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FOREWORD
 

The Federal Information Processing Standards (FIPS) Publication Series of the National 
Institute of Standards and Technology (NIST) is the official series of publications relating 
to standards and guidelines adopted and promulgated under the provisions of the Federal 
Information Security Management Act (FISMA) of 2002. 

Comments concerning FIPS publications are welcomed and should be addressed to the 
Director, Information Technology Laboratory, National Institute of Standards and 
Technology, 100 Bureau Drive, Stop 8900, Gaithersburg, MD 20899-8900. 

Charles H. Romine, Director 
Information Technology Laboratory 
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Abstract 

This Standard specifies the Secure Hash Algorithm-3 (SHA-3) family of functions on 
binary data. Each of the SHA-3 functions is based on an instance of the KECCAK 
algorithm that NIST selected as the winner of the SHA-3 Cryptographic Hash Algorithm 
Competition. This Standard also specifies the KECCAK-p family of mathematical 
permutations, including the permutation that underlies KECCAK, in order to facilitate the 
development of additional permutation-based cryptographic functions. 

The SHA-3 family consists of four cryptographic hash functions, called SHA3-224, 
SHA3-256, SHA3-384, and SHA3-512, and two extendable-output functions (XOFs), 
called SHAKE128 and SHAKE256. 

Hash functions are components for many important information security applications, 
including 1) the generation and verification of digital signatures, 2) key derivation, and 3) 
pseudorandom bit generation. The hash functions specified in this Standard supplement 
the SHA-1 hash function and the SHA-2 family of hash functions that are specified in 
FIPS 180-4, the Secure Hash Standard. 

Extendable-output functions are different from hash functions, but it is possible to use 
them in similar ways, with the flexibility to be adapted directly to the requirements of 
individual applications, subject to additional security considerations. 

Key words: computer security, cryptography, extendable-output function, Federal 
Information Processing Standard, hash algorithm, hash function, information security, 
KECCAK, message digest, permutation, SHA-3, sponge construction, sponge function, 
XOF. 
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Federal Information
 
Processing Standards Publication 202
 

May 2014 

Announcing the 

SHA-3 STANDARD:  PERMUTATION-BASED HASH
 
AND EXTENDABLE OUTPUT FUNCTIONS
 

Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National 
Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce 
pursuant to Section 5131 of the Information Technology Management Reform Act of 1996 
(Public Law 104-106), and the Computer Security Act of 1987 (Public Law 100-235). 

1. Name of Standard: SHA-3 Standard: Permutation-Based Hash and Extendable-Output 
Functions (FIPS PUB 202). 

2. Category of Standard: Computer Security Standard, Cryptography. 

3. Explanation: This Standard (FIPS 202) specifies the Secure Hash Algorithm-3 (SHA-3) 
family of functions on binary data. Each of the SHA-3 functions is based on an instance of the 
KECCAK algorithm that NIST selected as the winner of the SHA-3 Cryptographic Hash 
Algorithm Competition. This Standard also specifies the KECCAK-p family of mathematical 
permutations, including the permutation that underlies KECCAK, which can serve as the main 
components of additional cryptographic functions that may be specified in the future. 

The SHA-3 family consists of six functions. Four are cryptographic hash functions, called 
SHA3-224, SHA3-256, SHA3-384, and SHA3-512; two are extendable-output functions 
(XOFs), called SHAKE128 and SHAKE256. 

For hash functions, the input is called the message, and the output is called the (message) digest 
or the hash value. The length of the message can vary; the length of the digest is fixed. A 
cryptographic hash function is a hash function that is designed to provide special properties, 
including collision resistance and preimage resistance, that are important for many applications 
in information security. For example, a cryptographic hash function increases the security and 
efficiency of a digital signature scheme when the digest is digitally signed instead of the message 
itself. In this context, the collision resistance of the hash function provides assurance that the 
original message could not have been altered to a different message with the same hash value, 
and hence, the same signature. Other applications of cryptographic hash functions include 
pseudorandom bit generation, message authentication codes, and password security. 
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The four SHA-3 hash functions in this Standard supplement the hash functions that are specified 
in FIPS 180-4 [1]: SHA-1 and the SHA-2 family. Together, both Standards provide resilience 
against future advances in hash function analysis, because they rely on fundamentally different 
design principles. In addition to design diversity, the hash functions in this Standard provide 
some complementary implementation and performance characteristics to those in FIPS 180-4. 

For XOFs, the length of the output can be chosen to meet the requirements of individual 
applications. The XOFs can be specialized to hash functions, subject to additional security 
considerations, or used in a variety of other applications. The approved uses of XOFs will be 
specified in NIST Special Publications. 

The KECCAK-p permutations were designed to be suitable main components for a variety of 
cryptographic functions, including keyed functions for authentication and/or encryption. The six 
SHA-3 functions can be considered as modes of operation (modes) of the KECCAK-p[1600,24] 
permutation. In the future, additional modes of this permutation or other KECCAK-p permutations 
may be specified and approved in FIPS publications or in NIST Special Publications. 

4. Approving Authority: Secretary of Commerce. 

5. Maintenance Agency: U.S. Department of Commerce, National Institute of Standards and 
Technology (NIST), Information Technology Laboratory (ITL). 

6. Applicability: This Standard is applicable to all Federal departments and agencies for the 
protection of sensitive unclassified information that is not subject to Title 10 United States Code 
Section 2315 (10 USC 2315) and that is not within a national security system as defined in Title 
40 United States Code Section 11103(a)(1) (40 USC 11103(a)(1)). Either this Standard or 
Federal Information Processing Standard (FIPS) 180 must be implemented wherever a secure 
hash algorithm is required for Federal applications, including as a component within other 
cryptographic algorithms and protocols. This Standard may be adopted and used by non-Federal 
Government organizations. 

7. Specifications: Federal Information Processing Standard (FIPS) 202, SHA-3 Standard: 
Permutation-Based Hash and Extendable-Output Functions (affixed). 

8. Implementations: The KECCAK-p permutations shall only be implemented within FIPS-
approved or NIST-recommended modes of operation, such as the SHA-3 functions that are 
specified in this Standard. The SHA-3 functions may be implemented in software, firmware, 
hardware or any combination thereof. Only implementations of these functions that are validated 
by the Cryptographic Algorithm Validation Program will be considered as complying with this 
Standard. Information about the validation program can be obtained at 
http://csrc.nist.gov/groups/STM/cavp/index.html. 

9. Implementation Schedule: This Standard becomes effective on [ ]. 
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10. Patents: Implementations of the SHA-3 functions in this Standard may be covered by U.S. or 
foreign patents. 

11. Export Control: Certain cryptographic devices and technical data regarding them are 
subject to Federal export controls. Exports of cryptographic modules implementing this Standard 
and technical data regarding them must comply with these Federal regulations and be licensed by 
the Bureau of Export Administration of the U.S. Department of Commerce. Information about 
export regulations is available at: http://www.bis.doc.gov/index.htm. 

