
Public Comments on draft FIPS 204

Comment period: August 24, 2023 – November 22, 2023

On August 24, 2023 NIST requested comments on the initial draft FIPS 204, Module-Lattice-Based
Digital Signature Standard. The comments that NIST received during the comment period are
collected below.

LIST OF COMMENTS
1. Comments from Joe Hobo, August 24, 2023 .. 3

2. Comments from Simon Hoerder, August 24, 2023 ... 5

3. Comments from Erkan Uslu, August 25, 2023 .. 6

4. Comments from Danny Niu, August 26, 2023 .. 7

5. Comments from Anubhab Baksi, August 28, 2023 ... 8

6. Comments from Elaine Barker, August 29, 2023 .. 9

7. Comments from Lauren Brandt, September 7, 2023.. 11

8. Comments from Vadim Lyubashevsky, September 8, 2023 ... 12

9. Comments from Lauren Brandt, September 18, 2023 ... 14

10. Comments from Stephan Mueller, September 18, 2023 .. 15

11. Comments from Danny Niu, October 3, 2023 .. 18

12. Comments from Simon Hoerder, October 5, 2023 ... 19

13. Comments from Conrado Gouvea, October 6, 2023 .. 20

14. Comments from Isabela Rossales, October 10, 2023 ... 21

15. Comments from Paul Duncan, October 23, 2023 ... 22

16. Comments from Paul Duncan, October 23, 2023 ... 23

17. Comments from Paul Duncan, October 26, 2023 ... 24

18. Comments from Paul Duncan, October 26, 2023 ... 26

19. Comments from Gustavo Banegas, October 31, 2023 ... 27

20. Comments from Graham Costa, November 16, 2023 .. 28

21. Comments from Danny Niu, November 17, 2023 .. 30

22. Comments from Beat Heeb, November 17, 2023 .. 31

23. Comments from John Gray, November 17, 2023 ... 32

24. Comments from Danny Niu, November 18, 2023 .. 33

25. Comments from John Preuß Mattsson, November 20, 2023 ... 34

26. Comments from the National Security Agency, November 20, 2023 ... 43

27. Comments from Leif Ibsen, November 21, 2023 .. 49

Public Comments on draft FIPS 204

1

28. Comments from the Infineon PQC team, November 21, 2023 .. 50

29. Comments from the Canadian Centre for Cyber Security, November 21, 2023 51

30. Comments from Cloudflare, November 21, 2023 ... 58

31. Comments from Dev Null, November 21, 2023 .. 63

32. Comments from Gideon Samid, November 21, 2023 ... 67

33. Comments from Falko Strenzke, November 22, 2023 .. 70

34. Comments from the NXP PQC team, November 22, 2023 ... 71

35. Comments from Markku-Juhani Saarinen, November 22, 2023 .. 72

36. Comments from P. Kampanakis, J. Massimo, T. Lepoint, AWS, November 22, 2023 74

37. Comments from Michael Ravnitzky, November 22, 2023 .. 76

Public Comments on draft FIPS 204

2

1. Comments from Joe Hobo, August 24, 2023

The Kyber and Dilithium specs feel very different, despite having much in common. The NIST
standards should try to fix this and provide a uniform presentation on their overlap. [Why not
use the same notation (e.g. for bit-reversal)? Why is FIPS 204 in a different font? Why not
consistently use \mathsf?]

- line 503 ff.: Why write the needlessly complicated $w(\pm\zeta_i)$
, $\zeta_i=\zeta^{\mathsf{brv(128+i)}}$, $i\in[0,128)$ instead of the simpler
$w(\zeta^{2\mathsf{brv}(i)+1})$, $i\in[0,256)$? The NTT is the "mathiest" part of the specs and
should be explained as uniformly as possible across both Kyber and Dilithium. If it isn't obvious
that these are the same, one can check

 ```python 
 def brv(i): 

 j = 0 
 for b in range(8): 

 x = i%2 
 j += x*(2**(7-b)) 
 i = i//2 

 return j 

 q = 8380417 
 z = 1753 

 for i in range(256): 
 e = i % 2 
 print((z**(2*brv(i)+1)) % q, (((-1)**e) * (z**brv(128 + i//2))) % q) 

 ``` 

- line 581: The suffix numbers refer to module dimensions in Dilithium, but refer to four times
the security strength in Kyber (or something similar, not specified). Couldn't these be made
uniform?

- Algorithm 4, first line: Correct "(using in little-endian order)."

- Algorithms 6/7: Why not use uniform notation between Kyber/Dilithium?

- line 822 ff., Hashing and Pseudorandom Sampling: Wouldn't it be easier to modify FIPS 202 to
include a byte stream or generator/stateful SHAKE instead of only the fixed-length XOF? Again,
there is a disconnect between Kyber and Dilithium specs, although both have the same goal of
using SHAKE for rejection sampling.

- Algorithm 34: Put spaces after "Input:" and "Output:" and use consistent capitalization of
Boolean.

- Line 907 display: Same comment as above; just write $\zeta^{2\mathsf{brv}(i)+1}$ instead of
the more complicated expression(s).

Public Comments on draft FIPS 204

3

- line 1089 ff., Appendix B: Why an appendix on Montgomery reduction and not, e.g., Barrett
reduction (simpler in my opinion)?

Public Comments on draft FIPS 204

4

2. Comments from Simon Hoerder, August 24, 2023

Thanks for the draft standards, it is very good to have them. However, I notice that none of
them contain a test vector. I believe it would be very useful to have at least a test vector
included, maybe even at a suitably high level a worked example. This would help immensely
with interoperability concerns.

Please note that I put the FIPS-20x-comments@nist.gov addresses in BCC to avoid list replies
accidentally getting sent there.

Best regards,
Simon

Public Comments on draft FIPS 204

5

mailto:FIPS-20x-comments@nist.gov

3. Comments from Erkan Uslu, August 25, 2023

 Dear NIST PQC team,

According to part 1.3.2 the size of c^{tilde} which is a part of signature is increased for ML-DSA-
65 and ML-DSA-87. However in table 2, it can be seen that the signature sizes of the ML-DSA-65
and ML-DSA-87 is still same as Dilithium-3 and Dilithium-5 respectively.

I think the actual signature sizes of these parameter sets should be
3309 (3293 + 16) bytes for ML-DSA-65 and 4627 (4595 + 32) bytes for
ML-DSA-87.

If I am wrong can you please correct me?

By the way thanks for your afford on these standardization process and
great works.

Best,
Erkan USLU
Middle East Technical University

Public Comments on draft FIPS 204

6

4. Comments from Danny Niu, August 26, 2023

In draft for ML-DSA (aka Dilithium) on line 529, it says:

> When the module Znq in LWE and SIS is replaced by a module over a ring larger than Zq (such
as Rq),

This seems to be the other way around. Shouldn't it be:

> When the ring Zq (such as Rq) in LWE and SIS is replaced by a module Znq over a larger set,

I can't do a good articulation, and if it's indeed an editorial error, I hope someone can come up
with better wording.

Regards, DannyNiu/NJF.

Maybe "Rq" in the parentheses in my proposed (mis-)wording is wrong, but the general idea
I've been suggesting is: it should be "ring" replaced by *module*.

Public Comments on draft FIPS 204

7

5. Comments from Anubhab Baksi, August 28, 2023

 Dear NIST,

Regarding the recent FIPS reports (FIPS 203, FIPS 204 and FIPS 205), we have noticed that the
estimates on the Grover's search complexity on AES-128/-192/-256 are taken from the
Eurocrypt'20 paper by Jaques et al. However, their implementations contained some bugs (due
to inherent issues with Q#), and consequently the estimates were erroneous. We have
contacted the authors of this paper, and they agreed about the presence of the bug.

As we have shown in Table 11 of our paper ("Quantum Analysis of AES" by Jang et al.), the
complexities with their bug-fixed code for AES-128/-192/-256 are respectively 2^{157.33},
2^{222.76}, 2^{287.28} (we considered multiple bug-fixing and optimizations on top of their
base codes and those were the best results).

Apart from that, our own implementations in the same paper achieve the complexity estimates
of 2^{156.64}, 2^{221.99} and 2^{286.48} respectively; which are the currently best-known
results to the best of our knowledge.

Therefore, we would be grateful if you kindly consider having a look at our work. We would be
obliged to discuss with you, should there be any necessity.

Thanking you,
Anubhab Baksi (for, and on behalf of other authors),
Singapore
On behalf of: Kyungbae Jang, Hyunji Kim, Gyeongju Song, Hwajeong Seo, Anupam
Chattopadhyay

Public Comments on draft FIPS 204

8

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.ipd.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.ipd.pdf
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Feprint.iacr.org%2F2022%2F683&data=05%7C01%7Cdustin.moody%40nist.gov%7C77c1530110074df3649408dba7a1a7e2%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638288085009296721%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Lfq15EAcr4bb%2F%2FiU0BMXFE93uwx4jlh%2FEXS7Vicbw1k%3D&reserved=0

6. Comments from Elaine Barker, August 29, 2023

1. Lines 67-68: FIPS 186-5 should also be listed here.

2. Line 95: Are the allowed algorithms in FIPS 140-3 necessarily in an approved status for govt.
use?

3. Line 255: Refer to Section 3.2 for an explanation of the MLWE problem.

4. Lines 262-263: Replace with "...signature generation (Section 6), and signature verification
(Section 7)..."

5. Sections 1.2 and 1.3: Consider not including these sections in the final FIPS, but providing
the content in 1.2, 1.3, and Appendix A in a separate document (e.g., a NISTIR).

6. Line 280, fault-tolerant: provide an explanation of what this is .

7. Line 297: Remove the comma.

8. Line 298, "increases the length of c˜ to 384 and 512 bits, respectively": Some text seems to
be missing. What are the two values for?

9. Line 370: Change to "For digital signatures, the private key...".

10. Lines 390 and 402: Remove the commas.

11. Line 436: Should the A and T be bolded?

12. Lines 440-441: Provide examples (as is done for other NIST documents for these notations.

13. Lines 449-450: Shouldn't the definition say something about the variables reversing but the
coefficients don't?

14. Lines 469-472: Don't like this notation. y<-- f(x) looks OK to me.

15. Lines 517-518, "the adversary cannot create any additional valid signatures based on the
signer’s public key": This is a bit weird, since the public key is not used for signing. Maybe
say something about not being able to determine the private signing key from the public
key? Clarify what is meant.

16. Line 525: Define "noisy linear equation".

17. Lines 538-541: This looks like proof of possession and could be used in SP 800-89.

18. Line 581: Delete "we use" and insert "are used" after "ML-DSA-87".

19. Line 598: Change "value" to "seed".

20. Line 611: Replace "can" with "could".

21. Line 622: Should "public key" be changed to "private key" here?

22. Lines 648-649: Should the categories be listed in Table 1?

23. Line 660, "XOF (namely, SHAKS-256": Say that this appears as H(tsi, 1024) in step 1 or refer
to Section 8.3.

24. Line 668: Change "thought of" to "considered"?

Public Comments on draft FIPS 204

9

25. Lines 676 and 693, "a 512-bit hash...": Suggest reordering the phrase to "tr, a 512-bit hash
of the public key for use...". As written, it sounds like tr is hashed rather than the public key.

26. Line 680-681: Include "M" in Section 2.3, indicating that M is not necessarily the data to be
signed but may a message digest.

27. Line 683: Remove "In addition,".

28. Lines 725-726: Will the CAVP need to test this alternative implementation? Or do they end
up with the same result?

29. Lines 728-729: Why bother with this notation (i.e., the "<<" and ">>"). These values are just
computed and used later in the same Algorithm? Using just "cs1" works.

30. For the various algorithms: Consider pointing to the pseudocode algorithms routines by
number or a link to make them easy to get to.

31. Line 735: Should "section 1" be changed to "Table 1"?

32. Section 7.1: Pre-hashing seems to be optional. Will there be OIDs to distinguish the use or
non-use of pre-hashing? Would pre-hashing be the default? What if a verifier can only verify
a pre-hashed message but the signer did not pre-hash? Either provide guidance or settle on
always pre-hashing.

33. Line 767, re using a XOF: This seems to say that using a XOF is acceptable for pre-hashing,
but lines 836-840 say it is not. We have not yet approved using a XOF as a general-purpose
hash function. Need to resolve this conflict.

34. (8.1) and (8.2) and line 830: Define this notation in Section 2.3.

35. Line 830: Define "little endian" in Section 2.

Public Comments on draft FIPS 204

10

7. Comments from Lauren Brandt, September 7, 2023

Hello,

I have noticed a discrepancy between the encoded private key size in Algorithm 18 (skEncode)
and the sizes (in bytes) of the private key listed in Table 2.

In Algorithm 18, the size of the encodedSk is 32+32+64+32*((K+L)*bitlen(2*ETA)+D*K) bytes.

For ML-DSA-44:
K = 4, L = 4, ETA = 2, D = 13.
32+32+64+32*((4+4)*bitlen(2*2)+13*4)
=2560

For ML-DSA-65:
K = 6, L = 5, ETA = 4, D = 13
32+32+64+32*((6+5)*bitlen(2*4)+13*6)
= 4032

For ML-DSA-87
K = 8, L=7, ETA = 2, D = 13
32+32+64+32*((8+7)*bitlen(2*2)+13*8)
= 4896

The values in Table 2 for the Private Key Bytes are:
ML-DSA-44: 2528
ML-DSA-65: 4000
ML-DSA-87 : 4864

The values from Table 2 are all 32 bytes less than output size of Algorithm 18. In Dilithium 3.1,
tr is 32 bytes. In FIPS 204, this size or tr was increased by 32 bytes to 64 bytes. I think this could
explain the differences between Algorithm 18 and Table 2.

Best,
Lauren Brandt

Public Comments on draft FIPS 204

11

8. Comments from Vadim Lyubashevsky, September 8, 2023

 Dear NIST, dear all,

At this week's Post-Quantum Cryptography Summit in Oxford (thank you to the organizers!), a
group of us went through the exercise of implementing the Dilithium draft standard
from https://csrc.nist.gov/pubs/fips/204/ipd in Python and then comparing it to our C
reference implementation from https://github.com/pq-crystals/dilithium/tree/standard. This
reference implementation is a modification of the pre-standard Dilithium which includes the
proposed changes from the draft standard document. The result was that modulo one small
difference (and some inconsistencies in the standard algorithms which could be easily fixed),
the algorithms appear to match. Since we implemented the algorithms
from https://csrc.nist.gov/pubs/fips/204/ipd as verbatim as possible, they are extremely slow,
and so we could not perform many tests. So we are just mildly confident that everything
matches.

Below, we explain the minor difference and give other suggestions for the standard.

Best,
Vadim

- The ExpandMask function (Algorithm 28) already uses a different input for SHAKE for every
polynomial. It should thus use the output from the beginning of the hash stream and not start
at an offset (i.e. the r is not needed in the expansion in line 4). This currently differs from our
reference C implementation and leads to different test vectors. Removing the r (or setting it to
1) makes things more efficient. This is the version that we tested against our reference code.

- As in the ML-KEM and SLH-DSA standards, we strongly recommend to
use byte arrays as inputs and outputs, and not bit strings. This should not

result in any changes in the test vectors. The way things are now, very often there are many
consecucive BytesTobits and BitsTobytes calls -- especially when submitting inputs to hash
functions, which input/output bytes -- that cancel each other out.

- Please consider including the whole table of powers of zeta for
the NTT. Then inside the NTT description simply use \zeta_j or
\zeta[j]. Of course add an explanation of how the entries are
computed.

- Move discussions about how to implement certain math operations
(like rounding) to a dedicated "Notes for Implementors" section

- The majority of us thought that the entire variable \tilde{c} should be
used in the SampleInBall function rather than just \tilde{c_1}.

Public Comments on draft FIPS 204

12

https://csrc.nist.gov/pubs/fips/204/ipd
https://github.com/pq-crystals/dilithium/tree/standard
https://csrc.nist.gov/pubs/fips/204/ipd

 This would remove the need for variables \tilde{c_1} and
 \tilde(c_2), where \tilde(c_2) isn't actually ever used. The
 performance impact of the change will essentially be zero, but possibly make things less

confusing.

Typos and inconsistencies:

Algorithm 1: Power2Round should not take d as an input

Algorithm 5: Should take bit length as input because other functions
call it with it (Algorithms 12 and 13).

