
USE OF SSH ON A COMPARTMENTED MODE WORKSTATION1

Johnny S. Tolliver (jxt@ornl.gov)
Oak Ridge National Laboratory

P.O. Box 2008, Oak Ridge, TN 37831-6418

and

David Dillow (il1@ornl.gov)
Lockheed Martin Energy Systems

1099 Commerce Park Drive, Oak Ridge, TN 37830-8027

Abstract

SSH stands for “Secure Shell.” It is not a user shell like csh or ksh .
Instead it is a widely-used means to accomplish secure, encrypted
communication among cooperating nodes. It is a secure replacement
for the “r-commands” rsh, rlogin, and rcp. SSH is free for
noncommercial use and builds and runs on most any Unix platform. A
Compartmented Mode Workstation (CMW) is an example of a secure
or “trusted” operating system. The use of SSH on a CMW introduces
security problems unless the SSH source code is modified to take
advantage of the security features of the CMW. This paper describes the
port and use of SSH on one particular brand of CMW.

Introduction

Compartmented Mode Workstations (CMWs) were invented by and for military
users. As such, they are generally used on a closed, trusted network where an
assumption of network security exists. However, as the military market decreases
and CMW technology matures, some users and vendors are striving to apply CMWs
to other venues. Use of a CMW as a Kerberos key server, for example, makes sense
because a CMW is more difficult to penetrate using any of the latest CERT “bug-of-
the-week” methods. Others have proposed using CMW technology for Web servers
when proprietary data is involved. The Secure Socket Layer (SSL) protocol may
provide adequate network security for HTTP data transfers but does nothing to
protect the server operating system itself from attack. If the network becomes too
difficult to “sniff”, then attackers will move to attacking the endpoints instead of the
network. Therefore, it is not unreasonable to use stronger endpoints, such as
CMWs, when one really wants to protect the data stored there. Several famous Web

1This work was supported by the U. S. Department of Energy Office of Safeguards and Security
under DOE Project No. BR-GD060403 with Lockheed Martin Energy Systems, Inc.

server endpoints have been attacked — CIA, NASA, the Justice Department, etc.
One must wonder if the attackers would have been as successful had the Web
servers been hosted on a CMW or another trusted operating system. If a CMW is
used on an untrusted network, then improved network security is needed. The
Secure Shell (SSH) is one method to provide better network security. SSH has been
configured to build on most any popular Unix platform, but it must be modified to
operate properly within the security environment on a CMW. This paper describes
the port and use of SSH on one particular brand of CMW — the HP-UX CMW 10.16.

In order to set the context, we will begin by briefly describing some of the features of
SSH. However, this is not a paper on SSH; please see the SSH home page at
http://www.cs.hut.fi/ssh for more complete documentation on SSH itself. SSH is
not a user shell like csh or ksh . Instead it is a means to accomplish secure, encrypted
communication among cooperating nodes. It is a secure replacement for the “r-
commands” rsh, rlogin, and rcp. SSH is free for noncommercial use and builds and
runs on most any Unix platform. A commercially available client exists for
Windows with a Mac version promised soon. SSH was created mostly by one
person, Tatu Ylönen (ylo@cs.hut.fi), at Helsinki University of Technology, Finland.
Some features and advantages of SSH are[1]:

• Strong authentication to close several security holes: IP routing, DNS
spoofing, password sniffing.

• All communications are encrypted automatically and transparently. In
addition to privacy, encryption also protects against spoofed packets and
hijacked connections.

• X11 traffic is also encrypted to provide secure X11 sessions.

• Built-in multiple user-convenience features designed to make SSH easier to
use than its nonsecure counterparts.

Basic Operation of SSH

SSH has two basic functions: strong authentication and protection of privacy. In the
authentication role, SSH replaces the standard “r-commands”rsh, rcp, and rlogin. It
uses public-key cryptography for authentication to permit remote shell execution,
file transfer (remote copy), and remote login without cleartext passwords on the
network. In fact, when properly set up, no passwords at all are required while still
maintaining strong authentication. Unlike the r-commands, which also offer
password-free operation, SSH does not need .rhosts files which provide only
minimal authentication and are subject to IP-address-and-username spoofing.

