

The attached DRAFT FIPS 202 document (provided here for historical purposes) has been
superseded by the following publication:

Publication Number: FIPS 202

Title: SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions

Publication Date: 08/2015

• Final Publication of FIPS 202:
DOI: http://dx.doi.org/10.6028/NIST.FIPS.202
Direct link: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

• FIPS 202 on the CSRC FIPS publications page:
http://csrc.nist.gov/publications/PubsFIPS.html#202

• For additional information on the SHA-3 Standardization effort:
http://csrc.nist.gov/groups/ST/hash/sha-3/sha-3_standardization.html

• Information on other NIST Computer Security Division publications and
programs can be found at: http://csrc.nist.gov/

http://dx.doi.org/10.6028/NIST.FIPS.202
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://csrc.nist.gov/publications/PubsFIPS.html#202
http://csrc.nist.gov/groups/ST/hash/sha-3/sha-3_standardization.html
http://csrc.nist.gov/

The following information was posted with the attached DRAFT document:

FIPS 202, SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions and Revision to the Applicability Clause of FIPS 180-4, Secure Hash
Standard
August 5, 2015

NIST published a Federal Register Notice, on August 5, 2015 to announce the
publication of Federal Information Processing Standard (FIPS) 202, SHA-3
Standard: Permutation-Based Hash and Extendable-Output Functions, and a
Revision of the Applicability Clause of Federal Information Processing Standard
(FIPS) 180-4, Secure Hash Standard. FIPS 202 specifies the SHA-3 family of hash
functions, as well as mechanisms for other cryptographic functions to be specified
in the future. The revision to the Applicability Clause of FIPS 180-4 approves the
use of hash functions specified in either FIPS 180-4 or FIPS 202 when a secure
hash function is required for the protection of sensitive, unclassified information
in Federal applications, including as a component within other cryptographic
algorithms and protocols.

More details are available at this page: SHA-3 standardization effort
(http://csrc.nist.gov/groups/ST/hash/sha-3/sha-3_standardization.html).

DRAFT FIPS PUB 202

FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION

SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

May 2014

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology
Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director

FOREWORD

The Federal Information Processing Standards (FIPS) Publication Series of the National
Institute of Standards and Technology (NIST) is the official series of publications relating
to standards and guidelines adopted and promulgated under the provisions of the Federal
Information Security Management Act (FISMA) of 2002.

Comments concerning FIPS publications are welcomed and should be addressed to the
Director, Information Technology Laboratory, National Institute of Standards and
Technology, 100 Bureau Drive, Stop 8900, Gaithersburg, MD 20899-8900.

Charles H. Romine, Director
Information Technology Laboratory

ii

Abstract

This Standard specifies the Secure Hash Algorithm-3 (SHA-3) family of functions on
binary data. Each of the SHA-3 functions is based on an instance of the KECCAK
algorithm that NIST selected as the winner of the SHA-3 Cryptographic Hash Algorithm
Competition. This Standard also specifies the KECCAK-p family of mathematical
permutations, including the permutation that underlies KECCAK, in order to facilitate the
development of additional permutation-based cryptographic functions.

The SHA-3 family consists of four cryptographic hash functions, called SHA3-224,
SHA3-256, SHA3-384, and SHA3-512, and two extendable-output functions (XOFs),
called SHAKE128 and SHAKE256.

Hash functions are components for many important information security applications,
including 1) the generation and verification of digital signatures, 2) key derivation, and 3)
pseudorandom bit generation. The hash functions specified in this Standard supplement
the SHA-1 hash function and the SHA-2 family of hash functions that are specified in
FIPS 180-4, the Secure Hash Standard.

Extendable-output functions are different from hash functions, but it is possible to use
them in similar ways, with the flexibility to be adapted directly to the requirements of
individual applications, subject to additional security considerations.

Key words: computer security, cryptography, extendable-output function, Federal
Information Processing Standard, hash algorithm, hash function, information security,
KECCAK, message digest, permutation, SHA-3, sponge construction, sponge function,
XOF.

iii

Federal Information

Processing Standards Publication 202

May 2014

Announcing the

SHA-3 STANDARD: PERMUTATION-BASED HASH

AND EXTENDABLE OUTPUT FUNCTIONS

Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National
Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce
pursuant to Section 5131 of the Information Technology Management Reform Act of 1996
(Public Law 104-106), and the Computer Security Act of 1987 (Public Law 100-235).

1. Name of Standard: SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions (FIPS PUB 202).

2. Category of Standard: Computer Security Standard, Cryptography.

3. Explanation: This Standard (FIPS 202) specifies the Secure Hash Algorithm-3 (SHA-3)
family of functions on binary data. Each of the SHA-3 functions is based on an instance of the
KECCAK algorithm that NIST selected as the winner of the SHA-3 Cryptographic Hash
Algorithm Competition. This Standard also specifies the KECCAK-p family of mathematical
permutations, including the permutation that underlies KECCAK, which can serve as the main
components of additional cryptographic functions that may be specified in the future.

The SHA-3 family consists of six functions. Four are cryptographic hash functions, called
SHA3-224, SHA3-256, SHA3-384, and SHA3-512; two are extendable-output functions
(XOFs), called SHAKE128 and SHAKE256.

For hash functions, the input is called the message, and the output is called the (message) digest
or the hash value. The length of the message can vary; the length of the digest is fixed. A
cryptographic hash function is a hash function that is designed to provide special properties,
including collision resistance and preimage resistance, that are important for many applications
in information security. For example, a cryptographic hash function increases the security and
efficiency of a digital signature scheme when the digest is digitally signed instead of the message
itself. In this context, the collision resistance of the hash function provides assurance that the
original message could not have been altered to a different message with the same hash value,
and hence, the same signature. Other applications of cryptographic hash functions include
pseudorandom bit generation, message authentication codes, and password security.

iv

The four SHA-3 hash functions in this Standard supplement the hash functions that are specified
in FIPS 180-4 [1]: SHA-1 and the SHA-2 family. Together, both Standards provide resilience
against future advances in hash function analysis, because they rely on fundamentally different
design principles. In addition to design diversity, the hash functions in this Standard provide
some complementary implementation and performance characteristics to those in FIPS 180-4.

For XOFs, the length of the output can be chosen to meet the requirements of individual
applications. The XOFs can be specialized to hash functions, subject to additional security
considerations, or used in a variety of other applications. The approved uses of XOFs will be
specified in NIST Special Publications.

The KECCAK-p permutations were designed to be suitable main components for a variety of
cryptographic functions, including keyed functions for authentication and/or encryption. The six
SHA-3 functions can be considered as modes of operation (modes) of the KECCAK-p[1600,24]
permutation. In the future, additional modes of this permutation or other KECCAK-p permutations
may be specified and approved in FIPS publications or in NIST Special Publications.

4. Approving Authority: Secretary of Commerce.

5. Maintenance Agency: U.S. Department of Commerce, National Institute of Standards and
Technology (NIST), Information Technology Laboratory (ITL).

6. Applicability: This Standard is applicable to all Federal departments and agencies for the
protection of sensitive unclassified information that is not subject to Title 10 United States Code
Section 2315 (10 USC 2315) and that is not within a national security system as defined in Title
40 United States Code Section 11103(a)(1) (40 USC 11103(a)(1)). Either this Standard or
Federal Information Processing Standard (FIPS) 180 must be implemented wherever a secure
hash algorithm is required for Federal applications, including as a component within other
cryptographic algorithms and protocols. This Standard may be adopted and used by non-Federal
Government organizations.

7. Specifications: Federal Information Processing Standard (FIPS) 202, SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions (affixed).

