
' 1\APPA SYSTEMS, INC. .

Philadelphia Operations I I .

L I /I I'·

1015 iJ. Yc;l< r:o:o:d
\)i!!ow "·:;, i\: ::csyi'J:::n!a 19090

NBS TECHNICAL NOTE 919

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress March 3, 1901.
The Bureau's overall goal is to strengthen and advance the Nation's science and technology
and facilitate their effective application for public benefit. To this end, the Bureau conducts
research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific
and technological services for industry and government, (3) a technical basis for equity in trade,
and (4) technical services to promote public safety. The Bureau consists of the Institute for
Basic Standards, the Institute for Materials Research, the Institute for Applied Technology,
the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United
States of a complete and consistent system of physical measurement; coordinates that system
with measurement systems of other nations; and furnishes essential services leading to accurate
and uniform physical measurements throughout the Nation's scientific community, industry,
and commerce. The Institute consists of the Office of Measurement Services, the Office of
Radiation Measurement and the following Center and divisions:

Applied Mathematics - Electricity - Mechanics - Heat - Optical Physics - Center
for Radiation Research: Nuclear Sciences; Applied Radiation - Laboratory Astrophysics'
- Cryogenics' - Electromagnetics' - Time and Frequency'.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to
improved methods of measurement, standards, and data on the properties of well-characterized
materials needed by industry, commerce, educational institutions, and Government; provides
advisory and research services to other Government. agencies; and develops, produces, and
distributes standard reference materials. The Institute consists of the Office of Standard
Reference Materials, the Office of Air and Water Measurement, and the following divisions:

Analytical Chemistry - Polymers - Metallurgy - Inorganic Materials - Reactor
Radiation - Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote
the use of available technology and to facilitate technological innovation in industry and
Government; cooperates with public and private organizations leading to the development of
technological standards (including mandatory safety standards), codes and methods of test;
and provides technical advice and services to Government agencies upon request. The Insti
tute consists of the following divisions and Centers:

Standards Application and Analysis - Electronic Technology - Center for Consumer
Product Technology: Product Systems Analysis; Product Engineering - Center for Building
Technology: Structures, Materials, and Life Safety; Building Environment; Technical Evalua
tion and Application - Center for Fire Research: Fire Science; Fire Safety Engineering.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research
and provides technical services designed to aid Government agencies in improving cost effec
tiveness in the conduct of their programs through the selection, acquisition, and effective
utilization of automatic data processing equipment; and serves as the principal focus within
the executive branch for the development of Federal standards for automatic data processing
equipment, techniques, and computer languages. The Institute consists of the following
divisions:

Computer Services - Systems and Software - Computer Systems Engineering - Informa
tion Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and
accessibility of scientific information generated within NBS and other agencies of the Federal
Government; promotes the development of the National Standard Reference Data System and
a system of information analysis centers dealing with the broader aspects of the National
Measurement System; provides appropriate services to ensure that the NBS staff has optimum
accessibility to the scientific information of the world. The Office consists of the following
organizational units:

Office of Standard Reference Dat;\ - Office of Information Activities - Office of Technical
Publications - Library - Office of International Relations - Office of International
Standards.

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address
Washington, D.C. 20234.

' Located at Boulder, Colorado 80302.

Operating System Structures to Support
Security and Reliable Software

KAPPA SYSTEMS, INC.:
Philadelphia OperationsTheodore A. Linden
1015 N. York Road
Willow Grove, Pennsylvania 19090

Institute for Computer Sciences and Technology
National Bureau of Standards
Washington, D. C. 20234

U.S. 	DEPARTMENT OF COMMERCE, Elliot L. Richardson, Secretary

Edward 0. Vetter, Under Secretary

Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

Issued August 1976

National Bureau of Standards Technical Note 919

Nat. Bur. Stand. (U.S.), Tech. Note 919, _51 pages (Aug. 1976)

CODEN: NBTNAE

U.S. GOVERNMENT 	PRINTING OFFICE

WASHINGTON: 1976

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

(Order by SD Catalog No. Cl3.46:919). Stock No. 003-003·0 1658·6 Price $1.25

(Add 25 percent additional for other than U.S. mailing).

TABLE OF CONTENTS

ABSTRACT .. .

1. INTRODUCTION.. 1

1.1 Security and Reliability ... 2

1.2 Overview ... 2

1.3 Introduction to Basic Terms .. 4

2. SYSTEM SECURITY AND RELIABLE SOFTWARE. 5

2.1 System Security Requirements... 5

2.2 Reliable Software.. 6

2.3 Reliable Software for System Security 7

3. SYSTEM PROTECTION MECHANISMS.. 7

3.1 Protection Models and Protection Domains 7

3.2 Small Protection Domains... 8

3.3 Protection Domain Switching.. 9

4. PROTECTION FOR RELIABLE SOFTWARE. 12

4.1 The Decomposition of Complex Systems 12

4.2 Protection Should Be Distinct From Functionality 13

4.3 Protection Information in System Design and Documentation 14

4.4 Value of Small Protection Domains .. 14

5. SMALL PROTECTION DOMAINS FOR SECURITY ... 15

5.1 Flexibility vs. Security ... 15

5.2 The Trojan Horse Problem ... 16

5.3 Intermediaries ... 17

6. CAPABILITY~BASED ADDRESSING... 18

6.1 The General Concept of Capabilities 19

6.2 The Use of Capabilities and Capability-Based Addressing 19

6.3 Implementations for Capability-Based Addressing; 20

7. IMPLEMENTING SMALL PROTECTION DOMAINS ... 22

7.1 Capability-Based Implementation of Efficient Domain Switching 23

7.2 Directories for the Storage and Sharing of Capabilities 24

7.3 Correct Implementation of Protection 25

7.4 Controls Over the Movement and Storage of Capabilities 26

8. FLEXIBLE SHARING .. 27

9. EXTENDED- TYPE OBJECTS ... 29

9.1 Background on Typed Objects .. 29

9.2 Nature of Extended-Type Objects .. 30

9.3 The Implementation and Protection of Extended-Type Objects 31

10. TYPED OBJECTS AND PROGRAM MODULARITY .. 32

10.1 Background--Horizontal and Vertical Modularity 33

10.2 Programming Language Support for Modularity 34

10.3 Extended Types as Modules for Reliability 35

11. CONTROLLING AND MONITORING ACCESS TO OBJECTS................................. 36

11.1 Non-Discretionary Controls .. 36

ll.2 Security Classification Systems... 37

12. CONCLUSION ... 39

ACKNOWLEDGMENTS.. 40

REFERENCES... 41

iii

OPERATING SYSTEM STRUCTURES TO SUPPORT

SECURITY AND RELIABLE SOFTWARE

Theodore A. Linden

Security has become an important and challenging goal in the design of computer systems.
This survey focuses on two system structuring concepts that support security; namely, small
protection domains and extended-type objects. These two concepts are especially promising
because they also support reliable software by encouraging and enforcing highly modular
software structures--in both systems software and in applications programs. Small protection
domains allow each subunit or module of a program to be executed in a restricted environment
that can prevent unanticipated or undesirable actions by that module. Extended-type objects
provide a vehicle for data abstraction by allowing objects of new types to be manipulated in
terms of operations that are natural for these objects. This provides a way to extend system
protection features so that protection can be enforced in terms of applications-oriented
operations on objects. This survey also explains one approach toward implementing these
concepts thoroughly and efficiently--an approach based on the concept of capabilities in
corporated into the addressing structure of the computer. Capability-based addressing is
seen as a practical way to support future requirements for security and reliable software
without sacrificing requirements for performance, flexibility, and sharing.

Key Words and Phrases: 	 Capability, capability-based addressing, computer security,
extended-type objects, operating system structures, protection,
reliable software, reliability, security, small protection
domains, types.

l. INTRODUCTION

For the year 1974, one source has identified 339 cases of computer-related crime. lf

The average loss in the 339 incidents was $544,000. This average is not distorted by a

few exceptional cases--the median loss was very close to the average. Most of the in

cidents involved simple fraud. by an employee who had access to computerized fi.nancial

records. In 85% of the cases, management did not report the incident to the police-

often because publicity about it would have been embarrassing.

The fraud is usually possible because of some oversight in an applications system.

A simple oversight, for example, may allow a clerk to feed data to an accounts payable

system in such a way that no one notices when checks are diverted to a dummy corpor

ation.

If the amount of computer-related fraud is to be control'led, then it is necessary to

automate the concepts of segregated duties, independent checking, and accountability for

actions that are typical in manual accounting systems. These concepts are often much

less rigorously applied when financial records are computerized. While the structure

of current computer systems may not be to blame for this neglect of sound accounting

practices, current operating systems do little to encourage the segregation and inde

pendence that is desirable when processing financial records. New operating system

structures could make it much easier and less expensive to enforce these basic principles

of sound accounting practice. Furthermore, while current instances of computer-related

fraud have not exploited security weaknesses in the underlying operating system, it is

well-known that such weaknesses exist and that a programmer could exploit them to bypass

the controls in applications programs. Thus improvements to security that do not con

sider the security of the underlying operating system may only deter the small-time

lf This information is based on conversations with Robert Courtney. Courtney reports that
details on these cases are in his possession, but that they cannot be made public.
The work of [Parker 75], based on public reports, supports a similar conclusion about
the average loss in computer-related crime.

criminals. The increasing amount of valuable and private information processed by
computers implies a long-term need for much more rigorous security controls in the
operating system. Those responsible for protecting information affecting the National
Defense have been facing this problem for some time.

1.1 Security and Reliability

In the attempt to design computer systems that support more rigorous security, a
narrow focus on the security problem alone is not advisable. While the cost of inadequate
security controls may be several hundred million dollars a year 2/, these costs are
only a small fraction of the total costs attributable to faulty and unreliable software.
Furthermore, from the viewpoint of computer design, a technical breakthrough on both
the security and the software reliability problems appears to be as feasible as a
breakthrough on the security problem alone. While we are striving for secure computers,
we should also strive for more reliable computers and for computers that make it easier
to implement reliable programs--including but not limited to, the programs that do
accounting and auditing for security.

Many security controls might not be cost-effective if similar controls were not also
needed to improve the reliability and the overall performance of the system. In parti
cular:

o 	 The complexity and disorganization of most existing operating systems

make it very difficult to achieve security. To guarantee security-
and especially to maintain security over the lifetime of the system-

operating systems must be structured so that interactions between system

modules are more clearly defined and more closely controlled. This same

control over the interaction of modules is also needed for reliability.

Furthermore, a well-structured system is easier to maintain and modify;

and in a well-structured system it is likely that overall performance

can be improved.

o 	 The protection mechanisms needed for security can also be used to enforce
software modularity. Such modularity would improve the reliability and
correctness of the software. In particular, debugging and testing would
be easier to the extent that the effects of an error can be confined within
the module where the error occurs. Since debugging and testing often account
for half of a program's cost, these protection mechanisms might help reduce
programming costs.

o 	 In some applications a system crash is a security problem. In any case,
an operatingsystem that is built to provide security must eliminate
most of the sources of software-induced system crashes. Furthermore,
hardware malfunction and inadequate fault recovery strategies are po
tential sources of many forms of security violations. Thus, there is
enough overlap between the requirements for security and the requirements
for high system availability so that it is reasonable to attempt to solve
both problems at the same time.

1.2 Overview

It is an ambitious goal to design a computer system that satisfies rigorous security
requirements, supports reliable software and at the same time meets the performance,
flexibility, sharing, and compatibility requirements that are needed to make a computer
competitive in the marketplace. Decreasing hardware costs are making these goals much
more feasible. This survey focuses on two system structuring concepts that promise
to help solve some of the remaining software problems. These two concepts are iden
tified as:

~ The cost of the frauds identified by Courtney was almost $200 million for the one year.
The total cost of all computer-related fraud may be far higher. Furthermore, the
increased computer processing costs needed to protect classified defense information
has been estimated at $100 million a year [Anderson 72].

2

(l) small protection domains, and
(2) extended-type objects.

The survey also covers capability-based addressing as a way of implementing these
two concepts.

SMALL PROTECTION SYSTEM
DOMAINS X SETTY/l

CAPABILITY-BASED --~> EXTENDED- TYPE RELIABLE
ADDRESSING OBJECTS SOFTWARE

FLEXIBLE SHARING

Figure l - Overview

Figure l shows the interactions between the principal ideas covered in this survey.
Arrows between terms in the figure are to be read as meaning "supports" or "facilitates."
(Definitions of the terms are given in Section 1.3.) Figure l will be repeated through
out the survey with boldface terms and arrows indicating topics for current discussion,
and terms entirely in lower case and dashed arrows indicating topics covered previously.

Figure l is not meant to indicate that capability-based addressing is the only way
to support small protection domains and extended-type objects. It is the most frequently
advocated way for a system to support these concepts thoroughly and efficiently; and it
is the one covered in this survey. Research on compile-time support for these con
cepts is also in progress, but it is not covered in this survey.

The arrows in Figure l must not be interpreted to mean "guarantees." Security
and reliable software are both dependent on many other ideas that fall outside the scope
of this survey and are not listed in this figure. Nevertheless, the ideas discussed
here would go a long way toward building an environment where it would be realistic to
expect that both security and very reliable software could be achieved.

Sections 3 to 5 of this survey cover small protection domains and their usefulness
for reliable software and security. Sections 9 to ll cover the uses of extended-type
objects. In the middle, Sections 6 and 7 deal with capabilities and capability-based
addressing. The two sections on capability-based addressing give a brief survey of a
very complex subject. The reader who is interested in more details on capability-based
addressing is referred to [Fabry 74] and [Saltzer 75]. Section 8 indicates that
flexible sharing is not only compatible with the other ideas listed in Figure l but
even interacts favorably with some of them. Readers who are interested in reliable
software but not in security may skip Sections 5 and 11. Readers who are only con
cerned about security in a narrow sense may omit Sections 4, 8, and 10.

Readers should be aware that the ideas discussed in this survey are quite contro
versial. ~1any of my colleagues would disagree with one or more aspects of Figure l.
While I feel that the interaction of all of these ideas is crucial in order to attain
the broad goals being addressed, many other approaches have been proposed which omit
parts of Figure l or give different interpretations to some of its terms. In particular,,

3

system security is often pursued in a way which is much less closely linked with re
liable software. Less ambitious approaches to system security may be adequate if data
sharing is restricted and security requirements are narrowly defined.

1.3 Introduction to Basic Terms

This section provides introductory definitions for the terms appearing in Figure 1
and for some related terms. These definitions may be skipped by readers who are generally
familiar with the subjects being covered. Other readers can use these definitions to
obtain an initial understanding of the relations depicted in Figure 1. This section
may also be used as a glossary while reading the remainder of the survey.

SECURITY - The protection of resources (including data and programs) from accidental or
malicious modification, destruction, or disclosure.

SYSTEM SECURITY - The state of a computer system (hardware and software) that makes it pos
sible to provide reasonable assurance of security. System security presupposes that
appropriate steps are taken for physical protection of the computer, for operating and
maintaining the system, and for identification and authentication of users of the system.

RELIABLE SOFTWARE- Software that provides services which are (1) usable, (2) correct,
(3} trustworthy, and (4) available on demand.

PROTECTION MECHANISMS - System features that are designed to protect against unauthorized
or undesirable access to data.

SUBJECTS - Users of a computer system together with any other active entities that act on
behalf of users or on behalf of the system; for example, processes, jobs, and procedures may
be subjects. Subjects are also objects of the system.

OBJECTS - Identifiable resources or entities in the system. Software-created entities such
as files, programs, semaphores, and directories are objects as well as hardware resources
such as memory blocks, disk tracks, terminals, controllers, I/0 ports, and tapes.

MODES OF ACCESS - The set of distinct operations that the protection mechanisms recognize as
possible operations on an object. "Read," "write," and "append," are possible means of
access to a procedure, and "debit account" is a possible mode of access to an object of type
"bank account record."

ACCESS RIGHT - The right to use an object according to one of its recognized modes of access.

PROTECTION DOMAIN - An environment or context that defines the set of access rights that
a subject has to objects of the system.

