risk. Practically speaking, however, as you know, both the cost of
security and the A.L.E. are difficult to quantify and measure.

For these reasons, the classical approach to using A.L.E. to define the
balance point requires considerable tempering and good management judgment
whenever quantifiable estimates are not reliable or are subject to change.

We also recognize that there are situations in which "balance" may be a
meaningless concept. In many areas of our national defense, for example, there
is no price tag for the potential loss in the event of a compromise to security.
Also in business, a company may have assets —-— trade secret formulas, an
industrial process or proposal cost information, for instance, =- that have such
great value or importance to the survival of the organization, that even a small
probability of loss is difficult to accept. In such situations, the "balance
point" may be defined by management edict rather than by attempts to quantify
benefits.

Although computer security is a large and complex problem, steps can be
taken to approach and maintain proximity to the balance point -- keeping an
entity free from unacceptable loss. Such reasonable security is both attainable
and desirable.

In our security practice, we seek this balance and address the complexity
of computer security in a structured, organized approach to security management.

We have carefully distinguished, for example, this security practice from .
the normal reviews of security performed on our clients' controls in connection
with an audit. The work we do in our security practice is much more extensive
and gets more into an analysis of access paths and threat analysis. And we do
this work with a practice methodology we refer to as ISSEM. This stands for
Information and Systems Security Evaluation Methodology. It is an approach
using the concept of an access model, which I will discuss in a moment. The
methodology is straightforward and relatively simple, but very powerful. It was
developed several years ago. And since then, it has proven to be an excellent
analytic tool and has become the basis for our Firmwide Information and Systems
Security Practice.

ISSEM is an analytic tool for identifying and evaluating the access paths
to an organization's most critical assets. Let me give you a brief overview of
this approach.

Consider the data base that contains critical information of some nature —-
say, geological and geophysical data of an oil company. Usually you would have
at least one program (and often more) that provides access to this information.
Let's say that the one shown here is an online update program. You can call up
any record on the data base, inspect it and enter changes as needed.

Obviously, any approach to security evaluation would look closely at this
process and ask what it can do and who can use it. But there is more. The
update process represents the execution of a program or programs that reside in
a static form on some program library. There is always some mechanism, a
program library maintenance process shown as PLM, for example, that can modify
what the program can do. Our evaluation must examine this process.

215

Also, there is (or at least should be) some reference source that the
system can refer to, to determine whether the person using the program is
authorized to inspect and make changes to the data base information. Here, I
have shown that this may be a file of user ID's and passwords, indicating what
access privileges each user has. Again, there must be some mechanism to
maintain this information. Thus, both the password file and the maintenence of
it are critical parts of our security evaluation.

But don't stop here. The password maintenance process is a program which
resides in some library, and which could be modified to compromise the password
file. There must be a list of persons who are authorized to enter password
maintenance transactions. And anyone who is able to change this list can,
thereby, give himself carte blanche access to the critical data base. Likewise,
the program library maintenance process has an authorization reference and a
static image of the maintenance program, both of which offer potential
opportunities to gain unauthorized access to the critical data base.

i

With ISSEM, an access model of the paths to an asset is prepared. The
important points about the ISSEM model are these:

1. The completed model should identify all of the known access paths to
the critical data base, which we call the object, at least to the extent
this is humanly possible.

2. Each path consists of a series of processes, which may be computer or
manual activities, and objects, which may be program code, procedures or
data files, and each of these must be addressed in our security evaluation.

3. We must never forget that there will always be unknown access paths to
any of the objects. And we must consider the consequence of this at each

level in the model.

Now, let's see how the access model concept is applied.

Our ISSEM methodology consists of the following six major tasks:

o Building an access model for each key object we evaluate,

0 Determining the control objectives for each process and object,

o Identifying the potential risks,

o Identifying the existing control techniques that may mitigate the risks,

o Rating each risk on a scale of one to ten, and

o Developing scenarios showing how each risk may be exploited.

Let's go back through those six steps and look at them in detail.

The access model begins with a key object to be protected, for example thé
data base of critical information mentioned earlier. Since that data base is
passive, we contend that all access to it must be through some process.

Therefore, our key is to find all the processes that can access that particular
object.

216

For each process, for example as shown for Process A, we identify several
additional objects; here we have labeled those as the subject, the resource and
the authority reference.

The subject, at the bottom, may be a source transaction or transactions
passed from another process. The term "transaction" is used in its broadest
sense —— meaning any event that initiates the process. This may be a
transaction entered at a terminal, or it may be a data file from another system.

The resource is typically a program or procedure used in the execution of a
process. One way to gain access to the data base is to modify one of the
resources used by the process.

The