8. Implementations: The KECCAK-p permutations shall only be implemented within FIPS-
approved or NIST-recommended modes of operation, such as the SHA-3 functions that are
specified in this Standard. The SHA-3 functions may be implemented in software, firmware,
hardware or any combination thereof. Only implementations of these functions that are validated
by the Cryptographic Algorithm Validation Program will be considered as complying with this
Standard. Information about the validation program can be obtained at
http://csrc.nist.gov/groups/STM/cavp/index.html.

9. Implementation Schedule: This Standard becomes effective on [].

v

http://csrc.nist.gov/groups/STM/cavp/index.html

10. Patents: Implementations of the SHA-3 functions in this Standard may be covered by U.S. or
foreign patents.

11. Export Control: Certain cryptographic devices and technical data regarding them are
subject to Federal export controls. Exports of cryptographic modules implementing this Standard
and technical data regarding them must comply with these Federal regulations and be licensed by
the Bureau of Export Administration of the U.S. Department of Commerce. Information about
export regulations is available at: http://www.bis.doc.gov/index.htm.

12. Qualifications: Although this Standard specifies mathematical functions that are suitable
components for information security applications, conformance to this Standard does not assure
that a particular implementation is secure. The responsible authority in each agency or
department shall assure that an overall implementation provides an acceptable level of security.
This Standard will be reviewed every five years in order to assess its adequacy.

13. Waiver Procedure: The Federal Information Security Management Act (FISMA) does not
allow for waivers to a FIPS that is made mandatory by the Secretary of Commerce.

14. Where to Obtain Copies of the Standard: This publication is available electronically at
http://csrc.nist.gov/publications/. Other computer security publications issued by NIST are
available at the same web site.

vi

http://csrc.nist.gov/publications
http://www.bis.doc.gov/index.htm

Federal Information

Processing Standards Publication 202

Specifications for the

SHA-3 STANDARD: PERMUTATION-BASED

HASH AND EXTENDABLE-OUTPUT FUNCTIONS

Contents

1 INTRODUCTION ... 1

2 GLOSSARY ... 2

2.1 TERMS AND ACRONYMS... 2
2.2 ALGORITHM PARAMETERS AND OTHER VARIABLES .. 4
2.3 BASIC OPERATIONS AND FUNCTIONS ... 5
2.4 SPECIFIED FUNCTIONS.. 6

3 KECCAK-P PERMUTATIONS .. 7

3.1 STATE... 7
3.1.1 Parts of the State Array .. 8
3.1.2 Converting Strings to State Arrays ... 9
3.1.3 Converting State Arrays to Strings ... 9
3.1.4 Labeling Convention for the State Array .. 10

3.2 STEP MAPPINGS ... 11
3.2.1 Specification of θ .. 11
3.2.2 Specification of ρ .. 12
3.2.3 Specification of π .. 13
3.2.4 Specification of χ... 14
3.2.5 Specification of ι ... 15

3.3 KECCAK-p[b, nr]... 16
3.4 COMPARISON WITH KECCAK-f ... 17

4 SPONGE CONSTRUCTION ... 17

5 KECCAK.. 19

5.1 SPECIFICATION OF pad10*1.. 19
5.2 SPECIFICATION OF KECCAK[c] ... 19

6 SHA-3 FUNCTION SPECIFICATIONS .. 20

6.1 SHA-3 HASH FUNCTIONS .. 20
6.2 SHA-3 EXTENDABLE-OUTPUT FUNCTIONS.. 20

7 CONFORMANCE... 21

APPENDIX A: ADDITIONAL INFORMATION .. 22

A.1 SECURITY ANALYSIS ... 22
A.1.1 Security Summary.. 22
A.1.2 Additional Consideration for Extendable-Output Functions .. 23

A.2 EXAMPLES .. 24
A.3 OBJECT IDENTIFIERS .. 26

APPENDIX B: REFERENCES .. 26

vii

Figures

Figure 1: Parts of the state array, organized by dimension [8] ...8
Figure 2: The x, y, and z coordinates for the diagrams of the step mappings...............................10
Figure 3: Illustration of θ applied to a single bit [8]...11
Figure 4: Illustration of ρ for b=200 [8] ..13
Figure 5: Illustration of π applied to a single slice [8] ...14
Figure 6: Illustration of χ applied to a single row [8] ...15
Figure 7: The sponge construction: Z = SPONGE[f, pad, r](M, d) [4] ...17

Tables

Table 1: KECCAK-p permutation widths and related quantities ..7
Table 2: Offsets of ρ [8] ...12
Table 3: Security strengths of SHA-1, SHA-2, and SHA-3 functions. ..22
Table 4: Illustration of bit ordering conventions for a single byte ...24

viii

1 INTRODUCTION

This Standard specifies a new family of functions that supplement SHA-1 and the SHA-2 family
of hash functions specified in FIPS 180-4 [1]. This family, called SHA-3 (Secure Hash
Algorithm-3) is based on KECCAK [2], the algorithm1 that NIST selected as the winner of the
public SHA-3 Cryptographic Hash Algorithm Competition [3]. The SHA-3 family consists of
four cryptographic hash functions and two extendable-output functions. These six functions
share the structure that is described in [4], namely, the sponge construction; functions with this
structure are called sponge functions.

A hash function is a function on binary data (i.e., bit strings)2 for which the length of the output
is fixed. The input to a hash function is called the message, and the output is called the (message)
digest or hash value. The digest often serves as a condensed representation of the message. The
four SHA-3 hash functions are named SHA3-224, SHA3-256, SHA3-384, and SHA3-512; in
each case, the numerical suffix indicates the fixed length of the digest, e.g., SHA3-256 produces
256-bit digests. The SHA-2 functions, i.e., SHA-224, SHA-256, SHA-384 SHA-512, SHA-
512/224, and SHA-512/256, offer the same set of digest lengths. Thus, the SHA-3 hash functions
can be implemented as alternatives to the SHA-2 functions, or vice versa.

An extendable-output function (XOF) is a function on binary data in which the output can be
extended to any desired length. The two SHA-3 XOFs are named SHAKE128 and SHAKE256.3

The suffixes “128” and “256” indicate the security strengths that these two functions can
generally4 support, in contrast to the suffixes for the hash functions above, which indicate the
digest lengths. SHAKE128 and SHAKE256 are the first XOFs that NIST has standardized.

The six SHA-3 functions are designed to provide special properties, such as resistance to
collision, preimage, and second preimage attacks. The level of resistance to these three types of
attacks is summarized in Appendix A.1.1. Cryptographic hash functions are fundamental
components in a variety of information security applications, such as digital signature generation
and verification, key derivation, and pseudorandom bit generation.

The digest lengths in FIPS-approved hash functions are 160, 224, 256, 384, and 512 bits. When
an application requires a cryptographic hash function with a non-standard digest length, an XOF
is a natural alternative to constructions that involve multiple invocations of a hash function
and/or truncation of the output bits. However, XOFs are subject to the additional security
consideration that is described in Appendix A.1.2.

1 More precisely, the competition called for four hash functions, and KECCAK is a larger family of functions.

2 For many hash functions, there is a (very large) bound on the length of the input data.

3 The name “SHAKE” was proposed in [5] to combine the term “Secure Hash Algorithm” with “KECCAK.”

4 An exception is when the output length is relatively small; see the discussion in Appendix A.1.1.

1

Each of the six SHA-3 functions employs the same underlying permutation as the main
component in the sponge construction. In effect, the SHA-3 functions are modes of operation
(modes) of the permutation. In this Standard, the permutation is specified as an instance of a
family of permutations, called KECCAK-p, in order to provide the flexibility to modify its size
and security parameters in the development of any additional modes in future documents.