SMALL PROTECTION DOMAINS - Protection domains that typically restrict a subject to access
rights for only those objects that are needed to accomplish the current task.

TYPE - Objects are classified by type. The examples under ''objects" illustrate different
types of objects. A type is defined by defining the set of operations applicable to ob
jects of that type. Two objects are of different type if the allowable operations on the
objects are different.

EXTENDED-TYPE OBJECTS- If the system allows applications programs to define new types and
to create objects of these newly defined types, then such objects are called extended-type
objects. The protection mechanisms should control access to objects of ex~ended type in
terms of the operations defined by the extended type.

LEVELS OF ABSTRACTION - Computers can solve human problems even though their electronic
circuits only manipulate bits. The gap between the human problems and the bits is bridged
by many concepts starting from concepts such as data base models and query languages that
are implemented in terms of other concepts such as stacks, segments, and sequencing oper
ations that are ultimately implemented as machine words and then as bits. One concept is
said to be at a higher level of abstraction than other concepts if the concept organizes

4

instances of the lower~level concepts so that they can be manipulated effectively without
having to understand the details of how the lower-level concepts interact. Levels of ab
straction can be realized as types. The isolation of different levels of abstraction is a
current goal of much work on programming methods and on system design.

CAPABILiTY ~ A token used as an identifier for an object such that possession of the token
confers access rights for the object. A capability can be thought of as a ticket. Modi
fication of a capability (excep.t to reduce its access rights) is not allowable; however,
unlike the case for tickets, reproduction of a capability is legal.

CAPABILITY-BASED ADDRESSING - The use of capabilities to address and control access to
objects even when the objects are stored in the primary memory of a computer system.

USER - An individual who interfaces with the computer system and can be held accountable
for his actions. The term covers all uses of the system whether to submit data, queries,
or other transactions; to execute programs; or to operate or maintain the system.

USER JOB - Used here as a general term for a unit of processing services performed on
behalf of an identifiable user.

2. SYSTEM SECURITY AND RELIABLE SOFTWARE

Figure 2 indicates that this section introduces the terms system security and re
liable software, and it covers the relation between them.

/
SMALL PROTECTION SYSTEM

DoMAINS SECURITY

l >< t
CAPABILITY-BASED ExTENDED-TYPE 	 RELIABLE~ ~

ADDRESSING OBJECTS 	 SOFTWARE

~ 	 ~-
FLEXIBLE SHARING

Figure 2 - System Security and Reliable Software

2.1 System Security Requirements

Corporate financial records, personal information as defined by privacy legislation,
and classified military information are examples of information which must be protected
during computer processing. It is hard to give a precise definition of computer
security because specific security requirements depend so strongly on the larger human,
social, and financial systems that are served by the computer processing. In general,
security is concerned with any unauthorized or undesirable modification, disclosure,
or destruction of information. In some situations (e.g., air traffic control), it
is even concerned with a potential loss of service that would make critical information
unavailable. 3/ For many installations, the unauthorized modification of information
is the most serious security threat.

1f 	Typically, computer security is also concerned with protecting the investment in the

computer itself; however, this is mostly .a matter of physical protection and is not

discussed in this survey.

5

Security must be concerned with any path by which information could be modified, dis
closed, or lost. For example, security requires that the system's operator interface be
designed so that users cannot easily spoof the operator by sending him a counterfeit mes
sage that appears to be a system message. Security must also be concerned with the
correctness of procedures for system initialization and for fault recovery and restart.
For example, on some current systems the checkpoint/restart facility is a security
weakness because the checkpoint data is not adequately protected from modification by
users.

While security must be concerned with all paths which might provide unauthorized
access to information, some aspects of the overall security problem are clearly beyond
the control of a central computer system and can be regarded as separate problems.
Generally speaking, communication security, identification of users, and physical pro
tection of the computer site are distinct problems. Other p·roblems fall on the border
line. For example, the security of most systems can easily be broken if an operator
can be bribed. This might seem to be outside the control of the hardware/software
system. However, if a system is designed for security, it is reasonable to expect that
it should be designed so that the operator's command language provides a protection
environment that carefully limits his privileges. Clearly this implies a major re
thinking of the role of the operator with respect to the system. Nevertheless, it
will be necessary to have some control over the damage that can be done by a corrupt
operator--or an incompetent one. Similar comments apply to system programmers and
system administrators.

This survey does not describe specific solutions to the above security problems;
rather it describes operating system structures that support effective and efficient
solutions to a wide variety of security problems. Other surveys and tutorials con
tain more details on specific security problems [Saltzer 74, 75, Popek 74b].

2.2 Reliable Software

Reliable software plays a dual role in Figure 2. It is a means to security,
and it is an end in itself. Security depends in part on the reliability of software;
however, the general problem of unreliable software is much broader than the security
problem.

Reliable software provides services that are adequate for the intended application
with respect to being:

(1) usable,
(2) correct,
(3) trustworthy, and
(4) available on demand.

Recent research on reliable hardware has been able to focus on the final aspect of
reliability; namely, the constant availability of services. With respect to software
services, a broader meaning for "reliable" is needed because it is still not realistic
to presuppose- that software services are usable, correct, and trustworthy. Usable means
that the user receives services that are effective for his application. Correctlmeans
that the software meets its functional specifications. If the specifications are in
complete, then correct software may not be usable. Trustworthy means that there is a
minimum level of services that is provided correctly, and there is an effective way to
evaluate or measure the performance of the software with respect to this minimum level
of service. Software may be correct even if there is no effective way to demonstrate
its correctness; however, trustworthy software must be structured so that testing,
auditing, and/or proofs of correctness can be used to achieve a reasonable level of
confidence in the software.

There is much current research aimed at relieving the problem of unreliable soft
ware. This survey concentrates on protection mechanisms and other operating system
structures that enhance the reliability of software--both .systems software and appli
cations software. Nevertheless, work on operating system structures to support reliable
software is almost inseparable from recent work on designing modular, well-structured

6

programs. Furthermore, appropriate operating system structures can improve the results
obtainable from many other software development techniques--including techniques for
program management, testing, validation, proof, and maintenance.

2.3 Reliable Software for System Security

Reliable software is not only an end in itself, it is also a means to support sys tern
security. Typically, security depends on the reliability of much of the system software,
and that reliability must be preserved through many versions and modifications of the
software. Faulty system software is the system security problem that has been most
difficult to deal with.

Security's dependence on the reliability of software can be reduced if the hardware
and software are structured so as to reduce the size and complexity of the software needed
to guarantee security. Security kernels that concentrate all the security-relevant code
into a small, well-identified part of the system have been proposed [Schiller 73,
Popek 74a, Lipner 74]. Yet, even with ideal hardware and software, many security
concerns are dependent on a substantial amount of software. This survey describes
operating system structures that support security directly--and also indirectly by
improving the reliability of the security-relevant software.

3. SYSTEM PROTECTION MECHANISMS

While security and reliability requirements vary greatly from one application to
another, the protection mechanisms that are built into the hardware and basic software
of the computer system cannot be redesigned to meet the needs of each application. Thus
it is desirable to have a basic set of protection mechanisms that are versatile enough
to meet the requirements of many diverse computer applications. Even a single in
stallation usually has a wide variety of security and reliability requirements.

The protection mechanisms of most third-generation computers were designed to
confine user programming errors in order to prevent such errors from damaging either the
system or other users. These protection mechanisms are based on a distinction between
a privileged supervisor state and a non-privileged problem state (instructions that
halt the machine or modify certain registers cannot be executed from the non-privileged
problem state). This basic protection mechanism improves the reliability of system
software by protecting it from the most obvious source of unreliability; namely, user
programming errors. However, it does nothing to help the system protect itself against
its own errors. Furthermore, while this protection mechanism could theoretically pro
vide a basis for security against deliberate subversion of the system, in practice
the problems of securing a computer system are so complex that many researchers have
concluded that more sophisticated protection mechanisms are needed before rigorous
security can be expected at a reasonable cost. ~

3.1 Protection Models and Protection Domains

The versatility of a system's protection mechanisms can be characterized abstractly
in terms of a protection model. A protection model views the computer as a set of active
entities called subjects and a set of passive entities called objects. The protection
model defines the access rights of each subject to each object. This protection model

~ 	A variety of other protection features such as passwords and activity logging have been
included in most computer systems. A combination of such protection features can be
used to provide deterence against some security threats; however, these other pro
tection features can be bypassed if the basic protection mechanisms are subverted.
Despite many serious efforts to correct flaws in the protection mechanisms of current
computer systems, it is still true that no computer system has withstood determined
efforts to bypass its internal security controls by someone who is given user program

·ming access to the system. Such penetration efforts have been successful against

virtually all commercially-available operating systems.

7

can be represented in the form of a protection matrix [Lampson 71, Graham 72] as ex
emplified in Figure 3. In this protection matrfx, subjects are associated with rows
of the matrix and objects are associated with columns. For each subject-object pair,
the corresponding entry in the matrix defines the set of access rights that the sub
ject has to the object. Figure 3 shows that subject C may read or execute object X.

0 B J E C T S

s ~
u
B
J
E cc
T
s

X

execute
read

Figure 3 - A Protection Matrix

Access rights represented in the protection matrix also control changes to the
protection matrix itself; for example, a subject with "delete" access to an object can
eliminate that object from the protection matrix. Subjects also appear as objects in
the protection model so that one subject can have access rights to another subject.
For example, one subject may be allowed to transfer control to another subject by using
an "enter" access right to the other subject.

A protection domain defines the set of access rights that one subject has to.the
objects of the system. A protection domain is represented as a row of the prot~ct1?n.
matrix. The term "protection environment" is. used as a more general word that 1s. s1m1lar
to a protection domain except that a protection environment a~so includes eve:yth1ng ~hat
a subject might cause to be done on its behalf by another subJect •. A protect1on doma1n.
is a more restricted concept and includes only access rights to obJects that are access1ble
by the subject.

Most third-generation computer systems support a protection model in which the sub
jects are basically the authorized users of the system. The supervisor or operating
system is another subject that typically has tota1 access to all objects in the system.
In these systems every subunit of a user•s program executes in the same protection domain,
and that protection domain has access rights to all objects that the user ever needs. With
this protection model, there is no easy way to limit the access rights of specific
subprograms executed on behalf of a user. While the access rights of a protection domain
can be increased or decreased, any such change is relatively permanent; and if access
rights are de1 eted be.fore calling a subprogram, they cannot easily be retrieved when
the subprogram terminates.

Multics introduced the concept of protection rings which allow each user to execute
in a linearly ordered set of protection domains. In Multics a protection subject is the
combination of the user ID and a ring number. Each user can execute in as many protection
domains as there are ring numbers. The different protection domains of a single user are
linearly ordered in that the protection domain of a lower ring contains all the access
rights of any higher ring. Hardware modifications for Multics that would eliminate this
ordering of a user•s protection domains are described by [Schroeder 72a, 72b]. This
modified hardware should support the concept of small protection domains described in
the next subsection.

3,2 Small Protection Domains

The phrase "small protection domains" is used as a qualitative description of a
certain class of protection models. The word small is not intended in a rigid quanti
tative sense. The basic idea is that the protection domains should be as small as possible
while still allowing programs to access what they need to access. This idea has been
called the "principle of least privilege."

8

A small subunit of a program typically only needs access to a small number of
objects. If small subunits of a program execute in their own protection domains, then
the protection domains can be kept small. A large program usually needs access to many
objects. Thus, protection domains can be kept small only if a large program executes in
many different protection domains and constantly switches between these protection domains
during its execution.

The flexibility, ease, and efficiency of domain switching is the primary factor in
determining whether protection domains can be kept small and closely tailored to actual
needs. However, other factors are also important; namely:

(1) The size of the protectable objects in the system.
(2) The different ways in which the protection matrix is allowed

to change with time, and the ease of setting up new protection
domains.

(3) The flexibility for defining different modes of access to objects.

Small protection domains characterize protection models that are very flexible. The
protection matrix is large and sparse. The protection matrix is large because t~e ~ro
tection system recognizes many distinct subjects (protection domains) and many d1st1nct
objects. The protection matrix is sparse because subjects have access to relatively few
objects and with relatively limited modes of access.

Figure 4 indicates the role of small protection domains with respect to the other
concepts covered in this survey.

SMALL PROTECTION SYSTEM

/ l ><
)

1'
DOMAINS SECURITY

I
CAPABILITY-BASED EXTENDED-TYPE RELIABLE ~ ADDRESSING OBJECTS SOFTWARE

~ ~
FLEXIBLE SHARING

Figure 4 - The Role of Small Protection Domains

The usefulness of small protection domains for reliable software is discussed in Section 9.
A way of implementing small protection domains with efficient switching between them is
sketched in Section 7. The remainder of this section discusses some of the complexities
that are involved in the concept of protection domain switching.

3.3 Protection Domain Switching

It is natural to integrate protection domain switching with the calling of a procedure.
This means that each procedure could have its own protection domain, although every pro
cedure call does not necessarily involve a domain switch. The phrase ''protected procedure"
is used when it is necessary to emphasize that the procedure call does involve a domain
switcho

A protected procedure has its own protection domain associated with it. Thus, the
right to access certain objects may be available during the execution of that procedure-
and possibly only during executions of that procedure. Furthermore, each execution of
that procedure possesses these access rights independent of the calling environment.

9

This is analogous to the concept of an own variable from ALGOL. It also means that a
protected procedure can have a state which is preserved between calls to the procedure-
and that state is independent of the call~ng environments. In this sense a protected
procedure has a char~cteristic which has commonly been associated with the word process.
Nevertheless, in this survey the word process is being used for a thread of sequential
execution. A single process is allowed to execute in many different protection domains,
and multiple processes are necessary oniy when there is the possibility of parallel
execution.

A protected procedure appears as both a sub~ect and an object in a protection matrix.
It is an object because .other subjects may have tfie right to call it. The right to call
the procedure requires a: specia;l access right such as an "enter" right to the procedure.
The protected procedure is also a subject in the protection matrix because it executes in
its own protection doma.in. ,

A switch to a different protection domain involves a call to a protected procedure.
If there are no access rights passed as parameters in the call, then everything is quite
simple. If the ~aller has the ri~ht to call this protected procedure, then the call takes
place and execution begins in the•protection qomain of the called procedure. A return in
struction triggers a return to the previous protection domain •

•
The protection matrix in Figure 5 illustrates this situation. User A, executing in

his basic domain, can c(!ll the editor. A dictionary (which may be a proprietary file) can
only be read whil,e executing in the editor's domain. The user can read or write files X
and Y either from his basi'c domain or after calling the editor; however, he can use the
dictionary to check the files for apparent spelling mistakes only when he has transferred
control to the editor. '

EDITOR FILE yFILE X DICTIONARY~s

••
READ READ

ENTERUSER A WRITE WRITE

READ READ
EDITOR WRITE WRITE READ

••
Figure 5 - Simple Domain Switch

The domain switch is more complex if access rights to objects are to be passed as
parameters and if the protected procedure is to be reentrant. In this case the call of
the protected procedure results in the creation of a new protection domain--conceptually
this means that a new row is created in the protection matrix. The new protection domain
contains both the permanent access rights of the protected procedure (these are defined by
a template pomain associated with the procedure) and the access rights that are passed as
parameters in the call. The new protection domain is destroyed by the return from the pro
tected procedure. This situation is illustrated by Figures 6 and 7. In Figure 6 the user
is executing in his basic domain, and the editor's template domain only has the right to
read the dictionary. If the user then calls the editor in order to edit file X, he passes
access rights for file X to the editor. This creates a new domain labeled "instance of
editor" in Figure 7. Note that other users may be editing other files using other in
stances of the same editor.