Algorithm 7: d is used as the length of z, but d is a public value

Algorithms 21 and 22: For consistency with previous algorithm descriptions, the k and l in lines
1 and 3
should be in the "double exponent"

Algorithm 25: eta should not be a parameter in calling the function
in lines 5 and 6

Algorithms 23, 35, 36: k is used as a local loop variable, but it was previously defined as global

Algorithms 35 and 36: the brv function should be written out as a separate algorithm

Line 436: Symbol for transposing matrices is inconsistent with the
one in Kyber standard. Suggest remove it from Dilithium standard
since it is not used in this document

No floating point arithmetic: Comment similar to the one in FIPS 203 (line 703) is applicable to
FIPS 204.
Implementations of ML-DSA doesn't require and should not use floating-point arithmetic.

Public Comments on draft FIPS 204

13

9. Comments from Lauren Brandt, September 18, 2023

 Hello,

I think there is a typo in the output of Algorithm 22 of the ML-DSA final draft.

Algorithm 22 states that the output size is a bit string representation, w_1 \in
{0,1}^(32*k*bitlen((q-1)/(2*GAMMA2)-1).

However, this function is dependent on BytesToBits and SimpleBitPack. For each call to
SimpleBitPack, the return will be a byte string of length 32* bitlen((q-1)/(2*GAMMA2)-1).
BytesToBits will then produce a bit string from this byte string. As a byte is 8 bits, each iteration
of the for loop will produce 32* bitlen((q-1)/(2*GAMMA2)-1)*8 bits. As this for loop is run k
times, there should be a total of 32*k* bitlen((q-1)/(2*GAMMA2)-1)*8 bits produced. So I think
the output should instead say w_1 \in {0,1}^(32*k*bitlen((q-1)/(2*GAMMA2)-1)*8.

Best,
Lauren

Public Comments on draft FIPS 204

14

10. Comments from Stephan Mueller, September 18, 2023

Dear ladies and gentlemen,

Considering the request for comments on the FIPS 204 draft from August 24,
2023, please find below comments.

FIPS 204 Comments

Error in ctilde Length Specification

At various places, including the final length of the signature, the c~ length
is defined to be 32 bytes instead of lambda / 4.

Signature Generation: Reverse Hashing of TR and M

Algorithm 2 step 6 specifies:

mu <- H(tr||M, 512)

which implies the hashing of the input message and the public key hash TR.

It is suggested to reverse the order of the input data to the following
proposal:

mu <- H(M||tr, 512)

Cryptographic impact: The chosen hash algorithm and the resulting strength of
the message digest is agnostic of the order of the input data provided that
all input data is used for the hashing. Of course the resulting message digest
changes, but its cryptographic strength, i.e. the property relied on by the
signature, is unaffected. Thus, the change is considered to not affect the
cryptographic properties of the signature.

Implementation impact: With the change, an implementation of signature
operation may become significantly simpler and fully consistent with currently
existing signature schema implementations. The reason is the following: Some
signature algorithm implementations provide 3 interfaces to perform the
signature generation operation:

1. signature init - this operation effectively initialize the message hashing
(akin to a hash init operation)

2. signature update - this operation effectively adds a message to the hash
state (akin to a hash update operation); this operation is allowed to be
called multiple times until all message parts are added to the hash state

3. signature final - this operation calculates the message digest and from it
the signature (akin to a hash final operation immediately followed by the
signature generation operation)

Examples for such approaches are found in contemporary algorithm
implementations like OpenSSL (EVP_DigestSignInit, EVP_DigestSignUpdate,
EVP_DigestSignFinal) or leancrypto (lc_dilithium_sign_init,
lc_dilithium_sign_update, lc_dilithium_sign_final)

Public Comments on draft FIPS 204

15

The purpose of this segmentation is that it allows the caller to apply the
signature operation on a message that is held multiple memory locations (i.e.
the message is NOT held in a contiguous memory block). Without the allowance
of step 2 from above, a caller must copy a potentially large message into a
contiguous memory block and then perform the signature operation which may
cause the message to be present in memory twice. As messages may be very large
(e.g. ISO disk images which may multiple of gigabytes in size), such data
duplication leads to waste of resources.

With the FIPS 204 stipulated calculation of mu, it is required that the TR
value must be added to the hash state before the actual message. This implies
that the TR value must be known to the signature init step (or at least before
the first message part is added to the hash state). The TR value can only be
obtained from the secret key which implies that the secret key must be
supplied to the signature init step in addition to the signature final step.

By reversing the hash input to calculate mu, the TR value is the last data
that is added to the hash state. As the message digest is calculated in the
signature final operation, the addition of the TR to the hash state can be
equally performed in the signature final state. This implies that the secret
key only needs to be provided to the signature final operation and not to the
signature init operation.

With the proposed change therefore the signature init operation can be now
implemented the same way as all existing signature schemes, i.e. without the
need to provide the sk.

Signature Verification: Reverse Hashing of TR and M

When the signature generation operation is changed as outlined above, the
corresponding part in the signature verification must change, too.

Algorithm 3 step 7 specifies:

mu <- H(tr||M, 512)

which implies the hashing of the input message and the public key hash TR.

It is suggested to reverse the order of the input data to the following
proposal:

mu <- H(M||tr, 512)

Aside from the necessity to change the hash input parameters following the
signature generation operation, the very same arguments given for the
signature generation change apply here, too.

Storage of Seed instead of Key Pair

Chapter 4, past paragraph allows the implementor to store the seed zeta
instead of the full public/private key pair to reduce storage space.

Please clarify whether the absolute zeta that was used to successfully

Public Comments on draft FIPS 204

16

generate a key pair is only allowed to be stored. The goal of the question is
to establish whether it is permissible that zeta is stored as follows:

1. Zeta is generated by a DRBG as outlined in section 3.5.1.

2. Zeta is inserted into a KDF, such as SP800-108 with zeta being the key, but
allowing an arbitrary label / context. The result of the KDF is used as the
zeta that is inserted into the key generation specified in chapter 5. Adding
to this, please specify whether it is permissible that a chain of KDFs is
allowed where the result of one KDF is used as the key for the next KDF. The
output of the final KDF operation is uses as the zeta for the Dilithium key
generation outlined in chapter 5.

Ciao
Stephan

Public Comments on draft FIPS 204

17

11. Comments from Danny Niu, October 3, 2023

Greetings, all.

The current draft for ExpandMask function says:

v <- (H(rho||n)[[32rc]],H(rho||n)[[32rc+1]],...

which means in addition to adding the nonce n to the seed rho,
the previous r polynomial modules are skipped (thus wasted)
for each s[r] generated - even though there had already been
domain separation.

What's NIST's response on this?

Thanks.

Public Comments on draft FIPS 204

18

12. Comments from Simon Hoerder, October 5, 2023

 Hi,

In Algorithm 3 of FIPS 204, the inputs to the UseHint() function in line
11 are vectors. In Algorithm 34, the pseudo code for UseHint(), the
inputs are single values instead.

My interpretation is that a developer should iterate over the input
vectors and apply algorithm 34 to each pair of elements, i.e:

 for idx in range(0, len(h)):
 w1dash[idx] = UseHint(h[idx], wdashapprox[idx])

(The range check on just h is atrocious but it’s supposed to illustrate
my understanding, not be decent code.)
Maybe the pseudo code should be specific about the iteration and not
leave things to developer interpretation?

Best,
Simon

Public Comments on draft FIPS 204

19

13. Comments from Conrado Gouvea, October 6, 2023

Hi,

Section 7.1 specifies that if desired, a hash of the message should be signed. However, simply
doing that is not usually advisable because a signature of a hashed message will be identical to
a signature of a sequence of bytes that is equal to the hash of the message.
I suggest using domain separation in the underlying hash, to differentiate prehashed from
regular signatures, like it's done for EdDSA vs HashEdDSA in FIPS 186-5.

Thanks,

Conrado Gouvea

Public Comments on draft FIPS 204

20

14. Comments from Isabela Rossales, October 10, 2023

Dear NIST Team,

In Section 7.1 of the draft, there is a mention of a prehash version of ML-DSA, albeit with
limited details provided. This has sparked some questions regarding its implementation.

In the prehash version, will the step 6 of Algorithm 2 be removed from the ML-
DSA_PH.Sign algorithm and be set as a parameter ML-DSA_PH.Sign(sk, mu)?
Or will a phflag (similarly to EdDSA-PH) be concatenated in step 6's hash mu=H(tr||M||phflag,
512) ? Or will step 6 stay the same, except that when calling the Sign function, the caller sends
H(M) instead of M?

Sincerely,
Isabela Rossales

Public Comments on draft FIPS 204

21

15. Comments from Paul Duncan, October 23, 2023

Hi Everyone,

The wording in the description of bitlen() on line 438 of section 2.3 in the FIPS 204 draft is
confusing.

The description says "For a positive integer a, the minimum number of binary digits required to
represent a. For example, bitlen 32 = 6 and bitlen 31 = 5."

I think the phrase "the minimum number of binary digits required to represent a" is confusing
because it implies (to me, anyway) that the definition of bitlen(a) is "ceil(log_2(a))" rather than
the actual definition used in the FIPS 204 draft, which is "the number of integers in the range [0,
a]" or "ceil(log_2(a + 1))".

The actual definition only becomes apparent once the reader considers the examples in the
second sentence of the description.

I think the phrase "the minimum number of binary digits required to represent a" in the first
sentence of the description of bitlen() should be changed to read "the minimum number of
binary digits required to represent the number of integers in the range [0, a]".

With that change, the full description of bitlen() would look like this:

 "For a positive integer a, the minimum number of binary digits
 required to represent the number of integers in the range [0, a].
 For example, bitlen 32 = 6 and bitlen 31 = 5."

This wording is consistent with the examples in the second sentence of the description and also
consistent with how bitlen() is used throughout the FIPS 204 draft.

It might also help to add the mathematical definition to the description of bitlen() as well. In
that case, the full description of bitlen() would read as follows:

 "For a positive integer a, ceil(log_2(a + 1)), or the minimum number
 of binary digits required to represent the number of integers in the
 range [0, a]. For example, bitlen 32 = 6 and bitlen 31 = 5."

Thanks,
--
Paul Duncan

Public Comments on draft FIPS 204

22

16. Comments from Paul Duncan, October 23, 2023

 Hi Everyone,

The value in the "Private Key" column for all three rows of "Table 2.
Sizes (in bytes) of keys and signatures of ML-DSA." in section 4 of the
FIPS 204 draft (at the top of page 14) appear to be off by 32 bytes.

* ML-DSA44: Table 2 = 2528 bytes, Expected = 2560 bytes
* ML-DSA65: Table 2 = 4000 bytes, Expected = 4032 bytes
* ML-DSA87: Table 2 = 4864 bytes, Expected = 4896 bytes

I suspect the key sizes in the table were not updated when the length of tr was increased from
32 bytes in Dilithium 3.1 to 64 bytes for the FIPS 204 draft (as described on line 297 in section
1.3.2).

According to the output of Algorithm 1 ML-DSA.KeyGen() and the output of Algorithm 18
skEncode(), the private key size (in bytes) is defined as:

 sklen = len(rho) + len(K) + len(tr) + 32 * ((k+l) * bitlen(2*eta) + d * k)
 (bitlen(a) = ceil(log_2(a + 1))

Substituting in the ML-DSA44 parameters (k=4, l=4, eta=2), I get:

 = 32 + 32 + 64 + 32 * ((4 + 4) * bitlen(2*2) + 13 * 4)
 = 2560 bytes

ML-DSA65 (k=6, l=5, eta=4):

 = 32 + 32 + 64 + 32 * ((6 + 5) * bitlen(2*4) + 13 * 6)
 = 4032 bytes

ML-DSA87 (k=8, l=7, eta=2):

 = 32 + 32 + 64 + 32 * ((8 + 7) * bitlen(2*2) + 13 * 8)
 = 4896 bytes

Thanks,
--
Paul Duncan

Public Comments on draft FIPS 204

23

17. Comments from Paul Duncan, October 26, 2023

 Hi Everyone,

The description of centered modular reduction (mod +/-) on line 444 in
section 2.3 of the FIPS 204 draft is incomplete because it does not
define how to handle an odd modulus.

Two reasonable interpretations of the description in the FIPS 204 draft
("floor(a/2)" and "round(a/2)") could lead to a implementation that is
different than the one provided in section 2.1 of the Dilithium 3.1
spec.

For example, if an implementer interprets "alpha/2" as "floor(alpha/2)"
for an odd modulus alpha = 7 using the description in the FIPS 204
draft:

 x = y mod^{+-} 7
-floor(7/2) < r' <= floor(7/2)
-3 < m' <= 3

 4 = y mod^{+-} 7
 y = (no solution)

Versus the description from section 2.1 of the Dilithium 3.1 spec:

 x = y mod^{+-} 7
 -((7-1)/2) <= r' <= ((7-1)/2)
-3 <= r' <= 3

 4 = y mod^{+-} 7
 y = -3

If an implementer interprets "alpha/2" in the centered modular reduction
description in the FIPS 204 draft as "round(alpha/2)", then the problem
is even worse:

 x = y mod^{+-} 7
-round(7/2) < r' <= round(7/2)
-4 < m' <= 4

 4 = y mod^{+-} 7
 y = -3 or 4 (two solutions)

Public Comments on draft FIPS 204

24

Suggested solutions:

1. Update the centered modular reduction description on line 444 in
section 2.3 of the FIPS 203 draft to explain how to handle an odd
modulus, similar to section 2.1 of the Dilithium 3.1 spec (including
the clarifying footnote).

2. Add floor() to the centered modular reduction description, so it
reads "floor(-alpha/2) < m' <= floor(alpha/2)".

Thanks,

--
Paul Duncan

Public Comments on draft FIPS 204

25

18. Comments from Paul Duncan, October 26, 2023

Hi Everyone,

It would be helpful if the calls to H() and H_128() in the algorithms in
the FIPS 204 draft were hyperlinks to section 8.3.

Instances:

* Algorithm 1, lines 2 and 8
* Algorithm 2, lines 6, 8, and 15
* Algorithm 3, lines 6, 7, and 12
* Algorithm 23, lines 4, 7, and 9
* Algorithm 24, line 4
* Algorithm 25, line 4
* Algorithm 28, line 4

Thanks,

--
Paul Duncan

Public Comments on draft FIPS 204

26

19. Comments from Gustavo Banegas, October 31, 2023

Dear NIST,
Regarding the choice of XOF used in ML-DSA and ML-KEM (Dilithium and Kyber), if we take the
example of SPHINCS+, it is possible to implement it with different hash functions. However, this
choice seems to have already been firmly decided upon for Kyber and Dilithium.

An alternative could be an XOF based on a symmetric primitive (e.g. ASCON). For security levels
beyond 128 bits of security, it's worth exploring the potential of upcoming, yet-to-be-specified
variants of ASCON or a different secure XOF besides SHAKE, there were previous discussions
concerning the performance of SHAKE/SHA-3.

Additionally, with regard to performance optimization, we would like to advocate for the
implementation of randomization in the context of Dilithium. This topic was previously
deliberated on May 5th and other occasions this has been discussed into modify the XOF, and
we agree with the previous discussion in this topic that it would be beneficial to replace SHAKE
to produce pseudo-randomness with an SP 800-90C certified DRBG.

Do you plan to give any comment or modifications regarding this matter?

All the best,
Gustavo

Public Comments on draft FIPS 204

27

20. Comments from Graham Costa, November 16, 2023

Hi,

Thank you for the opportunity to review this standard. Our team has reviewed the standard
from the perspective of a module developer who regularly submits modules to CMVP for
validation. With that in mind, our main focus is on how requirements and statements in the
standard may be interpreted by developers, test labs and certifiers.

Comment 1:

Lines 592 - As SP 800-89 is now a dated publication (published in 2006 and largely referencing
FIPS PUB 186-3 exclusively using SHA1) we'd suggest references are updated to the specific
section that is expected to be applied. In particular, as written, SP 800-89 explicitly covers key
validation for DSA, ECDSA and RSA - as such it's not immediately obvious what parts of that
standard are expected to apply in the case of validating public keys from ML-DSA.

Proposed fix - Add an explicit reference in the text to the sections from SP 800-89 that FIPS 204
expects to apply in the context of ML-DSA. Independent of this, SP 800-89 should be updated
given its recent reference from FIPS PUB 186-5 and proposed reference from FIPS PUB 204 and
205.

Comment 2:

Lines 588-589 - To avoid potential confusion with available options to an 'Approved RBG' we'd
propose explicitly stating here that "seed … shall be generated using output of an approved
RBG using one of the architectures defined in SP 800-90C." That standard in turn references SP
800-90A and SP 800-90B which don’t need to be included in this standard.