The other major function of SSH is protection of privacy by using strong encryption
of all traffic using a session key generated “on the fly,” foiling the would-be network

eavesdropper. The session key is communicated between the daemon and client via
the same public key mechanisms used for authentication. Without SSH, X11
sessions can be easily sniffed. But since SSH also automatically supports encrypted
X11 traffic, this major security problem in X11 is solved

Some of the functions provided by SSH are also available with Kerberos — no
cleartext passwords and, optionally with Kerberos, encrypted sessions. But SSH is
m u c h smaller (about 45,000 lines vs 250,000 lines of code) and easier to build, install,
and administer than Kerberos. SSH is also easier to use than Kerberos and can be
used by individual users with no central administration necessary. There is no
central repository of keys, for example; no need to maintain and secure a central
Kerberos Key Distribution Center computer. The client side of SSH may be built and
installed by a normal user without root privileges. Thus ordinary users can build
and use the SSH client to communicate with a remote machine running SSH
without any intervention from the client machine’s system administrator. At least
one user[2] has compared the use of encrypted sessions with SSH and Kerberos and
reported that an SSH session has significantly better interactivity (quicker echoing of
keystrokes) than an encrypted Kerberos v5 beta 5 session.

SSH has essentially three modes of operation, all three providing both strong
authentication and privacy:

1. Secure (encrypted) remote login (using the slogin command)
2. Secure remote command execution (using the ssh command, much like
the nonsecure rsh command)
3. Secure remote copy (the scp command, much like rcp)

The first mode is a simple login session, much like telnet or rlogin, but with more
features. First, it provides strong authentication without passwords, so it is easier
than telnet and more secure than rlogin with .rhosts. Second, it encrypts all traffic
for privacy. Third, if you have a DISPLAY environment variable set on your local
machine, the appropriate value is automatically propagated to the remote machine.
That is, you don't have to manually set your DISPLAY on the remote machine in
order to run X applications. SSH also propagates the TERM variable and the
terminal modes (e.g., the erase character). These feature makes SSH easier on the
user than either telnet or rlogin. Finally, any X application that you run during the
slogin session will also be fully encrypted.

Remote command execution is perhaps the most common mode of operation. It
uses the ssh command, much like the common rsh command but with strong
authentication and encryption. A special case of this mode is ssh host xterm in
which the remote command is xterm. This xterm window will automatically be
displayed back to your originating machine. Since xterm gives you a window on the
remote machine with a user shell running in it, this command amounts to a login
session too. This usage is much like rsh host xterm except that ssh again propagates
your DISPLAY variable without additional user actions.

The third mode of operation is secure, encrypted, strongly authenticated file transfer
using remote copy (rcp) syntax.

SSH on CMW

A Compartmented Mode Workstation (CMW) is an example of a “trusted operating
system.” Based on standard Unix, a CMW OS offers much more inherent security at
the OS level than regular Unix. But porting software to a CMW offers new
challenges. As an example, whenever a regular Unix kernel performs any security-
related chore, it first checks if the effective UID is 0 (root) or not. If root, then the
operation proceeds; if not, the operation fails. Although there can be a UID 0 on a
CMW, the kernel does not look at the effective UID. Instead, the kernel checks
whether or not the process attempting the operation holds the specific “privilege” to
perform that operation. As an example, to override write protection on a file might
require that the process attempting to write to a file hold the ALLOWDACWRITE

privilege. DAC stands for discretionary access control and may be thought of as the
normal Unix file modes (read, write, and execute privileges) that a user may apply to
his files at his own discretion. If a file is protected against writing (-r--r--r--) then the
Unix kernel disallows writing to that file. On a normal Unix OS, root can override
that protection and write the file anyway. This override is accomplished when the
kernel checks to see if the process attempting the write has effective UID of 0 or not.
But on a CMW system, UID 0 has no special permission. No process, even one with
effective UID of 0, can write the file unless that process has the ALLOWDACWRITE

privilege. In a typical CMW, there are about 100 such privileges, including
ALLOWDACREAD, to permit reading a file, CHOWN, to permit changing the
ownership of a file, and many others.

