

Public Comments on NIST Draft Special Publication 800-56A Revision 2

NIST received the following public comments on the draft Special Publication 800-56A
“Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography, Revision 2 (August 2012)”.

Most comments were received in Microsoft Word format. They are merged in one
document. The e-mail addresses and telephone numbers are removed. One commenter
submitted a PDF version file and requested to publish in its original version.

Cisco Systems ... 2

Daniel Brown.. 3

Thales e-Security .. 6

Dr. René Struik ... 8

Hugo Krawczyk .. 10

1

__

ID

Cisco Systems

Legend (type of comment)

E = Editorial
G = General
T = Technical

SECTION,
SUBSECT
& PARA.

TYPE COMMENT RESOLUTION

1 5.6.1.1 and
5.6.1.2

T The sections specify both that the
private key to be in the range [2, q-2]
AND that it must be generated
using an approved method found in
FIPS 186, appendix B. However,
both approved methods in FIPS 186
generate values in the range [1, q
1]. Should the methods in FIPS 186
be modified to generate values in the
range [2, q-2], or are values in the
range [1, q-1] acceptable?

1. Modify FIPS 186 to
generate values in the
range [2, q-2]

Or

2. Allow values in the
range [1, q-1] as
acceptable

2 5.6.1.1 and
5.6.1.2

T Sections 5.6.1.1 and 5.6.1.2, attempt
to exclude private keys of the values
1 and q-1. What is the reasoning
behind this?

If the reasoning is that someone
listening to the exchange might see
the public values g or g^-1 and
immediately be able to deduce the
private key, it should be noted that
an attacker could precompute the
public keys corresponding to the
private keys 123456 and q-123456;
if he then listens to the exchange and
sees those public values, he will also
be able to deduce the private key.

If this is the reasoning behind the
exclusion, why exclude the values 1
and q-1, but not the values 123456
and q-123456, when the latter have
precisely the same weakness?

2

Daniel Brown

Certicom, a subsidiary of Research In Motion

Provisos

Overall, I would say that the 56A authors have done well in writing and revising 56A.
Key establishment, and discrete logarithm cryptography, are difficult and complicated
subjects. The 56A document strives to tackle most of the complex details of these
subjects.

Unfortunately, I did not provide myself enough time to review 56A thoroughly, for which,
I apologize. Any of my comments that are incorrect, which may be likely, should be
disregarded.

Text in quotes is taken from 56A. The red text below is suggested for insertion (or
substitution) into 56A. I have opted not to quote this replacement text, because although
it is an alternate text for to 56A to say, (i) it is not said in 56A, and (ii) the red styling is
probably sufficient to delimit the replacement of substitution text, but if not they I can
clarify). I am not sure how much more convenient for the 56A this red text convention is,
but it helps remind me to make more constructive comments.

Technical Comments

General Technical Comments

None.

Specific Technical Comments
1.	 In the Static Unified Model scheme (as in Section 6.3.2, Page 108), if NonceU is

merely non-repeating but predictable, such as a sequence number, then the
following harmful outcome could happen, whereas it would not happen if NonceU

were actually random. Suppose that in the future, an adversary Eve may
somehow obtain: entity U’s static key; and a ciphertext sent between U and V that
were encrypted using the DerivedKeyingMaterial; but no record of the NonceU

that U to sent to V (say, because both parties destroyed the nonce and Eve was not
present at the time of the key establishment). The harmful outcome is that Eve
can decipher the ciphertext using U’s static private and exhaustive searching the
relatively small sequence number space, such as the time values, for the value of
NonceU. In this setting, if NonceU had been fully random, then Eve would not
have been able to decipher the ciphertext. Accordingly, 56A should clarify this
distinction to the user of 56A rather than leave the reader to determine what kind
of nonce is needed here. I suggest putting a requirement that “NonceU shall be a
random nonce”.

Editorial comments

3

The following comments are merely editorial. Their intent is, at most, to help clarify 56A,
and at least, to help beautify 56A.

General Editorial Comments

The following editorial comments generally affect either the whole document, or refer to
the addition of more material (so, either do not any specific part, or else refer to very
many specific parts).
1.	 It would be nice if there were hyperlinks to navigate through 56A’s cross-

references. As a substitute, I’ve been using the PDF bookmark features (see also
below).

2.	 It would be nice if there were a section, perhaps even a table, on compatibility of
56A with other major standards which use key-establishment, such as TLS, PKIX,
CMS, WiFi, Bluetooth, and IKEv2. I believe that NIST has special publications
devoted to some of these, in which case 56A could point to these special
publications. Since I have not done a thorough review yet, I am not sure which of
these common protocol standards are compatible with 56A. To elaborate, it
would be nice if a table could translate the TLS ciphersuites into 56A’s C(*,*)
system, because then an implementer could, assuming compatibility of 56A and
TLS, more easily ensure that a TLS implementation meets the 56A requirements
and recommendations.