The four SHA-3 hash functions differ slightly from the instances of KECCAK that were proposed
for the SHA-3 competition [3]. In particular, two additional bits are appended to the messages, in
order to distinguish the SHA-3 hash functions from the SHA-3 XOFs, and to facilitate the
development of new variants of the SHA-3 functions that can be dedicated to individual
application domains. The mechanism for achieving these goals is called domain separation; see
Sec. 2.1.

The two SHA-3 XOFs are also specified in a manner that allows for the development of
dedicated variants. Moreover, the SHA-3 XOFs are compatible with the Sakura coding scheme
[6] for tree hashing [7], in order to support the development of parallelizable extensions, to be
specified in a separate document.

Most of the notation and terminology in this Standard is consistent with the specification of
KECCAK in [8].

2 GLOSSARY

2.1 Terms and Acronyms

bit	 A binary digit: 0 or 1. In this Standard, bits are indicated in the Courier
New font.

byte	 A sequence of eight bits.

capacity	 In the sponge construction, the width of the underlying function minus the
rate.

column	 For a state array, a sub-array of five bits with constant x and z coordinates.

digest	 The output of a cryptographic hash function. Also called the hash value.

domain separation	 For a function, a partitioning of the inputs to different application domains
so that no input is assigned to more than one domain.

extendable-output A function on bit strings in which the output can be extended to any
function (XOF) desired length.

FIPS	 Federal Information Processing Standard.

FISMA	 Federal Information Security Management Act.

2

hash function	 A function on bit strings in which the length of the output is fixed. The
output often serves as a condensed representation of the input.

hash value	 See digest.

KDF	 Key derivation function.

KECCAK	 The family of all sponge functions with a KECCAK-f permutation as the
underlying function and multi-rate padding as the padding rule. KECCAK
was originally specified in [8].

lane	 For a state array of a KECCAK-p permutation with width b, a sub-array of
b/25 bits with constant x and y coordinates.

message	 A bit string of any length.

multi-rate padding	 The padding rule pad10*1, whose output is a 1, followed by a (possibly
empty) string of 0s, followed by a 1.

NIST	 National Institute of Standards and Technology.

plane	 For a state array of a KECCAK-p permutation with width b, a sub-array of
b/5 bits with a constant y coordinate.

rate	 In the sponge construction, the number of input bits processed or output
bits generated per invocation of the underlying function.

round	 The sequence of step mappings that is iterated in the calculation of a
KECCAK-p permutation.

round constant	 For each round of a KECCAK-p permutation, a lane value that is
determined by the round index. The round constant is the second input to
the ι step mapping.

round index	 The value of the integer index for the rounds of a KECCAK-p permutation.

row	 For a state array, a sub-array of five bits with constant y and z coordinates.

SHA-3	 Secure Hash Algorithm-3.

SHAKE	 Secure Hash Algorithm KECCAK.

sheet	 For a state array of a KECCAK-p permutation with width b, a sub-array of
b/5 bits with a constant x coordinate.

3

slice	 For a state array, a sub-array of 25 bits with a constant z coordinate.

sponge construction	 The method originally specified in [4] for defining a function from the
following: 1) an underlying function on bit strings of a fixed length, 2) a
padding rule, and 3) a rate. Both the input and the output of the resulting
function are bit strings that can be arbitrarily long.

sponge function	 A function that is defined according to the sponge construction, possibly
specialized to a fixed output length.

state	 An array of bits that is repeatedly updated within a computational
procedure. For a KECCAK-p permutation, the state is represented either as
a three-dimensional array or as a string.

state array	 For a KECCAK-p permutation, a 5-by-5-by-w array of bits that represents
the state. The indices for the x, y, and z coordinates range from 0 to 4, 0 to
4, and 0 to w-1, respectively.

step mapping	 One of the five components of a round of a KECCAK-p permutation: θ, ρ,
π, χ, or ι.

string	 A sequence of bits.

width	 In the sponge construction, the fixed length of the inputs and the outputs
of the underlying function.

XOF	 See extendable-output function.

XOR	 The Boolean Exclusive-OR operation, denoted by the symbol ⊕.

2.2 Algorithm Parameters and Other Variables

A A state array.

A[x, y, z] For a state array A, the bit that corresponds to the triple (x, y, z).

b The width of a KECCAK-p permutation in bits.

The capacity of a sponge function.

d The length of the digest of a hash function or the requested length of the
output of an XOF, in bits.

f The generic underlying function for the sponge construction.

ir The round index for a KECCAK-p permutation.

4

c

l For a KECCAK-p permutation, the binary logarithm of the lane size, i.e.,
log2(w).

Lane (i, j) For a state array A, a string of all the bits of the lane whose x and y
coordinates are i and j.

M The input message to a SHA-3 function.

nr The number of rounds for a KECCAK-p permutation.

pad The generic padding rule for the sponge construction.

Plane (j) For a state array A, a string of all the bits of the plane whose y coordinate
is j.

r The rate of a sponge function.

RC For a round of a KECCAK-p permutation, the round constant.

w The lane size of a KECCAK-p permutation in bits, i.e., b/25.

2.3 Basic Operations and Functions

0s	 For a positive integer s, 0s is the string that consists of s consecutive 0s.

len(X) 	 For a string X, len(X) is the length of X in bits.

X[i]	 For a string X and an integer i such that 0 ≤ i < len(X), X[i] is the bit of X
with index i. Bit strings are depicted with indices increasing from left to
right, so that X[0] appears at the left, followed by X[1], etc. For example,
if X = 101000, then X[2]=1.

Truncs (X) 	 For a positive integer s and a string X, Truncs (X) is the string comprised of
bits X[0] to X[s – 1]. For example, Trunc2(10100)=10.

X ⊕ Y	 For strings X and Y of equal bit length, X ⊕ Y is the string that results from
applying the Boolean exclusive-OR operation to X and Y at each bit
position. For example, 1100 ⊕ 1010=0110.

X || Y	 For strings X and Y, X || Y is the concatenation of X and Y. For example,
11001 || 010=11001010.

m/n	 For integers m and n, m/n is the quotient, i.e., m divided by n.

m mod n	 For integers m and n, m mod n is the integer r for which 0 ≤ r < n and m−r
is a multiple of n. For example, 11 mod 5 =1, and −11 mod 5 =4.

5

⌈x⌉	 For a real number x, ⌈x⌉ is the least integer that is not strictly less than x.
For example, ⌈3.2⌉=4, ⌈−3.2⌉=−3, and ⌈6⌉=6.

log2(x)	 For a positive real number x, log2(x) is the real number y such that 2y = x.

min(x, y)	 For real numbers x and y, min(x, y) is the minimum of x and y. For
example, min(9, 33) = 9.

2.4 Specified Functions

The following higher-level functions are specified in this Standard:

θ, ρ, π, χ, ι The five step mappings that comprise a round.

KECCAK[c] The KECCAK instance with KECCAK-f [1600] as the underlying permutation

and capacity c.

KECCAK-f [b] The family of seven permutations originally specified in [8] as the
underlying function for KECCAK. The set of values for the width b of the
permutations is {25, 50, 100, 200, 400, 800, 1600}.

KECCAK-p[b, nr] The generalization of the KECCAK-f [b] permutations that is defined in this
Standard by converting the number of rounds nr to an input parameter.

pad10*1 The multi-rate padding rule for KECCAK, originally specified in [8].

RawSHAKE128 An intermediate function in the definition of SHAKE128.

RawSHAKE256 An intermediate function in the definition of SHAKE256.

rc The function that generates the variable bits of the round constants.