There is potential for confusion by referencing all three standards. In particular, whether
outputs from an SP 800-90B noise source could be used without a DRBG and/or whether a
platform supporting an approved DRBG must also include its own noise source in addition to a
DRBG. SP 800-90C makes it clear that all architectures require use of a DRBG and separately
makes it clear that the DRBG may be seeded using external noise sources.

Comment 3:

Line 598 - Linked to the comment above, we propose removing the word 'freshly' from the
sentence The seed ξ shall be freshly generated using an approved RBG,…'. Provided entropy
has been protected, there is no requirement or benefit to requiring entropy be generated at
the point of generating a signature and where this has the potential to impact the performance
of many modules where entropy is generated during periods of inactivity and stored in an

Public Comments on draft FIPS 204

28

entropy pool awaiting use. This standard shouldn't introduce any additional requirements on
entropy (intentional or not) that aren't present in the NIST CTG standards for Approved RBG.

If the worry is that entropy in storage could be compromised or corrupted, the same would
apply to keys used by this algorithm.

Should you have any further questions, please do not hesitate to contact us.

Graham COSTA (he/him)
Security and Certifications Manager
Digital Identity and Security
Thales

Public Comments on draft FIPS 204

29

21. Comments from Danny Niu, November 17, 2023

 I'm testing my implementation of ML-DSA/Dilithium against the Oct 2023 example values
provided by NIST.

So far, verification test passes (i.e. verification subroutine recognizes correct signature-
message-publickey tuple).

However, I cannot test signature generation. One problem I've identified so far, is that the
private key is too short to be correct and acceptable. I've calculated the required length of
private keys for category I and III parameters, and multiply them by 2 to account for
hexadecimal encoding, and the length of the "sk" lines from the example files are shorter than
them.

Would NIST consider updating the example values? Or provide guidance on workarounds so
that signature generation can continue to be tested?

Thanks.
-- DannyNiu/NJF.

Public Comments on draft FIPS 204

30

22. Comments from Beat Heeb, November 17, 2023

 The verify algorithm can be slightly simplified by removing the last check ("[[number of 1’s in h
is <= omega]]") from line 13 in algorithm 3 and the corresponding text on lines 756 and 757.
Rationale: The check is irrelevant because the given signature encoding does not allow to
encode more than omega one bits in h (there is space for no more than omega one bit indices).
A correctly encoded h vector therefore cannot contain more than omega one bits and the check
is always true. The correctness of the encoding is already checked in sigDecode() on line 2 of
algorithm 3.

Regards
Beat Heeb
Oberon microsystems

Public Comments on draft FIPS 204

31

23. Comments from John Gray, November 17, 2023

 In section 9.4 of SLH-DSA and 7.1 there is mention of accommodating pre-hashing. This is
great to see! I am requesting that you define separate Object Identifiers for the pre-hashed
versions verses the non pre-hashed versions.

Since you accommodate for prehash in FIPS 204 and 205, having a separate OID definition or
defined domain separation would prevent application incompatibility, otherwise applications
would need to have pre-shared information amongst themselves (or try multiple times in the
case of failures, which isn’t helpful). So please define either different OIDs or domain
separated versions in those drafts. I think using different OIDs would be the easiest for
implementors otherwise the format of the message would have to first be parsed to determine
which method to use (and anytime we implementors have to parse stuff opens up the
possibility of errors)…

Public Comments on draft FIPS 204

32

24. Comments from Danny Niu, November 18, 2023

The current formula for signature length in Algorithm 2 ML-DSA.Sign and Algorithm 3 ML-
DSA.Verify is:

32 + l*32*(1+bitlen(gamm_1+1))+omega+k.

However, the actual length of challenge string packed into the signature is 2*lambda bits,
(which happens to equal k*8 octets).

This should be corrected.

I should've said more clearly. I mean the "32" at the beginning should be changed to "k*8", or
whatever variable/expression NIST see fit, since the length of the challenge packed into the
signature is not fixed.

Public Comments on draft FIPS 204

33

25. Comments from John Preuß Mattsson, November 20, 2023

Dear NIST,

Thanks for your continuous efforts to produce well-written open-access security documents.
Please find attached our comments on FIPS 203, 204, and 205.

Best Regards,
John Preuß Mattsson,
Expert Cryptographic Algorithms and Security Protocols

Comment attached.

Public Comments on draft FIPS 204

34

Date: November 20, 2023

Ericsson AB
Group Function Technology
SE-164 80 Stockholm
SWEDEN

Comments on the draft versions of FIPS 203 (ML-KEM), FIPS 204
(ML-DSA), and FIPS 205 (SLH-DSA)

Dear NIST,

Thanks for your continuous efforts to produce well-written open-access security documents. Please
find below our comments on FIPS 203 (Draft), FIPS 204 (Draft), and FIPS 205 (Draft).

General comments on all three draft specifications:

– “secure even against adversaries who possess a quantum computer”
“including after the advent of quantum computers”
“If large-scale quantum computers are realized”
“resistance to attacks from a large-scale quantum computer”
“adversaries in possession of a large-scale quantum computer”

A lot of adversaries already have small, error prone, and currently quite useless quantum
computers. “Large-scale” is better but is also not a good term as in addition to being large, the
quantum computer must have a sufficiently low error rate to be relevant. We suggest that NIST
uses the established and excellent term Cryptographically (or Cryptanalytically) Relevant
Quantum Computer (CRQC). This aligns with CNSA 2.0 [1].

– “A number associated with the security strength of a post-quantum cryptographic algorithm”

We approve NIST sparingly using the term “post-quantum” at all in the draft standards. It is a
quite bad term as quantum-resistant algorithms need to be deployed before the advent of
CRQCs. We suggest that NIST removes the last few “post-quantum” and replace them with the
established and excellent term “quantum-resistant”. This aligns with CNSA 2.0 [1].

– “Key search on block cipher with 128-bit key”

Attacking any sort of 128-bit symmetric cryptography (block cipher or not) requires a drastic
number of computational resources comparable to attacking AES-128. As concluded in [2–3],
at least cubic (𝑛!) or quartic (𝑛") speedups are required for a practical quantum advantage. The

Public Comments on draft FIPS 204

35

2(8)

viability of quantum advantage with cubic speedups is still ambiguous [3]. Algorithms with
quadratic (𝑛#) speedup like Grover’s algorithm (which is proven to be optimal) will not provide
any practical quantum advantage for breaking symmetric cryptography or any other problems.

NIST will soon standardize Ascon-128 [4] which is quantum-resistant but not a block cipher.
Stream ciphers like SNOW 3G and sponge-based key derivation and authentication functions
like TUAK with 128-bit keys used for protection in 4G and 5G mobile networks are also
quantum-resistant. In fact, we would expect that key search on SNOW 3G requires more gates
than attacking AES-128. But the exact gate counts are not very important practically. While
SNOW 3G and TUAK are not NIST algorithms, we think NIST has an important role in educating
the general public that also these types of algorithms are and will remain quantum-resistant.

We suggest that NIST changes the definition of security category 1 to “Key search on cipher
with 128-bit key”. This aligns with the statement from UK NCSC [5]:

“the security of symmetric cryptography is not significantly impacted by quantum computers,
and existing symmetric algorithms with at least 128-bit keys (such as AES) can continue to be
used. The security of hash functions such as SHA-256 is also not significantly affected, and
secure hash functions can also continue to be used.”

We also suggest that NIST provides a statement in some SP or FIPS document estimating for
how many decades security category 1 and 128-bit symmetric cryptography will be allowed.
The current text in SP 800-57 just states that security strengths 128, 192, and 256 are
acceptable beyond 2030. When RSA-1024 was disallowed in 2010 it could almost be broken by
the world’s fastest supercomputer [6–7]. When RSA-2048 is disallowed in 2030 it is expected
to take another 30 years until it can be broken by a supercomputer [6–7]. Using similar security
margins (0–30 years), security category 1 should be allowed until 2060–2090. A suggested
very conservative statement would be “security category 1 can be used at least until 2060”.
That would give some needed guidance for industry, but also enable NIST to allow security
category 1 to be used longer if Moore’s law slows down as many people predict.

– We think it is excellent that ML-KEM and ML-DSA only use SHA-3/Keccak. As stated by Mike
Hamburg “SHAKE has a more appropriate interface, comparable or better performance, and is
easier to make side-channel resistant” [8]. Hash functions should be designed to provide
indifferentiability from a random oracle [9]. Looking at hash performance figures for small
output strings it is easy to think that SHA-2 is slightly faster on some platforms, but this is often
completely negated by the fact that to use SHA-2 in a secure you need a lot of complex and
heavy constructions only designed to overcome the severe shortcomings of SHA-2 such as
HMAC, HKDF, MGF1, HASH_DRBG, some function to get short output (NIST defines several
ways for SHA-2), and often a mix of SHA-256 and SHA-512. Doing anything secure with SHA-2
is very complex. SHA-2 is not robust.

– We strongly think NIST should produce negative test vectors for all algorithms. Negative test
vectors are very important for catching bugs that might have security implications. We think all
future algorithm and protocols standards should be accompanied with negative test vectors. It
is often claimed that security agencies participate in standardization and production of

Public Comments on draft FIPS 204

36

3(8)

cryptographic modules with the explicit goal of sabotaging security to enhance their
surveillance capabilities. Taking a strong stance on finding security threatening implementation
bugs would increase the trust in NIST as a global SDO for cryptography. Two functions that
require negative test vectors are ML-KEM.Encaps and ML-KEM.Decaps. FIPS validation shall
not be achievable without input validation.

– “At present, ML-KEM is believed to be secure even against adversaries who possess a quantum
computer.”
“ML-DSA is believed to be secure even against adversaries in possession of a large-scale
quantum computer.”
“SLH-DSA is expected to provide resistance to attacks from a large-scale quantum computer.”
“ML-DSA is designed to be strongly existentially unforgeable”

We suggest removing “At present”, which is not suitable for a document that will live for many
years. The terms believed to, expected to, and designed to are all used when talking about
security properties. We suggest removing “believed”. A huge amount cryptanalytic effort
targeting lattice-based cryptography has been done before and during the NIST PQC project
and US government is planning to protect all national security systems using lattice-based
cryptography. Maybe only use the term “designed to”, which seems to be the most common in
FIPS 203–205 and other NIST specifications.

– “1.3 Differences From the … Submission”

These sections are probably better suited as appendixes in the final standards.

Comments on FIPS 203 (Draft):

– We strongly disagree with suggestions that NIST should remove ML-KEM-512 based on a
heavily contested claim regarding the gate count in one theoretical memory model [10]. We
agree with NIST that the cost of breaking ML-KEM-512 is higher than the cost to break AES-
128. We think that it is excellent that NIST has specified ML-KEM-512. If ML-KEM-512 is
slightly above or below the theoretical security level of AES-128 in one theoretical model is
practically completely irrelevant. The important thing practically is that ML-KEM-512 is
approximately as hard to break as AES-128. We believe ML-KEM-512 offer a significant
security margin for many applications, especially if used in hybrid mode with Curve25519. As
stated by UK NCSC [5], ML-KEM-512 provides an acceptable level of security for personal,
enterprise, and government information.

The maximum transmission unit (MTU) on the Internet is typically just around 1300 bytes. The
encapsulation key and ciphertext are 800 and 768 bytes in ML-KEM-512 versus 1184 and 1088
bytes in ML-KEM-768. The size difference means that when using ML-KEM-512, a lot more
additional information can be sent in the same packet. This significantly reduces latency, which
is very important in many applications. We believe that the availability of ML-KEM-512 will
increase the adoption rate of quantum-resistant cryptography. We believe most
implementations will support all of the security levels so applications should be able to change
the security level quickly if needed.

Public Comments on draft FIPS 204

37

4(8)

– We are strongly against replacing SHA-3/Keccak in ML-KEM with SHA-2 as suggested in [8].
Such a big change would risk introducing various kinds of security problems, decrease trust in
ML-KEM and NIST, lower performance on most/all platforms, and significantly delay
deployment of ML-KEM. Using Keccak should not be a problem for organizations that have
invested in cryptographic agility.

– “makes the encapsulation key available to Party B. Party B then uses Party A’s encapsulation
key to generate one copy of a shared secret key along with an associated ciphertext. Party B
then sends the ciphertext to Party A over the same channel”

It does not have to be the same channel. It is quite common that a different channel is used.

– “used by two parties to establish a shared secret key over a public channel”
“A shared secret key is computed jointly by two parties (e.g., Party A and Party B)”
“randomness used by the two parties”

ML-KEM is also very useful for quantum-resistant protection of data at rest using for example
Hybrid Public Key Encryption (HPKE) [11]. In such use cases the party encapsulating and
decapsulation may be one and the same, i.e., there is only one party. We think this should be
mentioned in the specification.

– “As a result, ML-KEM is believed to satisfy so-called IND-CCA security”

We think it should be described that the encapsulation key can be used several times. That this
follows from the IND-CCA security is likely not obvious to most readers. We think this
information should be mentioned in FIPS 203 and not just in the future SP 800-227.

– We think it would be good if FIPS 204 also discusses additional security properties. E.g., is ML-
KEM believed to have key commitment or not? How does reusing the encapsulation key affect
the security bounds. Can anything be said about multi-key security?

– “The scheme K-PKE is not sufficiently secure”

We suggest that NIST explains is some detail why NIST believes that K-PKE is not sufficiently
secure.

Comments on FIPS 204 (Draft):

– Very good that NIST embraced the suggestion to include hedged signatures [12] and made it
the default mode. We believe that making this mode the default will increase the practical
security in deployed systems.

– Rejection sampling is new to most users of digital signatures. FIPS 203 has an excellent table
showing decapsulation failure rate. We think FIPS 204 should have a similar table showing the
probability for one or more rejections in the signing algorithm. This is not trivial for most readers
to calculate. Users will want to know if the variable signing time is something they need to care

Public Comments on draft FIPS 204

38

5(8)

about or if the probabilities are so low that the variable signing time can be ignored.

– “ML-DSA is designed to be strongly existentially unforgeable under chosen message attack”

We suggest also adding the abbreviation SUF-CMA, i.e., “ML-DSA is designed to be strongly
existentially unforgeable under chosen message attack (SUF-CMA)”. This allows the reader to
search for “SUF-CMA” or “CMA”.

– “ML-DSA is also designed to satisfy additional security properties beyond unforgeability, which
are described in [6]”

We suggest that FIPS 204 lists the additional security properties that ML-DSA is designed to
satisfy. The current text does not say if ML-DSA satisfies all or a subset of the properties, and
the paper [13] analyzes a non-standardized version of ML-DSA. It is not clear to most readers if
the analysis is still valid for ML-DSA.

Comments on FIPS 205 (Draft):

– “The 12 parameter sets included in Table 1 were designed to meet certain security strength
categories defined by NIST in its original Call for Proposals [21] with respect to existential
unforgeability under chosen message attack (EUF-CMA)”.

We think this is a good selection of parameters. Sections 10.1, 10.2, and 10.3 provide a clear
illustration of how much easier it is to work with SHAKE instead of SHA2. The SHA-2 versions
are downright inelegant and complexity like this often leads to specification and
implementation bugs. We think NIST should also mention if SLH-DSA is (believed to be) SUF-
CMA or not. i.e., given a number of different message-signature pairs (𝑚$, 𝜎) can an attacker
create a new signature (𝑚$, 𝜎’) for an already signed message 𝑚$.

– For ML-DSA, hedged signatures are the default, the value 𝑟𝑛𝑑 should be generated by an
approved RBG, and the deterministic mode should not be used on platforms where side-channel
attacks are a concern. For SLH-DSA, hedged signatures are not the default, 𝑜𝑝𝑡_𝑟𝑎𝑛𝑑 does not
require use of an approved RBG, and for devices that are vulnerable to side-channel attacks
𝑜𝑝𝑡_𝑟𝑎𝑛𝑑 may be set to a random value. We suggest that NIST aligns the SLH-DSA
specification with use the stronger ML-DSA requirements alternatively explain why it is
acceptable for SLH-DSA to have much weaker requirements.

– We think FIPS 205 should describe how the security depends on the number of times the SLH-
DSA private key is used to generate signatures. We think it would be helpful for the reader to
understand if there are no practical limits for the number of signatures that can be generated or
if systems producing a very large number of signatures should change the SLH-DSA private key
periodically to keep a high security level. In ECDSA the collision probability can be ignored while
AES-256-GCM with 𝑟 random IVs only provide ≈ 97	–	log# 𝑟 bits of security due to the collision
probability [14].