Specific Editorial Comments

The following comments refer to some specific parts of 56A. Some of the comments
may generalize to other similar parts of 56A.
1.	 Page 33 says “Note: ANS X9.62, rather than ANS X9.63, specifies the most

current ...”, which could be incorrectly misinterpreted to mean that ANS X9.63 is
out-of-date. Currently, ANS X9.63 has been updated and refers to ANS X9.62
for methods of generating ECC domain parameters. So maybe the note could be
clarified to Note: ANS X9.63 currently refers to the ANS X9.62 for methods of
ECC domain parameter generation.

2.	 Page 33, Table 2, uses some self- notations such as 160-223 and 512+. Although
this notation is certainly self-evident for the given context, and perhaps even
customary in non-technical contexts such as Table 2, it in inconsistent more the
traditional technical mathematical notation (with – being minus, and + being plus)
used elsewhere in 56A. It also misses an opportunity to the use the interval range
notation [a,b] defined in 3.2. So, I would suggest, replacing 160-223 with [160,
223] and 512+ with [512, ∞] (with the understanding that ∞ is not allowed under
the definition in 3.2 because it is not an integer, not to mention nonsensical and
impractical). If this change is made, it might further help to adjust the wording of
the row header to Interval of bit lengths of the ECC subgroup order n.

3.	 The symbol Ø for the point at infinity on page 51 looks slightly different (more
bold) from the similar symbol Ø on Page 33 and elsewhere. Perhaps un
emboldening its format would resolve this discrepancy, as in Ø.

4

4.	 Page 98 has an “Error! Reference Source not found.”
5.	 Page 108, Action 2, says “parameters D, U’s static private key ds,U, and V’s

static”. Some quibbles with this phrasing (and similar elsewhere in 56A) are the
following.
a.	 The part “parameters D, U’s static” is hard to parse on a first read: is U part of

the parameters? I suggest: parameters D, entity U’s static, where entity has
been inserted.

b.	 Variable U appears twice in this phrase but only once in italics. I ought it to
be same style throughout. It should be italics, because it is a variable, not a
word, abbreviation or unit, so: parameters D, entity U’s static, where U has
changed to italics U.

c.	 The word “and” is in italics. Is this just a formatting typo? If not, is it for
special emphasis? If so, is there some more specific action intended to be
taken in regards to this emphasis?

d.	 The second comma in “ds,U, and” seems to be a subscript (and italics), though
it ought to be a regular comma, as it is separating items in a list at the level of
regular text. So, I suggest: key ds,U, and V’s, where the second comma is
removed from the subscript style, italics are removed from the word “and”,
giving and, and the variable V is in italics V.

6.	 The PDF bookmarks for the appendices seem a little wrong (A, B, and D are
missing, with C included as part of Section 10.)

7.	 Page 33 top paragraph has “GF(q)” and “GF(q)”, which is inconsistent in the style
of parentheses. I recommend not using italics for parentheses (even in formulae):
as in GF(q).

8.	 Page 33 top paragraph uses quotes ““+”” and ““point at infinity””, and so does
Section 5.4, with ““negligible”” and ““freshness””. (Note that because I’ve tried
to quote all my quotes of 56A, there are double comments here; so, the outer
quotes are mine, and the inner 56A’s.) Do the 56A authors disagree with these
terms, and thus quoting them, without acknowledging who uses these terms? Or,
are the quotes merely for emphasis, or to introduce a new definition for a term.
Elsewhere, italics seems to be used for such emphasis of introducing a new term,
as in “h is called a cofactor” again on Page 33. Notice the italics for emphasis can
sometimes be confused with the italics for multi-letter variables. Given that 56A
has a list of definitions in Section 3.1, I recommend adding all the quoted or
italics terms (or symbols) to the appropriate list, and then reverting the terms in
the main body back to the normal font style of the surrounding text, without any
quotes. So, the examples above would become +, point at infinity, negligible, and
freshness, respectively. (Ideally, with a cross-reference linking back to the
definition!)

9.	 Page 23 again uses quotes again in ““Vegetable.gardner123””, but here the 56A
quoting is much closer to actual quoting, because it is a reference to a string
outside the spec. It is also much akin the string data type literal quotation syntax
of many programming languages. This quoted term should certainly be treated
differently those discussed above: it should not be added to the list of definitions.
As I noted, the quotes here are more acceptable, but it would be preferable to use

5

__

another common convention such as a monospaced font, as in

Vegetable.gardener123.

10.	 Page 32 again uses quotes in “shall be “1””, but soon later uses an unquoted one
with the same meaning in “bit 1 shall be 1”. This is inconsistent. I suggest
removing the quotes on the first instance and changing it to shall be 1.

11.	 Throughout the document, curly braces are used in three ways: (i) to delimit sets,
as in Page 31, “{0, 1, …, p-1}”; and (ii) to indicated optional elements of a list, as
in Page 35, “p, q, g{, SEED, pgenCounter}, G, n, h”, and (iii) as in Page 60,
“PartyVInfo {|| SuppPubInfo}”. For completeness, these notations should be
added Section 3.2. The notations (i) and (ii) do not require much action from the
implementation, but (iii) does. An entity must agree on the concatenated string
with another entity, and if the optionality of these portions of the string is
negotiated in real time, it must occur outside the simple conveyance of the bit
string._

Thales e-Security

Legend (type of comment)

E = Editorial
G = General
T = Technical

ID SECTION,
SUBSECT
& PARA.