Rnd The round function of a KECCAK-p permutation.

SHA3-224 The SHA-3 hash function that produces 224-bit digests.

SHA3-256 The SHA-3 hash function that produces 256-bit digests.

SHA3-384 The SHA-3 hash function that produces 384-bit digests.

SHA3-512 The SHA-3 hash function that produces 512-bit digests.

SHAKE128 The SHA-3 XOF that generally supports 128 bits of security strength, if
the output is sufficiently long; see Appendix A.1.1.

6

SHAKE256 The SHA-3 XOF that generally supports 256 bits of security strength, if
the output is sufficiently long; see Appendix A.1.1.

SPONGE[f, pad, r]	 The sponge function in which the underlying function is f, the padding
rule is pad, and the rate is r.

3 KECCAK-p PERMUTATIONS

In this section, the KECCAK-p permutations are specified, with two parameters: 1) the fixed
length of the strings that are permuted, called the width of the permutation, and 2) the number of
iterations of an internal transformation, called a round. The width is denoted by b, and the
number of rounds is denoted by nr. The KECCAK-p permutation with nr rounds and width b is
denoted by KECCAK-p[b, nr]; the permutation is defined for any b ∈ {25, 50, 100, 200, 400, 800,
1600} and any positive integer nr.

A round of a KECCAK-p permutation, denoted by Rnd, consists of a sequence of five
transformations, which are called the step mappings. The set of values for the b-bit input to the
permutation, as it undergoes successive applications of the step mappings, culminating in the
output, is called the state.

The notation and terminology for the state are described in Sec. 3.1. The step mappings are
specified in Sec. 3.2. The KECCAK-p permutations are specified in Sec. 3.3. The relationship of
the KECCAK-p permutations to the KECCAK-f permutations that were defined for KECCAK in [8]
is described in Sec. 3.4.

3.1 State

The state for the KECCAK-p[b, nr] permutation is comprised of b bits. The specifications in this
Standard contain two other quantities related to b: b/25 and log2(b/25), denoted by w and l,
respectively. The seven possible values for these variables that are defined for the KECCAK-p
permutations are given in the columns of Table 1 below.

b 25 50 100 200 400 800 1600
w 1 2 4 8 16 32 64
l 0 1 2 3 4 5 6

Table 1: KECCAK-p permutation widths and related quantities

It is convenient to represent the input and output states of the permutation as b-bit strings, and to
represent the input and output states of the step mappings as 5-by-5-by-w arrays of bits.

If S denotes a string that represents the state, then its bits are indexed from 0 to b–1, so that

S = S[0] || S[1] || … || S[b-2] || S[b-1].

7

If A denotes a 5-by-5-by-w array of bits that represents the state, then its indices are the integer
triples (x, y, z) for which 0 ≤ x < 5, 0 ≤ y < 5, and 0 ≤ z < w. The bit that corresponds to (x, y, z) is
denoted by A[x, y, z]. A state array is a representation of the state by a three-dimensional array
that is indexed in this manner.

3.1.1 Parts of the State Array

Figure 1: Parts of the state array, organized by dimension [8]

8

The state array for a KECCAK-p permutation, and its lower-dimensional sub-arrays, are illustrated
in Figure 1 above for the case b = 200, so that w = 8. The two-dimensional sub-arrays are called
sheets, planes, and slices, and the single-dimensional sub-arrays are called rows, columns, and
lanes. The algebraic definitions of these sub-arrays are given in the Glossary, in Sec. 2.1.

3.1.2 Converting Strings to State Arrays

Let S denote a string of b bits that represents the state for the KECCAK-p[b, nr] permutation. The
corresponding state array, denoted by A, is defined as follows:

For all triples (x, y, z) such that 0 ≤x< 5, 0 ≤y< 5, and 0 ≤z<w,

A[x, y, z]=S [w(5y+x) + z].

For example, if b=1600, so that w=64, then

A[0, 0, 0] =S [0] A[1, 0, 0] =S [64] A[2, 0, 0] =S [128] A[3, 0, 0] =S [192]
A[0, 0, 1] =S [1] A[1, 0, 1] =S [65] A[2, 0, 1] =S [129] A[3, 0, 1] =S [193]
A[0, 0, 2] =S [2] A[1, 0, 2] =S [66] A[2, 0, 2] =S [130] A[3, 0, 2] =S [194]

⋮ ⋮ ⋮ ⋮
A[0, 0, 62] =S [62] A[1, 0, 62] =S [126] A[2, 0, 62] =S [190] A[3, 0, 62] =S [254]
A[0, 0, 63] =S [63] A[1, 0, 63] =S [127] A[2, 0, 63] =S [191] A[3, 0, 63] =S [255]

and

A[4, 0, 0] =S [256] A[0, 1, 0] =S [320] A[1, 1, 0] =S [384] A[2, 1, 0] =S [448]
A[4, 0, 1] =S [257] A[0, 1, 1] =S [321] A[1, 1, 1] =S [385] A[2, 1, 1] =S [449]
A[4, 0, 2] =S [258] A[0, 1, 2] =S [322] A[1, 1, 2] =S [386] A[2, 1, 2] =S [450]

⋮ ⋮ ⋮ ⋮
A[4, 0, 62] =S [318] A[0, 1, 62] =S [382] A[1, 1, 62] =S [446] A[2, 1, 62] =S [510]
A[4, 0, 63] =S [319] A[0, 1, 63] =S [383] A[1, 1, 63] =S [447] A[2, 1, 63] =S [511]

etc.

3.1.3 Converting State Arrays to Strings

Let A denote a state array. The corresponding string representation, denoted by S, can be
constructed from the lanes and planes of A, as follows:

For each pair of integers (i, j) such that 0 ≤ i< 5 and 0 ≤ j< 5, define the string Lane (i, j) by

Lane (i, j)= A[i, j, 0] || A[i, j, 1] || A[i, j, 2] || … || A[i, j, w-2] || A[i, j, w-1].

For example, if b=1600, so that w=64, then

9

Lane (0, 0) = A[0, 0, 0] || A[0, 0, 1] || A[0, 0, 2] || … || A[0, 0, 62] || A[0, 0, 63]
Lane (1, 0) = A[1, 0, 0] || A[1, 0, 1] || A[1, 0, 2] || … || A[1, 0, 62] || A[1, 0, 63]
Lane (2, 0) = A[2, 0, 0] || A[2, 0, 1] || A[2, 0, 2] || … || A[2, 0, 62] || A[2, 0, 63]

etc.

For each integer j such that 0 ≤ j< 5, define the string Plane (j) by

Plane (j)= Lane (0, j) || Lane (1, j) || Lane (2, j) || Lane (3, j) || Lane (4, j).

Then

S= Plane (0) || Plane (1) || Plane (2) || Plane (3) || Plane (4).

For example, if b= 1600, so that w= 64, then

S= A[0, 0, 0] || A[0, 0, 1] || A[0, 0, 2] || … || A[0, 0, 62] || A[0, 0, 63]
|| A[1, 0, 0] || A[1, 0, 1] || A[1, 0, 2] || … || A[1, 0, 62] || A[1, 0, 63]
|| A[2, 0, 0] || A[2, 0, 1] || A[2, 0, 2] || … || A[2, 0, 62] || A[2, 0, 63]
|| A[3, 0, 0] || A[3, 0, 1] || A[3, 0, 2] || … || A[3, 0, 62] || A[3, 0, 63]

⋮
|| A[3, 4, 0] || A[3, 4, 1] || A[3, 4, 2] || … || A[3, 4, 62] || A[3, 4, 63]

|| A[4, 4, 0] || A[4, 4, 1] || A[4, 4, 2] || … || A[4, 4, 62] || A[4, 4, 63] .