Public Comments on draft FIPS 204

39

6(8)

– “finding such a collision would be expected to require fewer computational resources than
specified for the parameter sets’ claimed security levels in all cases except SLH-DSA-SHA2-128f
and SLH-DSA-SHAKE-128f.”

We suggest that FIPS 205 describes how much fewer resources would be needed. An
application might require different security levels for different properties. It would also be good
if NIST stated that it is unknown if SLH-DSA provides the properties exclusive ownership and
non re-signability [13].

– “Don’t support component use.”
“cryptographic modules should not make interfaces to these components available to
applications”

We would suggest that this is softened or rewritten. That some hardware implementations do
not support important building blocks like the AES round function and the KECCAK-𝑝
permutation has turned out to be very limiting for innovation, significantly decreasing
performance (or security) of future standards like ML-KEM and meaning that the acceleration
cannot be used for algorithms like AEGIS [15], Rocca-S [16], Snow 5G [17], and Simpira [18]
that make use the AES round function. We think it is very important that many types of
hardware implementations do support component use to enable future innovation and
standards. In general, we strongly think that NIST should encourage hardware implementations
such as CPUs to have flexible APIs supporting component use.

Best Regards,
John Preuß Mattsson,
Expert Cryptographic Algorithms and Security Protocols

Public Comments on draft FIPS 204

40

7(8)

[1] NSA, “Announcing the Commercial National Security Algorithm Suite 2.0”
https://media.defense.gov/2022/Sep/07/2003071834/-1/-
1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF

[2] Hoefler, Häner, Troyer, “Disentangling Hype from Practicality: On Realistically Achieving
Quantum Advantage”
https://cacm.acm.org/magazines/2023/5/272276-disentangling-hype-from-practicality-on-
realistically-achieving-quantum-advantage/fulltext

[3] Babbush, McClean, Newman, Gidney, Boixo , Neven, “Focus beyond Quadratic Speedups for
Error-Corrected Quantum Advantage”
https://arxiv.org/pdf/2011.04149.pdf

[4] NIST, “NIST Selects ‘Lightweight Cryptography’ Algorithms to Protect Small Devices”
https://www.nist.gov/news-events/news/2023/02/nist-selects-lightweight-cryptography-
algorithms-protect-small-devices

[5] UK NCSC, “Next steps in preparing for post-quantum cryptography”
https://www.ncsc.gov.uk/whitepaper/next-steps-preparing-for-post-quantum-cryptography

[6] CRYPTEC, ”Cryptographic Technology Evaluation Committee Activity Report”
https://www.cryptrec.go.jp/symposium/2023_cryptrec-eval.pdf

[7] CRYPTEC, ”Japan CRYPTREC Activities on PQC”
https://events.btq.li/Japan_CRYPTREC_Activities_on_PQC_Shiho_Moriai.pdf

[8] NIST PQC Forum, “Comments on FIPS 203/204”
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/SPTpYEP7vRg

[9] Maurer, Renner, Holenstein, “Indifferentiability, Impossibility Results on Reductions, and
Applications to the Random Oracle Methodology”
https://eprint.iacr.org/2003/161

[10] NIST PQC Forum, “Kyber security level?”
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/W2VOzy0wz_E

[11] IETF RFC 9180, “Hybrid Public Key Encryption”
https://www.rfc-editor.org/rfc/rfc9180.html

[12] Preuß Mattsson, “OFFICIAL COMMENT: CRYSTALS-Dilithium”
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/1mQjngj_2Po/m/-p4RKXGQAwAJ

[13] Cremers, Düzlü, Fiedler, Fischlin, Janson, “BUFFing signature schemes beyond unforgeability
and the case of post-quantum signatures”
https://eprint.iacr.org/2020/1525.pdf

Public Comments on draft FIPS 204

41

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://cacm.acm.org/magazines/2023/5/272276-disentangling-hype-from-practicality-on-realistically-achieving-quantum-advantage/fulltext
https://cacm.acm.org/magazines/2023/5/272276-disentangling-hype-from-practicality-on-realistically-achieving-quantum-advantage/fulltext
https://arxiv.org/pdf/2011.04149.pdf
https://www.nist.gov/news-events/news/2023/02/nist-selects-lightweight-cryptography-algorithms-protect-small-devices
https://www.nist.gov/news-events/news/2023/02/nist-selects-lightweight-cryptography-algorithms-protect-small-devices
https://www.ncsc.gov.uk/whitepaper/next-steps-preparing-for-post-quantum-cryptography
https://www.cryptrec.go.jp/symposium/2023_cryptrec-eval.pdf
https://events.btq.li/Japan_CRYPTREC_Activities_on_PQC_Shiho_Moriai.pdf
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/SPTpYEP7vRg
https://eprint.iacr.org/2003/161
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/W2VOzy0wz_E
https://www.rfc-editor.org/rfc/rfc9180.html
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/1mQjngj_2Po/m/-p4RKXGQAwAJ
https://eprint.iacr.org/2020/1525.pdf

8(8)

[14] Preuß Mattsson, Smeets, Thormarker, “Proposals for Standardization of Encryption Schemes”
https://csrc.nist.gov/csrc/media/Events/2023/third-workshop-on-block-cipher-modes-of-
operation/documents/accepted-
papers/Proposals%20for%20Standardization%20of%20Encryption%20Schemes%20Final.pdf

[15] IRTF, “The AEGIS Family of Authenticated Encryption Algorithms”
https://datatracker.ietf.org/doc/draft-irtf-cfrg-aegis-aead/

[16] IRTF, “Encryption algorithm Rocca-S”
https://datatracker.ietf.org/doc/draft-nakano-rocca-s/

[17] Ekdahl, Johansson, Maximov, Yang, “SNOW-Vi: an extreme performance variant of SNOW-V
for lower grade CPUs”
https://eprint.iacr.org/2021/236

[18] Gueron, Mouha, “Simpira v2: A Family of Efficient Permutations Using the AES Round
Function”
https://eprint.iacr.org/2016/122

Public Comments on draft FIPS 204

42

https://datatracker.ietf.org/doc/draft-irtf-cfrg-aegis-aead/
https://datatracker.ietf.org/doc/draft-nakano-rocca-s/
https://eprint.iacr.org/2021/236
https://eprint.iacr.org/2016/122

26. Comments from the National Security Agency, November 20, 2023

 As part of our review process, NSA Cybersecurity had a team programming up the NIST draft
standards, including software engineers who were chosen specifically as non-experts. The idea
was that experts would likely implement everything correctly, but we wanted to make sure
average software engineers could also follow the standards. This process led to some mis-
implementations and potential security issues. Many of the comments below suggest
clarifications and minor tweaks to the draft standards document to hopefully make the
standards easier to securely and correctly implement and to avoid some of the issues we saw
during our study. We also include comments which would help increase usability and adoption
rate for Federal systems. Note that some of these issues have already been addressed in the
PQC forum since NIST released the drafts on August 24, 2023, but we still include them here for
completeness. Comments which relate to both FIPS.203 and FIPS.204 will be included in both
places.

The following are directly related to issues our prototypers had in their experiments, where
we believe clarification could help prevent mis-implementation.
• One common issue was implementing NTT.

o In FIPS.204 Algorithm 35, the zeta functions are explicitly mod q, but other parts of
the arithmetic are not. Because this involves multiplying and adding numbers, it is
very easy to overflow integer types if you don’t regularly do modular reductions. We
suggest this at least be mentioned in the NTT discussion or could be made explicit in
the pseudocode. Mathematically this is not an issue, but it was a point of confusion
in practice.

• Another issue some of our implementers had was which mod to use.
o Either because of a typo or a pdf issue, FIPS.204 line 463 defines the infinity norm to

be w mod±q, missing an important absolute value.
o In general, there was some confusion amongst implementers of mod± versus mod,

especially in parts of FIPS.204 which don’t specify which to use. Suggest making this
more explicit in FIPS.204 and removing mod± in FIPS.203 since it is used only one
place (4.7) where an interval would have worked instead. Having two separate mod
functions ended up leading a lot of errors/problems in our tests.

• Bits versus bytes was perhaps the most consistent source of initial errors in our study.
o In FIPS.204, the function Bitlen can be interpreted multiple ways because it says

‘minimum number of bits needed’ but there is a hidden assumption about integer
types. Moreover, bitlen is only used on constants (constant for a given security level)
so have constants as answers. To avoid issues, we suggest simply putting in the
correct constants rather than using the Bitlen function to calculate them.

o Bit Strings/padding – we had multiple implementers who ended up writing out a bit
string as a byte string where each byte was padded to 8 bits. We suggest adding
some wordage of bit strings versus byte strings and to clarify that bits are in adjacent

Public Comments on draft FIPS 204

43

positions without padding. This could be in the definition section of FIPS.204 and
ideally should be the same in FIPS.203.

• The final common type of error we came across related to Pass-by-reference:
o FIPS.203 says to assume no pass-by-reference in the pseudo-code (FIPS.204 doesn’t

specify) but in practice pass-by-reference will be used in real implementations. We
suggest either repeating this where it matters to remind readers or tweaking
pseudo-code to be safe with either method, for example with explicit copies. As an
example of the danger, the BytetoBits() function in FIPS.203 will zeroize the
encryption key if you use pass-by-reference with the pseudo code.

The following are comments which we felt were important but didn’t fall into the previous
category.
• Seed size. During FIPS.204 keygen, starting seed is 256-bit true random extended to 512

bits; this should be 512 if worried about leftover hash lemma and larger than 256 if worried
about multi-target attacks.

• Prehash. FIPS.204 discusses pre-hashing with size 2*security. It says ‘needs’ rather than
shall or should which could be misinterpreted (we were asked about it). The standard
should make clear this is a suggestion and not a requirement since the pre-hash is out-of-
scope of this signature standard. There will, for example, likely be cases where SHA384 is
used with level 5 Dilithium.

• Harmonization of FIPS.203 and FIPS.204. By design, the background information and many
functions of Kyber and Dilithium are mathematically the same. It would help developers if
the standards lined up more closely. Some possible changes/tweaks:

o At minimum, the level 1,3,5 parameter names should have the same naming
conventions ; using the security target for naming would be one way to simplify
rather than ML-DSA-87 vs ML-KEM-1024.

o The organization of FIPS.203 and FIPS.204 could be closer – for example putting
together Auxiliary functions in the same portions of the documents.

o Although the NTT functions are slightly different, most of the mathematical
discussion and background information could be the same in both FIPS.203 and
FIPS.204.

o Some functions like ExpandA in FIPS.204 and SampleNTT in FIPS.203 are doing the
exact same thing (they are both making the matrix Ahat in KeyGen) but the
pseudocode is very different, with is broken up into multiple functions in DFIPS.204.
A lot of the bit/byte-manipulation and sampling functions could be the same or very
similar in both standards.

• Hash choices.
o In the ML-KEM specification, the cryptographic functions are defined in an early

section (4.1 Cryptographic Functions) which makes the different instantiations of
hashes easier to keep track of than in ML-DSA. We strongly suggest ML-DSA adopt a

Public Comments on draft FIPS 204

44

similar section and the language be consistent between the two. As such, the
remainder of these comments apply to both ML-DSA and ML-KEM.

o In ML-KEM section 4.1, the function XOF is defined as SHAKE and comments suggest
that one can generate bits as needed by "squeezing" the sponge function to output
more bits. While mathematically this is true, it is not quite consistent as written with
FIPS 202 which defines the SHA3 and SHAKE functions. In section 6.2 of FIPS 202,
SHAKE is explicitly defined as taking a digest length d in addition to a message m,
and so FIPS implementations cannot necessarily be used in the was described. In the
appendix A.2 they make it clear that SHAKE(m,d) and SHAKE(m,d+e) will share the
same first d bits of output, the property being used in ML-KEM. We offer two
options to fix this:
 a) Keep SHAKE as the XOF. One can select a very large d to call for SHAKE and

if more than d bits of random are needed, have the algorithm return failure.
An appendix can then note that in practice for the sake of efficiency fewer
bits can be called and more can be squeezed out as needed. Alternatively,
have verbiage to the effect that if you need e additional bits, call
SHAKE(m,d+e) and discard the first d bits.

 b) If one wants to keep the functionality of generating bits as you need them,
that is much closer to the description of the 800-90B standards for DRBG.
Given that ML-KEM relies heavily elsewhere on secure hashes, we would
suggest defining Hash_DRBG as the XOF used in ML-KEM/ML-DSA.

o It can be impractical to call multiple hash functions when one is taking advantage of
previously-validated FIPS modules because frequently modules only implement a
subset of the FIPS they are tested against. Hence, we suggest only one hash
primitive be used. If SHAKE continues to be chosen for the XOF then it should be
used for the hash as well. If Hash_DRBG is used, then the hash primitive chosen for
Hash_DRBG should be the same hash primitive chosen to construct all of PRFs and
hashes in the standard.

o Further, we suggest that the hash function being invoked in the above discussion be
SHA2 with a size appropriate to the security level. The reasons to select SHA2 are
manifold:
 SHA2 family algorithms are ubiquitous in the federal space and SHA-

384/SHA-512 are the algorithms used for National Security Systems as
specified in CNSA. Because SHA2 is used so often in low-level parts of the
computing trust infrastructure, from today's commercial and government
signing infrastructure, to HMAC, to Hash_DRBG, nearly any FIPS-compliant
device in use by the government that utilizes hardware acceleration for
cryptography will need to have SHA2 present for the next decade. For
example, Federal PKIs (including the DoD PKI) have transitioned to SHA2 and
so FIPS-validated SHA2 modules are on all PKI-enabled devices in the federal

Public Comments on draft FIPS 204

45

government as well as any device being purchased in the medium term.
SHA3/SHAKE, on the other hand, has very limited uptake in this space.

 Due to this ubiquity, SHA2 will generally not require additional hardware if
one is upgrading a system to ML-KEM/ML-DSA while the use of SHA3 may.
On many near-term systems, SHA3 and SHAKE require more hardware space
than SHA2 because it is an add-on.

 If the module is implemented in software, SHA2 is substantially faster than
SHA3 or SHAKE.

It should be noted that we believe that hash functions are well enough understood
and that SHA2 is ubiquitous enough, that a change from SHA3 to SHA2 would be a
minor change. Even our non-expert implementers were able to swap hash functions
in less than an hour with a few lines of code and we have already seen in SPHINCS+
that the community has high confidence in both SHA2 and SHA3 for PQ solutions.
For why we think this overall comment is important to make for faster federal
adoption, we would like to provide some context for how dominant SHA2 is over
SHA3 when it comes to market penetration in the government sector. We consider
as a proxy the number of cryptographic hardware products that have active NIST
Cryptographic Module Validation Program (CMVP) validation credentials in the
CMVP public database. This hardware represents the acceleration available to
federal agencies as they try to adopt FIPS 203 and 204 over the next several years.

In a search performed on 10/13/23, there were 429 hardware modules
implementing FIPS 180-4 (SHA2) while 34 have FIPS 202 (SHA3 or SHAKE). This
order-of-magnitude difference is not solely the result of the longer life of FIPS 180-4:
if we restrict to hardware modules validated in the last calendar year, 10 have FIPS
202 while 102 contain FIPS 180-4. Further, of those 10, only a single one of the
hardware modules containing FIPS 202 actually had a FIPS-validated SHAKE. This
dominance also extends to digital signatures. A similar search of the Cryptographic
Algorithm Validation Program (CAVP) database shows that in 2023 there are 284
CAVP validated implementations of FIPS 186 signature schemes using SHA2, 2 using
SHAKE, and none using SHA3.

The ubiquity of SHA2 applies to internet protocols as well. For example, most TLS,
IPSec, and SSH implementations will make use of SHA2 to generate session keys.
Further, these protocols often use SHA2 as part of the integrity function alongside a
non-AEAD cipher. For either use case, the supporting IETF RFCs do not define SHA3
as an option - the use of SHA3 (or SHAKE) is primarily limited to signatures, which as
seen above, are typically not FIPS-compliant.

While several products will likely be able to transition to ML-KEM regardless of the
hash used (such as software defined services on general purpose devices),
constrained or embedded form factors as well as high performance gear may delay

Public Comments on draft FIPS 204

46

their transition until hardware acceleration is available. That acceleration is
presently ubiquitous for SHA2, in limited availability for SHA3, and nearly unavailable
in SHAKE.

To summarize, in order to ease transition for large commercial enterprises, reduce
Size/Weight/Power requirements, and make it more likely that the whole of
government can comply to the greatest extent possible with the requirements in
National Security Memo 10 we suggest that both ML-KEM and ML-DSA adopt SHA2.
For the largest parameter sets (and potentially for all) this could be something
similar to:

• XOF(p,i,j):=sequential bits of SHA512_DRBG(p||i||j) as instantiated by
Hash_DRBG_Generate_algorithm.