12. Qualifications: Although this Standard specifies mathematical functions that are suitable 
components for information security applications, conformance to this Standard does not assure 
that a particular implementation is secure. The responsible authority in each agency or 
department shall assure that an overall implementation provides an acceptable level of security.  
This Standard will be reviewed every five years in order to assess its adequacy. 

13. Waiver Procedure: The Federal Information Security Management Act (FISMA) does not 
allow for waivers to a FIPS that is made mandatory by the Secretary of Commerce. 

14. Where to Obtain Copies of the Standard: This publication is available electronically at 
http://csrc.nist.gov/publications/. Other computer security publications issued by NIST are 
available at the same web site. 
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1 INTRODUCTION 

This Standard specifies a new family of functions that supplement SHA-1 and the SHA-2 family 
of hash functions specified in FIPS 180-4 [1]. This family, called SHA-3 (Secure Hash 
Algorithm-3) is based on KECCAK [2], the algorithm1 that NIST selected as the winner of the 
public SHA-3 Cryptographic Hash Algorithm Competition [3]. The SHA-3 family consists of 
four cryptographic hash functions and two extendable-output functions. These six functions 
share the structure that is described in [4], namely, the sponge construction; functions with this 
structure are called sponge functions. 

A hash function is a function on binary data (i.e., bit strings)2 for which the length of the output 
is fixed. The input to a hash function is called the message, and the output is called the (message) 
digest or hash value. The digest often serves as a condensed representation of the message. The 
four SHA-3 hash functions are named SHA3-224, SHA3-256, SHA3-384, and SHA3-512; in 
each case, the numerical suffix indicates the fixed length of the digest, e.g., SHA3-256 produces 
256-bit digests. The SHA-2 functions, i.e., SHA-224, SHA-256, SHA-384 SHA-512, SHA-
512/224, and SHA-512/256, offer the same set of digest lengths. Thus, the SHA-3 hash functions 
can be implemented as alternatives to the SHA-2 functions, or vice versa. 

An extendable-output function (XOF) is a function on binary data in which the output can be 
extended to any desired length. The two SHA-3 XOFs are named SHAKE128 and SHAKE256.3 

The suffixes “128” and “256” indicate the security strengths that these two functions can 
generally4 support, in contrast to the suffixes for the hash functions above, which indicate the 
digest lengths. SHAKE128 and SHAKE256 are the first XOFs that NIST has standardized. 

The six SHA-3 functions are designed to provide special properties, such as resistance to 
collision, preimage, and second preimage attacks. The level of resistance to these three types of 
attacks is summarized in Appendix A.1.1. Cryptographic hash functions are fundamental 
components in a variety of information security applications, such as digital signature generation 
and verification, key derivation, and pseudorandom bit generation. 

The digest lengths in FIPS-approved hash functions are 160, 224, 256, 384, and 512 bits. When 
an application requires a cryptographic hash function with a non-standard digest length, an XOF 
is a natural alternative to constructions that involve multiple invocations of a hash function 
and/or truncation of the output bits. However, XOFs are subject to the additional security 
consideration that is described in Appendix A.1.2. 

1 More precisely, the competition called for four hash functions, and KECCAK is a larger family of functions.
 
2 For many hash functions, there is a (very large) bound on the length of the input data.
 
3 The name “SHAKE” was proposed in [5] to combine the term “Secure Hash Algorithm” with “KECCAK.”
 
4 An exception is when the output length is relatively small; see the discussion in Appendix A.1.1.
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Each of the six SHA-3 functions employs the same underlying permutation as the main 
component in the sponge construction. In effect, the SHA-3 functions are modes of operation 
(modes) of the permutation. In this Standard, the permutation is specified as an instance of a 
family of permutations, called KECCAK-p, in order to provide the flexibility to modify its size 
and security parameters in the development of any additional modes in future documents. 

The four SHA-3 hash functions differ slightly from the instances of KECCAK that were proposed 
for the SHA-3 competition [3]. In particular, two additional bits are appended to the messages, in 
order to distinguish the SHA-3 hash functions from the SHA-3 XOFs, and to facilitate the 
development of new variants of the SHA-3 functions that can be dedicated to individual 
application domains. The mechanism for achieving these goals is called domain separation; see 
Sec. 2.1. 

The two SHA-3 XOFs are also specified in a manner that allows for the development of 
dedicated variants. Moreover, the SHA-3 XOFs are compatible with the Sakura coding scheme 
[6] for tree hashing [7], in order to support the development of parallelizable extensions, to be 
specified in a separate document. 

Most of the notation and terminology in this Standard is consistent with the specification of 
KECCAK in [8]. 

2 GLOSSARY 

2.1 Terms and Acronyms 

bit	 A binary digit: 0 or 1. In this Standard, bits are indicated in the Courier 
New font. 

byte	 A sequence of eight bits. 

capacity	 In the sponge construction, the width of the underlying function minus the 
rate. 

column	 For a state array, a sub-array of five bits with constant x and z coordinates. 

digest	 The output of a cryptographic hash function. Also called the hash value. 

domain separation	 For a function, a partitioning of the inputs to different application domains 
so that no input is assigned to more than one domain. 

extendable-output A function on bit strings in which the output can be extended to any 
function (XOF) desired length. 

FIPS	 Federal Information Processing Standard. 

FISMA	 Federal Information Security Management Act. 

2
 



 

  

 
          

  
  

  
 

  
 

         
    

 
    

         
   

 
  

 
        

     
 

    
 

           
   

 
        

 
 

           
  

 
           

     
  

 
    

 
        

 
    

 
     

 
           

    
 

hash function	 A function on bit strings in which the length of the output is fixed. The 
output often serves as a condensed representation of the input. 

hash value	 See digest. 

KDF	 Key derivation function. 

KECCAK	 The family of all sponge functions with a KECCAK-f permutation as the 
underlying function and multi-rate padding as the padding rule. KECCAK 
was originally specified in [8]. 

lane	 For a state array of a KECCAK-p permutation with width b, a sub-array of 
b/25 bits with constant x and y coordinates. 

message	 A bit string of any length. 

multi-rate padding	 The padding rule pad10*1, whose output is a 1, followed by a (possibly 
empty) string of 0s, followed by a 1. 

NIST	 National Institute of Standards and Technology. 

plane	 For a state array of a KECCAK-p permutation with width b, a sub-array of 
b/5 bits with a constant y coordinate. 

rate	 In the sponge construction, the number of input bits processed or output 
bits generated per invocation of the underlying function. 

round	 The sequence of step mappings that is iterated in the calculation of a 
KECCAK-p permutation. 

round constant	 For each round of a KECCAK-p permutation, a lane value that is 
determined by the round index. The round constant is the second input to 
the ι step mapping. 

round index	 The value of the integer index for the rounds of a KECCAK-p permutation. 

row	 For a state array, a sub-array of five bits with constant y and z coordinates. 

SHA-3	 Secure Hash Algorithm-3. 

SHAKE	 Secure Hash Algorithm KECCAK. 

sheet	 For a state array of a KECCAK-p permutation with width b, a sub-array of 
b/5 bits with a constant x coordinate. 