10

• •

• •

• •

~ FILE yEDITOR FILE X DICTIONARY

••
s

READ READ

USER A
 WRITE.ENTER WRITE

EDITOR
TEMPLATE READ'

Figure 6 - Protection Matrix Before Call to Editor

EDITOR FILE yFILE X DICTIONARY~s

READ READ

USER A
 WR-ITEENTER WRITE

EDITOR

TEMPLATE
 READ

INSTANCE OF READ

EDITOR
 VIRITE READ

Figure 7 - Protection Matrix During Call to Editor

The example in Figures 6 and 7' illustrates a situation involving mutual susp1c1on.
If file Y is sensitive, the user does not have to allow the editor access to it, and the
editor can protect the dictionary from direct access by the user. Implementation of domain
changing is simpler when the domain changes involve only an increase in access rights
(e.g., a system call) or a decrease in access rights (e.g., a testing program that calls
the programs to be tested). The more general form of domain changing, where some new
access rights are obtained While others are lost, is needed if the principle of least
privilege is to be enforced.

11

. Th~ dom~in change for a re-entrant protected procedure sounds cumbersome when it
lS ~xpla1ned 1n terms of a~ abstra~t protection model. Section 7 suggests an implemen
tatlon that allows protect1on doma1ns to be created and destroyed easily and efficiently.

I~ a procedure has permanent access rights to an object, and if access to that·pro
cedure 1s shared by as~chr?nous processes, then distinct activations of the procedure
could lead to synchron1zat1on problems. In this case it would be the responsibility of
the procedure code ~o handle the s~nchronization problem. The concept of a monitor
[Hoa~e 74] can be v1ewed as a multlple-entry procedure of this sort which is invoked
prec1sely to handle synchronization;problems.

4. PROTECTION FOR RELIABLE SOFTWARE

It is far more difficult to build a 50,000 line program than it is to write 1,000

programs that are each 50 lines long. This phenomenon leads to rapidly escalating costs

for the development and maintenance of large software systems, and it leads to serious

reliability problems due to the difficulty of adequately debugging and testing a large

program. Both the reliability and the cost of software could be greatly improved if the

complexity of large programs could be k~pt more in line with the size of the program.

Small protection domains are one of the most pramising ways to achieve a breakthrough in

reducing the complexity of large software systems.

The emphasis of this section is on the reliability of large software systems. Small
protection domains will not greatly improve the realiability of a single small program.
(It is an unfortunate reflection on the state of programming that programs of a few
hundred lines can take on the characteristics of large complex systems.)

4.1 	 The Decomposition of Complex Systems

The complexity of any large system is more manageable when it is decomposed into
relatively stable subsystems. These subsystems interact with each other, and each sub
system is itself made up of parts which interact; however, to avoid excessive complexity,
a part of one sybsystem must have negligible interactions with parts of distinct sub
systems. This decomposition of the system can then be iterated on each of the subsystems
to result in'a hierarchically structured system. Simon [Simon 69] has suggested that
this is a common organizing principle of all complex systems, and that it can be observed
throughout the physical, biological, and social sciences.

Hierarchical decomposition1of a complex system has frequently been advocated by

programmers--both under the name of program modularity and of structured programming

[Dijkstra 68, 72, Parnas 72b]. While much progress has been made in recent years, ·the

programming profession has had a difficult time decomposing large programs in such a

way that the interaction of distinct subprograms can be defined and anticipated. This

problem has two aspects:

(1) 	 It has been very difficult to structure large programs in such a.

way that the decomposition does not result in longer and sub

stantially less efficient programs.

(2) 	 There is no way of knowing that distinct subsystems are inter

acting only as planned. The usefulness of program decomposition

is greatest when there are errors in the system, and it is pre

cisely these errors that are likely to cause distinct subsystems

to interact in unanticipated ways.

Some recent ideas with respect to the first point will be discussed in Section 10.

The second point is the primary reason why a protection system will make a major contri

bution to more reliable and less costly software.

12

4.2 	 Protection Should Be Distinct From Functionality

When a large system is decomposed into interacting subsystems, it is important to

have limits on the interaction of the subsystems. These limits should not be dependent

on the proper functioning of all of the subsystems. Othenwise, the subsystem interactions

may change .precisely when one of the subsystems fails, thus causing the whole system

to degenerate into chaos. Simon [Simon 69] notes that in physical and biological

systems, extraneous interactions among subsystems are often limited by phy,sical distance.

Physical distance also provides reasonable isolation of computer hardware ,modules. In the

case of large software systems, there has been no equivalent of physical distance to help

control extraneous interactions between subsystems. The result is that malfunctions in a

software module more easily propagate throughout the whole system.

It is not feasible to eliminate all malfunctions from software subsystems. On a
case-by-case basis, careful defensive programming can limit the effects of potential
malfunctions. A more general solution is possible by introducing a protection mechanism
which is'distinct from the proper design and functionality of the subsystems. The
role of the protection mechanism is precisely to prev!ent malfunctions from spreading
beyond the subsystem where they occurred. To achieve the desired protection, almost
every procedure should 'be run in a1 protection domain that gives it access to exactly
what it needs to accomplish its function and nothing more. This is called the principle
of least privilege. Furthermore, protection domain switching must be easy and efficient
because the protection must not inhibit the desirable interactions between subsystems.

A protection mechanism will not prevent every error from propagating outside of the
erroneou~ modu 1e. Many erroneous results of a modu 1 e wi 11 appear to be norma1 results,
and the protection mechanism will have no way of distinguishing these from correct results.
However, with good system design, erroneous results that look like expected results should
not cause other modules to behave in unpredictable ways. As long as other modules con
tinue to behave in predictable ways, there is a much better chance of finding the origin
of the error. The protection mechanism will guard mostly against the errors that result
from unexpected interactions of the modules. These are the errors that are usually the
hardest to trace •

.Much recent literature on programming suggests various means of preventing program
modules from interacting in unanticipated ways •.These generally fall into three categories.

(1) 	 Defensive programming practices- Programmers can include extra

code that is designed to detect errors and to check whether modules

are interacting as planned. For example, parameters and global

data structures can sometimes be checked for consistency and

reasonableness before they are used. The value of defensive

programming is now well recognized; however, it must be used

with discretion for it can increase the complexity of a program

as well as its execution time.

(2) 	 Language-enforced protection - The procedure, as it exists in many

current programming languages, is a unit of modularity and it can

prevent some unwanted interactions between modules. Other compile

time protection features have been advocated in [Morris 73,

Palme 74, Liskov 74, Wulf 74b, 76a] and elsewhere. Much pro

tection against unanticipated interactions between modules can

be enforced at the time of compilation and linking. Other pro

tection features--especially those dealing with access to shared

data structures--are very difficult to implement at compile time.

(3) 	 Protection mechanisms supported by the operating system - Small

protection domains with the system .enforcing protection at run

time have been advocated in [Lampson 69, Needham 72, Price 73,

Wulf 74a, England 74, Spier 73] and elsewhere. Sections 6 and

7 sketch the argument that protection checking for small pro

tection domains can be enforced efficiently at run time.

Efficient system enforcement of small protection dom~ins requires

13

redesign of very fundamental parts of the computer system in
cluding the addressing mechanism.

4.3 Protection Information in System Design and Documentation

Most current programming practices do not require that the access rights of each
module of a system be explicitly defined. While the definition of this access control
information would be an additional programming requirement, this redundant information
would be very useful as part of a formal system design document since it defines all the
allowable interactions between modules. The definition of the access rights should be re
garded as an important step of the system design, it would constitute an important system
design document, and it would be executable in the sense that the protection mechanisms
would enforce these controls at run time. ,

4.4 Value of Small Protection Domains

Small protection domains will be of the most value for the following aspects of the
programming process:

o 	 Debugging Programming errors will be easier to find because errors

in one module are less likely to manifest themselves by anomalous

behavior of a different module. The correction of one error is also

less likely to cause other modules to begin to malfunction.

o 	 Testing Testing one module at a time will be easier since th~ exe
cution environment of the module is more rigorously defined. Further
more, since that environment is enforced at run time, module inter
actions that were not anticipated in the tests should be prevented.

o 	 Fault detection, recovery, and retry It will be easier to contain

the effects of either hardware or software,errors within the exe

cution environment where the error occurred. Since the execution

environment is rigorously defined it will be easier to incorporate

additional redundancy or run-time tests to protect against the re

maining potential sources of error. Recovery and retry procedures

are critically dependent on discovery of the error before things

have gotten out of control.

o 	 Maintenance and modification Protection information defines the

set of modules which could be affected by a modification to the

system. This identifies the modules which have to be examined

to guarantee that any modification will not have unexpected

side-effects.

o 	 Proving properties of programs The origin of the author's interest

in protection was partially to make it feasible to prove properties

of moderate size programs. The length and complexity of a proof

typically grows much faster than the length of the program. This

is because each subunit of the program makes many assumptions

about its execution environment. Typically, much of the rest of

the program has to be used in order to prove that these assumptions

are always valid every time the subunit is entered. If proofs are

to be simplified, it is clear that ways must be found to prove the

validity of these assumptions without using large amounts of other

wise irrelevant code. Protection mechanisms can provide a simple

basis for this.

Small protection domains cannot be used effectively without some substantial modi
fications to most existing programming languages. Programs written in existing languages
could still be run on such a system, but they would generally be compiled to execute in a
few large protection domains. To take advantage of the small protection domains, pro
gramming languages would have to incorporate additional features that make it possible to
define and control the protection domains.

14

5. SMALL PROTECTION DOMAINS FOR SECURITY

The economics of building large computer systems is such that the basic protection
mechanism incorporated in the system must be able to satisfy many diverse security re
quirements. Small protection domains provide a flexible basis for implementing many
different security requirements.

5.1 	 Flexibility vs. Security

Flexibility is not necessarily desirable for security. In general, security
provisions must be as simple and rigid as possible in or~er to minimize the danger of
oversights and of human error. Nevertheless, for security in a computer system, the
flexibility of small protection domains is desirable for the following reasons:

(l) 	 System security will be attacked at its weakest point. It makes
little sense to build extremely rigorous security barriers if there
is a back door into the system that is left open. Some common
security problems are very difficult to solve without a flexible
protection mechanism; for example, small protection domains are
useful if there are to be any software controls to protect against
a fraudulent system programmer or operator, and they are often needed
to handle the Trojan Horse problem described later in this section.

(2) 	 A serious danger to security arises whenever the need for flexible
protection is underestimated. If protection mechanisms are so
rigid that they prevent efficient processing of information, then
the protection is usually circumvented. A single general protection
mechanism that is used without exception is better than a rigid
one that has many exceptions.

(3) 	 Sound accounting and auditing principles require a system of
independent checking where each individual is accountable for his
actions and no individual is able to modify information in such a
way that the modifications are not detected. Small protection
domains would provide a good base for restoring the segregation
of duties and the independent checking that is often bypassed
during computerized record handling.

(4) 	 Flexible and efficient switching between protection domains
makes it more feasible to build redundant security controls.
As long as the basic protection mechanism itself is extremely
reliable, redundant security checks incorporated in software
can provide very rigorous security control. The use of redundant
security controls is discussed in subsection 5.3 on intermediaries.
Extended types provide a natural way of implementing this redun
dancy and are discussed in Section 11.

(5) 	 Even though the generality of small protection domains may be
hard to understand, specific security controls can still be simple
and easy to understand. In particular, a flexible protection
system should make it easier to build user interfaces that are
tailored to the specific needs of the user. Thus, users of a
specific security system should see a simple security system.

(6) 	 In the overview (Figure 1 or 4) there are arrows leading indirectly
from small protection domains to system security via reliable
software and extended-type objects. These indirect paths require
very flexible protection mechanisms, and they are as significant
for overall security as the direct path. For example, the pro
tection mechanisms that support reliable software make it easier
to build reliable software to monitor security.

15

5.2 	 The Trojan Horse Problem

Most access controls only guarantee that one user's information is protected from
access by other users. Unfortunately, it is often not realistic for a user to trust all
the programs that execute as part of his own processing. Most users make calls to a large
number of service routines and other programs that the user has not written· himself. On
most systems, all these routines and programs execute with the full access privileges of
the user. It is possible for these programs to perform actions totally unrelated to the
caller's intent; for example, they may access any file accessible, by the user, and on
many systems they can even give away access rights to these files. Daniel Edwards
has given this general class of problems the very descriptive name "Trojan Horse"
because it involves a foreign or gift program that is brought within the walls of a
protection domain [Branstad 73]. The gift program can then subvert the security of
everything accessible from that protection domain.

Many discussions of computer security have paid as much attention to the Trojan Horse
problem as the Trojans did. When building thick security walls, it is convenient to forget
about this problem; however, it will do little good to build a new generation of "secure"
computers if their security can easily be bypassed by a Trojan Horse attack.

The Trojan Horse problem is an extremely general and difficult problem. Programs
that could have subversive routines in them are used constantly. Programmers and
systems personnel routinely try out new programs that play games, print pictures, or aid
in the development of better programs. The most acute danger from the Trojan Horse problem
occurs when someone executing with system privileges runs a program given to him by "a
friend"; however, the Trojan Horse problem arises for all programs that are executed on
the system. This includes support programs such as editors, compilers, and library
routines. A user may choose to believe that programs supplied with the system are un
likely to act like a Trojan Horse--but this should be recognized as a calculated risk.

It might seem that the Trojan Horse problem should be solved by administrative con
trols. Systems personnel and anyone who has very sensitive data should never run a program
in their protection environment unless they trust it. Unfortunately, this administrative
solution is often not practical unless the system makes it easy to run untrusted programs
in a restricted protection enviroment where they can do little harm. Finding a reasonable
solution to the Trojan Horse problem is probably the most challenging aspect of developing
an adequate set of system security controls.

Three distinct aspects of the Trojan Horse problem must be distinguished when a
foreign or untrusted program is to be run on a system:

(1) 	 The foreign program is expected to modify sensitive data. In this
case the foreign program must be thoroughly examined so that it can be
trusted. If the program is to alter data, then it must be trusted with
respect to that data--at least with respect to the particular types of
modifications it is expected to make.

(2) 	 The foreign program is expected to read sensitive data but not disclose
its contents except to the calling program. This is called the confine
ment problem [Lampson 73]. It is difficult enough to prevent a program
from hiding the information in a file or other form of storage; however,
it is even more difficult to prevent it from communicating the infor
mation via a covert channel. Covert communications channels can be
created by encoding the information in the program's resourqe util
lization. For example, a program might communicate one bit to
anotrer program by using 10 minutes of CPU time if the bit is 1, and
only using a fraction of a second if the bit is 0. The other program
has to be able to detect or estimate the execution time of the first
program--possibly by simply observing the performance of the system.
Much higher data rates can be achieved by encoding the information in
paging rates, disk utilization, or in the locking and unlocking of

16

fi 1es. A. forma 1 way of approaching this prob1em is proposed by
[Lipner 75], and partial solutions appear to be feasible. The partial
solutions .would,reduce the data rate of the communications channels
that a program can use to disclose the information, and they would
increase the probability that various forms of monitoring (either
of the system or of the program) could detect the communication.

(3)' 	 The foreign program is run on beha1f of a user who has access to

sensitive data, but the untrusted program is not expected to access

any sensitive data. This problem should be easy to solve; however,

the solution is difficult to enforce with the protection mechanisms'

available on most existing computer systems.

Security always involves trusting or believing something. A "solution" to the
Trojan Horse pr·oblem means that the amount of trusted software is minimized. For a
secure system, solutions to the third aspect of the Trojan Horse problem should be
natural and routine. A solution to the second aspect--the confinement problem--should
be possible and a matter of system tradeoffs. Some help can be provided with the
first aspect of the problem by making it possible to distinguish different modes
of write access to the data. The amount of software that still has to be trusted
depends on the processing and security requirements; however, when the amount of
trusted software is minimized, it may be feasible to audit, certify, or prove the
integrity of that software which is to be trusted.

There are two approaches that have been taken to the Trojan Horse problem. The first
approach is applicable when the primary security requirement is to prevent unauthorized
disclosure outside of fixed, relatively broad security classifications. In this case
the first aspect of the Trojan Horse problem is not relevant, and the third can be elimi
nated by running each user process in a fixed but limited environment. Efforts can thus
be concentrated on solving the confinement problem for the process as a whole.