• H(s) := truncated(SHA-512(s), 256)
• J(s) := truncated(SHA-512(s), 256)
• G(c) := SHA-512(c)
• Domain separation if desired can be achieved by prepending a domain-

specific value, i.e. G(c)=SHA-512('G'||c).

We want to be clear that this comment is proposing a minor change to section 4.1,
and not an addition to it. Under no circumstance should there be multiple versions
of ML-KEM of a particular security level that differ only by the choice of XOF. These
would not interoperate with each other and would only confuse customers as they
try to comply with mandates to transition to a particular version. While several
different approaches can be used for e.g. key generation in RSA or ECDH, ML-KEM is
unique in that due to the FO transform a change in key generation breaks
interoperability with other implementations.

Other clarifying suggestions which we think would help developers:
• Polynomial multiplication over Rings. FIPS.204 mentions NTT(ab) = NTT(a) ◦NTT(b)

which then leads developers to want to use this as a test. For both FIPS.203 and
FIPS.204, we suggest explaining how polynomial multiplication works in an appendix or
explicitly calling out a reference.

• Explicit functions. Several auxiliary functions (brv in FIPS.204, bitrev7, Compress,
decompress in FIPS.203) are given pseudocode but not explicit functions. We suggest
giving them full functions.

• Similarly, NTT_mult is an explicit function in FIPS.203 but somewhat hidden in the
mathematical notation section in FIPS.204. Suggest it becomes an explicit function in
FIPS.204.

• NTT tables. Algorithm 35 in FIPS.204 mentions that usually zeta is pre-computed.
Suggest adding the pre-computed table to FIPS.203 and FIPS.204 since this is one of the
more complicated operations in the algorithm and also acts as an extra validation test.

Public Comments on draft FIPS 204

47

• Type Clarification. The input and output objects of some operations aren’t immediately
clear to non-experts. For example, NTT in FIPS.204 is defined on polynomials and then
used on vectors in Algorithm 1. Places like Algorithm 1 line 5 would be clearer with e.g.
an explicit NTT-matrix-mult function so someone could look at the exact expected input
and outputs. Alternatively, there could be more exposition near line 5 and similar
locations.

Typos and Minor comments in FIPS.204:
o Line 304: “ML-DSAstandard” should have a space.
o 528: odd to give "Gaussian elimination" as an example of best known techniques

to attack LWE.
o 557: “scheme: As with” - As should be as.
o 570: comma should go after rho, not before
o 671: t should be \bm{t}
o 756: lists the verifier's range for coefficients of z as closed (square brackets),

while the algorithm 3 requires an open interval.
o 779/algorithm 4: "using in little-endian order" has an extra ‘in’
o Algorithm 22: output should be 256k not 32k.
o Algorithm 25: For clarity, could replace “Input: A seed $\rho\in {0,1}^{528}” with

“Input: A bitstring $\rho \in {0,1}^{512+16}$”. Also Algorithm 24.
o Algorithm 28 line 4 (expandMask): ‘r’ is both in the seed of the hash and in the

choice of bits (a 32rc term), leading to unnecessary computation and most bits
being ignored.

o Notation re-use – algorithm 6 uses c which has a different meaning in the main
sign/verify; might be clearer to change. Algorithm 23 uses variable k which is also
a system parameter.

Public Comments on draft FIPS 204

48

27. Comments from Leif Ibsen, November 21, 2023

 FIPS 204 (Draft) comment - inconsistent signature sizes:

Algorithm 2 (Sign) and Algorithm 3 (Verify) specify the signature size as

 32 + l * 32 * (1 + bitlen(gamma1 - 1)) + omega + k

Algorithm 20 (sigEncode) and Algorithm 21 (sigDecode) specify the signature size as

 lambda / 4 + l * 32 * (1 + bitlen(gamma1 - 1)) + omega + k

which is different when lambda is 192 (ML-DSA-65D3) or 256 (ML-DSA-87)

FIPS 204 (Draft) comment - inconsistent private key sizes:

Algorithm 1 (KeyGen) specifies the private key size as

 32 + 32 + 64 + 32 * ((l + k) * bitlen(2 * eta) + d * k)

which amounts to

 2560, 4032 and 4896, respectively

However, table 2 on page 14 specifies 2528, 4000 and 4864

Regards Leif Ibsen

Public Comments on draft FIPS 204

49

28. Comments from the Infineon PQC team, November 21, 2023

 Dear NIST PQ team,
we have the following comments on the current FIPS204 draft, we omit points that were
already publicly discussed on the mailing list.

• Algorithm 2: we suggest to use the entire c in SampleInBall. Using only c1 does not
appear to have any benefits and introduces unnecessary complication.

• Algorithm 1 and Algorithm 2: Key generation and signing both use a variable rho', but
these variables do not refer to the same value. All other variable names are consistent
between the algorithms. We suggest to rename one of the two variables.

• We suggest to use a different naming scheme for the parameter sets. The current
names (44, 65, 87) might be unintuitive, hard to remember, and could be misinterpreted
as the security level in bits. Also, a potential future introduction of further parameter
sets with increased (k,l) could lead to irregularities (e.g., ML-DSA-1110)

• We welcome the introduction of the hedged mode and the discouragement to use the
deterministic setting.

The following comments relate to minor textual clarifications:
• Line 685ff: in a fully deterministic variant, fault attacks are a more severe threat

(compared to side-channel attacks)
Best regards,
the Infineon PQC team

Public Comments on draft FIPS 204

50

29. Comments from the Canadian Centre for Cyber Security, November 21, 2023

 Hello,

Please find attached our comments for the FIPS 204, Module-Lattice-Based Digital Signature
Standard. If posted publicly, please attribute our comments to the “Canadian Centre for Cyber
Security”, and refrain from publishing my name.

If you have any questions, please don’t hesitate to reach out to me directly.

Regards,

Comment attached.

Public Comments on draft FIPS 204

51

FIPS 204: ML-DSA Comments

Small edits

The prefix to each comment is in the format Section / Page / Line numbers (or Equation, or
Algorithm where relevant)

• 1.1 / 1 / 245: Since signatures are not used for protection of data, we recommend
replacing "protection" with "confirmation of integrity".

• 1.3.2 / 2 / 304: "ML-DSAstandard" should be "ML-DSA standard".
• 2.1 / 4 / 368 and 377: There is some inconsistency in the use of hyphens in "public key"

versus "public-key".
• 2.3 / 6 / 420: In the definition of the set B, we recommend clarifying that this is the set

of integers represented by a byte.
• 2.3 / 7 / 463: Absolute value signs are missing. "For the element w\in Z_q,

||w||_{\infinity} = w mod^{+-}q." should be "For the element w\in Z_q,
||w||_{\infinity} = |w mod^{+-}q|."

• 2.3 / 7 / 464-465: The notation w_i and w[i] which is used here is not defined until lines
492 and 497, respectively. We recommend moving the definitions of w_i and w[i] from
section 2.4 into 2.3.

• 2.3 / 7 / 475 and 2.4 / 8 / 493: There is duplication in notation used. Please
replace Z_d by Z_m and replace R_d by R_m.

• 2.4 / 8 / 488: "then the product is also understood" should be "then the product or sum
is also understood".

• 2.4 / 8 / 489-491: These lines may be removed as they are repetitive and not
grammatically correct.

• 3.1 / 9 / 516-519: The bracketed sentence is too long and should stand on its own. We
recommend to remove the brackets and replace "i.e" with "That is,".

• 3.2 / 9 / 525: The notation Z_q^n should be previously defined (in section 2).
• 3.2 / 9 / 525-527: Since the zero vector needs to be excluded from being a valid solution,

change "a solution t" to "a non-zero solution t".
• 3.3 / 10 / 547-548: The quantifier here that coefficients be short should only apply to

S_1 and S_2, not A.
• 3.3 / 10 / 548, 550, 552 and possibly elsewhere: It should be "short" for vectors and

"small" for integers (e.g. integer coefficients can't be short).
• 3.3 / 10 / 553: z should be bold.
• 3.3 / 10 / 555-561: The portion of the sentence defining public and private keys from the

very end of the paragraph should be moved up to the top.
• 3.3 / 10 / 575: 'tr' can be removed from the sentence here.
• 3.3 / 10 / 571 and 579: It should be t_1 instead of t_0.
• 3.3 / 10 / 579: A bullet is missing.
• 3.5 / 11 / 597-603: This is hard to parse as text, so we suggest making it into a table

instead.

Public Comments on draft FIPS 204

52

• 3.5 / 11 / 613: "differs from its specified length" should be "differ from their specified
length".

• 4 / 13 / 640-647: We suggest to remove this paragraph except the last two sentences,
which can then stay here or be moved to Appendix A.

• 4 / 14 / Table 2: The private key sizes listed are all incorrect. ML-DSA-44 private key size
should be 2560, ML-DSA-65 private key size should be 4032, ML-DSA-87 private key size
should be 4896.

• 4 / 14 / Table 2 and 6 / 17 / Algorithm 2: There is an error in the calculations of the
signature length. In the Output of Algorithm 2, change "32 + ..." to "λ/4 + ...". In Table 2,
change the Signature Size of ML-DSA-65 from "3293" to "3309". In Table 2, change the
Signature Size of ML-DSA-87 from "4595" to "4627".

• 5 / 14 / 660: We recommend changing "as needed using an XOF (namely, SHAKE-256) to
produce" to "as needed using an XOF (namely, SHAKE-256), denoted by H, to produce".

• 5 / 14 / 664: We recommend changing "the subset of polynomial vectors whose
coefficients are short" to "the subset of polynomial vectors whose coordinate
polynomials have short coefficients".

• 5 / 14 / 671: t should be bold.
• 5 / 15 / Algorithm 1 and 8.4 / 33 / 866: There is inconsistency in including d as a variable

input of Power2Round(). Remove d in the input of Power2Round [4, 15, Algorithm 1]
and [8.4, 33, 866].

• 6 / 17 / Algorithm 2, line 8: The variable name in Sign() \rho' should be changed to \rho''
to avoid confusion with the \rho' used in Key Generation which is a different value.

• 6 / 17 / Algorithm 2, line 16: This line introduces c_1 and c_2 but the accompanying text
is implicitly only about c_1 . We suggest that either the accompanying text should
explain both c_1 and c_2, or explicitly say that c_1 is the first 256 bits.

• 7 / 18 / 739: "and" after the semi-colon can be changed to "then".
• 7 / 19 / Algorithm 3 : Similar to 4 / 14 / Table 2 and 6 / 17 / Algorithm 2. In the Input of

Algorithm 3, the length of the signature should be “λ/4 + …” instead of “32 + …”
• 8.1 / 22 / 788-789: The reference to SimpleBitPack can be removed as it is unnecessary.
• 8.1 / 23 / Algorithms 12 and 13: In line 4 of both Algorithm 12 and 13 the

function BitsToInteger is given a second input, "c". This input is not part of the definition
of BitsToInteger in Algorithm 5 and should be removed.

• 8.1 / 24 / Algorithm 14: In the Input description, the reference to "... the coefficients
in h ..." is confusing since h is a vector of polynomials. The input description can be
changed to "A polynomial vector h \in R_2^k such that the polynomials h[0], h[1],
...,h[k-1] have collectively at most \omega nonzero coefficients."

• 8.2 / 24 / 806-807: The last sentence that starts with "These procedures..." does not
substantively clarify anything and can be removed.

• 8.2 / 25 / Algorithm 16 : There’s an extra parenthesis at the end of the Input line.
• 8.2 / 25 / Algorithm 17 : There’s an extra parenthesis at the end of the Output line and

an extra parenthesis on line 4.
• 8.2 / 26 / Algorithm 18: The input lists s_1 and s_2 as elements of the wrong

space. Replace " s_1 \in R^{\ell} " by " s_1 \in R_q^{\ell} " and replace " s_2 \in R^k " by
" s_2 \in R_q^k".

Public Comments on draft FIPS 204

53

• 8.2 / 27 / Algorithm 19: Change Algorithm 19 to output s_1 and s_2 as elements
of R_q^{\ell} and R_q^k respectively.

• 8.2 / 28 / Algorithm 20: Change the Algorithm 20 input to have "z \in R_q^{\ell}".
• 8.2 / 28 / Algorithm 20: Change the input description from "z \in R_q^{\ell} with

coefficients in" to "z \in R_q^{\ell} whose polynomial coordinates have coefficients in".
• 8.2 / 28 / Algorithm 21: Change the output description from "z \in R_q^{\ell} with

coefficients in..." to "z \in R_q^{\ell} whose polynomial coordinates have coefficients in".
• 8.2 / 28 / Algorithm 20 and 21: The bound inputs into BitPack and BitUnpack in

algorithm 20 and 21 are not as accurate as they could be. We suggest the following
changes:
In algorithm 20:

o line 3: change BitPack(z[i], \gamma_1-1,\gamma_1) to Bitpack(\gamma_1 -
\beta -1, \gamma +\beta +1)

o Ouput: change signature length to B^{\lambda /4+\ell*32*(1+bitlen(\gamma_1-
\beta-1))+w+k

In algorithm 21:
o line 4: change BitUnpack(x_i, \gamma_1-1,\gamma_1) to BitUnpack(\gamma_1

-\beta -1, \gamma +\beta +1]
o Input: change signature length to B^{\lambda /4+\ell*32*(1+bitlen(\gamma_1-

\beta-1))+w+k
• 8.2 / 28 / Algorithm 22: Change the input description from "w_1 \in R^{k} with

coefficients in" to "w_1 \in R^{k} whose polynomial coordinates have coefficients in".
• 8.3, 29, 852: The footnote 5 should be moved into the main text.
• 8.3 / 30 / Algorithm 23: The notation for the XOF used on line 9 is incorrect. Replace

H(p)[i+t-256] by H(p,k+1)[i+t-256).
• 8.3 / 31 / Algorithm 25, lines 5 and 6: the function CoeffFromHalfByte is called with two

inputs, but is defined to only take one input. Remove \eta from being an input to the
function.

• 8.3 / 32 / Algorithm 27: Change "s_1 \in R_q^{\ell} and s_2 \in R_q^k, each with
coefficients in the interval" to "s_1 \in R_q^{\ell} and s_2 \in R_q^k, each with
polynomial coordinates whose coefficients are in the interval".

• 8.3 / 32 / Algorithm 28: The output s can be changed to y as that is the variable that is
used in signing.

• 8.3, 32, Algorithm 28: The length of v does not exactly match the formula for the length
of v given as input to BitUnpack in line 5. As such we recommend changing c to ensure
the size of v matches exactly for any \gamma_1 value. In line 1, change c ←
1+ bitlen(\gamma_1-1) to c← bitlen(2*\gamma_1-1).

• 8.4 / 33 / 864: Change "In this case, the functions are applied coefficientwise" to "In this
case, the functions are applied coefficientwise to the polynomials in the vectors."

• 8.4 / 33 / 870 and 871: There’s 2 extra parenthesis in the formula the one before the
comma and the one at the end.

• References / 38 / 912-914 and References / 39 / 976-979: Note that [1] and [21] are not
cited the way NIST recommends that they be cited (from within the papers themselves).

Public Comments on draft FIPS 204

54

• References / 38-39: There is some inconsistency in the formatting of names in the
references. For example, Elaine B. Barker versus Elaine Barker or John M. Kelsey versus
John Kelsey or C.P. Schnorr.

• Appendix B / 44: There is inconsistency between variable names for normal form versus
the Montgomery form. We suggest to take a, b, c for normal form and r,s,t for
Montgomery form (then use u instead of t in lines 2 and 3 of the algorithm since t is
taken).

• Appendix B, 44: In the description of algorithm 37, replace " Converts from Montgomery
form to regular form" by "This algorithm can be used in 2 situations:

1) Converts from Montgomery form to regular form
2) Perform the "reduction" step in Montgormery multiplication so
that Montgomery_Reduce(integer_multiplication(r,s))
= Montgomery_Multiplication(r,s)"

Suggested changes to presentation:

• We recommend adding a note that one can pre-compute the finite set of bitlen values
and use them as needed, instead of computing them every time. This is possible since
there is a finite set of inputs to the function bitlen in all uses in the specification and all
of the inputs rely on parameters of the scheme (not intermediate values).

• Throughout document but specifically in section 4, we recommend keeping n(=256)
symbolic. In the NTT, it can then say to take a (2n)-th root of unity instead of 512 to
make it clear where the numbers come from.