3
 



 

  

      
 

        
       

        
  

 
        

 
 

       
      

 
 

        
          

  
 

           
 

 
  

 
         

  
 

  
 

    

     
 

    
 

    
 
     

 
  

 
           

   
 
   

 
       

slice	 For a state array, a sub-array of 25 bits with a constant z coordinate. 

sponge construction	 The method originally specified in [4] for defining a function from the 
following: 1) an underlying function on bit strings of a fixed length, 2) a 
padding rule, and 3) a rate. Both the input and the output of the resulting 
function are bit strings that can be arbitrarily long. 

sponge function	 A function that is defined according to the sponge construction, possibly 
specialized to a fixed output length. 

state	 An array of bits that is repeatedly updated within a computational 
procedure. For a KECCAK-p permutation, the state is represented either as 
a three-dimensional array or as a string. 

state array	 For a KECCAK-p permutation, a 5-by-5-by-w array of bits that represents 
the state. The indices for the x, y, and z coordinates range from 0 to 4, 0 to 
4, and 0 to w-1, respectively. 

step mapping	 One of the five components of a round of a KECCAK-p permutation: θ, ρ, 
π, χ, or ι. 

string	 A sequence of bits. 

width	 In the sponge construction, the fixed length of the inputs and the outputs 
of the underlying function. 

XOF	 See extendable-output function. 

XOR	 The Boolean Exclusive-OR operation, denoted by the symbol ⊕. 

2.2 Algorithm Parameters and Other Variables 

A A state array.
 

A[x, y, z] For a state array A, the bit that corresponds to the triple (x, y, z). 


b The width of a KECCAK-p permutation in bits.
 

The capacity of a sponge function. 

d The length of the digest of a hash function or the requested length of the 
output of an XOF, in bits. 

f The generic underlying function for the sponge construction. 

ir The round index for a KECCAK-p permutation. 
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l For a KECCAK-p permutation, the binary logarithm of the lane size, i.e., 
log2(w). 

Lane (i, j) For a state array A, a string of all the bits of the lane whose x and y 
coordinates are i and j. 

M The input message to a SHA-3 function. 

nr The number of rounds for a KECCAK-p permutation. 

pad The generic padding rule for the sponge construction. 

Plane (j) For a state array A, a string of all the bits of the plane whose y coordinate 
is j. 

r The rate of a sponge function. 

RC For a round of a KECCAK-p permutation, the round constant. 

w The lane size of a KECCAK-p permutation in bits, i.e., b/25. 

2.3 Basic Operations and Functions 

0s	 For a positive integer s, 0s is the string that consists of s consecutive 0s. 

len(X) 	 For a string X, len(X) is the length of X in bits. 

X[i]	 For a string X and an integer i such that 0 ≤ i < len(X), X[i] is the bit of X 
with index i. Bit strings are depicted with indices increasing from left to 
right, so that X[0] appears at the left, followed by X[1], etc. For example, 
if X = 101000, then X[2]=1. 

Truncs (X) 	 For a positive integer s and a string X, Truncs (X) is the string comprised of 
bits X[0] to X[s – 1].  For example, Trunc2(10100)=10. 

X ⊕ Y	 For strings X and Y of equal bit length, X ⊕ Y is the string that results from 
applying the Boolean exclusive-OR operation to X and Y at each bit 
position. For example, 1100 ⊕ 1010=0110. 

X || Y	 For strings X and Y, X || Y is the concatenation of X and Y. For example, 
11001 || 010=11001010. 

m/n	 For integers m and n, m/n is the quotient, i.e., m divided by n. 

m mod n	 For integers m and n, m mod n is the integer r for which 0 ≤ r < n and m−r 
is a multiple of n. For example, 11 mod 5 =1, and −11 mod 5 =4. 
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⌈x⌉	 For a real number x, ⌈x⌉ is  the least integer that is not strictly less than x. 
For example, ⌈3.2⌉=4, ⌈−3.2⌉=−3, and ⌈6⌉=6. 

log2(x)	 For a positive real number x, log2(x) is the real number y such that 2y = x. 

min(x, y)	 For real numbers x and y, min(x, y) is the minimum of x and y. For 
example, min(9, 33) = 9. 

2.4 Specified Functions 

The following higher-level functions are specified in this Standard:
 

θ, ρ, π, χ, ι The five step mappings that comprise a round. 


KECCAK[c] The KECCAK instance with KECCAK-f [1600] as the underlying permutation 

and capacity c. 

KECCAK-f [b] The family of seven permutations originally specified in [8] as the 
underlying function for KECCAK. The set of values for the width b of the 
permutations is {25, 50, 100, 200, 400, 800, 1600}. 

KECCAK-p[b, nr] The generalization of the KECCAK-f [b] permutations that is defined in this 
Standard by converting the number of rounds nr to an input parameter. 

pad10*1 The multi-rate padding rule for KECCAK, originally specified in [8]. 

RawSHAKE128 An intermediate function in the definition of SHAKE128. 

RawSHAKE256 An intermediate function in the definition of SHAKE256. 

rc The function that generates the variable bits of the round constants. 

Rnd The round function of a KECCAK-p permutation. 

SHA3-224 The SHA-3 hash function that produces 224-bit digests. 

SHA3-256 The SHA-3 hash function that produces 256-bit digests. 

SHA3-384 The SHA-3 hash function that produces 384-bit digests. 

SHA3-512 The SHA-3 hash function that produces 512-bit digests. 

SHAKE128 The SHA-3 XOF that generally supports 128 bits of security strength, if 
the output is sufficiently long; see Appendix A.1.1. 
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SHAKE256 The SHA-3 XOF that generally supports 256 bits of security strength, if 
the output is sufficiently long; see Appendix A.1.1. 

SPONGE[f, pad, r]	 The sponge function in which the underlying function is f, the padding 
rule is pad, and the rate is r. 

3 KECCAK-p PERMUTATIONS 

In this section, the KECCAK-p permutations are specified, with two parameters: 1) the fixed 
length of the strings that are permuted, called the width of the permutation, and 2) the number of 
iterations of an internal transformation, called a round. The width is denoted by b, and the 
number of rounds is denoted by nr. The KECCAK-p permutation with nr rounds and width b is 
denoted by KECCAK-p[b, nr]; the permutation is defined for any b ∈ {25, 50, 100, 200, 400, 800, 
1600} and any positive integer nr. 

A round of a KECCAK-p permutation, denoted by Rnd, consists of a sequence of five 
transformations, which are called the step mappings. The set of values for the b-bit input to the 
permutation, as it undergoes successive applications of the step mappings, culminating in the 
output, is called the state. 

The notation and terminology for the state are described in Sec. 3.1. The step mappings are 
specified in Sec. 3.2. The KECCAK-p permutations are specified in Sec. 3.3. The relationship of 
the KECCAK-p permutations to the KECCAK-f permutations that were defined for KECCAK in [8] 
is described in Sec. 3.4. 