The second approach toward solving the Trojan Horse problem is more general, but
it requires frequent changing between protection domains. Whenever a partially untrusted
procedure is called, that procedure should be executed in an environment that gives it
a minimum number of access privileges-- while still allowing 1t to carry out its assigned
tasks. This approach to solving the Trojan Horse problem is based on the princip~e of
least privilege, and is attributable to Daniel Edwards [Branstad 73].

Note that the Trojan Horse problem differs from the general software reliability
problem only over the question of whether the called program may be malicious or whether
it may be incorrect. Thus it should not be surprising that solutions to the two problems
involve the same feature--frequent switching between protection domains to enforce the
"principle of least privilege."

5.3 	 Intermediaries

A large class of security problems can be solved by putting a level of indirection
between a subject and the object it is seeking to access. Protected procedures that act
as intermediaries can be programmed to control access ~o an object by checking the calling
process's -identification, by checking for special capabilities which indicate authorization,
or by performing any other programmable operation [Hoffman 70, Conway et al. 72]. For
example, an intermediary can implement any of the foll,owing security controls:

(1) 	 Redundant controls. Assuming that access to the intermediary is already
controlled, the intermediary can implement a second and redundant check
to guarantee that all access to the object is authorized. Redundant con
trols are especially useful to contain the effect of errors made by those
administering, maintaining, or using the system. Of course, redundant
controls are useful only if no single act can bypass both controls [Fabry 73].

17

(2) Restricted access. The intermediary can restrict access .to parts of
the object. Field and record level security::controls could be handled
in this way.

(3) Data dependent controls. The intermediary can check the contents of the
object before deciding what information to return to the caller.

(4) Auditing and monitoring. The intermediary can create an audit trail .or
log of all accesses to the object, or it can try to identify suspi ci ous
or undesirable patterns of access to the object.

All these forms of indirect or mediated access are easy to implement as long as the
intermediary can execute in its own protection domain and as long as there is no way to
bypass the intermediary. Of course, the intermediary does result in some additional
overhead. Extended types as discussed in Sections 9 and ll provide a convenient and

'natural way of implementing intermediaries.

6. CAPA&ILITY-BASED ADDRESSING

System support for limited forms of protection ·domain switching has been implemented
by the ring structure of Multics and by a protection feature in UNIX ·that allows the
effective user identilication to be changed to that of the owner of a program file when
that program file is called [Ritchie 74]. Other approaches to implement domain switching
have been proposed in [Schroeder 72a, 72b, Price 73, and Spier 73]; however, capability
based addressing appears to be the simplest, most thorough, and most frequently proposed
way to enforce small protection domains while a program is executing.

Much can also be done at compile time to enforce the concept of small protection
domains--in particular, much of the modularity needed for reliable software can be
enforced at compile time. The limitations on compiler-enforced protection appear to be
the following:

(l) 	 Compilers cannot handle many of the problems involved in real-time
sharing of data between independent programs.

(2) 	 Protection enforced at compile time would not help to detect
and recover from failures in the hardware or in the system.

(3) 	 The compiler could only handle part of the protection needed for
security. Isolation of users and some control over resource
sharing would still have to be handled by the system. ~

Most of the limitations on compiler-enforced protection can be avoided in a network
of small computers if there is relatively little resource sharing and if most data sharing
is handled by making copies of the data. In such a network, compilers can enforce pro
tection between program modules, and the reduced amount of resource sharing avoids many
(not all) security problems. Capability-based addressing should be most effective for
large, closely-coupled systems--especially for systems designed to support centralized
data management services or large software development activities.

~ 	In addition, if security depends in part on the compilers, then the compilers would
also have to be validated for security. While it may be easier to validate a compiler
than to validate an operating system, the validation of several compilers in addition
to the validation of parts of the operating system would make security validation more
difficult. Note, however, that compiler correctness cannot be completely eliminated
as a security concern. If the operating system is written in a high level language,
then the correctness of the compiler for that language is a security concern. Further
more, the Trojan Horse problem applies to any compiler that is used by anyone with
sensitive information.

18

This section introduces the concept of capability-based. addressing, and the next
section covers its use for an efficient implementation of small protection dhmains. Figure·
8 indicates the relation of capability-based addressing to other terms yet to be ·~overed.

SMALL PROTECTION ____ SYSTEt-1

SECURITY/ "T"s ~ 7

CAPABILITY-BASED) ExTENDED-TYPE RELIABLE
ADDRESSING SOFTWARE~ OBJECTS

FLEXIBLE SHARING

Figure 8 - Capability-Based Addressing

6.1 	 The General Concept of Capabilities

A capability may be thought of as a protected name for an object. While different
systems use capabilities in quite different ways, capabilities generally have the follow
ing properties:

(1) 	 Capabilities are system-wide names for an object. A subject has

access to an object only if it possesses a capability for that

object. §}

(2) 	 A part of the capability determines the access rights that the

capability allows to the object that it names.

(3) 	 Capabilities can be created only by a special low-level part

of the system, and modification of a capability (except to reduce

its access rights) is not allowable. Nevertheless, any subject

in possession of a capability has some freedom to move it, to

copy it, or to pass it as a parameter.

When an object is created, a capability for that object is also created. This initial
capability includes all access rights to the newly-created object. The creator of the
object may give a copy of the capability to other subjects. Recipients of a copy of a
capability may use it to access the object, or they may make other copies of it to give to
other subjects. When a capability is given to another subject, the access rights of the
capability may be restricted. Thus each copy of a capability may a11 ow differing access
rights to the object. Except for the idea of amplification as discussed in Section 9.3,
a capability that is passed to another subject cannot have more access rights than the
capability from which it was copied.

6.2 	 The Use of Capabilities and Capability-Based Addressing

Capabilities as a general addressing and protection mechanism were first proposed
by Dennis and Van Horn [Dennis 66]. Since then some version of capabilities has been
used in the CAL-TSS system [Gray 72, Lampson 76], the BCC 5000 of the Berkeley Computer
Corporation [Lampson 69], the SUE system for the 360 at the University of Toronto
[Sevick 72], the HYDRA system [Wulf 74a, Cohen 75], the Cambridge Capability System
[Needham 72, 74], and the Plessey System 250 [Cosserat 72, 74, England 74]. The reader
should note that most of these systems are experimental in nature, several of them are no

§} 	In the Cambridge Capability System [Needham 74], capabilities are interpreted
r~lative to the capa~ilities in superior processes; and hence, they are not system
Wlde names for an ObJect.

19

longer in use, and none has yet developed into a successful commercial product. Neverthe
less, the idea of a capability has enough appeal so that many different experimenters
continue to develop and use it. Furthermore, capabilities are similar to descriptors as
implemented in systems such as Multics [Organick 72] and the larger Burroughs systems
[Organick 73].

Several systems have used capabilities to facilitate sharing and protection of
objects that are not loaded in primary memory. In these systems, interpretation of
capabilities is done by software, and the primary memory is addressed and controlled by
whatever means is available. Calls to the system software are needed in order to
use a capability or switch to a different protection domain. Typically these calls require
a millisecond or more. ZJ

Other systems have integrated capabilities into the memory addressing mechanisms of
the hardware. In this case a capability is interpreted on each reference to primary
memory. This is called capability-based addressing.

The following explanation of capability-based addressing assumes that memory is
organized into segments where a segment is a variable length sequence of memory words.
A word in a segment is addressed by supplying an identifier for the segment and an offset
that specifies the particular word of the segment. (For simplicity, fixed-size paging
is being omitted from the present discussion since it is easy to add into any of the
addressing schemes discussed.) A descriptor, as implemented in Multics and the Burroughs
systems, is a protected identifier that points to a segment (or possibly to another object
such as an I/0 device). The descriptor also specifies the access rights that are allowed
to the segment. An instruction references a memory word by pointing to a descriptor for
the segment and by providing an offset to specify the desired word of the segment. The
access rights of the descriptor are used to prevent any undesired access to the segment.

Capabilities used for the purpose of addressing segments of memory are almost
indistinguishable from descriptors. They serve the same functions of identifying the
segment and specifying the access rights to the segment. The primary difference between
capabilities and descriptors arises because descriptor-based systems usually provide little
freedom to manipulate the descriptors, and the hardware and low levels of the system soft
ware control all movements of the descriptors. Capability-based systems allow the capa
bilities to be moved and copied. This freedom to manipulate capabilities greatly simpli
fies the implementation of parameter passing during a domain switch; however, it also
creates some security problems that must be handled by approaches discussed in Sections
7 and 11.

The Plessey System 250 [England 72, 74] and the Cambridge Capability System
[Needham 72, 74] have implemented capability-based addressing, and system designs
using capability-based addressing are reported in [Fabry 66] and [Neumann 74, 75].

6.3 Implementations for Capability-Based Addressing

Implementations of capabilities differ considerably; however, a capability usually
consists of an identifier that can be used to find the object, a field defining the type
of the object, and a field defining the access rights. A capability that allows only
read access to a segment is illustrated in Figure 9o The access rights field is probably
a set of bits--one bit for each mode of access. The interpretation of these bits depends
on the type of the object. In some implementations the type field and/or the access
rights field can be determined during interpretation of the capability, and they are not
stored as part of the capability itself [Redell 74a, Neumann 75].

Z/ 	This statement is supported in [Spier 75] and through verbal comments by B. Lampson
about CAL-TSS, by K. Sevick about the University of Toronto SUE system, and by
W. 	 Wulf about HYDRA.

20

TYPE OF AccEss
IDENTIFIER 	 THE OBJECT RIGHTS

POINTER TO THE SEGMENT SEGMENT READ

Figure 9- Internal Structure of a Capability

Control over capabilities is necessary to prevent a user from creating a capability
that he then could use to gain unauthorized access to an object. There are two approaches
to achieve this control:

(l) 	 Always have the capabilities s~ored in special locations such as

capability segments and capability registers.

(2) 	 Include an extra tag bit with each memory word. The tag bit must

be inaccessible to the user. It identifies whether the word

contains (part of) a capability, and the hardware then controls

the modification of words that are identified as capabilities.

The advantages of each approach are discussed in [Fabry 74]. The second implementation
avoids any rigid restrictions on how capabilities can be stored, moved, or copied.

(l) 	 The identifier may be a pointer to the object--it may contain the

address and a bounds for the object, or it may point to the object

indirectly through an indirection table or a page table.

(2) 	 The identifier may be a unique code that is permanently associated

with the object. This is called a unique identifier.

The pointer approach makes it simpler to use the capability to reach the object;
however, it means that the capabilities have to be updated periodically. If the identi
fier points directly to the object, then it must be updated whenever the object is moved;
if it points indirectly then some of this overhead is reduced, but the capability still
must be updated when the entry in the indirection table is changed. If the capabilities
are not updated properly, then a capability for one object may end up pointing to a
different object.

The second approach, based on unique identifiers, makes it unnecessary to keep track
of capabilities and to update them. A unique identifier cannot be reused unless all
capabilities for the previous object have been destroyed. It is usually best not to re
use identifiers. This means that the unique identifiers must be about 50 bits long.
(Fifty bits allows the system to generate a new identifier every microsecond for about
35 years.)

The unique identifier approach requires that the current address of the object must
be determined from the unique identifier each time the capability is used to address the
object. This would be implemented by maintaining a large hash table to associate the
current address of objects with the unique identifiers of the capabilities. Associative
registers would be used to bypass the hash table search for subsequent accesses to the
same object.

The disadvantages of the unique identifiers are the obvious space and time ineffi
ciencies that are inherent in the searching and maintenance of the hash table. With proper
hardware to optimize this, it appears that these disadvantages can be minimized. In ex
change, the system is relieved of any need to modify the contents of capabilities (except
to reduce its access rights), and shared access to objects is simplified.

Unique identifiers have been used in most software-based implementations of capa
bilities. The capability-based addressing used in the Plessey System 250 and the Cambridge

21

Capability System do not use unique identifiers. Appropriate hardware to support the unique
identifier approach to capability-based addressing has not yet been built. ~ For further
discussion on the efficiency of capability-based addressing and on the use of unique identi
fiers in particular, the reader is referred to [Fabry 74, Neumann 75].

7. IMPLEMENTING SMALL PROTECTION DOMAINS

Capabilities provide one reasonable way to implement very flexible protection models.
A capability corresponds to a set of access rights for a single object in the protection
model. A protection domain, which is a row of the protection matrix, is realized as the
set of capabilities that are accessible to the subject. This is illustrated in Figure 10
where part of a protection matrix is given on the left and its realization in terms of
capabilities is depicted on the right. Note that User A can call the editor and pass
access rights for File X by passing a copy of the capability for File X.

CAPABILITIES OF USER fl

s ~ s Editor File X File Y Dictionary

User A enter read read
write write

Editor
readTemplate

I

'
: ID for Editor Proc. enter

ID for File X File read,write

ID for File Y File read,write

CAPABILITIES OF EDITOR TEMPLATE

iiD for Dictionary !File !read

Figure 10- Protection Matrix Stored as Capabilities

If capabilities are used to address all objects in the system, then the concept of

a protection domain corresponds to an address space or a name space. Any object that is

not accessible to a subject cannot even be addressed by the subject.

This section describes the implementation of two aspects of small protection domains;
namely:

(1) 	 Efficient switching between protection domains.

(2) 	 The storage and maintenance of protection domains in a way

that allows them to be established and changed easily--yet

under strict controls.

The potential reliability and correctness of a capability-based implementation of

protection is discussed in subsection 7.3, and possible restrictions on the movement of

capabilities are given in subsection 7.4.

§! In the BCC 5000 computer, unique identifiers were used in capabilities for pages.

22

7•1 Capability-Based Implementation of Efficient Domain Switching

With capability-based addressing it is reasonably straightforward to implement domain
switching as part of the hardware implementation of the call and return operations. With
appropriate hardware support, the overhead to switch protection domains could be comparable
to that of a simple procedure call in existing computer systems. Furthermore, call-by
reference parameters can be included in these cross-domain calls by including capabilities
as parameters. The called domain does not need any additional addressing information or
access authorization in order to use the passed capability. Since the capability is a
system-wide address for the object, there is no danger that the called domain can misin
terpret the capability. The capability also automatically provides access authorization
to the object and enforces limitations on the authorized access.

The most efficient implementation for domain switching is probably achieved by using
stacks [Neumann 75]. The process stack is divided into frames. At any point in its
execution, the process only has access to the stack frame associated with the most recent
protected procedure activation. In calling another protected procedure, parameters for
the call are pushed onto the stack, and the call instruction delimits the new stack frame
to be used by the called procedure. Figure 11 illustrates this by using the example of
a call to an editor. For this illustration, stack frame markers are used to delimit the
stack frames. After the call to·the editor, only that part of the stack above the highest
stack frame marker would be accessible. Note that parameters may be either capabilities
or data.

STATE OF THE STACK BEFORE
CALL TO THE EDITOR AFTER CALL TO THE EDITOR

CAPABILITY TO ENTER THE EDITOR

CAPABILITY FOR FILE y
CAPABILITY FOR FILE X
TEMPORARY DATA AND
OTHER CAPABILITIES

STACK FRAME MARKER
I I

CAPABILITY FOR FILE X

I STACK FRAME MARKER J
CAPABILITY TO ENTER THE EDITOR

CAPABILITY FOR FILE y

CAPABILITY FOR FILE X
TEMPORARY DATA AND
OTHER CAPABILITIES

I STACK FRAME MARKER J

Figure 11 - State of the Stack Before and

After a Protected Procedure Call

When the editor issues a return instruction~ the editor's stack frame is deleted-
except for any return data or capabilities. The return data is left on the top of the
stack (see Figure 12). If the editor has copied a capability for the dictionary onto
the stack, then this copy of that capability is automatically deleted by the return
instruction.