• The value \zeta is set be a constant, 1753, for all parameter sets. This should be
explicitly listed along with other values as a system parameter that does not change
between parameter sets.

• Pseudocode is written using latex symbols instead of ASCII names to represent both
variables and parameters. Occasionally this has the potential for confusion or even
collisions when names are rendered in ASCII in a straightforward manner. For example,
in the NTT and NTT^-1 Algorithms 35 and 36, the symbol "\zeta" represents a system
constant set to 1753 and "zeta" is an intermediate variable. Furthermore, the use of
ASCII names can help clarify the role of different variables. For example, renaming
ρ to something like publicseed helps implementers understand both the role of
this variable.

• The draft standard for ML-KEM contains many comments in the auxilliary algorithms
indicating data types or clarifying some lines of pseudocode. The presentation of some
of the auxilliary functions in ML-DSA could benefit from similar comments.

• In parts of the specification for which there is a high degree of overlap with ML-KEM,
some notation could be made more consistent. For example, ML-DSA uses 'brv' to
denote bit reversal of a byte and ML-KEM uses 'BitRev_7' to denote reversal of seven
bits.

• On line 290-292, in the discussion of increasing the bit length of the private random
seed and message representative, it would be helpful to cite a reference for the security
flaw argument and correction details.

Public Comments on draft FIPS 204

55

• In Section 2.3, the notation H(x, n) to mean the n-bit output hash of x should be
introduced.

• The circle operator ◦ is defined in section 2.3 for multiplication in the ring T_q and in
section 2.5 it is also explained that it can be used to denote matrix multiplication of
matrices with entries in T_q. However, in several places it is used to multiply two
elements that are not in T_q or are not two matrices with elements in T_q (see
Algorithms 1, 2, and 3). All possible uses of the circle operator should be explicitly listed
in the document and include explanations of how they work in each use case. This
should either be included in the definition of the circle operator or in a (possibly new)
subsection in the notation section.

• In Algorithms 6 and 7, the description of each algorithm in italics and the Output lines
should be consistent in amount of detail; for example, Output line should specify the
length of output for each algorithm.

Suggested clarifications:

• Throughout the document, it should be made explicit when central mod representation
of an element of Z_q is used versus standard representation. For example, the definition
of R_q could be interpreted to be that all elements are in the standard [0,q-1]
representation; however, in many cases the elements of R_q are defined to have
coefficients in intervals that include negative values.

• The destruction of intermediate values is given a "shall" directive, emphasizing its
importance. To help an implementer follow this directive, which intermediate data
needs deletion at which point should be clarified, as the guidance here only states "as
soon as it is no longer needed".

• For the purposes of FIPS validation and patent protection, NIST should clarify whether
alternative private key formats are allowed. For example, to save on storage space, one
may wish to store the smaller root seed \xi instead of values derived from it.

• Clarification on whether it is acceptable to use the same key pair for both the
randomized ("hedged") and deterministic signing variants could be added. Note that in
the FIPS 186-5 Digital Signature Standard, ECDSA also has deterministic and randomized
versions, and section 6.2 explicitly states that “(Deterministic) ECDSA keys shall only be
used for the generation and verification of (deterministic) ECDSA digital signatures.” We
recommend providing a similar clarification in this standard.

• In section 2.3, page 7, lines 459-460, it could be unclear whether the meaning of "ith"
starts with counting from 0 or 1. We recommend to specify "w[[i]] denotes the byte at
index i of w". Similarly below with "bit at index j" instead of "jth".

• In section 2.3, page 6, line 439, we suggest specifying how one might implement
the bitlen function. In particular, while it does not appear that bitlen(0) is ever called,
defining bitlen 0 = 1 might avoid confusion.

• Algorithm 15 cannot return an h with more than \omega 1's, but Algorithm 3 has an
explicit check that the number of 1's in h is less than or equal to \omega (this is also
reiterated on lines 756-757). We suggest either excluding this check or explain why it is
explicitly there.

Public Comments on draft FIPS 204

56

• On line 886, we suggest adding context to explain why r_1 changing by more than 1 is
an issue; specifically, that if r_1 changes by more than 1, then the hint could not be 1 bit
and keeping hints to a single bit minimizes the size it adds to the signature.

• For Algorithm 35 and 36, we suggest adding an explanation in section 8.5 about how to
apply NTT and NTT^-1 to vectors of elements over the space or make it explicit in the
algorithm steps how to deal with such inputs.

Functional change:

• 5 / 15 / Algorithm 1: Change the key generation seed \xi to at least 40 bytes to prevent a
multi-target attack. (Note that we have the same comment for ML-KEM about the seed
used in Key generation).

Public Comments on draft FIPS 204

57

30. Comments from Cloudflare, November 21, 2023

Please find our public comments on FIPS IPD 203, 204, and 205 attached.

Best,

 Bas

Comment attached.

Public Comments on draft FIPS 204

58

To: fips-203-comments@nist.gov; fips-204-comments@nist.gov; fips-205-comments@nist.gov
Subject: Comments on FIPS 203, 204, and 205

A submission from Cloudflare, Inc., in response to the National Institute of Standards and
Technology’s (NIST) 24 August 2023 request for public comments on initial public drafts

of
FIPS 203 “Module-Lattice-Based Key-Encapsulation Mechanism Standard”,

FIPS 204 “Module-Lattice-Based Digital Signature Standard”, and
FIPS 205 “Stateless Hash-Based Signature Standard”.

Cloudflare appreciates this opportunity to comment on the National Institute of Standards and
Technology’s (NIST) request for public comments on the initial public drafts of FIPS 203, 204,
and 205. Cloudflare submits the following comments, which will address our own experience
with post-quantum cryptography and protocol design, our view on measured cryptographic
agility as it applies to the present drafts, and specific comments for each.

Introduction and Cloudflare Background

Cloudflare is a leading connectivity cloud company. It empowers organizations to make their
employees, applications, and networks faster and more secure everywhere, while reducing
complexity and cost. Cloudflare’s connectivity cloud delivers a full-featured, unified platform of
cloud-native products and developer tools, so any organization can gain the control they need to
work, develop, and accelerate their business.

Powered by one of the world’s largest and most interconnected networks, Cloudflare blocks
billions of threats online for its customers every day. It is trusted by millions of organizations –
from the largest brands to entrepreneurs and small businesses to nonprofits, humanitarian
groups, and governments across the globe. Cloudflare is used by nearly 20% of all Internet
websites.1

At Cloudflare we have helped increase security and privacy on the Internet by pushing the
envelope on cryptographic design and deployment, by contributing to among others TLS 1.3,
MLS, DNS-over-HTTPS, Encrypted ClientHello. From 2019 onwards we have executed several
internal and external large-scale experiments to determine the real-world deployability of
post-quantum cryptography.2 This has allowed us to deploy an early version ML-KEM (FIPS
203) in production, which at the time of writing, is used by 1.7% of all our inbound TLS 1.3
connections.

2https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://blog.cloudflare.com/sizing-up-post-quantum-signatures/
https://blog.cloudflare.com/post-quantum-to-origins/

1 See W3Techs, Usage Statistics and Market Share of Reverse Proxy Services for Websites,
https://w3techs.com/technologies/overview/proxy.

Public Comments on draft FIPS 204

59

mailto:fips-203-comments@nist.gov
mailto:fips-203-comments@nist.gov
mailto:fips-203-comments@nist.gov
https://blog.cloudflare.com/post-quantum-for-all/
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://blog.cloudflare.com/sizing-up-post-quantum-signatures/
https://blog.cloudflare.com/post-quantum-to-origins/
https://w3techs.com/technologies/overview/proxy

Measured cryptographic agility

The need for cryptographic agility

We believe it is crucial that protocols for use on the Internet are designed with the flexibility to
replace its underlying cryptographic primitives gradually and securely in case of compromise.
The threat of quantum computers is the obvious example, and we applaud NIST’s efforts to
standardize post-quantum cryptography.

We also feel it has been a prudent choice of NIST to standardize SHA3, so that it can replace
SHA2 in case a weakness is found (for which there is no indication).

The cost of cryptographic agility

However, we also believe that due restraint should be exercised in adopting new primitives in
existing protocols. The case for post-quantum cryptography is clear, but, for instance, at the
moment there is no point replacing SHA2 with SHA3 for the key schedule of TLS 1.3: there is no
indication that SHA2 is weak, and adopting SHA3 comes with a significant cost. If both are
available, some users will end up enabling one, and disabling the other. Those that want to be
compatible with all, will need to deploy both. This incurs a significant cost in development,
testing, and increased surface for implementation mistakes. The situation is more pertinent for
constrained use cases, such as embedded devices.

That does not mean SHA3 will see no deployment. To the contrary: for new use cases, we
prefer SHA3, or to be more precise, SHAKE, as it is a more versatile primitive that is easier to
use correctly (no need for HMAC, HKDF, or MGF1). We are pleased to see SHAKE used in
these drafts.

Call for continued restraint

We appreciate the choices NIST has made so far, showing restraint where differences between
variants are minimal, but allowing different options where it matters:

● NIST has removed many variants in the present drafts as compared to the submissions:
the AES-based variants have been removed, leaving only the SHA3-based variants for
ML-KEM and ML-DSA.

● NIST has picked only a single KEM for now. We understand a second KEM might be
picked from the fourth round, in case cryptanalysis against structured lattices improves.

● Three signature schemes have been chosen for standardization, of which standards
have been drafted for two. NIST is looking to standardize more in an on-ramp.
Considering the widely varying performance and security characteristics of the available
schemes, we feel it was the right choice.

We see one opportunity to reduce the number of variants:

● We do not see the need for both a SHAKE and a SHA2-based variants of SLH-DSA.

We ask NIST to continue exercising restraint, and reject calls to standardize additional variants
using different symmetric primitives.

Public Comments on draft FIPS 204

60

https://csrc.nist.gov/projects/pqc-dig-sig
https://blog.cloudflare.com/nist-post-quantum-surprise/

12-round SHAKE / SHA3

For all schemes, not just SLH-DSA, hashing accounts for a significant, if not often the majority,
of the computation.

The designers of SHAKE / SHA3 have reiterated their 2016 proposal to use a variant of 12
rounds as was originally proposed, which has now been dubbed “TurboSHAKE”. We are
comfortable with the wide security margin of the 12-round variant, and would welcome NIST
replacing SHAKE / SHA3 in these drafts with their “Turbo” variants.

Specific comments on FIPS 203 (ML-KEM)

Of the three drafts, we have the most hands-on experience with ML-KEM, which is now
deployed in production worldwide.

We expect ML-KEM to be a practical replacement for classical key agreement on the Internet.
We like its simple design and great performance on most platforms. Informed by our 2019
experiment with Google, we were concerned that a significant portion of connections would
break because of the large key sizes of ML-KEM. Fortunately, this fraction has decreased
dramatically since then, and it does not seem to be a blocker.

At the time of writing, 7% of all Chrome 118+ TLS 1.3 connections to Cloudflare hosted websites
are using X25519Kyber768Draft00, a hybrid of the classical key exchange X25519 and an early
version of ML-KEM. The following graph shows the cumulative distribution function of TLS
handshake times of those connections (PQ) compared to those Chrome 118+ connections that
did not use Kyber (non PQ).

Public Comments on draft FIPS 204

61

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/t95kZqnbS4Q/m/E8VGP0juAwAJ
https://blog.cloudflare.com/post-quantum-cryptography-ga/
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://datatracker.ietf.org/doc/draft-tls-westerbaan-xyber768d00/

This shows excellent performance on average. Although promising, we cannot yet conclude that
performance is great for all users.

Specific comments on FIPS 204 (ML-DSA)

None of the signature schemes submitted to the competition are an ideal drop-in replacement
for classical signature schemes. ML-DSA’s drawback is the size of its public key and signatures.
This makes it impractical for some applications, and unfavorable in many. On the other hand,
ML-DSA is reasonably easy to implement, and is computationally relatively cheap.

Despite its drawbacks, standardization of ML-DSA is a good choice and absolutely necessary,
so that those that need to adopt early can move forward despite the costs.

We applaud NIST’s ongoing efforts to standardize additional signature schemes that fit use
cases for which ML-DSA is ill-suited.

Specific comments on FIPS 205 (SLH-DSA)

(No specific comments.)

Public Comments on draft FIPS 204

62

https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

31. Comments from Dev Null, November 21, 2023

This letter contains comments on the chapter “Appendix A — Security Strength Categories”
identical among the 3 proposed FIPS standards NIST FIPS 203 ipd (Lines 1159 to 1238), NIST
FIPS 204 ipd (Lines 1014 to 1088), NIST FIPS 205 ipd (Lines 1134 to 1213).

Definitions
To avoid confusion and distinguish between:
A) the Security Strength categories listed in FIPS ipd 203, 204, 205
B) the Security Strength method of using bits of security from “Recommendation for Key
Management” SP 800-57 rev. 5 and earlier.
(https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final)

The following terms will be used:
“Strength Categories” – The new proposed method in FIPS ipd 203, 204, 205.
“Bits of Security Method” – The established method in SP 800-57.
Since both of them are called “Security Strength” in their respective documents.

Table of content:
Dev Point 1 – The problem of using sliding scales as a base of measurements
Dev Point 2 – The future will have lower security than what is available today
Dev Point 3 – The world needs a standard for something better than AES-256

Dev Point 1 – The problem of using sliding scales as a base of measurements

The Security Strength Categories are units that change over time with advances in technology
and crypto-analysis.
Using AES-256 today (pre-quantum) has a higher security level (in respect to effort and money
needed to compromise a key)
than AES-256 will have post-quantum plus years of Moore’s law making computing power
cheaper.

Therefore, I propose a Security Category scale of 10 with room for future improvements or
reverting back to the Bits of Security Method for a more granular and uncapped approach.

Using specific algorithms as metering sticks is like having one person’s arm being the base of all
measurements of lengths.
If that reference person then has a sword accident shortening their arm, everything using that
reference scale need to change values, to compare with the new arm length. With everything
increasing in numerical length because of the new shortened measurement base. But
everything (apart from the arm) has not changed size, yet increase in length because of the
reference getting shorter.
If a new vulnerability is found in AES, all the algorithms in Strength Categories 1, 3 and 5 not
affected by that vulnerability need re-evaluation because they suddenly are stronger in

Public Comments on draft FIPS 204

63

https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final

comparison to AES and may change to a higher Strength Category, yet in practice those other
algorithms have had no increase in security.
Science moved towards physical constants for units of measurements in order to avoid
constant changes as updating a basic measurement unit affects all derivatives of that unit.
Hence metrologists generally try to keep units of measurement stable.
Please keep the standard for how to measure the security of cryptographic algorithms as stable
as possible, we use these high-quality standards all over the world; they are crucial for the
global economy.

Dev Point 2 – The future will have lower security than what is available today

The proposed Strength Category method is capped at level 5, which is how secure AES 256 is
today.
NISTIR 8105 http://dx.doi.org/10.6028/NIST.IR.8105 Table 1 explicitly mentions a reduction in
security level for AES and SHA-3 as an impact of a large-scale quantum computer.
Furthermore the advancement in computing technology will make computing resources
cheaper each year, making all the Strength Categories weaker year by year when looking at the
capital investment needed to break the probabilistic security strength. Breakthroughs in crypto-
analysis will decrease the cost even further.

In order to reach the same security level as pre-quantum, there needs to be a Security Strength
Category that in the future post-quantum world will display the equivalent of the current day
strength of AES-256.

Dev Point 3 – The world needs a standard for something better than AES-256

I know of companies that are trying to make home-brewed AES-512 but their implementations
often end up only being AES-257 because of an incorrect understanding of bits of security.
An official AES-512 would be a good first step to establish a post-quantum security level that is
at least as good or better than our current pre-quantum AES-256.

Here is a good reference on how to count bits of security by cryptographer Daniel J. Bernstein
October 2023:
https://blog.cr.yp.to/20231003-countcorrectly.html
An article also touching on the Strength Categories method.

I am not an expert on Grover’s algorithm, meaning that I have to rely on sources like “NIST IR
8105 - Report on Post-Quantum Cryptography”, that on page 8 states:

“Grover’s algorithm provides a quadratic speed-up for quantum search algorithms in
comparison with search algorithms on classical computers. We don’t know that Grover’s
algorithm will ever be practically relevant, but if it is, doubling the key size will be sufficient to
preserve security.”

Public Comments on draft FIPS 204

64

http://dx.doi.org/10.6028/NIST.IR.8105
https://blog.cr.yp.to/20231003-countcorrectly.html

Following this quoted recommendation a current pre-quantum system using AES-128 can “just”
upgrade to using AES-256 post-quantum and maintain the same or higher level of security
(using the Bits of Security Method to count security strength and ignoring Moore’s law for an
easier analogy).