TYPE COMMENT RESOLUTION

1 5.6.2.2 E The specific requirement Add an option to allow the
Para. 2,
Bullet 1

for a public key recipient
to assure the validity of a

previous validation of a
public key to be acceptable

public key excludes the
use of any caching
mechanisms such that
multiple exchanges with
the same public key owner
could be optimized by
merely determining if the
presented public key has
already been validated
using the referenced
methods for key
verification.

for meeting the requirement.

An alternative option would
be to extend the TTP
paradigm to include an
implicit 1st person trust,
whereby a previous validation
would be treated as ‘trusted’
by the 1st party (rather than a
third-party).

6

2 5.6.2.2.1
Para. 1,
Bullet 1

E Similar to the comment
above, this assertion
excludes the situation
where we have previously
validated this static public
key.

Extend the referenced
sections to include the ability
to reuse the result of a
previous validation.

3 5.6.2.2.2
Para. 1,
Bullet 1

E Similar to the comment
above, this assertion
excludes the situation
where we have previously
validated this static public
key.

Extend the referenced
sections to include the ability
to reuse the result of a
previous validation.

4 5.7.1.1
Process
Section

E It is unclear the value
added by including the
requirement to convert z
to Z using an integer-to
byte-string conversion
routine. This seems too
prescriptive.

Remove conversion to a byte
string, including the use of Z.

5 5.7.1.2
Process
Section

E It is unclear the value
added by including the
requirement to convert z
to Z using an integer-to
byte-string conversion
routine. This seems too
prescriptive.

Remove conversion to a byte
string, including the use of Z.

6 5.7.1.2
Process #2

E “…computation of Z
(including z)” comment
does not make sense in
this context as ‘Z’ and ‘z’
have not yet been defined.

Should be rephrased as,
“…used in the attempted
computation of P and output
an error indicator.”

7 5.7.1.2
Process #4

E Inconsistent lists of
intermediate variables; P
has been used as an
intermediated but not
listed as one to clear.

Either consistently enumerate
intermediates to be cleared, or
leave as a generic statement
about clearing all
intermediates.

8 5.7.2.1
Process #7

E It is unclear the value
added by including the
requirement to convert z
to Z using an integer-to
byte-string conversion
routine. This seems too
prescriptive.

Remove conversion to a byte
string, including the use of Z.

7

__

9 5.7.2.1
Process #6
& #8

E Inconsistent lists of
intermediate variables; Z
has yet to be calculated,
and it is missing explicit
intermediates other than z.

Either consistently enumerate
intermediates to be cleared, or
leave as a generic statement
about clearing all
intermediates.

10 5.7.2.3
Process #4

E It is unclear the value
added by including the
requirement to convert z
to Z using an integer-to
byte-string conversion
routine. This seems too
prescriptive.

Remove conversion to a byte
string, including the use of Z.

11 5.7.2.1
Process #3
& #5

E Inconsistent lists of
intermediate variables; Z
has yet to be calculated,
and it is missing explicit
intermediates other than z.

Either consistently enumerate
intermediates to be cleared, or
leave as a generic statement
about clearing all
intermediates.

Dr. René Struik

Struik Security Consultancy

Reference: NIST SP 800-56A – Recommendation for Pair-Wise Key Establishment Schemes
Using Discrete Logarithm Cryptography, Draft Revision, August 21, 2012

Review notes:

1.	 Summary

2.	 Review comments

2.1 General comments

2.2 Technical comments
 §5.6.1.2, p. 35: While the specification does specify the formula according to which ordinary

discrete log key pairs are to be generated (§5.6.1.1, p. 35, l. 6), the corresponding group laws
for elliptic curve arithmetic (see, e.g., §3.1.2 of [7]) seem to be missing.

 §6.1.1.4, p. 77: Note 2 seems to refer to notions that apply to the MQV scheme with ordinary
discrete log groups, rather than elliptic curve groups (presumably, an editorial glitch).

 §C.1, p. 129: The integer-to-byte string conversion routine does not specify the bit-to-octet
ordering.

 §C.2 p. 129: The field element to byte-string conversion

8

 §C.3, p. 129: The field element to integer conversion should make explicit the (currently
implicit) assumption that polynomials (is a binary polynomial, after all) are represented
with highest-degree term “on the left”, i.e., =s1 z

m-1 + sm-1 z+ sm.