On regular Unix machines, the sshd daemon must be running as root, listening on
port 22 for incoming ssh connections. When an ssh client makes the connection,
sshd does some bookkeeping and eventually spawns a child process for the
incoming user and switches the UID and GID of the child process to that of the
incoming user. In this way, the user gets a process on the host machine with his
own UID and GID while the parent sshd process continues running as root to
service other incoming requests. Switching the UID and GID is very common and
straightforward on a normal Unix machine using the setuid() and setgid() system
calls. Other examples of programs that switch the UID are telnet and login. Both are
essentially root processes that start up a session for a user and then switch the UID to
that user.

On a CMW, however, with its rich set of privileges, much more than merely
switching the UID is necessary. Without modifications to the sshd source code, a
remote user could get a process on the host that would appear to belong to the user
— i.e,. it would have the correct UID (and w h o a m i would return the correct
username) — but that user would have all of the privileges of the sshd daemon
itself. This is because child processes inherit the privileges of the parent and merely
switching the UID of a child process does not remove the privileges that were

already held by that child. If the sshd daemon holds many privileges, which it must
in order to function properly, the user would get all those privileges too. Without
code modifications, a normal user, holding the privileges inherited from sshd ,
would be able to 'su' without supplying root’s password to get the root UID. He
would then have access to anything root could do, including reconfigure the
security characteristics of the machine. This unacceptable situation arises because the
unmodified sshd source code, knowing nothing about the fine-grained CMW
privileges, merely switches the UID and GID and does nothing with privileges.

Clearly, the correct steps must include modifying the source code to look up the
security profile of the incoming user and set the privileges of the child process to
those appropriate for that user. The discussion to follow is based on experience with
one particular brand of CMW — the HP-UX CMW, version 10.16 — but very similar
behavior is to be expected from other vendors’ CMW implementations. Hewlett-
Packard’s CMW is derived from the SecureWare implementation. Other non-
SecureWare-based implementations may differ in the details, but the system calls
are often very similar to those described here. Each user on any CMW has an
extensive user profile stored in a secure database on the machine. On HP, this
database is called the “protected password” database. All of the user’s privileges are
specified by the Information System Security Officer (ISSO) and stored in that
database. The CMW OS provides a means for a trusted program to query the
database for user characteristics. For example, a user’s base privilege set is available
via the getprpwuid() system call. This call is somewhat like the normal Unix
getpwuid() system call but returns much more information. However, not just any
process is allowed to query the database. Only processes with ALLOWDACREAD can
retrieve information with the getprpwuid() call. A “trusted program” is one which
is given the proper privileges to make such calls. The privileges permitted to any
program are defined and maintained by the ISSO. So not only must the sshd source
code be modified to call getprpwuid() when needed, the program must be enabled
with the authority to make that call. That is, the program must explicitly be assigned
the ALLOWDACREAD privilege by the ISSO. Once the user’s base privileges are
obtained, the base privileges of the child process can be set with the setbaseprivs()
call which requires yet another privilege, CHSUBJPRIV.

The proper form when writing a trusted program is to use “privilege bracketing” to
enable (or “raise”) privileges when needed and disable (“lower”) them when no
longer needed. This procedure is referred to as the Principle of Least Privilege
because the trusted program is written to hold minimal privileges most of the time
and to raise higher privileges only when necessary and to hold them only as long as
needed. In addition to the special privileges needed above, calling setuid() and
setgid() requires another privilege, CHSUBJIDENT. One can see that porting sshd to
the CMW system requires nontrivial code changes to raise and lower the necessary
privileges around such sensitive system calls plus the additional code needed to
obtain and set a user’s privileges for the child process. Fortunately the code structure
and the privileges needed are such that the code can be tightly bracketed. In almost
all cases, only one line of code, making just one system call, needs to be bracketed

with privilege-raising and lowering calls. One example is when binding to a port to
listen for incoming ssh connections. Under normal Unix, only root can bind to a
port numbered below 1024. However, under HP-UX CMW, binding to a port below
1024 requires the NETPRIVADDR privilege. So we raise NETPRIVADDR, keeping track of
the currently held privileges, call bind(), and then restore the previous privileges.
The rest of the approximately 45,000 lines of code continue to operate in a purely
unprivileged mode, and the code is unprivileged almost all of the time.