3.1 State 

The state for the KECCAK-p[b, nr] permutation is comprised of b bits. The specifications in this 
Standard contain two other quantities related to b: b/25 and log2(b/25), denoted by w and l, 
respectively. The seven possible values for these variables that are defined for the KECCAK-p 
permutations are given in the columns of Table 1 below. 

b 25 50 100 200 400 800 1600 
w 1 2 4 8 16 32 64 
l 0 1 2 3 4 5 6 

Table 1: KECCAK-p permutation widths and related quantities 

It is convenient to represent the input and output states of the permutation as b-bit strings, and to 
represent the input and output states of the step mappings as 5-by-5-by-w arrays of bits. 

If S denotes a string that represents the state, then its bits are indexed from 0 to b–1, so that 

S = S[0] || S[1] ||  … || S[b-2] || S[b-1]. 
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If A denotes a 5-by-5-by-w array of bits that represents the state, then its indices are the integer 
triples (x, y, z) for which 0 ≤ x < 5, 0 ≤ y < 5, and 0 ≤ z < w. The bit that corresponds to (x, y, z) is 
denoted by A[x, y, z]. A state array is a representation of the state by a three-dimensional array 
that is indexed in this manner. 

3.1.1 Parts of the State Array 

Figure 1:  Parts of the state array, organized by dimension [8] 
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The state array for a KECCAK-p permutation, and its lower-dimensional sub-arrays, are illustrated 
in Figure 1 above for the case b = 200, so that w = 8. The two-dimensional sub-arrays are called 
sheets, planes, and slices, and the single-dimensional sub-arrays are called rows, columns, and 
lanes. The algebraic definitions of these sub-arrays are given in the Glossary, in Sec. 2.1. 

3.1.2 Converting Strings to State Arrays 

Let S denote a string of b bits that represents the state for the KECCAK-p[b, nr] permutation. The 
corresponding state array, denoted by A, is defined as follows: 

For all triples (x, y, z) such that 0 ≤x< 5, 0 ≤y< 5, and 0 ≤z<w, 

A[x, y, z]=S [w(5y+x) + z]. 

For example, if b=1600, so that w=64, then 

A[0, 0, 0] =S [0] A[1, 0, 0] =S [64] A[2, 0, 0] =S [128] A[3, 0, 0] =S [192] 
A[0, 0, 1] =S [1] A[1, 0, 1] =S [65] A[2, 0, 1] =S [129] A[3, 0, 1] =S [193] 
A[0, 0, 2] =S [2] A[1, 0, 2] =S [66] A[2, 0, 2] =S [130] A[3, 0, 2] =S [194]

⋮ ⋮ ⋮ ⋮ 
A[0, 0, 62] =S [62] A[1, 0, 62] =S [126] A[2, 0, 62] =S [190] A[3, 0, 62] =S [254] 
A[0, 0, 63] =S [63] A[1, 0, 63] =S [127] A[2, 0, 63] =S [191] A[3, 0, 63] =S [255] 

and 

A[4, 0, 0] =S [256] A[0, 1, 0] =S [320] A[1, 1, 0] =S [384] A[2, 1, 0] =S [448] 
A[4, 0, 1] =S [257] A[0, 1, 1] =S [321] A[1, 1, 1] =S [385] A[2, 1, 1] =S [449] 
A[4, 0, 2] =S [258] A[0, 1, 2] =S [322] A[1, 1, 2] =S [386] A[2, 1, 2] =S [450] 

⋮ ⋮ ⋮ ⋮ 
A[4, 0, 62] =S [318] A[0, 1, 62] =S [382] A[1, 1, 62] =S [446] A[2, 1, 62] =S [510] 
A[4, 0, 63] =S [319] A[0, 1, 63] =S [383] A[1, 1, 63] =S [447] A[2, 1, 63] =S [511] 

etc. 

3.1.3 Converting State Arrays to Strings 

Let A denote a state array. The corresponding string representation, denoted by S, can be 
constructed from the lanes and planes of A, as follows: 

For each pair of integers (i, j) such that 0 ≤ i< 5 and 0 ≤ j< 5, define the string Lane (i, j) by 

Lane (i, j)= A[i, j, 0] || A[i, j, 1] || A[i, j, 2] || … || A[i, j, w-2] || A[i, j, w-1]. 

For example, if b=1600, so that w=64, then 

9
 



 

  

                    
                    
                      
  

 
 

         
 

                
 

 
 

            
 

       
 
                          
                   
                     
                   

                  
                       

       
 

             
          

    
 

  
        

Lane (0, 0) = A[0, 0, 0] || A[0, 0, 1] || A[0, 0, 2] || … || A[0, 0, 62] || A[0, 0, 63] 
Lane (1, 0) = A[1, 0, 0] || A[1, 0, 1] || A[1, 0, 2] || … || A[1, 0, 62] || A[1, 0, 63] 
Lane (2, 0) = A[2, 0, 0] || A[2, 0, 1] || A[2, 0, 2] || … || A[2, 0, 62] || A[2, 0, 63] 

etc. 

For each integer j such that 0 ≤ j< 5, define the string Plane (j) by 

Plane (j)= Lane (0, j) || Lane (1, j) || Lane (2, j) || Lane (3, j) || Lane (4, j). 

Then 

S= Plane (0) || Plane (1) || Plane (2) || Plane (3) || Plane (4). 

For example, if b= 1600, so that w= 64, then 

S= A[0, 0, 0] || A[0, 0, 1] || A[0, 0, 2] || … || A[0, 0, 62] || A[0, 0, 63] 
|| A[1, 0, 0] || A[1, 0, 1] || A[1, 0, 2] || … || A[1, 0, 62] || A[1, 0, 63] 
|| A[2, 0, 0] || A[2, 0, 1] || A[2, 0, 2] || … || A[2, 0, 62] || A[2, 0, 63] 
|| A[3, 0, 0] || A[3, 0, 1] || A[3, 0, 2] || … || A[3, 0, 62] || A[3, 0, 63] 

⋮
|| A[3, 4, 0] || A[3, 4, 1] || A[3, 4, 2] || … || A[3, 4, 62] || A[3, 4, 63]
 
|| A[4, 4, 0] || A[4, 4, 1] || A[4, 4, 2] || … || A[4, 4, 62] || A[4, 4, 63] .
 

3.1.4 Labeling Convention for the State Array 

In the diagrams of the state that accompany the specifications of the step mappings, the lane that 
corresponds to the coordinates (x, y) = (0, 0) is depicted at the center of the slices. The complete 
labeling of the x, y, and z coordinates for those diagrams is shown in Figure 2 below. 

3 4 0 1 2 

2 
1 
0 
4 
3 

z 

0 1
 2 

3 …
 w−

1 

y 

x 

Figure 2: The x, y, and z coordinates for the diagrams of the step mappings 
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3.2 Step Mappings 

The five step mappings that comprise a round of KECCAK-p[b, nr] are denoted by θ, ρ, π, χ, and ι. 
Specifications for these functions are given in Secs. 3.2.1-3.2.5. 

The algorithm for each step mapping takes a state array, denoted by A, as an input and returns an 
updated state array, denoted by A′, as the output. The size of the state is a parameter that is 
omitted from the notation, because b is always specified when the step mappings are invoked. 

The ι mapping ir has a second input: an integer called the round index, denoted by ir, which is 
defined in Algorithm 7 for KECCAK-p[b, nr] (Sec. 3.3). The other step mappings do not depend 
on the round index. 