 §C, p. 129: Compared to conversion routines specified in, e.g., Section 2.3 of SEC1 [5]
(which are cross-referenced in many cryptography-related IETF RFCs), several conversion
routines seem missing, including (a) integer to field element; (b) bit-string to byte-string; (c)
byte-string to bit-string; (d) elliptic curve point to byte-string; (e) byte-string to elliptic curve
point; (f) byte-string to field element; (g) byte-string to integer. While not all of these may be
strictly required, most are, if only to unambiguously define the assurances in §5.6.2 (required
assurances) or to unambiguously specify strings included with key derivation (§5.8) and with
key confirmation of key agreement schemes (§5.9) and of key transport schemes (§7.2). We
give some examples (while not being exhaustive):
 §5.5.2, p. 34 (domain parameter validation: for prime curves, this relies on integer

computations (see ANSI X9.62, §5.1.1.2) and would benefit from conversion (b) above.
For ordinary discrete log groups, a similar remark applies.

 §5.6.2.3.2, p. 46-47 (public key validation): this procedure takes as input a candidate
ECC public key Q=(xQ,yQ), which, witnessing the processing steps, would be an octet
string, with implicit assumptions on how to convert this into an elliptic curve point, but
the corresponding conversion (e) is missing. A similar remark applies to §5.6.2.3.3, pp.
47-48.

 §5.6.2.3.2, p. 47: the input to this procedure presumably is a candidate ECC point
Q=(xQ,yQ), in affine representation, but the first step of the procedure checks whether this
is the point at infinity, which does not have this format. This suggests that the input to the
procedure should be a byte string that would allow for representing any ECC point.

 §7.2, p. 115 (key confirmation with key transport scheme): the MacData field depends on
EphemDataV and EphemDataU, which may be both ephemeral public keys, but the
representation hereof is not specified (thus, requiring inclusion of conversions (b), (d),
and (e) above, as other specifications (e.g., ANSI X9.63, SEC1, IETF RFC) do. This
typically includes specifying the octet representation of affine points, point-at-infinity,
compressed points.

While the intention could have been to leave the specification of missing conversion routines
to implementers, it is more likely that this is an omission in the specification, since not
mentioned as prerequisite/assumption underlying the use of key agreement schemes (§6.1.1,
pp. 70-71; §6.1.2, p. 81; §6.2.1, p. 85-86; §6.2.2, pp. 98-99; §6.3, pp. 105-106). Leaving out
conversion routines would be contrary to the goal of fostering interoperability, may increase
implementation cost, may lower implementation security posture (e.g., if these routines are
implemented outside a trust boundary and either routines or data these act upon can be
manipulated), and seems out-of-sync with granularity level of other NIST specifications
(where e.g., bit-to-byte ordering is specified). When specifying point compression, the
specification should not require conversion hereof to other formats, when this is not strictly
required from a computational perspective (e.g., with ECDH, scalar multiplication can be
implemented with x-coordinate only arithmetic).

 §A, pp. 126-127: the references should be split into normative and informative references
(where those related to specifications [ANSI, FIPS, NIST] are normative).

2.3 Editorial comments
 §6.3.3.3, p. 112, l. 2: fix the broken cross-reference, here presumably to Fig. 18 on the same

page. (Some other cross-references also need fixing, e.g., §6.3.3.3, p. 113, l. 2 [presumably to
same figure] and §6.2.1.5.3, p. 98, l. 2 [presumably to Fig. 12 on p. 97].)

 §A, p. 126: NIST SP 800-56C was published November 2011.

9

__

 §A, p. 126: NIST SP 800-57 has several parts (Part I, Part II, Part III), with several
updates/revisions since 2005. It is not clear which version and which part the reference refers
to.

 §C.1, p. 129, l. 3-4: I would suggest making the remark on use of this conversion routine with
the FFC scheme a separate note (after all, this routine is also used for conversion of prime
field elements to octet strings (cf. §C.2 on the same page)).

 §C.1, p. 129, second item: The formula is somewhat awkward, since the summation is taken
over the integers i=1, …, n (and certainly does not hold for each integer in that range). If one
wishes to display formulas inline, why not just putting C = 28(n-1) S1 + 21 Sn-1+ 20 Sn. A
similar remark applies to, e.g., §C.3, third item.

 §C.2, p. 129, first item: Replace “of length n bytes” by “of length n”: the length of an octet
strings does not have units. A similar remark applies elsewhere, e.g., in §C.2, second item,
where one should replace “of length m bits by “of length m”.

 §C.2, p. 129: the conversion routine for binary extension fields could be described in a
simpler way, as follows: (a) left-pad the bit string s1 s2sm with 8n-m zero bits; (b) partition
the resulting bit string of length 8n as the right-concatenation of n substrings S1|| || Sn, each
of the same length.