3.1.4 Labeling Convention for the State Array

In the diagrams of the state that accompany the specifications of the step mappings, the lane that
corresponds to the coordinates (x, y) = (0, 0) is depicted at the center of the slices. The complete
labeling of the x, y, and z coordinates for those diagrams is shown in Figure 2 below.

3 4 0 1 2

2
1
0
4
3

z

0 1
 2

3 …
 w−

1

y

x

Figure 2: The x, y, and z coordinates for the diagrams of the step mappings

10

3.2 Step Mappings

The five step mappings that comprise a round of KECCAK-p[b, nr] are denoted by θ, ρ, π, χ, and ι.
Specifications for these functions are given in Secs. 3.2.1-3.2.5.

The algorithm for each step mapping takes a state array, denoted by A, as an input and returns an
updated state array, denoted by A′, as the output. The size of the state is a parameter that is
omitted from the notation, because b is always specified when the step mappings are invoked.

The ι mapping ir has a second input: an integer called the round index, denoted by ir, which is
defined in Algorithm 7 for KECCAK-p[b, nr] (Sec. 3.3). The other step mappings do not depend
on the round index.

3.2.1 Specification of θ

Algorithm 1: θ(A)

Input:
state array A.

Output:
state array A′.

Steps:
1.	 For all pairs (x, z) such that 0 ≤x< 5 and 0 ≤z<w, let

C[x, z]=A[x, 0, z] ⊕ A[x, 1, z] ⊕ A[x, 2, z] ⊕ A[x, 3, z] ⊕ A[x, 4, z].

2.	 For all pairs (x, z) such that 0 ≤x< 5 and 0 ≤z<w let

D[x, z]=C[(x−1) mod 5, z] ⊕ C[(x+1) mod 5, (z –1) mod w].

3.	 For all triples (x, y, z) such that 0 ≤x< 5, 0 ≤y< 5, and 0 ≤z<w, let

A′[x, y, z] = A[x, y, z] ⊕ D[x, z].

x

y z z

Figure 3: Illustration of θ applied to a single bit [8]

11

The θ step mapping is illustrated in Figure 3 above.

The effect of θ is to XOR each bit in the state with the parities of two columns in the array. In
particular, for the bit A[x0, y0, z0], the x-coordinate of one of the columns is x0−1 mod 5, with the
same z-coordinate, z0, while the x-coordinate of the other column is x0+1 mod 5, with z-
coordinate z0−1 mod w. In Figure 3, the summation symbol, ∑, indicates the parity, i.e., the XOR
sum of all the bits in the column.

3.2.2 Specification of ρ

Algorithm 2: ρ(A)

Input:
state array A.

Output:
state array A′.

Steps:
1. For all z such that 0 ≤z<w, let A′ [0, 0, z] = A[0, 0, z].
2. Let (x, y) = (1, 0).
3. For t from 0 to 23:

a. for all z such that 0 ≤z<w, let A′[x, y, z] = A[x, y, (z– (t+ 1)(t+ 2)/2) mod w];
b. let (x, y) = (y, (2x+ 3y) mod 5).

4. Return A′.

The effect of ρ is to rotate the bits of each lane by a length, called the offset, which depends on
the fixed x and y coordinates of the lane. Equivalently, for each bit in the lane, the z coordinate is
modified by adding the offset, modulo the lane size. The offsets for each lane that result from the
computation in Step 3a in Algorithm 2 are listed in Table 2.

x = 3 x = 4 x = 0 x = 1 x = 2
y = 2 153 231 3 10 171
y = 1 55 276 36 300 6
y = 0 28 91 0 1 190
y = 4 120 78 210 66 253
y = 3 21 136 105 45 15

Table 2: Offsets of ρ [8]

An illustration of ρ for the case w = 8 is given in Figure 4 below. The labeling convention for the
x and y coordinates in Figure 4 is given explicitly in Figure 2, corresponding to the rows and
columns in Table 2. For example, the lane A[0, 0] is depicted in the middle of the middle sheet,
and the lane A[2, 3] is depicted at the bottom of the right-most sheet.

12

Figure 4: Illustration of ρ for b=200 [8]

For each lane in Figure 4, the black dot indicates the bit whose z coordinate is 0, and the shaded
cube indicates the position of that bit after the execution of ρ. The other bits of the lane shift by
the same offset, and the shift is circular. For example, the offset for the lane A[1, 0] is 1, so the
last bit, whose z coordinate is 7, shifts to the front position, whose z coordinate is 0.
Consequently, the offsets may be reduced modulo the lane size; e.g., the lane for A[3, 2], at the
top of the left-most sheet, has an offset of 153 mod 8, i.e., 1.

3.2.3 Specification of π

Algorithm 3: π(A)

Input:
state array A.

Output:
state array A′.

Steps:
1.	 For all triples (x, y, z) such that 0 ≤x< 5, 0 ≤y< 5, and 0 ≤z<w, let

A′[x, y, z]=A[(x + 3y) mod 5, x, z].

2. Return A′.

The effect of π is to rearrange the positions of the lanes, as illustrated for any slice in Figure 5
below. The convention for the labeling of the coordinates is depicted in Figure 2 above; for
example, the bit with coordinates x = y = 0 is depicted at the center of the slice.

13

Figure 5: Illustration of π applied to a single slice [8]

3.2.4 Specification of χ

Algorithm 4: χ(A)

Input:
state array A.

Output:
state array A′.

Steps:
1.	 For all triples (x, y, z) such that 0 ≤x< 5, 0 ≤y< 5, and 0 ≤z<w, let

A′ [x, y, z] = A[x, y, z] ⊕ ((A[(x+1) mod 5, y, z] ⊕ 1) ⋅ A[(x+2) mod 5, y, z]).
2. Return A′.

The dot in the right side of the assignment for Step 1 indicates integer multiplication, which in
this case is equivalent to the intended Boolean “AND” operation.

The effect of χ is to XOR each bit with a non-linear function of two other bits in its row, as
illustrated in Figure 6 below.

14

Figure 6: Illustration of χ applied to a single row [8]

3.2.5 Specification of ι

In the specification of KECCAK-p[b, nr] in Algorithm 7, the step mapping ι is parameterized by
the round index, ir. In the specification of ι in Algorithm 6, this parameter determines l + 1 bits of
a lane value called the round constant, denoted by RC. Each of these l + 1 bits is generated by a
function that is based on a linear feedback shift register. This function, denoted by rc, is
specified in Algorithm 5.

Algorithm 5: rc(t)

Input:
integer t.

Output:
bit rc(t).

Steps:
1. If t mod 255 = 0, return 1.
2. Let R = 10000000.
3. For i from 1 to t mod 255, let:

a. R = 0 || R;
b. R[0] = R[0] + R[8];
c. R[4] = R[4] + R[8];
d. R[5] = R[5] + R[8];
e. R[6] = R[6] + R[8];
f. R =Trunc8[R].

4. Return R[0].

15

Algorithm 6: ι(A, ir)

Input:
state array A;
round index ir.

Output:
state array A′.

Steps:
1. For all triples (x, y, z) such that 0 ≤x< 5, 0 ≤y< 5, and 0 ≤z<w, let A′[x, y, z] = A[x, y, z].

0w2. Let RC= .
3. For j from 0 to l, let RC[2j –1]=rc(j+ 7ir).
4. For all z such that 0 ≤z<w, let A′ [0, 0, z]=A′ [0, 0, z] ⊕ RC[z].
5. Return A′.