3.2.1 Specification of θ 

Algorithm 1: θ(A) 

Input: 
state array A. 

Output: 
state array A′. 

Steps: 
1.	 For all pairs (x, z) such that 0 ≤x< 5 and 0 ≤z<w, let 


C[x, z]=A[x, 0, z] ⊕ A[x, 1, z] ⊕ A[x, 2, z] ⊕ A[x, 3, z] ⊕ A[x, 4, z].
 
2.	 For all pairs (x, z) such that 0 ≤x< 5 and 0 ≤z<w let 


D[x, z]=C[(x−1) mod 5, z] ⊕ C[(x+1) mod 5, (z –1) mod w].
 
3.	 For all triples (x, y, z) such that 0 ≤x< 5, 0 ≤y< 5, and 0 ≤z<w, let
 

A′[x, y, z] = A[x, y, z] ⊕ D[x, z]. 


x 

y z z 

Figure 3:  Illustration of θ applied to a single bit [8] 
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The θ step mapping is illustrated in Figure 3 above. 

The effect of θ is to XOR each bit in the state with the parities of two columns in the array. In 
particular, for the bit A[x0, y0, z0], the x-coordinate of one of the columns is x0−1 mod 5, with the 
same z-coordinate, z0, while the x-coordinate of the other column is x0+1 mod 5, with z-
coordinate z0−1 mod w. In Figure 3, the summation symbol, ∑, indicates the parity, i.e., the XOR 
sum of all the bits in the column. 

3.2.2 Specification of ρ 

Algorithm 2: ρ(A) 

Input: 
state array A. 

Output: 
state array A′. 

Steps: 
1. For all z such that 0 ≤z<w, let A′ [0, 0, z] = A[0, 0, z]. 
2. Let (x, y) = (1, 0). 
3. For t from 0 to 23: 

a. for all z such that 0 ≤z<w, let A′[x, y, z] = A[x, y, (z– (t+ 1)(t+ 2)/2) mod w]; 
b. let (x, y) = (y, (2x+ 3y) mod 5). 

4. Return A′. 

The effect of ρ is to rotate the bits of each lane by a length, called the offset, which depends on 
the fixed x and y coordinates of the lane. Equivalently, for each bit in the lane, the z coordinate is 
modified by adding the offset, modulo the lane size. The offsets for each lane that result from the 
computation in Step 3a in Algorithm 2 are listed in Table 2. 

x = 3 x = 4 x = 0 x = 1 x = 2 
y = 2 153 231 3 10 171 
y = 1 55 276 36 300 6 
y = 0 28 91 0 1 190 
y = 4 120 78 210 66 253 
y = 3 21 136 105 45 15 

Table 2: Offsets of ρ [8] 

An illustration of ρ for the case w = 8 is given in Figure 4 below. The labeling convention for the 
x and y coordinates in Figure 4 is given explicitly in Figure 2, corresponding to the rows and 
columns in Table 2. For example, the lane A[0, 0] is depicted in the middle of the middle sheet, 
and the lane A[2, 3] is depicted at the bottom of the right-most sheet. 
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Figure 4:  Illustration of ρ for b=200 [8] 

For each lane in Figure 4, the black dot indicates the bit whose z coordinate is 0, and the shaded 
cube indicates the position of that bit after the execution of ρ. The other bits of the lane shift by 
the same offset, and the shift is circular. For example, the offset for the lane A[1, 0] is 1, so the 
last bit, whose z coordinate is 7, shifts to the front position, whose z coordinate is 0. 
Consequently, the offsets may be reduced modulo the lane size; e.g., the lane for A[3, 2], at the 
top of the left-most sheet, has an offset of 153 mod 8, i.e., 1. 

3.2.3 Specification of π 

Algorithm 3: π(A) 

Input: 
state array A. 

Output: 
state array A′. 

Steps: 
1.	 For all triples (x, y, z) such that 0 ≤x< 5, 0 ≤y< 5, and 0 ≤z<w, let
 

A′[x, y, z]=A[(x + 3y) mod 5, x, z].
 
2. Return A′. 

The effect of π is to rearrange the positions of the lanes, as illustrated for any slice in Figure 5 
below. The convention for the labeling of the coordinates is depicted in Figure 2 above; for 
example, the bit with coordinates x = y = 0 is depicted at the center of the slice. 
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Figure 5: Illustration of π applied to a single slice [8] 

3.2.4 Specification of χ 

Algorithm 4: χ(A) 

Input: 
state array A. 

Output: 
state array A′. 

Steps: 
1.	 For all triples (x, y, z) such that 0 ≤x< 5, 0 ≤y< 5, and 0 ≤z<w, let 

A′ [x, y, z] = A[x, y, z] ⊕ ((A[(x+1) mod 5, y, z] ⊕ 1) ⋅ A[(x+2) mod 5, y, z]). 
2. Return A′. 

The dot in the right side of the assignment for Step 1 indicates integer multiplication, which in 
this case is equivalent to the intended Boolean “AND” operation. 

The effect of χ is to XOR each bit with a non-linear function of two other bits in its row, as 
illustrated in Figure 6 below. 
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Figure 6:  Illustration of χ applied to a single row [8] 

3.2.5 Specification of ι 

In the specification of KECCAK-p[b, nr] in Algorithm 7, the step mapping ι is parameterized by 
the round index, ir. In the specification of ι in Algorithm 6, this parameter determines l + 1 bits of 
a lane value called the round constant, denoted by RC. Each of these l + 1 bits is generated by a 
function that is based on a linear feedback shift register. This function, denoted by rc, is 
specified in Algorithm 5. 

Algorithm 5: rc(t) 

Input: 
integer t. 

Output: 
bit rc(t). 

Steps: 
1. If t mod 255 = 0, return 1. 
2. Let R = 10000000. 
3. For i from 1 to t mod 255, let: 

a. R = 0 || R; 
b. R[0] = R[0] + R[8]; 
c. R[4] = R[4] + R[8]; 
d. R[5] = R[5] + R[8]; 
e. R[6] = R[6] + R[8]; 
f. R =Trunc8[R]. 

4. Return R[0]. 
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Algorithm 6: ι(A, ir) 

Input: 
state array A; 
round index ir. 

Output: 
state array A′. 

Steps: 
1. For all triples (x, y, z) such that 0 ≤x< 5, 0 ≤y< 5, and 0 ≤z<w, let A′[x, y, z] = A[x, y, z]. 

0w2. Let RC= . 
3. For j from 0 to l, let RC[2j –1]=rc(j+ 7ir). 
4. For all z such that 0 ≤z<w, let A′ [0, 0, z]=A′ [0, 0, z] ⊕ RC[z]. 
5. Return A′. 

The effect of ι is to modify some of the bits of Lane (0, 0) in a manner that depends on the round 
index ir. The other 24 lanes are not affected by ι. 

3.3 KECCAK-p[b, nr] 

Given a state array A and a round index ir, the round function Rnd is the transformation that 
results from applying the step mappings θ, ρ, π, χ, and ι, in that order, i.e.,: 

Rnd(A, ir) = ι(χ(π(ρ(θ(A)))), ir). 