 §D, p. 133: The rationale for removing the old Appendix A includes the statement that ANSI
X9.63 has been updated to be consistent with the current draft specification. Since the
specification references ANSI X9.63-2011 in §A, this seems to assume that no changes to the
current draft (August 2012) would be made that could possibly impact alignment with an
external specification published last year (2011). This seems to tie NIST hands behind the
back…

References
[1] B.B. Brumley, N. Tuveri, “Remote Timing Attacks Are Still Practical,” IACR ePrint 2011

232.
[2] J. Fan, B. Gierlichs, F. Vercauteren, “To Infinity and Beyond: Combined Attack on ECC

Using Points of Low Order,” CHES 2011.
[3] L. Goubin, “A Refined Power Analysis Attack on Elliptic-Curve Cryptosystems,” PKC 2003.
[4] T. Izu, T. Takagi, “Exceptional Procedure Attack on Elliptic Curve Cryptosystems,” PKC

2003.
[5] NIST SP 800-56A, “Recommendation for Pair-wise Key Establishment Schemes Using

Discrete Logarithm Cryptography”, Revised, March 8, 2007.
[6] SECG, SEC1: Elliptic Curve Cryptography, Standards for Efficient Cryptography, Version

2.0, May 21, 2009.
[7] D. Hankerson, A. Menezes, S. Vanstone, Guide to Elliptic Curve Cryptography, New York:

Springer, 2003.

Hugo Krawczyk

The comments are submitted in a PDF file starting from the next page.

10

Comments on NIST’s August 2012 Revision of SP 800-56A
“Recommendation for Pair-Wise Key Establishment Schemes Using

Discrete Logarithm Cryptography”

Hugo Krawczyk∗

November 8, 2012

In 2005, I reviewed the version of this document at the time and provided very detailed com
ments on many of its aspects ranging from presentational issues to core cryptographic considera
tions. The report, included here for reference, pointed out to serious weaknesses in the specified
cryptographic schemes. In particular, it criticized the preservation of weak cryptographic schemes
in the name of compatibility with old documents (e.g., ANSI X9.42) while ignoring the significant
advances in the area of key exchange research. It was suggested that similarly to the case of hash
functions, weak key exchange schemes should be gradually phased out in favor of stronger schemes.

Unfortunately, 7 years later, virtually all these recommendations have been ignored and the
same weak mechanisms are being standardized in 2012. This is particularly regrettable in an area
where large deployment is just starting, due to the increasing attractiveness of elliptic curves, and
there are not too many “legacy systems” to be tied to. It is also an area where cryptography is quite
well understood with very active research and scrutiny of schemes. One can only wonder why NIST,
who has shown commendable openness to modern schemes when adopting hash functions, block
ciphers, modes of operations, etc., would insist in standardizing sub-optimal (and even broken) key
exchange schemes. This helps perpetuating these schemes, especially given the mandatory aspect
of these standards when it comes to US government validation and the fact that industry looks at
NIST’s cryptographic standards as a model to follow.

I hope it is not too late to address the many shortcoming of this document. The attached report
seems as relevant as it was when written in 2005 and I ask NIST to give it serious consideration.

Here is a listing of some of the main issues still remaining in the current revision (to which I
refer as 56A).

•	 Protocol UM (in its FFC and ECC variants) is broken. Blake-Wilson, Johnson and Menezes
showed in 1997 (that’s 15 years ago) that the protocol is vulnerable to trivial interleaving and
known-key attacks. The attacks are relevant in any setting where a pair of parties may have
more than one simultaneous key exchange sessions (as it would be the case for simultaneous
SSL connections or IPsec tunnels), and are not prevented by any of the auxiliary mechanisms
contemplated in 56A such as proofs of possession or including identities under the KDF.

The interleaving attack is solved if the ephemeral DH values are included under the KDF
(and if the latter is modeled as a random oracle). To the very minimum, the UM protocols
in 56A should be upgraded to provide that defense.

∗ IBM T.J.Watson Research Center, PO Box 704, Yorktown Heights, NY 10598, USA.

1

•	 Protocol MQV has some attractive features but has not been proven secure. More significantly
its security may depend on external mechanisms such as CA-performed proofs of possession
that are unrealistic in many practical settings. There are known alternatives, such as HMQV,
offering the same attractive features of MQV but with provable (and widely scrutinized)
security, better performance, and without requiring external (often unrealistic) mechanisms
such as proofs of possession (see below) or other assumptions on certification authorities.

•	 56A mandates proofs of possession (PoP) for all its protocols. In a PoP a user claiming to own
a public key needs to prove it also knows the corresponding private key. According to 56A,
CA’s should require such proofs at the time of certifying a public key. As explained in detail
in the attached 2005 report, designing secure PoP mechanisms is very tricky. In particular,
the soundness of the PoP mechanisms defined in 56A is questionable as they present the
following “circular paradox”. According the specification, to prove PoP, the CA will run one
of the 56A KE schemes with the user. But what’s the security of these PoP mechanisms given
that the KE scheme used to prove it is in itself not secure without a prior PoP?