23

RETURN DATA AND
CAPABILITIES

CAPABILITY TO ENTER THE EDITOR

CAPABILITY FOR FILE y
CAPABILITY FOR FILE X

TEMPORARY DATA AND
OTHER CAPABILITIES

I STACK FRAME MARKER I

Figure 12 - Return From the Protected Procedure Call

The protection domain of the called procedure is defined by the capabilities that
are:

(l) 	 passed to it on the stack;

(2) embedded in the procedure code;

{3) available to the procedure from a directory system (see next subsection);

(4) 	 otherwise accessible to the procedure; e.g., if they are stored in a segment

that is accessible to the procedure.

Thus, when viewed in terms of its capability-based implementation, the creation of a new
protection domain for each activation of a re-entrant protected procedure is quite simple.

7.2 	 Directories for the Storage and Sharing of Capabilities

In a protection system which allows a large number of independent protection domains,
the protection domains must be stored and maintained efficiently. If each protection sub
ject had to store large lists of capabilities--one for each object it is allowed to 9Ccess-
then the maintenance of all this information could be a serious problem.

There must also be provisions for controlled sharing of capabilities between distinct
users of the system. If capabilities are stored in data segments, then any segment can be
used to store and share capabilities. To maintain control over capabilities, most long
term storage and sharing should be handled by a system of directories that are specifically
designed for these purposes.

A directory is basically a table of entries that associate user-chpsen names with
capabilities. Directories can have three distinct roles in a capability-based system:

(l) 	 They simplify the storage and maintenance of the information required
to implement a protection matrix, and they preserve the capabilities
of inactive users.

24

(2) 	 They allow objects to be addressed by user-chosen names rather than

by the system-generated capabilities. They also make it possible

to alter the association between a name and an object.

(3) 	 They can be used to solve the lost object problem. If it were

possible to erase the last capability for an existing object,

then that object could never be accessed or deleted. The directory

system could guarantee the existence of at least one capability for

every existing object [Neumann 75].

A subject with access to a given directory is allowed to request the capability
associated with a given name. To facilitate controlled sharing, it is desirable
to have a means of allowing subjects access to some of the capabilities stored in
a directory without necessarily allowing them access to all the capabilities in
the directory. In Multics, this was accomplished by using access control lists
[Saltzer 74]. For a system where each program activation of each user may be a distinct
subject, a generalization of this approach has been suggested based on the idea of locks
and keys [Lampson 71]. A request to the directory system requires both a capability for
that directory and a key. The request is fulfilled only if the key matches a lock that
has been associated with the named entry in the directory. The key can be implemented
as a capability. In this case, the capability is simply a non-forgeable identifier which
is not meaningful to the addressing mechanism. It would be meaningful only to the programs
that implement directories.

Directories themselves are protected objects of the system, and a specific directory
can be accessed only by a subject possessing a capability for that directory. Capa
bilities for directories can be stored in other directories, thus creating a network
structure among the directories. The network structure is usually restricted to be
partially ordered.

Directories are the primary repository for long-term storage of capabilities. Thus
directories play a key role in storing and maintaining protection domains. (Each sub
ject•s protection domain includes all the capabilities that the subject can retrieve
from the directory system.) Directories are also useful as a way of modifying pro
tection domains when users share access to objects. The stack handles the relatively
short-term modifications to protection domains that occur when capabilities are passed
as parameters during domain switches.

7.3 	 Correct Implementation of Protection

Much of the computer security problem is due to our inability to design and implement
large computer systems that are correct. Correct implementation of the basic protection
mechanism is clearly critical to all security. While different objects may be given
different degrees of protection according to their relative sensitivity, no object
in the system can be more secure than the basic protection mechanism. Even objects
that are protected by redundant security controls are not safe if the basic protection
and addressing mechanisms can be broken or bypassed. Thus the correctness of the
protection mechanisms must be guaranteed with a very high degree of confidence.

The implementation of a very flexible protection system is more complex and more
difficult than the implementation of a more rigid and limited protection system. In a
capability-based system the amount of hardware and software that supports the protection
mechanism is greater than that needed to implement a security kernel. However, capa
bility-based addressing simplifies some of the system software, and the small protection
domains make it easier to control the interactions between different system modules.
Furthermore, capability-based addressing automatically avoids many of the common in
tegrity flaws that have been found in existing computer systems. For example, a
common integrity flaw occurs when an address that is passed to a system routine is
changed between the time the system routine checks it for validity and the time it is
used. Similarly, the integrity of several systems has been broken because the system
gives special privileges to anything with a certain name, such as FORTRAN COMPILER.
Capabilities prevent these types of integrity compromises from occurring.

25

The implementation of capabilities using unique identifiers can also handle the
danger that a hardware error might alter a few bits in an address so that the address can
now be used to access a different object. Such a change would usually be detected by the
error-detecting codes that can be expected on any larger future systems. However, in a
system using unique identifiers for capability-based addressing, even if the hardware
does not detect an error, the probability that a capability would be transformed into
capability for another existing object could easily be made exceedingly small--probably
less than 2-30 if the unique identifier is 50 bits long. ~

It is still a difficult task to implement a capability-based system with the
degree of re1 i abi 1 i ty and integrity that is des i rab 1 e for security. Neverthe 1 ess, if
the modularization and reliability techniques discussed in Secti.ons 4 and 10 are used
in the design of the system itself, then a very high level of confidence in the in
tegrity and correctness of the protection systems should be possible. This confidence
might be based in part on proofs of properties. of the sys tern. A sys tern design that
uses capability-based addressing and is structured so that proofs about it are
feasible, is reported in Neumann [75].

7.4 Controls Over the Movement and Storage of Capabilities

If the addressing of all objects in the system is based on capabilities, and if
the protection mechanisms associated with this addressing are correct and reliable, then
the restrictions of a protection matrix can be guaranteed if each subject has access only
to those capabilities that correspond to entries in the protection matrix. This repre
sents a major step toward being able to handle security problems. It means that one only
has to control the movements of capabilities. This is much better than having a variety
of poorly defined concerns about almost everything that happens within the computer
system. Nevertheless, the problem of controlling the movement and copying of capa
bilities is far from trivial--especially since capabilities are designed to be moved
and copied easily in order tq support small protection domains.

With a tagged architecture where extra "tag" bits on each memory word are used to
distinguish capabilities from data, it would be possible to intermix capabilities and
data freely. This has some advantages for implementing multi-segment data structures
with the capabilities used for cross-segment pointers. Nevertheless, to maintain con
trol over capabilities, it may be necessary to prevent capabilities from being stored
in most user data segments. If enough specific facilities are provided for indirectly
manipulating capabilities, then direct manipulation or storage of them may not be
necessary by most users of the system. The stack that handles capabilities passed as
parameters, the directory system, a linkage manager, and an extended-type manager (see
Section 9) may make direct manipulation of capabilities unnecessary for most users.

For security it would be useful if the system could guarantee that the directory
system is the only means to share capabilities between distinct users or to store them
for relatively long periods of time. This would make it much easier to monitor the
security status of the system. It would be useful even if it only applied to capa
bilities for especially sensitive objects. Additional protection features that might
be-used for this purpose are:

~ 	This assumes that there are less than 2-20 extant objects at any one time. It also
assumes that unique identifiers are scattered throughout the space of possible bit
patterns; for example, they could be generated by using an appropriate linear con
gruential sequence (see [Knuth 69], pages 9-19.) Note also that if the unique ·
identifiers are generated using a linear congruential sequence, then the hash address
for a unique identifier may be taken as some subset of the bits in the identifier.
Furthermore, the regular patterns that occur in the final bits of words generated by a
linear congruential relation might allow some optimization in distributing the unique
identifiers among hash buckets.

26

o 	 Capabilities restricted to the stack - Situations arise fairly

frequently where access rights must be passed to an activation

of some service routine, but the service routine should not be

able to preserve those access rights for later use. An option

probably should be available so that specific capabilities

passed as parameters on the stack can be restricted from being

copied off the stack. This would not be so restrictive as to

prevent the capability from being passed as a parameter in a

further procedure call; however, it waul d guarantee that no copy

of the passed capability could exist after the service routine

returns. The right to move the capability off the stack could

be controlled as an access right of the capability.

o 	 Restriction on loading or storing capabilities - If direct manipulation
of capabi 1 iti es by users is all owed, then the right to 1 oad a capa
bility from a segment or store one into a segment should be distinct
from the right to read or write data in the segment. This distinction
is useful to implement provisions of the security classification models
proposed in [Bell 73] and [Walter 75].

o 	 Interprocess communication channels - It must be possible to impose

restrictions on the direct passage of capabilities between processes

via interprocess communications channels.

o 	 Revocation of capabilities - For some security problems it is necessary
to revoke access rights which have previously been given to another
subject. If all relatively long-term storage of capabilities is handled
by,the directory system, then the directories might be able to handle
this problem. If not, then selective revocation of an access right
requires special features because the capabilities that represent
the access rights may have been copied many times. Access rights to
an object can always be revoked by deleting the object (after making
a copy of it), but this may destroy the access rights of other subjects.
It may be desirable to revoke the access rights of a single subject-
and of any other subject that received the access rights from that
subject. Selective revocation of capabilities can be implemented
by creating revocable capabilities that point to an object indirectly
through the main capability for the object. The revocable capability
can thus be distributed to other subjects who can use it to access
the shared object. Access via the revocable capability can be efficient
since associative registers can bypass the indirection on all .but the
first reference to the object. The revocable capability can later be
made ineffective without disturbing the access rights of those subjects
who possess either the main capability or an independent revocable
capability. For a full discussion on the revocation of capab11Hies,
see [Redell 74a, 74b, Neumann 75].

8. FLEXIBLE SHARING

In this survey, the discussion of capabilities has focused on thei~ u~efu1nels to
promote security and reliable software. Nevertheless, one of the primary motivations for
capability-based addressing is to facilitate sharing. This other motivation for capability
based addressing is not covered here. (It is covered in detail in [Fabry 14].) This brief
section is intended to indicate that the approaches to security and reliable software
discussed in the rest of this survey are not only compatible with flexible sharing but also
enhance it.

Figure 13 indicates that capability-based addressing supports flexible sharing and
that flexible sharing supports reliable software. The arrow from flexible, sharing to
reliable software is based on the argument that software would be more reliable if
programmers could more easily build on the work of other programmers rather than con
stantly reinventing the wheel. (Reinvented wheels often turn out to be not quite round.}

27

SMALL PROTECTION SYSTEM
------~

DOMAINS SECURITY

1 ""'I
I
I

CAPABILITY-BASED --~> EXTENDED- TYPE RELIABLE
ADDRESSING OBJECTS SOFTWARE

~

FLEXIBLE SHARING

Figure 13 - Flexible Sharing

In general, sharing is opposed to both security and reliability--it is especially
opposed to security. The simplest way to improve system security is to reduce the amount
of sharing. For example, an especia1ly sensitive applications program can be run on its
own dedicated computer. Unfortunately, sharing and security are often concurrent require
ments. Indeed, if there is no requirement for any form of sharing--not even resource
sharing--then there is no need for internal system security. In many situations--especially
situations involving privacy concerns--security is needed in the presence of very flexible
sharing of both resources and data.

Reliable software is also more difficult when there is extensive sharing; in partic
ular, time-critical sharing of data can result in deadlocks or inconsistent data. On the
other hand, the sharing of program modules could, lead to more reliable software. The idea
of building programs by piecing togeth~r modules from a program library is,not new; however,
it has always been difficult to make this idea work unless the modules perform isolated and
easily definable functions. The difficulty occurs when one tries to integrate the different
modules. In particular, it has been difficult to develop useful library modules that deal
with complex data structures.

Despite the above difficulties, a building block approach to reliable software may
soon become feasible. Recent evolution of the concept of extended types is leading toward
a unit of modularity that is more general and easier to integrate as part of a larger
program. Furthermore, these modu.les can be used to specify and implement common data
structures such as stacks, queues, trees, and symbol tables. Such a module can be quite
general;. for example, a single module that implements trees may be used to obtain a tree
of integers, a tree of stacks, or a tree of any other data structure. Furthermore, the con
cept of a generator, as is proposed in [Wulf 76b], allows another module to iterate over
the elements of any of these trees without making the other module dependent on the internal
workings of the tree module. Two other concepts interact with this approach to program
modularity and re-enforce it. First, very flexible protection is useful to keep one module'
from becoming dependent on the internal workings of.other modules. Second, specification
and proving techniques are more effective in conjundtion with this new approach to modular
ity [Wulf 76a]. To achieve reliable software, it is clearly important that modules' obtained
from a library be fully specified and verified.

The description of extended-type objects in the following two sections may give the
reader some additional insight into why the building block approach to reliable software
could become a reality. For a more thorough treatment of some of the supporting ideas,
the reader is referred especially to [Wulf 76a, 76b, 76c]. It should be noted that this
approach to reliable software is arising mostly from research on programming languages;
and the required support for these new concepts can be handled largely by a compiler;
however, capability-based addressing would extend the usefulness of these concepts and
facilitate their implementation.

28

9. EXTENDED-TYPE OBJECTS

As indicated by Figure 14, this section introduces the final concept covered by this
survey. It also explains how small protection domains and capability-based addressing
support the implementation of extended-type objects.

SMALL PROTECTION SYSTEM
-----~

DOMAINS SECURITY
' , 	/f IT'
/ 	 I/

/
, l X
CAPABILITY-BASED EXTENDED-TYPE 	 RELIABLE)

ADDRESSING OBJECTS 	 SOFTWARE
.....

..... 	 ...-1 ...' 	
,..

....'3
FLEXIBLE SHARING

Figure 14- Overview on Role of Extended-Type Objects

9.1 Background on Typed Objects

The previous discussion of capabilities focused on the addressing and protection of
information in memory. A protection system is simplified if I/0 devices are addressed
and protected in the same way as memory. For example, in the PDP-11, I/0 devices are
addressed as if they were words of memory, and they•can be protected by memory protection
registers. This simplifies and unifies the protection mechanisms; however, in the PDP-11
the flexibility of this protection is limited since the protection of an I/0 device is
not independent of the devices with nejghboring addresses.

A capability can easily be used to address and protect individual I/0 devices.
When a capability is used to address I/0 devices, the access rights of the capability
are interpreted differently for each different type of I/0 device. For example, a capa
bility for an object of type "tape drive" might have "rewind" as one of its modes of
access, while a capability for a card reader would not recognize rewind as a possible
access right • .lQI ' •

Capabilities can be used in an ~ven more general way to address and preterit all
objects in the system--not only memory and I/0 devices but also software-created
virtual objects. For example, procedures and directories may both be implemented as
segments of memory; however, they are different from ordinary segments because the pro
tectable modes of access to them are different. Procedure objects have an additional
mode of access not app1 i cab1 e to data segments; namely, "enter" access. It is criti ca 1
to security that this operaUon be separately protected. Similarly, directories must
be recognized by the protection mechanisms as a different type of object even though

lQ! 	Many systems will do strange things in response to requests for undefined actions such
as "rewind the card reader!" Such requests can frequently be used to break the security
of a system [Edwards 73]. In a system based on capabilities and typed objects, it is
not even possible to formulate such a request in terms of a capability.

29

the hardware does not distinguish directory segments from data segments. Operations such
as add an entry, delete an entry, and change the protection of an entry should all be
separately protectable operations on a directory. These operations on a directory are not
reducible to the usual operations of read, write, append and delete for a data segment, and
the protectipn systems must be prepared to handle these different operations on directories.

In most systems the operations on directories are protected by implementing them
as part of the operating system. In this case the operations on directories are system
calls, and the directories themselves are implemented as system data. Thus, the imple
mentation and protection of directories is accomplished entirely by the system software.
Directories are a good example of the way additions to the system software are often used
to extend the protection system and make it more flexible; however, directories could also
be implemented as one instance of extended-type objects.

A systemthat directly supports ma,ny different object types would be baroque and
complex. Before asking how many different object types a system should support, one
should first ask whether there·has to be a fixed set of object types and whether different
types have to be supported and protected directly by the system. Possibly the system
should just provide a mechanism for creating, defining, and protecting new types. Such
a mechanism has two principal advantages:

(1) 	 It eliminates the need to incorporate into the system the code

and data which support different types of objects. Even the code

and data which implement the directory systems could then be inde

pendent of the rest of the system. In fact, there would no longer

be a clear distinction between "the system" and applications.