The effect of ι is to modify some of the bits of Lane (0, 0) in a manner that depends on the round
index ir. The other 24 lanes are not affected by ι.

3.3 KECCAK-p[b, nr]

Given a state array A and a round index ir, the round function Rnd is the transformation that
results from applying the step mappings θ, ρ, π, χ, and ι, in that order, i.e.,:

Rnd(A, ir) = ι(χ(π(ρ(θ(A)))), ir).

The KECCAK-p[b, nr] permutation consists of nr iterations of Rnd, as specified in Algorithm 7.

Algorithm 7: KECCAK-p[b, nr](S)

Input:

string S of length b;

number of rounds nr.

Output:

string S′ of length b.

Steps:

1. Convert S into a state array, A, as described in Sec. 3.1.2.
2. For ir from 2l + 12 –nr to 2l + 12 –1, let A=Rnd(A, ir).
3. Convert A into a string S′ of length b, as described in Sec. 3.1.3.
4. Return S′.

16

3.4 Comparison with KECCAK-f

The KECCAK-f family of permutations, originally defined in [8], is the specialization of the
KECCAK-p family to the case that nr =12 + 2l :

KECCAK-f [b] = KECCAK-p[b, 12 + 2l].

Consequently, the KECCAK-p[1600, 24] permutation, which underlies the six SHA-3 functions, is
equivalent to KECCAK-f [1600].

The rounds of KECCAK-f [b] are indexed from 0 to 11 + 2l . A result of the indexing within Step 2
of Algorithm 7 is that the rounds of KECCAK-p[b, nr] match the last rounds of KECCAK-f [b], or
vice versa. For example, KECCAK-p[1600, 19] is equivalent to the last nineteen rounds of
KECCAK-f [1600]. Similarly, KECCAK-f [1600] is equivalent to the last twenty-four rounds of
KECCAK-p[1600, 30]; in this case, the preceding rounds for KECCAK-p[1600, 30] are indexed by
the integers from −6 to −1.

4 SPONGE CONSTRUCTION

The sponge construction [4] is a framework for specifying functions on binary data with arbitrary
output length. The construction employs the following three components:

• An underlying function on fixed-length strings, denoted by f,
• A parameter called the rate, denoted by r, and
• A padding rule, denoted by pad.

The sponge construction is illustrated in Figure 7 below, adapted from [4].

Figure 7: The sponge construction: Z=SPONGE[f, pad, r](M, d) [4]

17

The function that is constructed from these components, denoted by SPONGE[f, pad, r], is called a
sponge function. The analogy to a sponge is that the function “absorbs” an arbitrary number of
input bits into its state, after which an arbitrary number of output bits are “squeezed” out of its
state.

The function f maps strings of a single, fixed length, denoted by b, to strings of the same length.
As in Sec. 3, b is called the width of f. The SHA-3 functions, specified in Sec. 6 are instances of
the sponge construction in which the underlying function f is invertible, i.e., a permutation,
although the sponge construction does not require f to be invertible.

The rate r is a positive integer that is strictly less than the width b. The capacity, denoted by c, is
the positive integer b−r. Thus, r + c = b.

The padding rule, pad, is a function that produces padding, i.e., a string with an appropriate
length to append to another string. Within the sponge construction, padding is appended to the
message to ensure that it can be partitioned into a sequence of r-bit strings. In general, given a
positive integer x and a non-negative integer m, the output pad(x, m) is a string with the property
that m + len(pad(x, m)) is a positive multiple of x. Algorithm 9 in Sec. 5.1 specifies the padding
rule for the KECCAK functions and, hence, the SHA-3 functions.

Given these three components, f, pad, and r, as described above, the SPONGE[f, pad, r] function is
specified by Algorithm 8 on (M, d), where M is the input message to the sponge function, and d
is the desired length of the output in bits. The width b is determined by the choice of f.

Algorithm 8: SPONGE[f, pad, r](M, d)

Input:

string M,

nonnegative integer d.

Output:

string Z such that len(Z)=d.

Steps:
1. Let P=M || pad(r, len(M)).
2. Let n=len(P)/r.
3. Let c=b−r.
4. Let P0, … , Pn-1 be the unique sequence of strings of length r such that P = P0 || … || Pn−1.
5. Let S=0b .
6. For i from 0 to n−1, let S= f (S ⊕ (Pi || 0c)).
7. Let Z be the empty string.
8. Let Z=Z || Trunc r (S).
9. If d≤ |Z|, then return Trunc d (Z); else continue.
10. Let S= f(S), and continue with Step 8.

18

Note that the input d determines the number of the bits that Algorithm 8 returns, but it does not
affect their values. In principle, the output can be regarded as an infinite string, whose
computation, in practice, is halted after the desired number of output bits is produced.

5 KECCAK

KECCAK is a family of sponge functions, originally defined in [8]. The padding rule for KECCAK,
called multi-rate padding, is specified in Sec. 5.1. The parameters and the underlying
permutations for KECCAK are described in Sec. 5.2, and a smaller family of KECCAK functions is
specified explicitly, which will suffice to define the SHA-3 functions in Sec. 6.

5.1 Specification of pad10*1

The multi-rate padding rule, denoted by pad10*1, is specified in Algorithm 9.

Algorithm 9: pad10*1(x, m)

Input:

positive integer x;

non-negative integer m.

Output:

string Z such that m + len(Z) is a positive multiple of x.

Steps:
1. Let j = (– m – 2) mod x.
2. Return 1 || 0j || 1.

Thus, the asterisk in “pad10*1” indicates that the “0” bit is either omitted or repeated as
necessary in order to produce an output string of the desired length.

5.2 Specification of KECCAK[c]

KECCAK is the family of sponge functions with the KECCAK-p[b, 2l +12] permutation (defined in
Sec 3.3) as the underlying function and padding rule pad10*1 (defined in Sec. 5.1) as the
padding rule. The family is parameterized by any choices of the rate r and the capacity c such
that r + c is in {25, 50, 100, 200, 400, 800, 1600}, i.e., one of the seven values for b in Table 1.

When restricted to the case b = 1600, the KECCAK family is denoted by KECCAK[c]; in this case r
is determined by the choice of c. In particular,

KECCAK[c] = SPONGE[KECCAK-p[1600, 24], pad10*1, 1600 –c].

Thus, given a message M and an output length d,

19

KECCAK[c] (M, d) = SPONGE[KECCAK-p[1600, 24], pad10*1, 1600 –c] (M, d).

In Sec. 6, the variable “M ” also represents the message input to the SHA-3 functions, but either
two or four bits are appended to this string before KECCAK[c] is invoked.

6 SHA-3 FUNCTION SPECIFICATIONS

In Sec. 6.1, the four SHA-3 hash functions are defined, and in Sec. 6.2, the two SHA-3 XOFs are
defined, via an intermediate function.

6.1 SHA-3 Hash Functions

The four SHA-3 hash functions are defined from the KECCAK[c] function specified in Sec. 5.2 by
appending two bits to the message and by specifying the length of the output, as follows:

SHA3-224(M) = KECCAK[448] (M || 01, 224);

SHA3-256(M) = KECCAK[512] (M || 01, 256);

SHA3-384(M) = KECCAK[768] (M || 01, 384);

SHA3-512(M) = KECCAK[1024] (M || 01, 512).

In each case, the capacity is double the digest length, i.e., c = 2d. The two bits that are appended
to the message (i.e., 01) support domain separation; i.e., they distinguish the messages for the
SHA-3 hash functions from messages for the SHA-3 XOFs discussed in Sec. 6.2, as well as other
domains that may be defined in the future.