To further exemplify the problems with the PoP requirement, consider the case where parties
A and B run a KE scheme, but A cannot be assured that B’s public key was tested for PoP.
In this case, 56A (Section 5.6.2.2.3.2) mandates A to get assurance of B’s possession of the
private key by running a KE scheme with B that includes a key confirmation step. The
idea is that if an attacker E wants to claim possession of B’s public key without knowing the
corresponding private key, E will not be able to complete the key confirmation step. However,
in a model where an attacker may be able to obtain ephemeral session information but not the
static private key of B, E can complete the key confirmation step without ever learning B’s
static private key. This allows E to claim ownership of the same public key as B by playing
man-in-the-middle between A and B.1

•	 Besides being hard to do them right and even harder to guarantee that CAs will actually
perform them, proofs of possession present other severe limitations such as the inability of
a user to self-certify his DH public key. Specifically, consider the case of a user U who has
a certified signature key (a much more common case than having certified DH keys). For
engaging in KE schemes as those defined in 56A, U chooses a DH public key, p, and signs it
with his own signature. Thus, U can certify p by showing the signature on p and the certificate
on the signature public key. Clearly, such certification would violate the 56A specification. In
summary, mandating CA-run PoP is unrealistic in many cases, it kills natural usage scenarios
with self-delegation, and is likely to hinder adoption by the industry at large. Such resistance
would be further justified by the mere fact that both UM and MQV are not secure even with
PoP. As said, UM is broken by interleaving attacks even with PoP, and MQV is vulnerable to
UKS attacks even with PoP’s (Kaliski showed that in 1998). The better alternatives to MQV

x	 y1The attack: A sends to E the value g who forwards it to B as coming from A. B responds with g and
M ACK (B, A, gy , g x) where K is derived from the ephemeral shared secret Z (computed by B on the basis of g x , y,
A’s public key and B’s private key). Now, E breaks into B’s ephemeral session state to find the ephemeral shared
secret Z and sends to A the value gy and M ACK (A, E, gy , g x). According to 56A, this should convince A that E
knows B’s static private which is false in this case as E has never learned this key. Note that even including the
identities under the KDF does not prevent the attack. In the latter case A and B would derive different session keys
but E could then make this session abort (e.g., by never sending to B the last message from A) to prevent A from
learning this mismatch. But the damage has been done: A believes she has run a successful PoP with E and will
accept B’s key as belonging to E in future KE runs.

2

mentioned before also solve the PoP issue: they provably dispense of the need for PoP’s and
other costly checks by the CA.

•	 The document lacks rationale for most of its design. One exception is Section 8 (new in the
current version) where some rationale is presented to help a user choose between all schemes.
Unfortunately, this is a very superficial and faulty account which leaves out some essential
information. For example, Section 8.1 states a fundamental security property of C(2e,2s)
schemes: that “each party has assurance that no unintended party (i.e., no parties other than
the owners of the corresponding static key pairs) can compute the shared secret, Z, without
the compromise of a static private key.” The only way to understand this is with respect to
an eavesdropping adversary. Active attackers, however, may not need to learn the parties’
private keys. In the case of UM, it suffices to learn the shared key Zs (defined as the DH
operation on the parties’ static PKs) which functions as a long-term shared symmetric key
and may be cached for long periods and afforded less protection than a static private key.
Particularly puzzling is the absence of forward secrecy as a main consideration when choosing
a DH exchange (with ephemeral keys).

•	 The other case where more detailed rationale is given is in Appendix B, “Rationale for Includ
ing Identifiers in the KDF Input”. This is the only place where works from the cryptographic
literature are cited. This is strange as the need to bind identities to an exchanged key is a
well-known pillar of KE security and using the KDF as a way of doing this is quite standard.
Actually, for both UM and MQV it would be better to mandate the inclusion of identities
under KDF. At least in the case that the KDF is modeled as a random oracle this would help
against UKS attacks.2

•	 A few more comments:

–	 See the criticism of the naming of schemes in attached 2005 report (another puzzling
legacy from old standards) which remains as valid as before.

–	 The current version of 56A still carries the somewhat enigmatic requirement (Section
5.8) that “Non-secret keying material (such as a non-secret initialization vector) shall
not be generated from input that includes the shared secret.” If revealing part of the
output of a KDF endangers the non-revealed parts then that KDF is plain insecure.

–	 Page 57: max H inputlen: what’s the idea? How should it be used?

–	 In the discussion of nonces in Section 5.4, the birthday paradox needs to be discussed
and random nonces made long enough to prevent collisions.

–	 It would be a good idea to add a MAC from sender to receiver in C(1e,2s) one-pass
protocols. It achieves full forward secrecy for the sender (against both active and passive
attackers) without any computational burden. (This technique and its security is shown
in the PKC’2011 paper “One-Pass HMQV and Asymmetric Key-Wrapping” by Halevi
and Krawczyk.)

2I have criticized in the past a KDF scheme proposed by NIST where identities were mandated for ALL key
exchange protocols. I pointed out that this was too broad since some KE schemes do not need the identities under
the KDF and some cannot possibly include them since the identities may not be known at the time of KDF application
(e.g., IKE). But when describing specific schemes as in this document I do not see a reason not to include the identities
under the KDF as part of the scheme’s definition.