But a current pre-quantum system using AES-256 has no way to stay at the same level of
security post-quantum. The security level will just be decreased with the amount a practical
implementation of Grover’s algorithm will compromise it with.

While I am no expert on Grover’s algorithm, I am an expert on cybersecurity risk management
and in many safety-critical systems (IEC 61508 provides guidance) a decrease in safety level is
not allowed when proposing a new implementation or updating a system.
The probability of failure must be the same or lower than the existing system (in some
countries).
Many safety-critical systems and critical infrastructure (defined in EU Directive 2555 from 2022;
NIS2) rely on cryptography to provide safety.
A remotely controlled rail switch or drinking water pumps are good examples.

But as noted, there is no such option to keep the same security/safety level post-quantum for
existing systems reliant on using AES-256.
Furthermore, as noted in Dev Point 2 the advancement in computing technology and crypto-
analysis will decrease the price of the needed computing resources each year, making all the
Strength Categories weaker year by year when looking at the capital investment needed to
break the probabilistic security strength.

This conflicts with the risk management strategy of always striving for equal or better safety
and security over time.

As AES-128 with time needs to be replaced with AES-256.
&
RSA and ECC needs to be replaced or combined with PQC (like in X25519Kyber768Draft00).
&
Hashing functions need larger outputs.

The IT industry is already moving towards increased modularity in all crypto systems, from
software over MFA tokens to HSMs.
Many systems are more ready than ever to handle change to new cryptographic algorithms
without downtime. By some called the Crypto Agility approach.
This change to a more flexible approach in the IT sector also opens up for the option that
organisations wanting a stable risk level can steadily increase the key and hash output lengths if
there are algorithms that allow for it.
But with the current suggested cap of Strength Category level 5 and the level in practice being
decreased with advances in technology and crypto-analysis it is hard (if not even impossible) for
an organisation to keep a stable risk level in respect to the usage of cryptographic algorithms

Public Comments on draft FIPS 204

65

detailed in NIST standards.

I appreciate the huge work done by NIST, scientists and the industry in the making of these PQC
standards, it has been a great journey, my thanks go out to everyone involved.

Kind Regards
-Dev Null
November 22nd, 2023
Dev Null
Quantum Key Distribution Network Engineer
at the Technical University of Denmark

Public Comments on draft FIPS 204

66

32. Comments from Gideon Samid, November 21, 2023

Dear NIST officials,

Your invitation to the public to speak on this important matter is much appreciated. The
wisdom of crowds. It is the best antidote against groupthink. Cyber security today is based on
the assumption that the attacker is not smarter than expected. It is a tenuous assumption as
history indicates. It calls for a broader examination of the challenge ahead. I have come to
cryptography from the field of innovation appraisal, specializing in estimating the innovation
load associated with an innovation challenge. Cracking a cipher may be represented as an
innovation challenge. This off-side approach to cryptography has led me to the following
observation.

The very process managed by NIST to identify a post quantum algorithm points to its inherent
flaw. Selection of algorithms is based on absence of a published breach. The longer an
algorithm stays in the public domain without a public breach, the more it is deemed fit. This
selection process suffers from two critical flaws expressed in the two following prospective
scenarios: (i) a public breach may surface in the near or far future, (ii) an undetected private
breach will undermine the purpose of the selection process.

The first scenario is well accounted for by NIST, preparing standby alternatives, and managing a
modular configuration to ease the process of cipher replacement. The second scenario is (i)
more likely, (ii) more damaging, and (iii) leading to more narrow adoption. All in all, the high
likelihood of a private breach of any selected algorithm presents a strong need to re-imagine
our cyber defense.

Ahead in this comment, I will elaborate on the unacceptable risk of the private breach scenario,
and present a cryptographic alternative that responds to the challenge of quantum computers
even when combined with the challenge of a smarter mathematician. This alternative approach
is based on pattern-devoid cryptography, which has peer-reviewed accounts (including a book
to be published next month), is expressed in a few dozen US patents, and has been vetted by
the German national institute of standard, TÜV.

The motivation of the hundreds, perhaps thousands, of cryptographers to publish a breach of
any selected algorithm, is personal reputation, which indeed keeps very smart people awake
many a night. These mathematicians work with very limited computing power. By contrast,
would be private breachers are all the countries in the world, to name a subset of interested
breach parties. The ideal state for any country in the world today is for it to have a secret
private breach for an algorithm that no lesser than the US NIST declares secure. Carefully
handled such a secret breach will remain hidden for a long time, and offer substantial political
and economical advantages to the breach holder -- in times of peace. In times of war the
breach holder will impress deep confusion and paralytic mayhem on its adversary. Especially if
the adversary is the United States that is disproportionally cyber reliant. All countries in the
world, therefore, will regard the prospect of identifying a private breach to a NIST declared

Public Comments on draft FIPS 204

67

secure PQC, as a prime (secret) national objective. Countries will assemble large teams of their
best mathematicians and provide them with powerful computing machines, to which academic
cryptographers are not privy. We will never know if any of the algorithms NIST lists as qualified
has been privately breached by one or more of the countries of the world bent on so doing.
This specter will make the entire NIST operation a supportive tool for US adversaries.

Looking from the opposite side, countries of the world will suspect that NIST selected
algorithms have all privately been breached by the NSA, and therefore be apprehensive of
adoption.

The reason that all the proposed algorithms are breach-open is that they are all based on
mathematical complexity. The more complex a mathematical challenge, the more avenues for
mathematical shortcuts are associated with it. Obviously, such shortcuts that simplify the math
and enable a breach, lie far off on the territory that is traversed with human imagination.
Otherwise, these simplifications would have been spotted right away. Indeed, these
mathematical breach procedures may require so much mathematical imagination that no one,
no country will have what it takes to extract them in a timely fashion. Namely these algorithms
will serve their purpose.

Both the existence of such mathematical shortcuts as well as the measure of mathematical
imagination needed for their extraction, are matters that pose a great challenge for being
credibly estimated. Using a methodology I started to develop in my PhD dissertation at the
Technion in Israel the results for mathematical complexities of the NIST candidates are
alarming. Transforming flat (Cartesian) lattice representation to an unbound geometry (non
metric space) may enable a much simpler computational dynamics leading to an effective
breach. It is therefore that we should strive to achieve security with ciphers that are
mathematically so simple that there is no room for a shortcut. Security then is constructed
through lavish use of randomness. Pattern devoid cryptography accounts for ciphers which limit
their cryptanalyst to brute force attack, and then deny the attacker success by using a dynamic
key where size and content grow with use, and by deploying AI-guided use of ciphertext
dilution that is readily reversed by the intended recipient, but remains inherently confusing to
the omnipotent attacker. Pattern devoid cryptography is less elegant. It is using larger, secret
size, secret geometry keys, and is communicating extra-long ciphertexts. But what is gained by
this inelegance is mathematically proven security.

As described pattern devoid ciphers don't fit neatly into modern day cyber dynamics, the way
this NIST candidate algorithm does, but given the unrelenting risk of private breach, it is well
advised to install a pattern devoid cipher at least in the mode of "Lifeboats on the Titanic" --
namely for the eventuality when the elegant cryptography fails. The pattern devoid, clumsy
cipher will kick in and save the day.

Public Comments on draft FIPS 204

68

Reference:

1. "Tesla Cryptography:" Powering Up Security with Other Than Mathematical
Complexity https://eprint.iacr.org/2023/803

2. “Pattern Devoid Cryptography” https://eprint.iacr.org/2021/1510

3. “Artificial Intelligence Assisted Innovation” https://www.intechopen.com/chapters/75159

4. “AI Resistant (AIR) Cryptography” https://eprint.iacr.org/2023/524

5. “The UnEnding CyberWar” https://www.amazon.com/Unending-Cyberwar-Gideon-
Samid/dp/0963522043

6. “The Cipher Who Came in from the Cold” https://www.amazon.com/dp/B0B8PFGZSB/

 Gideon Samid

Public Comments on draft FIPS 204

69

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Feprint.iacr.org%2F2023%2F803&data=05%7C01%7Cdustin.moody%40nist.gov%7C9e787c3b13a34f01059c08dbeb0b2894%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638362205441161315%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000%7C%7C%7C&sdata=5jt2rBGPkoAYS6HpHuwduX69Gx4fDb0Wx23G8eLwMS4%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Feprint.iacr.org%2F2021%2F1510&data=05%7C01%7Cdustin.moody%40nist.gov%7C9e787c3b13a34f01059c08dbeb0b2894%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638362205441161315%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000%7C%7C%7C&sdata=SUM9uAZhpY0%2B22vMEX%2FAUa2KZK1mJ5otmD0wrpqSZc8%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.intechopen.com%2Fchapters%2F75159&data=05%7C01%7Cdustin.moody%40nist.gov%7C9e787c3b13a34f01059c08dbeb0b2894%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638362205441161315%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000%7C%7C%7C&sdata=7sCY1worLdH55HHUa3LoIZxmloPFvlgORMEwmdB8Ogk%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Feprint.iacr.org%2F2023%2F524&data=05%7C01%7Cdustin.moody%40nist.gov%7C9e787c3b13a34f01059c08dbeb0b2894%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638362205441161315%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000%7C%7C%7C&sdata=2vjV66LlPEKCQGsL%2BSYbbZVp9aEXN5axIwl8GsVmaTE%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.amazon.com%2FUnending-Cyberwar-Gideon-Samid%2Fdp%2F0963522043&data=05%7C01%7Cdustin.moody%40nist.gov%7C9e787c3b13a34f01059c08dbeb0b2894%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638362205441161315%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000%7C%7C%7C&sdata=pz1Oy9AU0HWRg9z0z1Y4XEFK6FzbREcRsagbmV9y3l4%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.amazon.com%2FUnending-Cyberwar-Gideon-Samid%2Fdp%2F0963522043&data=05%7C01%7Cdustin.moody%40nist.gov%7C9e787c3b13a34f01059c08dbeb0b2894%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638362205441161315%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000%7C%7C%7C&sdata=pz1Oy9AU0HWRg9z0z1Y4XEFK6FzbREcRsagbmV9y3l4%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.amazon.com%2Fdp%2FB0B8PFGZSB%2F&data=05%7C01%7Cdustin.moody%40nist.gov%7C9e787c3b13a34f01059c08dbeb0b2894%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638362205441161315%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000%7C%7C%7C&sdata=sHXYHQ13ps5pJC0vBVoRMQL%2BoVnEg2GKRE7ab5CVK0c%3D&reserved=0

33. Comments from Falko Strenzke, November 22, 2023

The following proposal is a result of the recent discussion on the LAMPS list about safe
signature-separability defences and safe optional pre-hashing for the PQC signature schemes
with contributions from David Cooper, Markku Saarinen, Darren Johnson and others. However,
with this specific form of proposal I still can only claim to speak for myself.
I propose to build the following two features into ML-DSA (FIPS 204) and SLH-DSA (FIPS 205):

1. Introduction of a binary flag in the algorithm’s interface that gives domain separation
between the two uses of directly signing the message and signing the hash of the
message (pre-hashing).

2. Introduction of a context string into the algorithm’s interface of a length between 0 and
255 octets that allows the protocol or application to define a custom domain separation
string.

This proposal is meant to be equivalent to the construction of the respective features of
Ed25519ctx/Ed25519ph or Ed448/Ed448ph in RFC 8032.
The reason for the first point is the need to avoid any ambiguity with respect to what is the
signed message given the alternate options of direct-signing and sign-pre-hashed-message.
When lacking this domain separation feature in ML-DSA, protocols that allow both variants and
cannot provide authentic information about the variant during signature verification will be
subjected to signature forgery attacks.
The reason for the second point is that currently there are plans to design composite signature
schemes that fulfil non-separability notions, i.e. make it impossible that a signature is stripped
from the set of signatures in a composite signature and the remaining signature(s) appear as (a)
valid signature(s) of the message. Existing protocols that cannot provide for authentic
information about the nature (composite/standalone) of the signature algorithm during
verification can achieve non-separability with a means of domain separation in the signature
algorithm. The protocol can thus use the context string to ensure domain separation between
composite and standalone use and possibly realize further security features such as domain
separation between applications.
- Falko

Public Comments on draft FIPS 204

70

34. Comments from the NXP PQC team, November 22, 2023

Dear NIST team,

The NXP PQC team would like to make the following comments on the FIPS 204 draft:

1) We would like to clarify whether implementations can add a finite For loop in Line 11 of ML-
DSA.Sign, instead of an infinite While loop. If there is any error during the signing routine, the
device will get stuck in an infinite loop. Rather, it would be preferable to return an error after a
certain large number of attempts that happens with negligible probability (e.g., 2^-128). This
can of course also be achieved by a time-out on the signing time, but it is a more complicated
solution as it will be device-specific.

2) We would like to clarify whether a NIST-approved DRBG / PRNG can be used instead of the
ExpandMask function in Line 12 of ML-DSA.Sign. The security of Dilithium remains the same
whether y is pseudo-randomly generated, or randomly generated. The cost of ExpandMask is
large in scenarios where SHA3 requires side-channel protection, as bit-leakage on y
accumulated over multiple signature results in key recovery attacks. Masking this function adds
a significant performance penalty to the signing routine. Instead, equivalent behavior can be
achieved by sampling y using a NIST-approved DRBG (e.g., from NIST SP 800-90x) at potentially
lower cost on systems where such an efficient DRBG is available.

NIST comments in the FIPS 204 draft that “For every computational procedure that is specifed
in this standard, a conforming implementation may replace the given set of steps with any
mathematically equivalent set of steps”. This would imply replacement of ExpandMask by a
DRBG is allowed, as the output distribution is the same. We would like to confirm that this is
indeed the case.

Thanks for all the hard work.

Kind regards,
NXP PQC team

Public Comments on draft FIPS 204

71

35. Comments from Markku-Juhani Saarinen, November 22, 2023

Dear NIST,

Section 7.1 "Prehash ML-DSA" of FIPS 204 IPD allows "signing of a message rather than signing
the message directly." I propose that this option be removed.

In the case of ML-DSA, the existence of the prehash option is seemingly motivated by the
perceived speed difference between SHA2 and SHA3, which is arbitrary and platform-
dependent. However, there are significant disadvantages:

1. The option opens up ML-DSA to non-targeted collision attacks and contradicts the BUFF claim
of Section 3.3.

Proof: Signature generation and verification use 512-bit variable mu = H(tr || M) as a starting
point (Line 6, Alg 2 and Line 7, Alg 3), where tr is derived from the public key.

We observe that arbitrary H(m1) = H(m2) collisions are also "universal" H(tr || H(m1)) = H(tr ||
H(m2)) collisions for any value of tr, and hence ML-DSA is vulnerable to them if simple
prehashing is allowed. However, creating H(tr || m1) = H(tr || m2) collision would require a
targeted collision attack using tr = H(pk).]

2. Since the signing and verification functions don't know if the input is a message or a hash of a
message, the option potentially makes the same signature valid for both M and H(M) --
depending on context -- and resulting in an existential forgery: I query a signature for H(M) and
then submit M'=H(M) as a second signature.

Discussion: Comparison to SLH-DSA.

In another message, I am suggesting that

• for FIPS 205 / SLH-DSA only a specific "prehash" M = H(pk || M') version is allowed
instead of plain M for signature computation.

• for ML-DSA I am suggesting that only the non-prehashed versions mu = H(tr || M) are
permitted instead prehashed. For ML-DSA prehashing would imply mu = H(tr || H(M)).

In both cases, removing the (unauthenticated) input option removes the need for domain
separation padding. In both cases the end result -- a concatenation of a public key prefix with
the message -- is consistent.

We note that SLH-DSA (FIPS 205 IPD), Algorithm 18 slh_sign(M, SK) requires two passes over
entire M without prehash:

Public Comments on draft FIPS 204

72

Line 7: R <- PRFmsg (SK.prf, opt_rand, M)
Line 10: digest <- Hmsg (R, PK.seed, PK.root, M)

We observe that to compute "digest" in SLH-DSA, one will need to hash the entire M first to
obtain "R," and then one will have to hash the entire M again to obtain "digest" on line 10. This
is entirely sequential due to chaining of "R." In practice, this means that one can't compute a
signature over streaming data, rendering the "pure" scheme unusable in many use cases. So,
there is a substantial need for "prehash" in SLH-DSA.