The KECCAK-p[b, nr] permutation consists of nr iterations of Rnd, as specified in Algorithm 7. 

Algorithm 7: KECCAK-p[b, nr](S)
 

Input:
 
string S of length b;
 
number of rounds nr.
 

Output:
 
string S′ of length b.
 

Steps:
 
1. Convert S into a state array, A, as described in Sec. 3.1.2. 
2. For ir from 2l + 12 –nr to 2l + 12 –1, let A=Rnd(A, ir). 
3. Convert A into a string S′ of length b, as described in Sec. 3.1.3. 
4. Return S′. 
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3.4 Comparison with KECCAK-f 

The KECCAK-f family of permutations, originally defined in [8], is the specialization of the 
KECCAK-p family to the case that nr =12 + 2l : 

KECCAK-f [b] = KECCAK-p[b, 12 + 2l]. 

Consequently, the KECCAK-p[1600, 24] permutation, which underlies the six SHA-3 functions, is 
equivalent to KECCAK-f [1600]. 

The rounds of KECCAK-f [b] are indexed from 0 to 11 + 2l . A result of the indexing within Step 2 
of Algorithm 7 is that the rounds of KECCAK-p[b, nr] match the last rounds of KECCAK-f [b], or 
vice versa. For example, KECCAK-p[1600, 19] is equivalent to the last nineteen rounds of 
KECCAK-f [1600]. Similarly, KECCAK-f [1600] is equivalent to the last twenty-four rounds of 
KECCAK-p[1600, 30]; in this case, the preceding rounds for KECCAK-p[1600, 30] are indexed by 
the integers from −6 to −1. 

4 SPONGE CONSTRUCTION 

The sponge construction [4] is a framework for specifying functions on binary data with arbitrary 
output length. The construction employs the following three components: 

• An underlying function on fixed-length strings, denoted by f, 
• A parameter called the rate, denoted by r, and 
• A padding rule, denoted by pad. 

The sponge construction is illustrated in Figure 7 below, adapted from [4]. 

Figure 7: The sponge construction: Z=SPONGE[f, pad, r](M, d) [4] 
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The function that is constructed from these components, denoted by SPONGE[f, pad, r], is called a 
sponge function. The analogy to a sponge is that the function “absorbs” an arbitrary number of 
input bits into its state, after which an arbitrary number of output bits are “squeezed” out of its 
state. 

The function f maps strings of a single, fixed length, denoted by b, to strings of the same length. 
As in Sec. 3, b is called the width of f. The SHA-3 functions, specified in Sec. 6 are instances of 
the sponge construction in which the underlying function f is invertible, i.e., a permutation, 
although the sponge construction does not require f to be invertible. 

The rate r is a positive integer that is strictly less than the width b. The capacity, denoted by c, is 
the positive integer b−r. Thus, r + c = b. 

The padding rule, pad, is a function that produces padding, i.e., a string with an appropriate 
length to append to another string. Within the sponge construction, padding is appended to the 
message to ensure that it can be partitioned into a sequence of r-bit strings. In general, given a 
positive integer x and a non-negative integer m, the output pad(x, m) is a string with the property 
that m + len(pad(x, m)) is a positive multiple of x. Algorithm 9 in Sec. 5.1 specifies the padding 
rule for the KECCAK functions and, hence, the SHA-3 functions. 

Given these three components, f, pad, and r, as described above, the SPONGE[f, pad, r] function is 
specified by Algorithm 8 on (M, d), where M is the input message to the sponge function, and d 
is the desired length of the output in bits. The width b is determined by the choice of f. 

Algorithm 8: SPONGE[f, pad, r](M, d) 

Input:
 
string M,
 
nonnegative integer d.
 

Output:
 
string Z such that len(Z)=d.
 

Steps: 
1. Let P=M || pad(r, len(M)). 
2. Let n=len(P)/r. 
3. Let c=b−r. 
4. Let P0, … , Pn-1 be the unique sequence of strings of length r such that P = P0 || … || Pn−1. 
5. Let S=0b . 
6. For i from 0 to n−1, let S= f (S ⊕ (Pi || 0c)). 
7. Let Z be the empty string. 
8. Let Z=Z || Trunc r (S). 
9. If d≤ |Z|, then return Trunc d (Z); else continue. 
10. Let S= f(S), and continue with Step 8. 
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Note that the input d determines the number of the bits that Algorithm 8 returns, but it does not 
affect their values. In principle, the output can be regarded as an infinite string, whose 
computation, in practice, is halted after the desired number of output bits is produced. 

5 KECCAK 

KECCAK is a family of sponge functions, originally defined in [8]. The padding rule for KECCAK, 
called multi-rate padding, is specified in Sec. 5.1. The parameters and the underlying 
permutations for KECCAK are described in Sec. 5.2, and a smaller family of KECCAK functions is 
specified explicitly, which will suffice to define the SHA-3 functions in Sec. 6.  

5.1 Specification of pad10*1 

The multi-rate padding rule, denoted by pad10*1, is specified in Algorithm 9.
 

Algorithm 9: pad10*1(x, m)
 

Input:
 
positive integer x;
 
non-negative integer m.
 

Output:
 
string Z such that m + len(Z) is a positive multiple of x.
 

Steps: 
1. Let j = (– m – 2) mod x. 
2. Return 1 || 0j || 1. 

Thus, the asterisk in “pad10*1” indicates that the “0” bit is either omitted or repeated as 
necessary in order to produce an output string of the desired length. 

5.2 Specification of KECCAK[c] 

KECCAK is the family of sponge functions with the KECCAK-p[b, 2l +12] permutation (defined in 
Sec 3.3) as the underlying function and padding rule pad10*1 (defined in Sec. 5.1) as the 
padding rule. The family is parameterized by any choices of the rate r and the capacity c such 
that r + c is in {25, 50, 100, 200, 400, 800, 1600}, i.e., one of the seven values for b in Table 1. 

When restricted to the case b = 1600, the KECCAK family is denoted by KECCAK[c]; in this case r 
is determined by the choice of c. In particular,  

KECCAK[c] = SPONGE[KECCAK-p[1600, 24], pad10*1, 1600 –c]. 

Thus, given a message M and an output length d, 
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KECCAK[c] (M, d) = SPONGE[KECCAK-p[1600, 24], pad10*1, 1600 –c] (M, d). 

In Sec. 6, the variable “M ” also represents the message input to the SHA-3 functions, but either 
two or four bits are appended to this string before KECCAK[c] is invoked. 

6 SHA-3 FUNCTION SPECIFICATIONS 

In Sec. 6.1, the four SHA-3 hash functions are defined, and in Sec. 6.2, the two SHA-3 XOFs are 
defined, via an intermediate function. 

6.1 SHA-3 Hash Functions 

The four SHA-3 hash functions are defined from the KECCAK[c] function specified in Sec. 5.2 by 
appending two bits to the message and by specifying the length of the output, as follows: 

SHA3-224(M) = KECCAK[448] (M || 01, 224); 

SHA3-256(M) = KECCAK[512] (M || 01, 256); 

SHA3-384(M) = KECCAK[768] (M || 01, 384); 

SHA3-512(M) = KECCAK[1024] (M || 01, 512). 