6.2 SHA-3 Extendable-Output Functions

The two SHA-3 XOFs, SHAKE128 and SHAKE256, are defined from two intermediate
functions below, called RawSHAKE128 and RawSHAKE256, which are defined from the
KECCAK[c] function specified in Sec. 5.2.

In particular, if the message is denoted by M, and the output length is denoted by d, then

RawSHAKE128(M, d) = KECCAK[256] (M || 11, d),

RawSHAKE256(M, d) = KECCAK[512] (M || 11, d).

The two bits that are appended to the message, i.e., 11 in this case, support domain separation.

The two SHA-3 XOFs are

SHAKE128(M, d) = RawSHAKE128 (M || 11, d),

20

SHAKE256(M, d) = RawSHAKE256 (M || 11, d).

In this case, the bits 11 are appended to the message for compatibility with the Sakura coding
scheme [6]. This scheme will facilitate the development of an extension of the functions, called
tree hashing [7], in which parallel processing can be applied to compute, and update, digests of
long messages more efficiently.

The two SHA-3 XOFs can also be defined directly from KECCAK, as follows:

SHAKE128(M, d) = KECCAK[256] (M || 1111, d),

SHAKE256(M, d) = KECCAK[512] (M || 1111, d).

7 Conformance

Implementations of the KECCAK-p[1600, 24] permutation and the six SHA-3 modes of this
permutation—SHA3-224, SHA3-256, SHA3-384, SHA3-512, SHAKE128, and SHAKE256—
may be tested for conformance to this Standard under the auspices of the Cryptographic
Algorithm Validation Program [9].

SHA3-224, SHA3-256, SHA3-384, SHA3-512 are approved hash functions, for which approved
uses are already specified. SHAKE128, and SHAKE256 are approved XOFs, whose approved
uses will be specified in NIST Special Publications.

The KECCAK-p[1600, 24] permutation is only approved for use in the context of approved modes
of operations, such as the SHA-3 functions. Similarly, the other intermediate functions that are
defined in this Standard—e.g., KECCAK[c], RawSHAKE128, and RawSHAKE256—are only
approved in the context of an approved mode of operation of the underlying KECCAK-p
permutation.

Other KECCAK-p permutations may become approved if any modes of operation for them are
developed and approved within a FIPS Publication or a NIST Special Publication.

For every computational procedure that is specified in this Standard, a conforming
implementation may replace the given set of steps with any mathematically equivalent set of
steps. In other words, different procedures that produce the correct output for every input are
permitted.

21

APPENDIX A: Additional Information

A.1 Security Analysis

The detailed analysis of the security properties of KECCAK in [8] applies to the SHA-3 family of
hash and extendable output functions. The SHA-3 family also inherits security properties from
the sponge construction; these properties are analyzed in detail in [4].

Applications of hash functions often require the properties of collision resistance, preimage
resistance, and/or second preimage resistance; these properties are summarized for the SHA-3
family of hash functions and XOFs in Sec. A.1.1. XOFs differ from hash functions in the
generation of closely related outputs; this important security consideration is discussed in Sec.
A.1.2.

A.1.1 Security Summary

As of the publication of this Standard, the security strengths of the SHA-1, SHA-2, and SHA-3
functions are summarized in Table 3 and discussed below. For the security strength against
second preimage attacks on a message M, the function L) is defined as ⌈log2(len(M)/B)⌉, (M
where B is the block length of the function, i.e., 512 bits for SHA-­‐1, SHA-­‐224, and SHA-­‐256,
and 1024 bits for SHA-­‐512.

Function Output
Size

Security Strengths in Bits

Collision Preimage 2nd Preimage

SHA-1 160 < 80 160 160 –L(M)
SHA-224 224 112 224 min(224, 256 –L(M))
SHA-512/224 224 112 224 224
SHA-256 256 128 256 256–L(M)
SHA-512/256 256 128 256 256
SHA-384 384 192 384 384
SHA-512 512 256 512 512 –L(M)
SHA3-224 224 112 224 224
SHA3-256 256 128 256 256
SHA3-384 384 192 384 384
SHA3-512 512 256 512 512

SHAKE128 d min(d/2, 128) ≥ min(d, 128) min(d, 128)
SHAKE256 d min(d/2, 256) ≥ min(d, 256) min(d, 256)

Table 3: Security strengths of SHA-1, SHA-2, and SHA-3 functions

22

The four SHA-3 hash functions are alternatives to the SHA-2 functions, and they are designed to
provide resistance against preimage, second preimage, and collision attacks which equals or
exceeds the resistance that the corresponding SHA-2 functions provide. The SHA-3 functions are
also designed to resist other attacks, such as length-extension attacks, that would be resisted by a
random function of the same output length, providing security strength up to the hash function’s
output length in bits, when possible.

The two SHA-3 XOFs are designed to resist collision, preimage, second- preimage attacks, and
other attacks that would be resisted by a random function of the requested output length, up to
the security strength of 128 bits for SHAKE128, and 256 bits for SHAKE256. A random
function whose output length is d bits cannot provide more than d/2 bits of security against
collision attacks and d bits of security against preimage and second preimage attacks, so
SHAKE128 and SHAKE256 will provide less than 128 and 256 bits of security, respectively,
when d is sufficiently small, as described in Table 3.

A.1.2 Additional Consideration for Extendable-Output Functions

XOFs are a powerful new kind of cryptographic primitive that offers the flexibility to produce
outputs with any desired length. It is possible to use XOFs as hash functions by selecting a fixed
output length. However, XOFs have the potential for generating related outputs—a property that
designers of security applications/protocols/systems may not expect of hash functions. This
property is important to consider in the development of applications of XOFs.

By design, the output length for an XOF does not affect the bits that it produces, which means
that the output length is not a necessary input to the function. Conceptually, the output can be an
infinite string, and the application/protocol/system that invokes the function simply computes the
desired number of initial bits of that string. In terms of previously standardized cryptographic
primitives, these functions behave like a hash function when they are processing input and like a
stream function when they are producing output.

Consequently, when two different output lengths are chosen for a common message, the two
outputs are closely related: the longer output is an extension of the shorter output. For example,
given any positive integers d and e, and any message M, Truncd(SHAKE128(M, d+e)) is identical
to SHAKE128(M, d). The same property holds for SHAKE256.

No two distinct SHA-3 functions would be expected to ever exhibit this property in practice. For
example, for a randomly chosen message M, SHA3-256(M) will almost certainly not be an
extension of SHA3-224(M), or of SHAKE128(M, 224), even though the three functions have
almost identical structure. The same statement applies to previously approved hash functions,
including the truncated versions of SHA-512 in FIPS 180-4 (e.g., SHA-512/256).

However, existing mechanisms for constructing functions with arbitrary output length—by
concatenating and/or truncating digests from hash functions—generally do exhibit this property.

23

The possibility of closely related outputs can affect the security of the
application/protocol/system that invokes an XOF. For example, a naïve (and non-approved) way
for two parties to agree to derive a 112-bit Triple DES key from a message designated as
keymaterial would be to compute SHAKE128(keymaterial, keylength), where keylength is 112.
However, if an attacker is able to induce one of the parties to use a different value for keylength,
say 168 bits, then the two parties will end up with the following keys:

SHAKE128(keymaterial, 112) = fg
SHAKE128(keymaterial, 168) = fgh,

where the bolded letters of the digest represent 56-bit strings, e.g., the parts of a Triple DES key.
Because of the structure of Triple DES, these keys are vulnerable to attack.