In addition to the normal UID and GID, CMWs also hold another variable called the
“login” UID or LUID. This is a permanent, indelible “login” user id that trusted
systems keep in addition to the normal UID. When the effective UID is changed by a
suid program, the LUID does not change. The LUID was designed for auditing
purposes. Since the effective UID can change all auditing records are kept against the
LUID. In this way, an audit trail is kept of the original login user’s activities. Since
the sshd daemon runs as root with UID 0, the LUID is also 0. When sshd switches
the UID and GID of the child process to become the remote user, the LUID remains
0. Thus, the child process has the correct UID but retains LUID 0. All audit records of
that user’s activities would be kept against root instead of the real user. In addition
to protecting the audit trail, the LUID is used as a key to look up “command
authorizations” which can be thought of as collections of privileges that a user can
obtain when requested. A normal user with LUID 0 would receive all of root’s
command authorizations, obviously not a desirable situation. Clearly, the sshd
daemon must somehow change the LUID to that of the incoming user. Despite the
fact that the LUID is supposed to be permanent and indelible, the system obviously
provides a way of changing it during a normal user login procedure since a normal
login process must begin as root and then switch the UID to that of the incoming
user. In order for the LUID to be meaningful, the login process must also switch the
LUID to that of the user as well. Obviously the modified sshd code must perform a
similar operation. In fact, there is a setluid() system call and a corresponding
privilege, CHSUBJLUID, to permit its use. The sshd daemon must raise the
CHSUBJLUID privilege and change the LUID to that of the incoming user.

Current Status and Remaining Problems

We have implemented all the changes described above, along with several others
needed for very similar reasons, in the SSH version 1.2.20 source code on HP-UX
CMW version 10.16. We can now securely connect from an unlabeled client
machine to the CMW using any of the three tools provided by SSH — slogin, ssh,
and scp. By “unlabeled” we mean a “normal” nontrusted operating system that does
not contain the special security attributes that exist in trusted operating systems. We
have successfully tested SSH connections from IBM, HP, and SunOS clients running
SSH 1.2.20. Since no changes are needed on the client machine, any commercial
implementation of the SSH client (for Windows machines, for example) should
work as well although we have not made such tests. Conversely, we can also
connect from a CMW to an unlabeled host. This functionality requires small

changes to the client code on the CMW but no change to the sshd daemon running
on the unlabeled host.

Both of the connection types described above (unlabeled-to-CMW and CMW-to-
unlabeled) are using unlabeled network packets. When two trusted operating
systems communicate with one another, they use labeled packets that contain
additional security attributes not present in unlabeled packets. The more interesting
application of SSH would be between two CMW machines. Here, it will be necessary
to read the security information on the incoming labeled packet and set up the
incoming user’s security attributes accordingly. With these techniques, a properly
authorized user running at a high clearance on a client machine should be able to
open a similarly-cleared session on a remote CMW. These changes are not complete
at the time of this writing. Progress on the code changes required to implement
CMW-to-CMW communications secured by SSH will be reported in the oral
presentation.

Summary

In conclusion, SSH offers secure communications with strong authentication and
strong encryption of all traffic, including encrypted X11 traffic, a feature currently
lacking in Kerberos. SSH is relatively small, easy to install, and easy to administer.
Porting to a CMW requires code modifications to properly use the security
environment on a CMW. We have completed the necessary changes, using tightly-
bracketed code, to implement unlabeled-to-CMW and CMW-to-unlabeled secure
communications using SSH. We will report on CMW-to-CMW communications
using labeled packets in the oral session.

References

1. See the SSH home page at http://www.cs.hut.fi/ssh .

2. See Wayne Schroeder of the San Diego Supercomputer Center
(http://www.sdsc.edu/~schroede/ssh_cug.html).