In each case, the capacity is double the digest length, i.e., c = 2d. The two bits that are appended 
to the message (i.e., 01) support domain separation; i.e., they distinguish the messages for the 
SHA-3 hash functions from messages for the SHA-3 XOFs discussed in Sec. 6.2, as well as other 
domains that may be defined in the future. 

6.2 SHA-3 Extendable-Output Functions 

The two SHA-3 XOFs, SHAKE128 and SHAKE256, are defined from two intermediate 
functions below, called RawSHAKE128 and RawSHAKE256, which are defined from the 
KECCAK[c] function specified in Sec. 5.2. 

In particular, if the message is denoted by M, and the output length is denoted by d, then 

RawSHAKE128(M, d) = KECCAK[256] (M || 11, d), 

RawSHAKE256(M, d) = KECCAK[512] (M || 11, d). 

The two bits that are appended to the message, i.e., 11 in this case, support domain separation. 

The two SHA-3 XOFs are 

SHAKE128(M, d) = RawSHAKE128 (M || 11, d), 
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SHAKE256(M, d) = RawSHAKE256 (M || 11, d). 

In this case, the bits 11 are appended to the message for compatibility with the Sakura coding 
scheme [6]. This scheme will facilitate the development of an extension of the functions, called 
tree hashing [7], in which parallel processing can be applied to compute, and update, digests of 
long messages more efficiently. 

The two SHA-3 XOFs can also be defined directly from KECCAK, as follows: 

SHAKE128(M, d) = KECCAK[256] (M || 1111, d), 

SHAKE256(M, d) = KECCAK[512] (M || 1111, d). 

7 Conformance 

Implementations of the KECCAK-p[1600, 24] permutation and the six SHA-3 modes of this 
permutation—SHA3-224, SHA3-256, SHA3-384, SHA3-512, SHAKE128, and SHAKE256— 
may be tested for conformance to this Standard under the auspices of the Cryptographic 
Algorithm Validation Program [9]. 

SHA3-224, SHA3-256, SHA3-384, SHA3-512 are approved hash functions, for which approved 
uses are already specified. SHAKE128, and SHAKE256 are approved XOFs, whose approved 
uses will be specified in NIST Special Publications. 

The KECCAK-p[1600, 24] permutation is only approved for use in the context of approved modes 
of operations, such as the SHA-3 functions. Similarly, the other intermediate functions that are 
defined in this Standard—e.g., KECCAK[c], RawSHAKE128, and RawSHAKE256—are only 
approved in the context of an approved mode of operation of the underlying KECCAK-p 
permutation. 

Other KECCAK-p permutations may become approved if any modes of operation for them are 
developed and approved within a FIPS Publication or a NIST Special Publication. 

For every computational procedure that is specified in this Standard, a conforming 
implementation may replace the given set of steps with any mathematically equivalent set of 
steps. In other words, different procedures that produce the correct output for every input are 
permitted. 
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APPENDIX A: Additional Information 

A.1 Security Analysis 

The detailed analysis of the security properties of KECCAK in [8] applies to the SHA-3 family of 
hash and extendable output functions. The SHA-3 family also inherits security properties from 
the sponge construction; these properties are analyzed in detail in [4]. 

Applications of hash functions often require the properties of collision resistance, preimage 
resistance, and/or second preimage resistance; these properties are summarized for the SHA-3 
family of hash functions and XOFs in Sec. A.1.1. XOFs differ from hash functions in the 
generation of closely related outputs; this important security consideration is discussed in Sec. 
A.1.2. 

A.1.1 Security Summary 

As of the publication of this Standard, the security strengths of the SHA-1, SHA-2, and SHA-3 
functions are summarized in Table 3 and discussed below. For the security strength against 
second preimage attacks on a message M, the function L ) is defined as ⌈log2(len(M)/B)⌉,  (M
where B is the  block length  of the  function,  i.e., 512 bits for  SHA-­‐1,  SHA-­‐224,  and  SHA-­‐256,  
and  1024 bits for  SHA-­‐512. 

Function Output 
Size 

Security Strengths in Bits 

Collision Preimage 2nd Preimage 

SHA-1 160 < 80 160 160 –L(M) 
SHA-224 224 112 224 min(224, 256 –L(M)) 
SHA-512/224 224 112 224 224 
SHA-256 256 128 256 256–L(M) 
SHA-512/256 256 128 256 256 
SHA-384 384 192 384 384 
SHA-512 512 256 512 512 –L(M)
SHA3-224 224 112 224 224 
SHA3-256 256 128 256 256 
SHA3-384 384 192 384 384 
SHA3-512 512 256 512 512 

SHAKE128 d min(d/2, 128) ≥ min(d, 128) min(d, 128) 
SHAKE256 d min(d/2, 256) ≥ min(d, 256) min(d, 256) 

Table 3: Security strengths of SHA-1, SHA-2, and SHA-3 functions 
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The four SHA-3 hash functions are alternatives to the SHA-2 functions, and they are designed to 
provide resistance against preimage, second preimage, and collision attacks which equals or 
exceeds the resistance that the corresponding SHA-2 functions provide. The SHA-3 functions are 
also designed to resist other attacks, such as length-extension attacks, that would be resisted by a 
random function of the same output length, providing security strength up to the hash function’s 
output length in bits, when possible. 

The two SHA-3 XOFs are designed to resist collision, preimage, second- preimage attacks, and 
other attacks that would be resisted by a random function of the requested output length, up to 
the security strength of 128 bits for SHAKE128, and 256 bits for SHAKE256. A random 
function whose output length is d bits cannot provide more than d/2 bits of security against 
collision attacks and d bits of security against preimage and second preimage attacks, so 
SHAKE128 and SHAKE256 will provide less than 128 and 256 bits of security, respectively, 
when d is sufficiently small, as described in Table 3. 

A.1.2 Additional Consideration for Extendable-Output Functions 

XOFs are a powerful new kind of cryptographic primitive that offers the flexibility to produce 
outputs with any desired length. It is possible to use XOFs as hash functions by selecting a fixed 
output length. However, XOFs have the potential for generating related outputs—a property that 
designers of security applications/protocols/systems may not expect of hash functions. This 
property is important to consider in the development of applications of XOFs. 

By design, the output length for an XOF does not affect the bits that it produces, which means 
that the output length is not a necessary input to the function. Conceptually, the output can be an 
infinite string, and the application/protocol/system that invokes the function simply computes the 
desired number of initial bits of that string. In terms of previously standardized cryptographic 
primitives, these functions behave like a hash function when they are processing input and like a 
stream function when they are producing output. 

Consequently, when two different output lengths are chosen for a common message, the two 
outputs are closely related: the longer output is an extension of the shorter output. For example, 
given any positive integers d and e, and any message M, Truncd(SHAKE128(M, d+e)) is identical 
to SHAKE128(M, d). The same property holds for SHAKE256. 