(2) 	 The protection system can be extended to support applications pro

grams directly. If applications programmers can create new object

types, then they can extend the protection system and protect

objects in ways that are tailored to a specific application. This

would greatly increase the flexibility of the protection system,

and it would provide a very natural solution to a wide range of

protection problems.

Objects of a type that are not directly implemented by the system are called extended-type
objects [Gray 72, Jones 73, Wulf 74a, Ferrie 74, Neumann 75].

Wulf et al. [Wulf 74a] give an example of a system for creating, maintaining
and accessinQ special bibliographic files. They describe a set of reliability and
security concerns that arise naturally, and they argue that these concerns can most
easily be solved by creating a new extended type and then having bibliographic files
be objects of that extended type. As another example, in a payroll system it might
be desirable to provide distinct access controls for operations such as: modifying
salary, reading salary, changing an address, and totaling all salaries. These
access controls can be provided easily if the payroll files are declared to be obje~ts
of a new extended type.

9.2 	 Nature of Extended Type Objects

Much current research on operating systems structures and on programming languages·
is focusing on generalizations of the concept of a data type. The term "extended-type
objects" is taken from work on operating system structures. The word "extended" is added
to emphasize that new types are definable and that the protection system can be extended
to handle these newly defined types. When it is not needed for emphasis, the word "extended"
can be dropped with no change in meaning. As discussed in Section 10, recent research on
programming languages has led to a similar concept, but quite different terminology is often
used.

From the viewpoint of this survey, a type is defined by the set of operations that
are allowed on objects of that type. This view is consistent with most research on
generalized data types. Thus, segments and directories are different types of objects
because different operations are possible on them. (These operations often correspond to

30

the modes of access to the object; although many operations could be associated with
a single protectable mode of access.)

An extended type is defined by specifying and implementing a set of operations appli
cable to objects of that type. These operations should include operations for creating
and deleting objects of the typeo All these operations could be implemented as software
procedures. These operations normally have a parameter that indicates the object on
which the operation is to be performed.

Objects of a new type can be created once the type has been defined. These ob
jects are distinct from the type itselfo 11/ The objects may be viewed abstractly simply
as primitive entities that can be manipulated only by the operations of the type. For ex
ample, a directory is defined as an entity that allows the operations of adding and de
leting entries, changing the accessibility of an entry, etc. ·

Objects must also have an implementation or an underlying representation which is
defined in terms of other objects. The representation of a directory may be a linked
list in a segment. The implementations of the operations on a directory manipulate
the linked list in this segment. Ideally, the subject that initiates this operation
does not need to know how the directory is represented and can take an abstract view
of it. Furthermore, if the operations on the typed object are to be individually pro
tected, then the subject that initiates the operation to add an entry to a directory
must not be allowed write access to the segment that implements the directory. Write·
access to the segment must be available only during execution of the procedure that
implements the add operation.

Extended-type objects are implemented or represented in terms of more primitive
objects--segments, I/0 devices, or objects of other previously-defined types. The
extended-type object should be thought of as distinct from the objects used to rep
resent it--the representation exists at a different "level gf abstraction." Jn
particular, subjects that initiate operations on an extended-type object should
normally not have direct access to the representation. The value of protecting
the representations is not just for security; as discussed in Section 10, the
protection also separates distinct levels of abstraction and protects the repre
sentation from undesirable modifications by the code of other modules.

9.3 The Implementation and Protection of Extended-Type Objects

Only the operations of an extended-type object are to have access to the objects
that are used to implement or represent the extended-type object. Thus, each call
to one of the operations requires a domain switch. This domain switch is straight
forward when there is only one underlying object that contains the representations
of the extended-type objects. In this case, the operations of the extended-type may
have the access rights for the underlying representation, and all that is required
is a simple domain switch. In the more general case there may be many objects of the
extend.ed type (e.g., many directories) and each may be represented by its· own under
lying object(s) (e.go, a segment that represents a single directory). An instance
of an operation does not need access to the underlying representation for all the
objects of the type, it only needs access to the representation of the object that
it is to operate ono If each instance of the operations had access to the represen
tation of all the objects, then the entire burden of selecting the right represen
tation. would be placed on the code of the operationo This might be dangerous for
securityo It is preferable if the access rights for the object that contains the
representation object are passed to the. operation as a parameter. The problem with
this is that the caller does not have the right to access the representation either;
the caller only has the right to call the operations on the extended-type object.
Three methods to handle this problem haVe been proposed in the literature:

11/ 	The new type may be treated as a distinct object of the protection system. This allows
the same protection matrix to control access to the type itself; in particular it can
control modifications to the operations of the type. The type itself then has a type
which may be taken as a special system-supported primitive type called TYPE [Wulf 74a].

31

http:extend.ed

(1) 	 Amplification - The HYDRA system [Jones 73, Wulf 74a] allows a
called procedure to amplify the access rights of certain
capabilities. Amplification allows extended-type objects such as
directories to be handled along the lines of the following example.
A subject that has a capability with "add" access to a specific
directory, calls the "add" operation and passes the capability for
the directoryo The add operation has a special "template" capa
bility that allows it to amplify the access rights of capabilities
for objects of type "directory." In this case the template capa
bility would allow the add operation to obtain read and write
access to the directory. (Amplifi'cation of access rights is actually
more general than just what is needed just to implement extended-type
objects.) In HYDRA, domain switching and amplification are done
entirely in software; ideas for a hardware supported implementation
of amplification are discussed in [Ferrie 74].

(2) 	 Indirection - The Plessey System 250 [Cosserat 74] allows a procedure
to be called indirectly through another object. This provides most
of the features of extended types. To perform an operation on an
extended type object, the caller would use an indirect "enter" right
for the object. This transfers control to a procedure that implements
the operations on the object. Using this indirection facility,
directories could be implemented as follows. Stored at special
locations in each directory are pointers to the code that implements
operations such as the operation of adding an entry to a directory.
To add an entry to a directory, a subject can use a capability with
indirect "enter" access for the directory, and control is transferred
to the procedure indicated by the pointer in the directory. This
approach does not provide separate controls over the rights to add,
delete, or read an entryo

(3) 	 Extended-tyee manager- In the system designed by Neumann et al.
[Neumann 75J, there are different capabilities for an extended-type
object and for its representation. The mappings from capabilities
for objects of extended type to capabilities for their representation
are maintained by a special module in the system called the Extended
Type Manager. This module returns a capability for the representation
object if it is passed a capability for an object of extended type
and if the request is made by an operation defined for that type.

An efficient implementation of extended-type objects clearly requires small pro
tection domains with very efficient switching between protection domains. A domain
switch is required with each call to an operation on an extended-type object. Capa
bility-based addressing is useful for implementing extended-types because it pro
vides a uniform and general way of naming and addressing all objects in the system.
With capability-based addressing, extended-type objects can be addressed and pro
tected as if they were primitive objects.

10. TYPED OBJECTS AND PROGRM1 MODULARIJY

The general concept of a typed object can be used as a primary means to decompose and
modularize software. Section 4 discussed the value of protection in a well-structured
and modularized program. This section discus~es the use of typed objects to obtain that
structure and modularity. Many recent approaches to structured programming involve a
generalization of the concept of typed objects. An operating system with an efficient
extended-type mechanism would facilitate these approaches to structured programming •.
Indeed, the assembly language of such a system would have many,of the data structuring
features that are desirable in a high level language [Cosserat 74].

32

The role of this section with respect to the general terms of the overview is indi
cated by Figure 15. Since small protection domains are such an integral part of extended
types, many of the discussions in this section also apply to the arrow from small protection
domains to reliable software.

SMALL PROTECTION 	 SYSTEM---7
DOMAINS 	 SECURITY,.."?J

..... I 	 /1'..... I 	 I
..... 	 I

..... '\1/. 	 I
I><

CAPABILITY-BASED ----7 EXTENDED-TYPE 	 RELIABLE)
ADDRESSING , OBJECTS 	 SOFTWARE

.....
'j 	 ~

FLEXIBLE SHARING

Figure 15 - Extended-Type Objects to Support Reliable Software

10.1 Background--Horizontal and Vertical Modularity

A careful statement of a programming problem usually leads to a decomposition of the
problem into a number of separate tasks. The decomposition of a program into distinct
problem-level tasks is called horizontal modularization. Unfortunately, horizontal
modularity alone does not lead to an adequately modularized program for the following
reasons:

o 	 The decomposition into problem-level tasks usually does not divide
the program into small modules. When the problem is described in
user terminology, the smallest units or tasks which are meaningful;
often turn into quite large programs. An input module, an input
validation module, or an update module are meaningful in user terms.
but they are only a first step toward dividing the program into small,
independent moduleso

o 	 Different problem-level tasks or modules often need access.to common
information. If the data structures for this information are declared
as global :to the entire system, then there is little hope that modules
can be independent of each other or that the interactions between
modules can be clearly defined [Wulf 73].

o 	 Ideally, a module should only deal with one level of abstraction. A
module may implement operations that are meaningful at the user
level, or it may ·deal with the' idiosyncracies of the machine, or it
may handle some intermediate concepts or data structures; but it should
not implement concepts from different levels of abstraction. A module
is very difficult to comprehend if one program statement implements
a problem requirement and the next statement handles some subtle
efficiency concern arising fr9m pecularities of the hardware.

33

http:access.to

The divisfon .of a program into modules according to different levels of abstraction
is c.alled vertical modularity. Both horizontal and vertical modularity are needed if
modules are to be small and clearly defined, and if significant benefits are to be obtained
from protection between modules. Vertical modularity is closely related to the concept of
hierarchical structure; however, the latter term has been used with many different specific
connotations [.Parnas 74]. The term vertical modularity is used here as a general term that
does not connote a specific approach.

10.2 Programming Language Support for Modularity

Vertical modularity of programs is hard to achieve because current computer systems
and programming languages do not support an appropriate unit of program modularity.
The procedure is the most common unit of program modularity and is supported by most
computer systems and programming languages; however, as a unit for vertical modularity
it is often inadequate because:

(1) 	 The Algol scope of variables rule is wrong when procedures are used
as the unit of vertical modularity. Variables generally do not need
to be global across different levels of abstractiono A unit of ver
tical modularity should not automatically have access to variables
declared at higher levels of abstraction.

(2) 	 A procedure cannot easily preserve information between successive
calls, and thus it cannot be used as a unit of modularity to en
capsulate a data base. Furthermore, it is, at best, difficult for
a procedure to gather statistics about its use, or to incorporate
redundaAcy checks based on the consistency of successive calls to
the procedure.

(3) 	 A unit of modularity often needs many entry points. It is awkward
to use a.parameter to obtain the effect of many entry points.

Recent research on programming languages has addressed the problem of providing
a more generally useful unit of program modularity; for example:

o 	 The class concept was introduced into Simula 67 [Dahl 68] as an

aid to modularity. The main features of a class are: (1) it

can define data objects that are normally preserved between calls,

and (2) a class consists of several procedures or entry points.

Thus, a class defines a set of operations each of which may

operate on data objects. The original version of a class did

not protect its data objects from direct access by other parts

of the program; however, more recent versions do include pro

tection [Palme 74].

o 	 Liskov and Zilles have developed the language CLU which im

plements a concept called function clusters [Liskov 74, 75].

These clusters are similar to classes except that the represen

tation of the cluster's data objects is not accessible from

outside the cluster. Clusters implement the same idea of typed

objects that was discussed in Section 9. Enforcement of the

access restrictions is done by the compiler.

o 	 The language Alphard has incorporated a concept called a form

[Wulf 74, 76a, 76c]. It provides the features of a cluster

described above, but is more general. For example, a form can

accept parameters that allow only limited access rights to the

object passed. Alphard also introduced the concept of abstract

sequencing operations that allow a program to iterate through

a data object without making the calling program dependent on

the length or structure of data object [Wulf 76b].

34

o 	 Parnas has proposed a method for decomposing programs into rigorously
specified modules [Parnas 72a, 72b, 72c]. He suggests that a module
can be defined in terms of a set of operations and a set of value
functi.ons supported by the module. (Va 1ue functions return a va1ue
but dri not change the state of the module.) Parnas makes sure that
the representation of the module's state (or its data) is hidden
from other moduleso At the level of specifications he accomplishes
this by not defining the representation at allo The module is de
fined abstractly by defining the effect of all the operations on the
value-returning functions and by defining all error conditionso

The search for the most effective unit for program modularity is still going on;
however, based on recent research trends, it seems safe to conclude that a unit of
modularity should have the three properties listed below. These three properties cor
respond (in reverse order) to the three reasons why a procedure is not adequate as a
unit of vertical modularity.

(1) 	 A module can have many operations or entry points which can

be called from other modules.

(2) 	 A module can have a set of data objects (or a state) which

is preserved between successive operations.

(3) 	 Interactions between modules can be explicitly defined and

rigorously controlled. In particular, the representation of

the data objects maintained by the module is not directly or

automatically accessible by other modules.

Large units of modularity have always had the first two of these properties. The
class concept from SIMULA extended these two properties to small units of modularity
by providing programming language support for them. The third property adds protection
to these units of modularity so that interactions between modules can be explicitly
defined and controlled.

Terminology--and the underlying concepts--in this subject area is still in a state
of flux. The term "extended type" arose from work on operating systems. The term
"abstract data type" is a fairly general term that is now widely but not universally
used by the programming language community. Furthermore, the following terms have all
been used with an equivalent or similar meaning: class, cluster, form, opaque type,
type, space, mode, module, abstract machine, virtual machine, and procedure.

10.3 Extended Types as Modules for Reliability

Modularity achieved by extended types is useful for software reliability in several
ways that have not yet been mentioned:

o 	 Proofs - The implementation of a program as a hierarchy of typed objects
simplifies a proof of correctness [Wulf 74, 76a, Robinson 75].
Much of the simplification comes because assumptions about the content
and structure of the representation of a typed object depend only on the
correctness of the operations of that type--they are not dependent on
the actions of any other modules.

o 	 Redundancy - The type is a natural unit in which to incorporate redundancy
checks. The abi 1 i ty to preserve information between successive operations
is important to implement this redundancy.

o 	 Error detection and recovery- The definition of error conditions is
relatively easy when it is done as part of the specifications for a
type. Recovery techniques can be structured by defining appropriate
error calls and error returns as part of the external interface of
the modules [Parnas 72a].

35

o 	 Modifications and maintenance - Since the representation of typed ob
jects is hidden from other modules, the representation can be changed
without affecting other modules. Programs can be implemented quickly
as a hierarchy of types, and then the more cri ti ca1 types can be tuned
for efficiency [Linden 76]. The fact that the data structures can be
modified without affecting any module except the one that maintains
that data structure is critical to making this optimization work.

o 	 Security - The extended type is a useful unit for security as discussed
in the next section.

11. CONTROLLING AND MONITORING ACCESS TO OBJECTS

In order to encourage good programming practices and to support the concept of small
protection domains, protection mechanisms should not prevent a program from delegating
subtasks to other protected procedures. Thus, a program should be able to pass any of its
own access rights to another protected procedure. On the other hand, there are situations
where one user of the system must be prevented from making access rights available to
another user.

Capabilities make it easy for one subject to pass access rights to any other subject.
They directly implement a reasonably complete set of discretionary protection mechanisms.
Discretionary protection mechanisms allow each subject, at its own discretion, to decide
which of its own access rights are to be given to other subjects. There is also a need for
non-discretionary controls so that certain security policies can be enforced without de
pending on the discretion of other users of the system. Extended types provide a convenient
way to implement many non-discretionary controls. Figure 16 indicates that this section
deals with the relation between extended-type objects and system security. More specifically,
it discusses non-discretionary protection mechanisms--including classification systems. It
discusses both extended types and other means to support non-discretionary controls.