In practice, the use of an XOF as a key derivation function (KDF) could preclude the possibility
of related outputs, by incorporating the length and/or type of the derived key into the message
input to the KDF. In that case, a disagreement or misunderstanding between two users of the
KDF about the type or length of the key they are deriving would almost certainly not lead to
related outputs.

Where extended digests are problematic, a more general solution is domain separation, by which
different instances of the XOFs could be created and tailored to different purposes. All of the
SHA-3 functions are designed to allow for extensions to new, separate domains that NIST may
develop in the future.

A.2 Examples

Examples of the five step mappings and of the six SHA-3 functions are available at the examples
page at NIST’s Computer Security Resource Center web site:
http://csrc.nist.gov/groups/ST/toolkit/examples.html.

The bit strings for these examples are represented as strings of the sixteen hexadecimal digits: 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F, where A is the digit for ten, B is the digit for eleven,
etc. Each digit represents four bits; thus each pair of digits represents eight bits, i.e., a byte. In
this section, specific hexadecimal strings are indicated in the Courier New font, preceded by
the marker “0x.”

The convention for interpreting hexadecimal strings as bit strings for the inputs and outputs of
the SHA-3 examples is different from the convention for other functions on the examples page,
such as SHA-2: the order of the bits within each complete byte is reversed. Table 4 illustrates the
two different interpretations for 0x A3 as a single byte S:

Family Interpretation of 0x A3 S [0] S [1] S [2] S [3] S [4] S [5] S [6] S [7]
SHA-2 1010 0011 1 0 1 0 0 0 1 1
SHA-3 1100 0101 1 1 0 0 0 1 0 1

Table 4: Illustration of bit ordering conventions for a single byte

24

http://csrc.nist.gov/groups/ST/toolkit/examples.html

In both cases the pair of hexadecimal digits can be interpreted as an integer in base 16 with the
most-significant digit first; thus, 0x A3 represents 10 ⋅ 161 + 3 ⋅ 160, i.e., 163. For SHA-2, the
binary expansion of this integer is also written in decreasing order in significance, with the most
significant bit first; thus, in this example,

10100011 = 1 ⋅27 + 0 ⋅26 + 1 ⋅25 + 0 ⋅24 + 0 ⋅23 + 0 ⋅22 + 1 ⋅21 + 1 ⋅20 = 163.

For SHA-3, by contrast, the least significant bit is first, and the bits increase in significance:

11000101 = 1 ⋅20 + 1 ⋅21 + 0 ⋅22 + 0 ⋅23 + 0 ⋅24 + 1⋅25 + 0 ⋅26 + 1 ⋅27 = 163.

In general, each pair of hexadecimal digits in the representation of a SHA-3 string is replaced by
eight bits, as illustrated above; the truncation function is applied to the result, if necessary. For
example, 0x A3 2E represents 1100 0101 0111 0100, so the 14-bit message that is
represented by 0x A3 2E is Trunc14(1100 0101 0111 0100) , i.e., 1100 0101 0111 01.

The conversion function from hexadecimal strings to the SHA-3 strings that they represent,
denoted h2b, is formally specified in Algorithm 10.

Algorithm 10: h2b(H, n).

Input:

positive integer n;

hexadecimal string H consisting of 2⌈n/8⌉ digits.

Output:

bit string S such that len(S)=n.

Steps:

1.	 Let m=⌈n/8⌉.
2.	 For each integer i such that 0 ≤ i < 2m-1, let Hi be the ith hexadecimal digit in H:

H=H0 H1 H2 H3 … H2m-2 H2m-1.
3.	 For each integer i such that 0 ≤ i < m:

a.	 Let hi =16 ⋅H2i +H2i+1.
b.	 Let bi0 bi1 bi2 bi3 bi4 bi5 bi6 bi7 be the unique sequence of bits such that

hi =bi0⋅20 + bi1⋅21 + bi2⋅22 + bi3⋅23 + bi4⋅24 + bi5⋅25 + bi6⋅26 + bi7⋅27 .

4.	 For each pair of integers (i, j) such that 0 ≤ i < m and 0 ≤ j < 8, let T [8i + j]=bij.
5.	 Return S=Truncn(T).

If the bit length n is not specified explicitly, then h2b(H) is assumed to be h2b(H, 4m), where m
is the number of hexadecimal digits in H.

The conversion function from SHA-3 strings to the hexadecimal strings that represent them,
denoted b2h, is specified in Algorithm 11.

25

Algorithm 11: b2h(S).

Input:

bit string S.

Output:

hexadecimal string H consisting of 2⌈len(S) /8⌉ digits.

Steps:

1.	 Let n=len(S).
S || 0-n mod 8 and m2.	 Let T= =⌈n/8⌉.

3.	 For each pair of integers (i, j) such that 0 ≤ i < m and 0 ≤ j < 8, let bij =T [8i + j].
4.	 For each integer i such that 0 ≤ i < m:

a. Let hi = bi0⋅20 + bi1⋅21 + bi2⋅22 + bi3⋅23 + bi4⋅24 + bi5⋅25 + bi6⋅26 + bi7⋅27;
b. Let H2i andH2i+1 be the unique hexadecimal digits such that hi =16 ⋅H2i + H2i+1.

5.	 Return H0 H1 H2 H3 … H2m-2 H2m-1.

The formal bit-reordering function that was specified in [10]—for the KECCAK submission to the
SHA-3 competition—gives equivalent conversions of byte strings, i.e., when n is a multiple of 8.

A.3 Object Identifiers

Object identifiers (OIDs) for SHA3-224, SHA3-256, SHA3-384, SHA3-512, SHAKE128, and
SHAKE256 are posted at http://csrc.nist.gov/groups/ST/crypto_apps_infra/csor/algorithms.html.

APPENDIX B: References

[1]	 Federal Information Processing Standards Publication 180-4, Secure Hash Standard
(SHS), Information Technology Laboratory, National Institute of Standards and
Technology, March 2012, http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf.

[2]	 G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak Specifications,”
Submission to NIST (Round 3), January 2011, http://keccak.noekeon.org/Keccak-
submission-3.pdf.

[3]	 The SHA-3 Cryptographic Hash Algorithm Competition, November 2007-October 2012,
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.

[4]	 G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Cryptographic sponge
functions,” January 2011, http://sponge.noekeon.org/CSF-0.1.pdf.

26

http://sponge.noekeon.org/CSF-0.1.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://keccak.noekeon.org/Keccak
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/groups/ST/crypto_apps_infra/csor/algorithms.html

[5]	 Ethan Heilman to hash-forum@nist.gov, October 5, 2012, Hash Forum,
http://csrc.nist.gov/groups/ST/hash/email_list.html.

[6]	 G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “SAKURA: a flexible coding for
tree hashing,” http://keccak.noekeon.org/Sakura.pdf.

[7]	 R. C. Merkle, “A digital signature based on a conventional encryption function,”
Advances in Cryptology - CRYPTO '87, A Conference on the Theory Applications of
Cryptographic Techniques, Santa Barbara, California, USA, 1987, 369-378.

[8]	 G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “The KECCAK reference, Version
3.0,” January 2011, http://keccak.noekeon.org/Keccak-reference-3.0.pdf.

[9]	 NIST Cryptographic Algorithm Validation Program (CAVP),
http://csrc.nist.gov/groups/STM/cavp/index.html.

[10]	 G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, “KECCAK

implementation overview,” January 2011, http://keccak.noekeon.org/Keccak-
implementation-3.0.pdf.

27

http://keccak.noekeon.org/Keccak
http://csrc.nist.gov/groups/STM/cavp/index.html
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://keccak.noekeon.org/Sakura.pdf
http://csrc.nist.gov/groups/ST/hash/email_list.html
mailto:hash-forum@nist.gov