No two distinct SHA-3 functions would be expected to ever exhibit this property in practice. For 
example, for a randomly chosen message M, SHA3-256(M) will almost certainly not be an 
extension of SHA3-224(M), or of SHAKE128(M, 224), even though the three functions have 
almost identical structure. The same statement applies to previously approved hash functions, 
including the truncated versions of SHA-512 in FIPS 180-4 (e.g., SHA-512/256). 

However, existing mechanisms for constructing functions with arbitrary output length—by 
concatenating and/or truncating digests from hash functions—generally do exhibit this property. 
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The possibility of closely related outputs can affect the security of the 
application/protocol/system that invokes an XOF. For example, a naïve (and non-approved) way 
for two parties to agree to derive a 112-bit Triple DES key from a message designated as 
keymaterial would be to compute SHAKE128(keymaterial, keylength), where keylength is 112. 
However, if an attacker is able to induce one of the parties to use a different value for keylength, 
say 168 bits, then the two parties will end up with the following keys: 

SHAKE128(keymaterial, 112) = fg
SHAKE128(keymaterial, 168) = fgh, 

where the bolded letters of the digest represent 56-bit strings, e.g., the parts of a Triple DES key. 
Because of the structure of Triple DES, these keys are vulnerable to attack. 

In practice, the use of an XOF as a key derivation function (KDF) could preclude the possibility 
of related outputs, by incorporating the length and/or type of the derived key into the message 
input to the KDF. In that case, a disagreement or misunderstanding between two users of the 
KDF about the type or length of the key they are deriving would almost certainly not lead to 
related outputs. 

Where extended digests are problematic, a more general solution is domain separation, by which 
different instances of the XOFs could be created and tailored to different purposes. All of the 
SHA-3 functions are designed to allow for extensions to new, separate domains that NIST may 
develop in the future. 

A.2 Examples 

Examples of the five step mappings and of the six SHA-3 functions are available at the examples 
page at NIST’s Computer Security Resource Center web site: 
http://csrc.nist.gov/groups/ST/toolkit/examples.html. 

The bit strings for these examples are represented as strings of the sixteen hexadecimal digits: 0, 
1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F, where A is the digit for ten, B is the digit for eleven, 
etc. Each digit represents four bits; thus each pair of digits represents eight bits, i.e., a byte. In 
this section, specific hexadecimal strings are indicated in the Courier New font, preceded by 
the marker “0x.” 

The convention for interpreting hexadecimal strings as bit strings for the inputs and outputs of 
the SHA-3 examples is different from the convention for other functions on the examples page, 
such as SHA-2: the order of the bits within each complete byte is reversed. Table 4 illustrates the 
two different interpretations for 0x A3 as a single byte S: 

Family Interpretation of 0x A3 S [0] S [1] S [2] S [3] S [4] S [5] S [6] S [7] 
SHA-2 1010 0011 1 0 1 0 0 0 1 1 
SHA-3 1100 0101 1 1 0 0 0 1 0 1 

Table 4: Illustration of bit ordering conventions for a single byte 
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In both cases the pair of hexadecimal digits can be interpreted as an integer in base 16 with the 
most-significant digit first; thus, 0x A3 represents 10 ⋅ 161 + 3 ⋅ 160, i.e., 163. For SHA-2, the 
binary expansion of this integer is also written in decreasing order in significance, with the most 
significant bit first; thus, in this example, 

10100011 = 1 ⋅27 + 0 ⋅26 + 1 ⋅25 + 0 ⋅24 + 0 ⋅23 + 0 ⋅22 + 1 ⋅21 + 1 ⋅20 = 163. 

For SHA-3, by contrast, the least significant bit is first, and the bits increase in significance: 

11000101 = 1 ⋅20 + 1 ⋅21 + 0 ⋅22 + 0 ⋅23 + 0 ⋅24 + 1⋅25 + 0 ⋅26 + 1 ⋅27 = 163. 

In general, each pair of hexadecimal digits in the representation of a SHA-3 string is replaced by 
eight bits, as illustrated above; the truncation function is applied to the result, if necessary. For 
example, 0x A3 2E represents 1100 0101 0111 0100, so the 14-bit message that is 
represented by 0x A3 2E is Trunc14(1100 0101 0111 0100) , i.e., 1100 0101 0111 01. 

The conversion function from hexadecimal strings to the SHA-3 strings that they represent, 
denoted h2b, is formally specified in Algorithm 10. 

Algorithm 10: h2b(H, n). 

Input:
 
positive integer n;
 
hexadecimal string H consisting of 2⌈n/8⌉ digits. 


Output:
 
bit string S such that len(S)=n.
 

Steps: 

1.	 Let m=⌈n/8⌉. 
2.	 For each integer i such that 0 ≤ i < 2m-1, let Hi be the ith hexadecimal digit in H: 

H=H0 H1 H2 H3 … H2m-2 H2m-1. 
3.	 For each integer i such that 0 ≤ i < m: 

a.	 Let hi =16 ⋅H2i +H2i+1. 
b.	 Let bi0 bi1 bi2 bi3 bi4 bi5 bi6 bi7 be the unique sequence of bits such that
 

hi =bi0⋅20 + bi1⋅21 + bi2⋅22 + bi3⋅23 + bi4⋅24 + bi5⋅25 + bi6⋅26 + bi7⋅27 .
 
4.	 For each pair of integers (i, j) such that 0 ≤ i < m and 0 ≤ j < 8, let T [8i + j]=bij. 
5.	 Return S=Truncn(T).

If the bit length n is not specified explicitly, then h2b(H) is assumed to be h2b(H, 4m), where m 
is the number of hexadecimal digits in H. 

The conversion function from SHA-3 strings to the hexadecimal strings that represent them, 
denoted b2h, is specified in Algorithm 11. 
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Algorithm 11: b2h(S). 

Input:
 
bit string S.
 

Output:
 
hexadecimal string H consisting of 2⌈len(S) /8⌉ digits. 


Steps: 

1.	 Let n=len(S). 
S || 0-n mod 8 and m2.	 Let T= =⌈n/8⌉. 

3.	 For each pair of integers (i, j) such that 0 ≤ i < m and 0 ≤ j < 8, let bij =T [8i + j]. 
4.	 For each integer i such that 0 ≤ i < m: 

a. Let hi = bi0⋅20 + bi1⋅21 + bi2⋅22 + bi3⋅23 + bi4⋅24 + bi5⋅25 + bi6⋅26 + bi7⋅27; 
b. Let H2i andH2i+1 be the unique hexadecimal digits such that hi =16 ⋅H2i + H2i+1. 

5.	 Return H0 H1 H2 H3 … H2m-2 H2m-1. 

The formal bit-reordering function that was specified in [10]—for the KECCAK submission to the 
SHA-3 competition—gives equivalent conversions of byte strings, i.e., when n is a multiple of 8. 

A.3 Object Identifiers 

Object identifiers (OIDs) for SHA3-224, SHA3-256, SHA3-384, SHA3-512, SHAKE128, and 
SHAKE256 are posted at http://csrc.nist.gov/groups/ST/crypto_apps_infra/csor/algorithms.html. 
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