3

•	 Finally, the attached 2005 report makes some points about the importance of provable security
that are worth re-reading. Sometimes, weaknesses spotted via technical analysis are disregard
as theoretical-only. In this sense it is instructive to consider the history of TLS and all the
attacks against the protocol that started as “theoretical-only” and slowly but surely found
their way into real-world attacks requiring changes to the protocol (or in the way it is used).
Similarly, it is easy to disregard UKS attacks or the inappropriate implementation of PoP
techniques as theoretical. They may stay as such only for as long as these protocols are
not used in practice. If these protocols ever become ubiquitous, these weaknesses will have
practical consequences. For the benefit of preventing these problems and to aid adoption
of DLC-based KE protocols, the schemes in 56A, and their description, need to improve
significantly. It is not too hard to do it, just start by getting rid of obscure legacy ties to old
specifications.

A 2005 Report on SP 800-56

Attached.

4

Comments on Draft Special Publication 800-56,

Recommendation for Pair-Wise Key Establishment

Schemes Using Discrete Logarithm Cryptography

Hugo Krawczyk∗

August 10, 2005

Abstract

This note contains a response to the request for comments con
cerning NIST’s document in the title. We believe that the standards
specified in this document need to be thoroughly revised to reflect the
current knowledge and understanding of key establishment protocols.
Problems with the current proposal include the insecurity of some of
the specified mechanisms, the lack of rationale (formal or informal) for
many of the design choices, the use of unnecessary or inappropriate
techniques, and the unnecessary complexity of some of the specifica
tion. Fortunately, using existing and well-analyzed mechanisms all of
the above problems can be resolved. We urge NIST (and the industry
at large) to adopt the more secure, more systematic and more efficient
alternatives pointed out here.

1 Introduction

The document “Draft Special Publication 800-56, Recommendation for Pair-
Wise Key Establishment Schemes Using Discrete Logarithm Cryptography”
[1] (referred to here as 800-56) describes a number of mechanisms for cryp
tographic key establishment (KE), and related methods, based on discrete

∗ IBM T.J.Watson Research Center, PO Box 704, Yorktown Heights, NY 10598, USA.
Email: hugo@ee.technion.ac.il

1

mailto:hugo@ee.technion.ac.il

logarithm cryptography. The covered key establishment schemes are vari
ants of two main protocols: MQV [14, 11] and the so called “unified model”
(UM) protocol. Both belong to the family of implicitly authenticated Diffie-
Hellman protocols [13] and are presented in several flavors (or modes) in
800-56. Specifically, each protocol has a 1-message, 2-message and 3-message
variant, each with a different specification depending on whether the under
lying group is an elliptic curve (ECC) or a finite field (FFC) subgroup of
prime order. Additional mechanisms specified in 800-56 include key confir
mation, key distribution functions (KDF), public key validation, and proof
of possession (of a private key).

Unfortunately, some central mechanisms defined in 800-56 suffer from
security weaknesses of different degrees, including the well-known insecurity
of the “unified model” (UM) protocol (shown in [3] to be open to interleaving
and known-key attacks) and the recently reported weaknesses of MQV in
[10]. The 800-56 document would seem to predate much of the research
work from the last decade that has resulted in significant advances in our
understanding of KE protocols, their design and analysis. The main driving
force behind this spec seems to be compliance (or “backward compatibility”)
with the very similar ANS X9 standards (that seems a plaussible explanation
to the fact that 800-56 standardizes protocols that the editors themselves
showed to be insecure – as in the case of UM).

Whatever the reasons for the current specification, we believe that 800-56
must be thoroughly revised to reflect the current knowledge and understand
ing of key agreement protocols. Not only will this result in essentially better
security, founded on modern formal models, but will also provide an oppor
tunity to simplify and streamline much of the specification, in particular by
dispensing of unnecessary safety margins and by supplying full rationale to
each design component.

If existing mechanisms cannot be abandoned immediately, then at least
they should be phased out as soon as possible (similarly to the current
plans for SHA-1, but with the advantage of a well-founded theory to back
the choice of KE schemes). Hopefully, a revision of 800-56 will result in a
better and more secure practice of cryptography not only by US agencies
but by the industry in general.

2

2 Key Agreement Protocols

We start by considering the core mechanisms specified in 800-56, namely,
the key agreement protocols. There are two basic schemes: unified model
(UM) and MQV. Each is presented in its core form as a 2-message implic
itly (mutually) authenticated DH protocol and also with two variants: a
3-message protocol that includes explicit key confirmation (KC) and as a
one-message protocol for store-and-forward scenarios. Furthermore, each of
these variants have two specifications depending on whether the protocol
uses FFC or ECC groups. One visible drawback of the specification is that
the protocols in the two algebraic settings have significant differences be
yond the normal adjustments needed to represent the operations in the two
settings (such is the case, for example, in the steps for computing the shared
keys or the way public keys are validated). This has the effect of making
the specification, implementation and analysis of the protocols more cum
bersome without any substantial gain (and the document offers no clue as
for the rationale behind these differences). As we show here, more secure
and more uniform protocols can be defined with less complexity. To add to
the confusion, the names of the ECC and FFC variants of the same basic
protocol differ significantly (for example, one protocol is called “full unified
model” in the ECC setting and “dhHybrid1” in the FFC setting). We take
the liberty of referring to the protocols in a more unified way in this note.