SMALL PROTECTION 	 SYSTEM
----7DOMAINS 	 SECUR lTV

I 	 11\I I
I

I
I

CAPABILITY-BASED _ ~ EXTENDED-TYPE 	 RELIABLE "" ><
ADDRESSING 7 OBJECTS 	 SOFTWARE

......
'~

FLEXIBLE SHARING

Figure 16 - Extended-Type Objects to Support Systems Security

11.1 Non-Discretionary Controls

The most basic way to enforce non-discretionary controls is to restrict the users'
access rights for objects; however, simple restriction of access rights does not provide
all the desired controls. For example, it is often desirable to monitor the way an object
is being used. Similarly, it may be desirable to prevent one user from giving his access
rights to another user. These examples can be handled easily by using extended types. To
monitor and control access to certain objects, a new extended type is created for the
objects and the operations of the type are programmed to enforce whatever controls are to

36

be maintained. If accesses to the objects are to be monitored and audited, the monitoring
and auditing controls are built into the operations of the new type. If redundant control
is to be maintained over the set of authorized users of the objects, then a check on the
user's identity can be programmed into the operations of the type. Thus, as long as the
users are only given access rights to the extended-type object, control can be maintained
over which users can access the object even if some of the users give away copies of their
capabilities for the extended-type objects. In general, extended-types provide a natural
way to enforce the forms of mediated access discussed in Section 5.3.

With the extended type mechanism, users can be given very limited access rights that
allow them to perform only preprogrammed operations on objects. Furthermore, additional
controls and monitoring can be built into the programmed operations that are allowed by
the access right. In most cases, a new type does not have to be created just to handle the
controls and monitoring. They can be embedded in the operations of an existing type
definition.

Non-discretionary controls implemented by using extended types involve some additional
overhead to carry out the programmed checking. Unless the object to be protected is a
primitive object with simple operations, the additional time required for the protection
checking should not cause an unreasonable increase in the time required to carry out·an
operation on the object. If many relatively primitive objects, such as segments, have to
be protected against misuse by authorized users, then it may be necessary to use a more
centralized system of non-discretionary controls involving a security classification system
as well as system monitoring and auditing.

11.2 Security Classification Systems

When non-discretionary controls are to be imposed in a centralized way, they usually
involve a classification system. In a classification system, all users and all objects
in the system are assigned a classification. A classification may be thought of as a
security tag. The classifications may have a partial ordering relation between themselves
so that they take on a lattice structure. Then any user is allowed access to an object
only if the user's classification is either the same as the classification of the object
or else is higher according to the ordering of the classifications.

The basic military classification system forms a very simple lattice with all points
of the lattice being ordered along a single line (see Figure 17). In this system, a user
who is authorized access to secret information is also authorized access to confidential
and unclassified information, but not to top secret information. A corporation that wanted
to separate information according to different departments might use a very broad classi
fication lattice such as that in Fiqure 18. In practice, the classification lattice would
have a more complex structure.

Fiqure 17 - Simple Military Classification Lattice

37

MANAGEMENT

PERSONNEL

OPEN
INFORMATION

Figure 18 - A simple Classification Lattice for a Corporation

The problem of enforcing a non-discretionary classification system is more complex
than it might seem at first. It is not enough to control the access rights that are
passed from one user to another. If one user (A) has access rights for an object, and
if the classification system is to prevent another user (B) from accessing the object,
then it may do little good just to prevent A from giving the access rights to B. If A
wants to subvert the classification system and allow B to access the object, then A can
bypass restrictions on passing the access rights if he simply agrees to access the ob
ject on behalf of B; that is, A can set up a service whereby A carries out operations
on the object whenever B requests them.

In general, if A has access to an object, and if B is to be prevented from accessing
it, then either A must be trusted, or else all communication between ·A and B must be
forbiddeno If A, and all the programs executing on behalf ofA, is trusted, then we
are back to a discretionary system. If one is only concerned about inadvertant error
on A's part, then it may be useful to prevent A from giving access rights to B;
however, in order to implement rigorous non-discretionary controls, it is necessary· to
control all the potential communication channels between A and B. If the security con
cern is only that information from the object must not be disclosed to ,B, then only
communications from A to B must be forbidden; and, conversely, if the object only needs
to be protected from modifications originated by B, then only communication from B to
A must be cut~

Classification systems are used primarily to protect information from being disclosed.
It follows that, as long as users (or their programs) are not trusted, a user job should not
be allowed to write or modify an object with a classification lower than the classification
of any object previously read. The problem is that such objects could be used to disclose
information of the higher classification. A non-discretionary classification system was
incorporated in the ADEPT-50 system [Weissman 68], and classification systems have been
formally defined in [Bell 73] and [Walter 75].

In a capability-based system that supports extended-type objects there are several
possible approaches to implement a non-discretionary classification system.

In the first place, the protection matrix can enforce a classification system if the
protection matrix is initialized so that users have access only to objects of appropriate
classifications and have no way to obtain access to objects of another classification.
(This does not handle the problem of covert communication channels as discussed in
section 5.2.) In a capability-based system, this means the initial distribution of

38

capabilities to users would have to be done very carefully. If used by itself, this
approach probably would not lead to very high confidence that the desired classification
system was being enforced. A minor mistake in distributing capabilities could have
unpredictable effects on the classification policy since seemingly unimportant access
rights might enable users of different classifications to set up a communications
channel between them. Furthermore, since the capabilities would be disbursed through
out the system, it would be hard to reevaluate whether the current dissemination of
capabilities enforces·the desired security policies.

A second approach is to maintain a much tighter control over the dispersion of capa
bilities. For example, all users might be forced to obtain the.ir capabilities from the
directory system, and they might be prevented from using any other means to preserve
capabilities for more than short periods of time. With all permanent capabilities stored
in the directory system, it would be relatively easy to determine who has access to any
given object; however, small changes in the directory system might still have disasterous
effects on the classification policy and would have to be very carefully controlled.

A third approach uses the extended type mechanism to enforce a classification system.
All access to classified objects are explicitly controlled by a classified document
manager that is implemented as an extended type [Neumann 75]. This approach need not be
as inefficient as it might appear; however, it might work best when only a small fraction
of the users are accessing classified objects.

The final approach is to build classification controls into the central part of the
hardware and software as a second, independent protection mechanism. The need for some
form of classification system seems to be sufficiently general so that it could legiti
mately be incorporated into the basic design of the system. This means that each user
job and each object in the system would be tagged with a classification. These classi
fications could be checked each time a new object is made accessible to a user job.
Note that this check on classifications would be in addition to the access controls
built into the capability-based addressing.

12. CONCLUSION

Research has now progressed to the point where it is possible to discern the rough
outlines of a potential breakthrough on both security and reliable software.· No one
idea will lead to such a breakthrough, but the proper combination of ideas that are
now emerging could revolutionize both of these areas. The changes in computer systems
that would help bring these ideas to fruition were outlined in this survey.

The reader should be aware that many of the ideas covered in this survey are still
the subject of basic research, and before they can be put into practice they need a more
rigorous examination than they have be~n given either here or elsewhere in the literature.
However, further basic research is probably not the most important element on the critical
path toward a breakthrough. The most important problem is to overcome the inertia which
makes it easier to continue doing things as they have been done in the past.

The ideas discussed in this survey involve a substantial amount of discontinuity
with the past. The basic addressing mechanisms of computer systems must be changed, and
new structures for protection and modularity must be introduced into programming languages.
These new ideas are not likely to be introduced into common practice unless there is a
very strong economin incentive to do so and unless the ideas can be introduced in evo
lutionary stages:

(1) 	 Economic incentive- Improved reliability and security usually involve
higher costs. The new ideas promise to promote security and lead
to substantially more reliable software while at the same time
reducing costs--especially software development costs. Hard
evidence to support this promise of decreased costs would go a
long way toward overcoming inertia. Unfortunately, this evidence
is very difficult to obtain without building a complete computer
system that incorporates the new featues.

39

(2) 	 Evolutionary stages - The current investment in computer systems and
software precludes the development of large computer systems that are
not compatible with older systems. Basic changes to a computer•s
addressing and protection mechanisms inevitably result in a substan
tially different computer. Nevertheless, the new addressing and
protection mechanisms might make it easier to support multiple
external interfaces. Compatibility with old systems could then be
maintained by providing an external interface which simulates the
interface of the old system.

A breakthrough on security and reliable software will not be easy to achieve.
Several new ideas must be put into practice--and any one of the ideas may not succeed
if it is not properly supported by other equally new ideas. It will be a major under
taking to achieve an effective combination of these ideas. Nevertheless, such a
breakthrough must be sought. Ever more critical software applications, skyrocketing
software costs, and the growing requirement for computer privacy all demand the
development of computer systems which are at least as new and different as those
discussed in this survey.

ACKNOWLEDGMENTS

The author became familiar with many of the ideas in this survey during the
course of discussions with Peter Neumann, Robert Fabry, Lawrence Robinson, Karl Levitt
and Daniel Edwards. When possible, their ideas have been referenced; however, many
of their ideas are such an integral part of the overall approach that they can no
longer be isolated from it. Suggestions that have helped to improve the accuracy and
clarity of the document have also been received from Jerome Saltzer, Butler Lampson,
Steven Lipner, Stuart Katzke, Thomas Lowe, and the editor and referees. Nevertheless,
the author is solely responsible for any inaccuracies or lack of clarity that remain.
My thanks to the above and to my wife, Betty, whose patience has been outstanding and
whose editing was ruthless. Thanks also to Kathleen Durant and Anne Shreve for many
long hours spent typing various drafts of the manuscript.

40

REFERENCES

[Anderson 72] Anderson, J., Computer security technology planning study.
Air Force Elect. Systems Div., ESD-TR-73-51, (Oct. 1972).

[Bell 73] Bell, D., LaPadula, L., Secure computer systems. Air Force
Elec. Systems Div., ESD-'rR-73-278, (Nov. 1973).

[Branstad 73) Branstad, D. K., Privacy and protection in operating
systems. Computer., Vol. 6, (Jan. 1973) pages 43-46.

[Cohen 	75] Cohen, E., Jefferson, D., Protection in the Hydra Operating
System. Proc. of the Fifth Symposium on Operating Systems
Principles., ACM Operating System Review, Vol. 9, No.5, (Nov.
1975) pages 141-160.

[Conway 72) Conway, R. w., Maxwell, w. L., Morgan, H. L., On the
implementation of security measures in information systems. Comm.
ACM, Vol. 15, No. 4, {Apr. 1972) pages 211-220.

[Cosserat 74) Cosserat, D. C., A data model based on the capability
protection mechanism. !RIA Internat. Workshop on Protection in
Operating Systems, Rocquencourt, France, (August 1974) pages
35-54.

[Dahl 68) Dahl, 0.-J., Myhrhaug, B., Nygaard, K., The Simula 67 Common
Base Language. Norwegian Computing Center, Oslo, (1968).

[Dennis 66) Dennis, J. B., van Horn, E. c., Programming semantics for
multiprogrammed computations. Comm. ACM, Vol. 9, No. 3, {March
1966) 143-155.

[Dijkstra 68) Dijkstra, E. w., The Structure of the THE Multiprogramming
System. Comm. ACM, Vol. 11, No. 5, (May 1968) pages 341-346.

[Dijkstra 72) Dijkstra, E. w., Notes on structured programming.
Structured Programming, Dahl, 0.-J., Dijkstra, E. W., Hoare, C.
A. R., 	Academic Press, (1972).

[Edwards 73) Edwards, D., private communication, (1973).

[England 72) England, D. M., Architectural features of System 250.
International Switching Symposium, Cambridge, MA, (June 1972).

[England 74) England, D. M., Capability concept mechanism and structure
in System 250. !RIA Internat. Workshop on Protection in Operating
Systems, Rocquencourt, France, (August 1974) pages 63-82.

[Fabry 	68) Fabry, R. s., Preliminary description of a supervisor for a
machine oriented around capabilities. ICR Quart. Rpt. 18, Univ.
of Chicago, (August 1968).

(Fabry 	73) Fabry, R., Dynamic verification of operating system decisions.
Comm. ACM, Vol. 16, No. 11, (Nov. 1973) pages 659-668.

[Fabry 	74] Fabry, R. s., Capability-based addressing. Comm. ACM, Vol.
17, No.7, (July 1974) pages 403-412.

[Ferrie 74] Ferrie, J., Kaiser, D., Lanciaux, D., Martin, B., An
extensible structure for protected systems' design. !RIA
Internat. Workshop on Protection in Operating Systems,
Rocquencourt, France, (August 1974).

41

[Graham 72) Graham, G. s., Denning, P. J., Protection--principle and
practice. APIPS Conf. Proc. 1972, SJCC, AFIPS Press, Montvale,
NJ, (1972) pages 417-42~ -- -

[Gray 721 Gray, J., Lampson, B. w., Lindsay, B., Sturgis, H., The control
structure of an operating system. Research report, IBM Watson
Research Center, (July 1972).

(Hoare 	72] Hoare, c. A. R., Notes on data structuring. Structured
Pro~ramming, Dahl, 0.-J., Dijkstra, E. W., Hoare, C. A. R.,
Aca ernie Press, (1972).

[Hoare 	74) Hoare, c. A. R., Monitors: an operating system structuring
concept. Comm. ACM, Vol. 17, No. 10, (Oct. 1974) pages 549-557.

[Hoffman 71) Hoffman, L. J., The formulary model for access control.
APIPS Conf. Proc. 1971 FJCC., APIPS Press, Montvale, NJ, (1971)
'5'8'7-b0r.

[Jones 	73) Jones, A. J., Protection in programmed systems. Ph.D.
Dissertation, Carnegie-Mellon Univ., Pittsburgh, PA., (June 1973)
139 pages.

(Knuth 	69) Knuth, D. E., The Art of Computer Programming, Vol.~·
Sem inumer ica.J.:. Al9orTthm'S:- Add 1son-Wesley Publ. Co. , (19 69) •

(Lampson 69) Lampson, B. w., Dynamic protection structures. AFIPS Conf.
Proc. 1969, PJCC, AFIPS Press, Montvale, NJ, (1969) pages 27-~

(Lampson 71) Lampson, B. w., Protection. Proc. of the Fifth Annual
Princeton Conf. on Information Sciences and Systems., Princeton
Univ., (March 1971) pages 437-443, (Reprinted in ACM Operating
Systems Review, Jan. 1974) ••

[Lampson 73) Lampson, B. W,, A note on the confinement problem. Comm.
ACM, Vol. 16, No. 10, (Oct. 1973) pages 613-615.

(Lampson 76) Lampson, B. w., Sturgis, H. E., Reflections on an operating
system design. Comm. ACM, Vol. 19, No. 5, (May 1976) pages
251-266.

[Linden 76) Linden, T. A., The use of abstract data types to simplify
program modifications. Proc. of Conference on Data: Abstraction,
Definition and Structure, SIGPLAN Notices, Vol. 8, No. 2, (March
1976) pages 12-23.

(Lipner 74) Lipner, s., Chm., A panel session--security kernels. AFIPS
Conf. Proc. 1974 NCC, AFIPS Press, Montvale, NJ, Vol. 43, paqes-
9"93"=99-9-.

(Lipner 75) Lipner, s. B., A comment on the confinement problem. ACM
Operating System Review, Vol. 9, No. 5, (Nov. 1975) pages
192-196.

[Liskov 74! Liskov, B., Zi11es, s., An approach to abstraction. Proc. of
a Symposium on Very High Level Languages, SIG~~AN Notices, Vol. 9,
No.4, (April 1974).

[Liskov 751 Liskov, B., Zilles, s., Specification techniques for data
abstractions. IEEE ·rrans. on Software Engineering., Vol. 1, No.
1, (March 1975) page57=Is.

42

(Morris 73a] Morris, J. H., Protection in programming languages. Comm.
ACM, Vol. 16, No. 1, (Jan. 1973) pages 15-21.

(Morris 73b) Morris, J. H., Types are not sets. ACM Symposium on
Principles of Programming Lanquaqes, Boston, MA, (1973) pages
120-124.

(Needham 72) Needham, R., Protection systems and protection
implementations. AFIPS Conf. Proc. 1972 FJCC, AFIPS Press,
Montvale, NJ, Vol.~pages 57I=S7B-.--

(Needham 74) Needham, R. M., Walker, R. D. H., Protection and process
management in the CAP computer. IRIA Internat. Workshop on
Protection in Operating Systems, Rocquencourt, France, (August
1974) pages 155-160.