Additionally (as discussed above) I would argue that using plain H(M) is non-ideal as its use
makes any scheme vulnerable to untargeted collision attacks. Hence, I proposed to use mu = H(
pk || M) for SLH-DSA as well -- in that case the public key is already a pair of compact hashes,
so this is analogous to "tr" and the countermeasure (BUFF transform) used by ML-DSA. The
main motivation for double-hashing was collision attacks, which the public key prefix mitigates.

However, in ML-DSA (FIPS 204 IPD), the signatures are computed from mu = H(tr || M) (Line 6,
Alg 2 and Line 7, Alg 3). There is no need to process input data M twice when processing large
inputs; one only needs to know the seed tr = H(pk) when one starts the process. Hence
prehashing is merely a security problem here, with no major performance advantages.

Best Regards,
Dr. Markku-Juhani O. Saarinen <markku-juhani.saarinen@tuni.fi>
Professor of Practice, Tampere University

Public Comments on draft FIPS 204

73

36. Comments from P. Kampanakis, J. Massimo, T. Lepoint, AWS, November 22,
2023

Dear Dustin, NIST PQ Project team,

We appreciate NIST’s leadership in standardizing schemes that the whole world can use. We
know the process is tough and can sometimes be heavily scrutinized. The new schemes will be
with us for years, and we can understand the impact this whole project led by NIST will have.

We would like to provide feedback on the ML-DSA FIPS-204 draft too:

First, as with ML-KEM, we want to bring up the security level mappings to ML-DSA parameters.
It is unclear how the ML-DSA parameters are mapped to the MAXDEPTH levels. For example,
we are not sure how to reach to that ML-DSA-65 maps to about “2^221/MAXDEPTH quantum
gates or 2^207 classical gates ”. This could be done in Section 4 or Appendix A, but we think
you want to reference section C.5.1. of the Dilithium Round 3 submission.

Secondly, line 767 suggests “the digest that is signed needs to be generated using an approved
hash function or extendable-output function (XOF) (e.g., from FIPS 180 [8] or FIPS 202 [7]) that
provides at least λ bits of classical security strength against both collision and second preimage
attacks [7, Table 4]”. The document should rather prescribe SHAKE256 with 64byte output as a
conservative choice for all uses. SHAKE256 aligns with Dilithium which uses it internally as well.
Also on the predigesting topic. There was a recent discussion in the NIST list about updating
ML-DSA and SLH-DSA to include some domain separation for when signing M and H(M) so that
an application which supports both cannot suffer existential forgeries where two different
messages M and H(M) can be validated by the same signature (depending on the verifier logic).
Although this would be a problem for use-cases that need to be able to sign M and H(M), these
are not many. X.509 does not need to sign M and H(M), it can only do M and that is what draft-
ietf-lamps-dilithium-certificates specifies. Other applications are similar, they don’t need to
support both M and H(M). Similarly, CMS allows for both, but in the case of H(M) you can add
any arbitrary attributes for domain separation in the optional SignedAttributes. For context, in
the past EdDSA took a similar path which ended up being futile. It specified pureEdDSA and
prehashEdDSA. That ended in unnecessary complications in the signature although in the end
pureEdDSA was mostly adopted in various standards. Thus, we are against tweaking ML-DSA
which would complicate it. Applications that need to support both signing M and H(M) should
specify any domain separation they need. We do suggest for NIST to update section 7.1 for ML-
DSA to spell out the application existential forgery concern and suggest domain separation for
H(M) to prevent it in the application that uses ML-DSA.

We want to suggest addressing the keypair vs pseudorandom value storage issue. This has
come up previously in other fora. The public/private keypair can be reconstructed by storing
the 32 random byte value ξ. In some cases some parties may prefer to store this only and
reconstruct the keypair when they need it. Using this 32-byte value instead of a few kilobytes of

Public Comments on draft FIPS 204

74

https://csrc.nist.gov/pubs/fips/204/ipd
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/MTC3eCUD3Dw
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdatatracker.ietf.org%2Fdoc%2Fdraft-ietf-lamps-dilithium-certificates%2F&data=05%7C01%7Cdustin.moody%40nist.gov%7Cc4e6efcb14744173be1408dbebcc45ff%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638363034844232154%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=xY35hL3xChfQ0DQm3IREKwOqYIH852eqnStfGqA2eF8%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdatatracker.ietf.org%2Fdoc%2Fdraft-ietf-lamps-dilithium-certificates%2F&data=05%7C01%7Cdustin.moody%40nist.gov%7Cc4e6efcb14744173be1408dbebcc45ff%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638363034844232154%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=xY35hL3xChfQ0DQm3IREKwOqYIH852eqnStfGqA2eF8%3D&reserved=0

(pk,sk) could be briefly discussed as an option for the keypair owner in Section 5.

Additionally, a few minor suggestions

• The naming convention for the security levels of ML-DSA (-44, -65, -87) are an anti-
pattern with how we traditionally name algorithms with their security level. While it is
true that 44 65 and 87 come from the dimensions of the matrix A, the numbers may be
interpreted as bit strength, or more tenuously that ML-DSA-65 may be 21 “security
levels“ more than ML-DSA-44, when there should be no connotation. In short, should
the dimensions of matrix A be the distinguishing numerical value we assign to each
parameter set? Will this cause misunderstandings?

• Line 304: Typo in “ML-DSAstandard”.

Regards,
Panos Kampanakis, Jake Massimo, Tancrede Lepoint
Amazon Web Services (AWS)

Public Comments on draft FIPS 204

75

37. Comments from Michael Ravnitzky, November 22, 2023

Comment attached.

Public Comments on draft FIPS 204

76

Comments on FIPS 204: ML-DSA

FIPS 204 specifies a module-lattice-based digital signature algorithm, ML-DSA, for
applications that require authentication and non-repudiation. A digital signature algorithm
is a method of generating and verifying signatures on messages, which can prove the
identity and the integrity of the sender. A module-lattice-based algorithm is an algorithm
that is based on hard mathematical problems that involve sets of points that form a
regular grid in a high-dimensional space. These problems are believed to be secure
against both classical and quantum computers, which are devices that can perform
complex calculations very fast. Quantum computers are expected to be able to break
some of the current digital signature algorithms, such as RSA or DSA, which are based
on hard mathematical problems that quantum computers can solve easily.

The National Institute of Standards and Technology (NIST) has demonstrated
commendable foresight and expertise in the development of FIPS 204. Their efforts to
standardize a secure module-lattice-based digital signature algorithm underscore their
commitment to advancing cybersecurity in an era where quantum computing poses new
challenges. NIST’s proactive approach in addressing these challenges ensures that the
integrity of digital communications will be preserved, maintaining trust and security in
digital transactions for years to come.

What follows are several observations on FIPS 204.

Clarifying EUF-CMA Security (Unforgeability) in ML-DSA

The draft document does not sufficiently detail the mechanisms by which ML-DSA
ensures existential unforgeability under a chosen message attack (EUF-CMA), a critical
security property for digital signature schemes. This property guarantees that even if an
adversary can choose messages and obtain their signatures, they cannot forge a signature
for a new, unchosen message, thereby preventing impersonation and data tampering.

While the document mentions ML-DSA’s foundation on the Falcon scheme—known for
its EUF-CMA security within the quantum random oracle model (QROM)—it fails to
address the nuances introduced by ML-DSA’s unique aspects. These include its reliance
on module lattices rather than generic lattices, a distinct error distribution, and an
alternative compression function. Given these differences, the direct applicability of
Falcon’s security proof to ML-DSA remains ambiguous.

To enhance the document’s utility and credibility, it is essential to provide a thorough
explanation and justification of ML-DSA’s EUF-CMA security. This should include a
discussion of how ML-DSA’s design variations influence its security proof relative to
Falcon. Such clarification will enable readers to confidently assess ML-DSA’s security
foundations and effectively compare it with other digital signature schemes.

Public Comments on draft FIPS 204

77

Rationalizing ML-DSA Parameter Sets Based on Security Standards

The draft outlines three parameter sets for ML-DSA reflecting security equivalence to
established federal security standards to cater to different quantum resistance levels.
These sets are designed to strike a balance between ensuring robust security and
maintaining performance efficiency. However, as far as I have been able to discern the
document does not fully articulate the basis for these selections. It lacks detail on the
specific security objectives targeted against quantum threats, the complexity of
anticipated quantum attacks, the projected capabilities of quantum hardware, and the
confidence intervals for the security margins.

To provide clarity and aid readers in comprehending the impact of these parameters on
ML-DSA’s security and performance, to the extent practicable, the document should
expound on the selection process. It should detail the criteria and assumptions that guided
the choice of parameters, ensuring they are in line with current security objectives.

Addressing Practical Limitations of ML-DSA

The draft primarily concentrates on the theoretical underpinnings of ML-DSA, including
its mathematical foundation, algorithmic structure, and theoretical security. However, it
overlooks the practical challenges that may surface during the real-world implementation
and deployment of ML-DSA. Critical considerations such as susceptibility to side-
channel attacks, requisite countermeasures, interoperability with established standards,
and the nuances of testing and validation are absent.

To bridge this gap, the document should incorporate a comprehensive discussion on the
practical aspects of ML-DSA, detailing how potential vulnerabilities can be mitigated and
what measures can be taken to ensure seamless integration into existing systems. It would
also be beneficial to include examples demonstrating ML-DSA’s application across
various domains, such as secure email communication, digital certification, and
blockchain technology.

Enhancing the Section on Security Proofs and Estimates for ML-DSA

The draft asserts that ML-DSA meets the stringent security criterion of existential
unforgeability under chosen message attack (EUF-CMA) within the quantum random
oracle model (QROM). Despite this, the document lacks formal security proofs or
quantitative estimates to substantiate this claim—both of which are pivotal for a thorough
evaluation and validation of the algorithm’s security. To remedy this, the document
should incorporate detailed security proofs or, at a minimum, provide references to
existing literature that offers such validation. This addition would significantly aid
readers in assessing the security level and margin of ML-DSA, facilitating a more
informed comparison with other digital signature schemes.

Public Comments on draft FIPS 204

78

Refining the Section on Compatibility and Interoperability for ML-DSA

The document currently omits a critical discussion on the compatibility and
interoperability of ML-DSA, which are essential for its successful integration with
existing standards and protocols. While it provides an in-depth look at ML-DSA’s
mathematical structure, algorithmic details, and security considerations, it neglects the
practical aspects of system integration and the broader network environment. This
oversight includes a lack of information on specific requirements, feedback mechanisms,
and evaluation processes for compatibility and interoperability, as well as standards,
protocols, and support resources. To rectify this, the document should include a detailed
examination of ML-DSA’s compatibility and interoperability challenges and
opportunities.

Assessing Unconventional Attack Vectors on ML-DSA

ML-DSA, a post-quantum digital signature algorithm, is predicated on the module
learning with errors (MLWE) problem—a sophisticated extension of the learning with
errors (LWE) problem. While MLWE is reputedly resistant to both classical and quantum
computational attacks, it would seem that ML-DSA could potentially be vulnerable to
certain non-standard or brute force attacks that target specific aspects or frailties of the
algorithm or its foundational problem. This section aims to explore such potential attacks
and their implications for ML-DSA’s security. By scrutinizing these unconventional
attack vectors, we can better understand the potential security risks facing ML-DSA and
develop strategies to fortify its defenses against such threats.

Exploiting the Compression Function: A conceivable attack vector is the exploitation of
the compression function employed in ML-DSA’s signing process. This function, which
serves to condense the signature size that could otherwise be unwieldy due to MLWE’s
inherent randomness, inadvertently introduces a degree of information loss and distortion.
Consequently, this could diminish the signature’s entropy, making it more susceptible to
attacks, or induce anomalies that might inadvertently leak details about the secret key or
the message. Theoretically, a quantum computer capable of executing quantum search
operations could leverage this vulnerability to decipher the secret key or message by
sifting through all compatible values or solutions aligned with the compressed signature.
Such an attack, while highly speculative and contingent on a quantum computer and
algorithm sophisticated enough to manipulate the compression function—and a quantum
attack model surpassing QROM—is not beyond the realm of possibility.

Distinguishing Valid from Invalid Signatures: Another potential attack could arise from
the error correction mechanism utilized in ML-DSA’s verification algorithm. This
mechanism, designed to accommodate signatures with inherent noise, introduces
additional complexity and potential security concerns. For instance, it could lead to an
enlarged signature size, increased verification computation time, or heightened risk of
verification failure. Moreover, it might reduce the signature’s randomness, rendering it

Public Comments on draft FIPS 204

79

more predictable. A statistical analysis method capable of differentiating valid signatures
from invalid ones could exploit these error correction characteristics to compromise the
algorithm’s integrity.

Mitigating Chosen Message Attacks and Distinguisher Risks in ML-DSA

The document should address the potential for chosen message attacks (CMA) on ML-
DSA, where an adversary could exploit statistical methods to differentiate between valid
and invalid signatures. Such an attack threatens the existential unforgeability under
chosen message attack (EUF-CMA) security, a cornerstone of digital signature integrity.
This security ensures that an adversary, despite having the ability to obtain signatures on
chosen messages, cannot forge a signature on a new message, thereby safeguarding
against impersonation and unauthorized data alterations.

Distinguisher Concerns: The error correction technique within ML-DSA’s verification
algorithm could inadvertently serve as a distinguisher. This technique, intended to
accommodate signatures with inherent noise, might produce discernible patterns or errors
that could expose sensitive information, such as the secret key or the message content. A
sophisticated statistical analysis method capable of identifying these patterns could
potentially compromise the algorithm’s security by extracting the secret key or message
from the signature.

Attack Feasibility: Executing such an attack would necessitate not only a statistical
method adept at distinguishing between valid and invalid signatures but also a substantial
volume of chosen message queries. This requirement could render the attack impractical
or easily detectable in many scenarios. Additionally, it would demand a CMA attack
model more robust than the QROM model, which ML-DSA is designed to withstand.
While the complexity and uncertainty of this attack make it a challenging endeavor, it
cannot be deemed impossible.

Conclusion

In light of these considerations, it is imperative for the document to elaborate on the
strategies and safeguards implemented within ML-DSA to mitigate the risks posed by
CMAs and distinguishers. By proactively addressing these vulnerabilities, the document
will reinforce the confidence in ML-DSA’s security measures and its resilience against
both conventional and unconventional cryptographic threats.

Michael Ravnitzky
Silver Spring, Maryland

Public Comments on draft FIPS 204

80

	1. Comments from Joe Hobo, August 24, 2023
	2. Comments from Simon Hoerder, August 24, 2023
	3. Comments from Erkan Uslu, August 25, 2023
	4. Comments from Danny Niu, August 26, 2023
	5. Comments from Anubhab Baksi, August 28, 2023
	6. Comments from Elaine Barker, August 29, 2023
	7. Comments from Lauren Brandt, September 7, 2023
	8. Comments from Vadim Lyubashevsky, September 8, 2023
	9. Comments from Lauren Brandt, September 18, 2023
	10. Comments from Stephan Mueller, September 18, 2023
	11. Comments from Danny Niu, October 3, 2023
	12. Comments from Simon Hoerder, October 5, 2023
	13. Comments from Conrado Gouvea, October 6, 2023
	14. Comments from Isabela Rossales, October 10, 2023
	15. Comments from Paul Duncan, October 23, 2023
	16. Comments from Paul Duncan, October 23, 2023
	17. Comments from Paul Duncan, October 26, 2023
	18. Comments from Paul Duncan, October 26, 2023
	19. Comments from Gustavo Banegas, October 31, 2023
	20. Comments from Graham Costa, November 16, 2023
	21. Comments from Danny Niu, November 17, 2023
	22. Comments from Beat Heeb, November 17, 2023
	23. Comments from John Gray, November 17, 2023
	24. Comments from Danny Niu, November 18, 2023
	25. Comments from John Preuß Mattsson, November 20, 2023
	26. Comments from the National Security Agency, November 20, 2023
	27. Comments from Leif Ibsen, November 21, 2023
	28. Comments from the Infineon PQC team, November 21, 2023
	29. Comments from the Canadian Centre for Cyber Security, November 21, 2023
	30. Comments from Cloudflare, November 21, 2023
	31. Comments from Dev Null, November 21, 2023
	32. Comments from Gideon Samid, November 21, 2023
	33. Comments from Falko Strenzke, November 22, 2023
	34. Comments from the NXP PQC team, November 22, 2023
	35. Comments from Markku-Juhani Saarinen, November 22, 2023
	36. Comments from P. Kampanakis, J. Massimo, T. Lepoint, AWS, November 22, 2023
	37. Comments from Michael Ravnitzky, November 22, 2023