[Neumann 74) Neumann, P. G., Fabry, R. s., Levitt, K. N., Robinson, L.,
Wensley, J. H., On the design of a provably secure operating
system. IRIA Internat. workshop on Protection in Operating
Systems, Rocquencourt, France, (August 1974) pages 161-176.

(Neumann 75) Neumann, P. G•• Robinson, L., Levitt, K. N., Boyer, R. s.,
Saxena, A. R., A provably secure operating system. Stanford
Research Institute Final Report, Menlo Park, CA, (June 1975).

(Organick 72) Organick, E. I., The Multics System: An Examination of its
Structure. MIT Press, Cambridge, MA, (1972).--

(Organick 73) Organick, E. I., Computer System Organization--Tho
85700/86700 Series. Academic Press, New York, (1973).

[Palme 	73) Palme, J., Protected program modules in Simula 67. Research
Inst. of National Defense, Stockholm 80 Sweeden, (July 1973) 25
pages.

(Parker 75) Parker, D. B., Computer abuse assessment. Stanford Research
Institute, Menlo Park, CA, (Dec. 1975) 33 pages.

(Parnas 72a] Parnas, D. L., A technique for software maodule
specification with examples. Comm. ACM, Vol. 15, No. 5, (May
1972) 330-336.

(Parnas 72b) Parnas, D. L., On the criteria to be used in decomposing
systems into modules. Vol. 15, No. 12, (Dec. 1972) 1053-Hl58.

(Parnas 72c) Parnas, D. L., Some conclusions from an experiment in
software engineering techniques. AFIPS Conf. Proc. 1972 FJCC,
AFIPS Press, Montvale, NJ, (1972) pages 325-32g:-- -------

(Parnas 74) Parnas, D. L., On a "buzzword•: hierarchical structure.
Information Processing 74- Software., IFIP Congress 74, North
Holland Publ. _Co., (l974T pages 336-339.

(Popek 	 74a) Popek, G. J., Cline, c. s., Verifiable secure operating system
software. AFIPS Conf. Proc. 1974 NCC, AFIPS Press, Montvale, NJ,
(1974) pages 145-151. -

(Popek 	 74b) Popek, G. J., Protection structures. Computer., Vol. 7, No.
6, (June 1974) pages 22-31.

43

[Price 	73) Price, R. w., Implications of a Virtual Memory Mechanism for
Implementing Protection in a Family of Operating Systems. Ph.D.
dissertation, Carnegie-Mellon Univ., (June 1973) 244 pages.

[Redell 74a) Redell, D. R., Fabry, R. s., Selective revocation of
capabilities. IRIA Internat. Workshop on Protection in Operating
Systems, Rocquencourt, France, (August 1974) pages 197-210.

[Redell 74b) Redell, D. D., Naming and Protection in Extendible Operating
Systems. (Ph.D. Thesis Univ. of Calif. Berkeley) MAC TR-140, MIT,
Cambridge, MA, (Nov. 1974).

[Ritchie 74) Ritchie, D. M., Thompson, K., The UNIX time-sharing system.
Comm. ACM, Vol. 17, No. 7, (July 1974) .pages 365-376.

[Robinson 75) Robinson, L., Levitt, K. N., Neumann, P. G., Saxena, A. R.,
On attaining reliable software for a secure operating system.
Inter. Conf. on Reliable Software, SIGPLAN Notices, Vol. 10, No.
6, (June 1975).

[Saltzer 74) Saltzer, J. H., Protection and the control of information
sharing in Multics. Comm. ACM, Vol. 17, No. 7, (July 1974) pages
388-402. -- -

[Saltzer 75) Saltzer, J. H., Schroeder, M. D., The protection of
information in computer systems. Proc. of~ IEEE., Vol. 63, No.
9, (Sept. 1975) pages 1278-1308.

[Schiller 73) Schiller, w., Design of a security kernel for the
PDP-11/45. Air Force Elect. Systems Div., ESD-TR-73-294, (Dec.
1973).

[Schroeder 72a) Schroeder, M., Saltzer, J., A hardware architecture for
implementing protection rings. Comm. ACM, Vol. 15, No. 3, (March
1972) 143-147.

[Schroeder 72b) Schroeder, M., Cooperation of mutually suspicious
subsystems in a computer utility. Ph.D. dissertation, MIT,
Cambridge, MA, (1972).

[Sevick 72) Sevick, K. c., Project SUE as a learning experience. AFIPS
Conf. Proc. 1972 FJCC, AFIPS Press, Montvale, NJ, (1972) pages
sn-s1s:

[Simon 	69) Simon, H. A., The Sciences of the Artificial. MIT Press,
Cambridge MA, (1969r:

[Spier 	73) Spier, M. J., Hastings, ·r. N., Cutler, D. N., An experimental
implementation of the kernel/domain architecture. ACM Operating
Systems Review, Vol. 7, No. 4, (October 1973) pages 8-21.

[Walter 75) walter, K. et al., Structured specification of a security
kernel. Inter. Conf. on Reliable Software, SIGPLAN Notices, Vol.
10, No. 6, {Apr. 1975) pages 285-293.

[Weissman 69) Weissman, c. , Security controls in the ADEPT-50 time
sharing system. AFIPS Conf. Proc., 1969 FJCC, AFIPS Press,
Montvale, NJ, (19~or:-15, pages 119-1~

[Wulf 73) Wulf, w. A., Shaw, M., Global variables considered ha~mful.
SIGPLAN Notices, Vol. 8, No. 2, (Feb. 1973) pages 28-34.

44

[Wulf 74a] Wulf, w. A., et al., HYDRA: the kernel of a multiprocessor
operating system. Comm. ACM, Vol. 17, No. 6, (June 1974) pages
337-345.

[Wulf 74b) Wulf, w. A., Toward a language to support structured programs.
Computer Science Dept., Carnegie-Mellon Univ., Pittsburg, PA,
(Apr. 1974).

[Wulf 76a) Wulf, w. A., London, R. L., Shaw, M., Abstraction and
verification in Alphard: Intro. to language and methodology.
Tech. Report, carnegie-Mellon Univ., (June 1976).

[Wulf 76b) wulf, W. A., London, R. L., Shaw, M., Abstraction and
verification in Alphard: Iteration and generators. Tech. Report,
Carnegie-Mellon Univ., (June 1976).

[Wulf 76c) Wulf, w. A., London, R. L., Shaw, M., Abstraction and
verification in Alphard: A symbol table example. Tech. Report,
Carnegie-Mellon Univ., (June 1976).

45

"

NPs:rT4A (REV. 7-73)

U.S."DEPT. OF COMM.
 3. Recipient's Accession No.J1. PUBLICATION OR REPORT NO. ,2. Gov't Accession
BIBLIOGRAPHIC DATA No.

SHEET NBS TN-919
4. TITLE AND SUBTITLE 5. Publication Date

Ope.rati:ng System Structures to Support August 1976

Security and Reliable Software 6. Performing Organization Code

7. AUTHOR(S) 8. Performing Organ. Report No.
Theodore A. Linden

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. Project/Task/Work Unit No.
640.1112

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE 11, Contract/Grant No.

WASHINGTON, D.C. 20234

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP) 13. 	Type of Report & Period
Covered

National Bureau of Standards FinalDepartment of Commerce
14. Sponsoring Agency CodeWashington, D.C. 20234

15. SUPPLEMENTARY NOTES

16. 	ABSTRACT (A 200-word or less factual summary of most si!Jni{icant information. If document includes a si~niftcant
bibliography or literature survey1 mention it here.)

Security has become an important and challenging goal in the design of computer systems
This survey focuses on two system structurtng concepts that support security; namely,
small protecti:on domai.ns and extended.. type objects. These two concepts are especially
promising because they also support reltable software by encouraging and enforcing
highly modular software structures tn both systems software and in applications pro~
grams. Small protectton domains allow each subunit or module of a program to be
executed in a restricted environment that can prevent unanticipated or undesirable
actions by that module. Extended~type objects provide a vehicle for data abstraction
by allowing objects of new types to be manipulated in terms of operations that are
natural for these objects. This provides a way to extend system protection features
so that protection can be enforced i'n terms of appltcations ...oriented operations on
objects. Thi:s survey also explains one approach toward implementing these concepts
thoroughly and efficl'ently....an approach based on the concept of capabilities in~
corporated into the addressing structure of the computer, Capability...based addressing
is seen as a practical way to support future requirements for security and reliable
software without sacrtfidng requirements for performance, fl exi·bi 1ity, and sharing.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper
name; separated by semicolons)

Capabtl tty~ capabil tty....based addressing~ computer securtty; extended~type objects;
operating system structures; protection; reliable software; reliability; security;
small _protectton domatnsi types

21. NO. OF PAGES
(THIS REPORT)

19. SECURITY CLASS18. AVAILABILITY [X] Unlimited

D 	For Official Distribution. Do Not Release to NTIS . 	 UNCL ASSIF IE D

22. Price
Washington, D.C. 20402, SD Cat. No. Cl3, ; 9

20. SECURITY CLASS[:K\ Order From Sup. of Doc., U.S. Government Pl.tt~l Office
(THIS PAGE) (

$1.25
Springfield, Virginia 22151 ·

0 	 Order From National Technical Information Service (NTIS)
UNCLASSIFIED

*U.S. GOVERNMENT PRINTING OFFICE: 1976 210-801/373 1-3

51

http:domai.ns

Color In our Dally Lives,
a new consumer booklet
from the National Bureau of
Standards, takes the reader
step by step through the
fundamental principles
of color and lfght, families
of color, influence of colors
upon other colors, and
color harmony. This full
color, 32-page illustrated
booklet highlights
practical applications
of color, including:
• 	 Your personal

color plan.
• 	 Your color

environment.
• 	 Color plans

for the home.
• 	 Using. color to drama

tize or to hide.
• 	 Color and illumination.
• Experimenting with color.
This new basic guide can
serve as your handbook in
helping you make decisions
about how to use color in your
life and make it work for you.
Order Color.ln Our Dally Lives
prepaid for $1.70 from the
Superintendent of Documents,
U.S. Government Printing
Office. Washington, D.C. 20402.
Use SO Catalog No. C13.53:6.

http:Color.ln

NBS TECHNICAL PUBLICATIONS

PERIODICALS
JOURNAL OF RESEARCH reports National Bureau

of Standards research and development in physics,
mathematics, and chemistry. It is published in two sec
tions, available separately:

• Physics and Chemistry (Section A)

Papers of interest primarily to scientis'ts working in

these fields. This section covers a broad range of physi

cal and chemical research, with major emphasis on

standards of physical measurement, fundamental con

stants, and properties of matter. Issued six times a

year. Annual subscription: Domestic, $17.00; Foreign,

$21.25.

• Mathematical Sciences (Section B)

Studies and compilations designed mainly for the math

ematician and theoretical physicist. Topics in mathe

matical statistics, theory of experiment design, numeri

cal analysis, theoretical physics and chemistry, logical

design and programming of computers and computer

systems. Short numerical tables. Issued quarterly. An

nual subscription: Domestic, $9.00; Foreign, $11.25.

DIMENSIONS/NBS (formerly Technical News Bul
letin)-This monthly magazine is published to inform
scientists, engineers, businessmen, industry, teachers,
students, and consumers of the latest advances in
science and technology, with primary emphaais on the
work at NBS. The magazine highlights and reviews such
issues as energy research, fire protection, building tech
nology, metric conversion, pollution abatement, health
and safety, and consumer product performance. In addi
tion, it reports the results of Bureau programs in
measurement standards and techniques, properties of
matter and materials, engineering standards and serv
ices, instrumentation, and automatic data processing.

Annual subscription: Domestic, $9.45; Foreign, $11.85.

NONPERIODICALS

Monographs-Major contributions to the technical liter
ature on various subjects related to the Bureau's scien
tific and technical activities.

Handbooks-Recommended codes of engineering and
industrial practice (including safety codes) developed
in cooperation with interested industries, professional
organizations, and regulatory bodies.

Special Publications-Include proceedings of confer
ences sponsored by NBS, NBS annual reports, and other
special publications appropriate to this grouping such
as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series-Mathematical tables,
manuals, and studies of special interest to physicists,
engineers, chemists, biologists, mathematicians, com
puter programmers, and other& engaged in scientific
and technical work.

National Standard Reference Data Series-Provides
quantitative data on the physical and chemical proper
ties of materials, compiled from the world's literature
and critically evaluated. Developed under a world-wide

program coordinated by NBS. Program under authority
of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for
these data is the Journal of Physical and Chemical
Reference Data (JPCRD) published quarterly for NBS
by the American Chemical Society (ACS) and the Amer
ican Institute of Physics (AlP). Subscriptions, reprints,
and supplements available from ACS, 1155 Sixteenth
St. N. W., Wash. D. C. 20056.

Building Science Series-Disseminates technical infor
mation developed at the Bureau on building materials,
components, systems, and whole structures. The series
presents research results, test methods, and perform
ance criteria related to the structural and environmen
tal functions and the durability and safety character
istics of building elements and systems.

Technical Notes-Studies or reports which are complete
in themselves but restrictive in their treatment of a
subject. Analogous to monographs but not so compre
hensive in scope or definitive in treatment of the sub
ject area. Often serve as a vehicle for final reports of
work performed at NBS under the sponsorship of other'
government agencies.

Voluntary Product Standards-Developed under pro
cedures published by the Department of Commerce in
Part 10, Title 15, of the Code of Federal Regulations.
The purpose of the standards is to establish nationally
recognized requirements for products, and to provide
all concerned interests with a basis for common under
standing of the characteristics of the products. NBS
administers this program as a supplement to the activi
ties of the private sector standardizing organizations.

Federal Information Processing Standards Publications
(FIPS PUBS)-Publications in this series collectively
constitute the Federal Information Processing Stand
ards Register. Register serves as the official source of
information in the Federal Government regarding stand
ards issued by NBS pursuant to the Federal Property
and Administrative Services Act of 1949 as amended,
Public Law 89-306 (79 Stat. 1127), and as implemented
by Executive Order 11717 (38 FR 12315, dated May 11,
1973) and Part 6 of Title 15 CFR (Code of Federal
Regulations).

Consumer Information Series-Practical information,
based on NBS research and experience, covering areas
of interest to the consumer. Easily understandable
language and illustrations provide useful background
knowledge for shopping in today's technological
marketplace.

NBS Interagency Reports (NBSIR)-A special series of
interim or final reports on work performed by NBS for
outside sponsors (both government and non-govern
ment). In general, initial distribution is handled by the
sponsor; public distribution is by the National Technical
Information Service (Springfield, Va. 22161) in paper
copy or microfiche form.

Order NBS publications (except NBSIR's and Biblio
graphic Subscription Services) from: Superintendent of
Documents, Government Printing Office, Washington,
D.C. 20402.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey
bibliographies are issued periodically by the Bureau:
Cryogenic Data Center Current Awareness Service

A literature survey issued biweekly. Annual sub
scription: Domestic, $20.00; foreign, $25.00.

Liquefied Natural Gas. A literature. survey issued quar
terly. Annual subscription: $20.00.

Superconducting Devices and Materials. A literature

survey issued quarterly. Annual subscription: $20.00.·
Send subscription orders and remittances for the
preceding bibliographic services to National Bu
reau of Standards, Cryogenic Data Center (275.02)
Boulder, Colorado 80302.

U.S. D~PARTMENT OF COMMERCE
National Bureau of Standards
Washington, D.C. 20234

POSTAGE ANO FEES PAlO
U.S. DEPARTMENT OF COMMERCEOFFICIAL BUSINESS

COM-2.1~
U.S.MAIL

Penalty for Private Use, $300 1\APPA SYSTEMS1 INC~
Philadelphia Operations SPECIAL FOURTH-CLASS RATE

BOOK1015 [!. Yor!\ f;o2d

75 YEARS
NBS

1901-1976