Notation and conventions. We use exponential notation and terminol
ogy (as in the FFC case) but the same comments apply (unless otherwise
stated) to ECC additive groups. We denote the generator of the subgroup
over which the protocol is defined by g and its (prime) order by q (this is
consistent with the FFC notation in 800-56 but not with the ECC notation
where the order of the subgroup is denoted n – in the ECC case 800-56 re
uses q to denote the order of the underlying ECC field). We refer to elements
x ∈ Zq as DH exponents and to group elements of the form gx as DH values.
These values may be ephemeral if used for a single key exchange, or static
if used as static keys. We use the following conventions that differ from the
notation in 800-56: we use x, y to denote ephemeral exponents used by the
parties and a, b to denote their static private keys.

For concreteness we provide most comments for the core 2-message vari
ant of the protocols but most also apply to the other variants. In all these
cases the two messages exchanged consist of ephemeral Diffie-Hellman val

3

ues with the possible simultaneous or prior exchange of long term public
keys and corresponding certificates. All these protocols determine a shared
secret which is a key from which further keying material is derived using a
defined KDF (key derivation function). The schemes differ mainly in the
way the shared secret is determined but also in some other aspects (such as
the form of public key validation).

2.1 Unified Model

The UM (unified model) protocol (called dhHybrid in the FFC context)
computes its shared secret as the concatenation of two values: Zs and Ze.
The first is obtained as the DH computation applied to the pair of static
public keys (i.e. Zs = gab) and the second as the DH computation applied
to the pair of ephemeral DH values (i.e. Ze = gxy). This protocol should
be considered as plain insecure by any modern measure of key agreement
security. Indeed, as shown in [3] the protocol is open to trivial interleaving
and known-key attacks. We can think of no reason to standardize on a
broken protocol (especially that these security shortcomings of UM are well
known and easily avoided).

The protocol specification includes additional elements such as the re
quirements for proof of possession of private keys, validation of public keys,
and, in the ECC case, the use of co-factor in the key computation; however
none of these help solving the inherent weakness of the protocol. Such a
weakness comes from the fact that the 2-message UM protocol does not ex
plicitly authenticate the ephemeral DH values exchanged by the parties nor
it includes them under the KDF. Had these ephemeral values been included
under the KDF computation then one could prove the basic security of the
protocol against known key attacks. Indeed, such a proof has been presented
in [6] under the random oracle model (namely, where the hash function used
to implement the KDF is modeled as a random function) assuming that
parties provide proofs of possession for their static private keys1 . Another
way to make the protocol secure (in the above sense) is to require the per
formance of key confirmation steps as long as the ephemeral DH values are
included in the information authenticated by these steps (but these steps
are omitted anyway in the core 2-message protocol).

1It may be the case that by including the parties’ identities under the key derivation
function the need for proofs of possession can be eliminated but this requires further
analysis.

4

We stress that even if the UM protocol is modified in one of the above
ways to make it secure it still seems inferior in performance and security
properties than the other protocol specified in 800-56, namely the MQV
protocol (or its more secure variant discussed below).

2.2 MQV

Due to the obvious weaknesses of the UM protocol we are left with the
MQV protocol as the main key agreement protocol in the standard. Fol
lowing [14, 11], the MQV protocol defines the shared secret as the value
g(ad+x)(be+y) where d, e are values (each of length |q|/2) computed as the

x ytruncated numerical representation of the ephemeral DH values g , g . The
MQV protocol is very attractive due to its performance and claimed security
properties. Yet, in spite of its popularity and attractiveness this protocol
eluded formal analysis until very recently. In a recent work [10], however,
this author shows that MQV falls short of delivering provable security. It
is shown that in the formal model of [4] the protocol fails to attacks that
rule out the possibility of proving the protocol secure in this model. For
tunately, these shortcomings of MQV can be avoided with a simple variant
of the protocol, named HMQV, that [10] shows to provably satisfy all the
stated security goals of MQV at the same, or even less, complexity than the
original MQV.

The main difference between HMQV and MQV is in the computation of
the shared secret or, more specifically, the computation of the values d and
e used to derive the shared secret. We refer to [10] for the exact details.
Roughly speaking, in HMQV we have d = H(gx, I Db) and e = H(gy, I Da)
where I Da and I Db are the identities of the peers to the exchange and H
is a hash function modeled as a random oracle. With this modification
all the security properties claimed for MQV can be formally proven and,
moreover, some of the steps taken by MQV can be avoided thus resulting in
less complexity and improved performance in some cases. Very importantly,
HMQV does not require proofs of possession of private keys (as we show
below in Section 3.1 specifying proofs of possession in a sound and secure
way is hard). Also, the need for ephemeral (and static) public key validation
is essential only when performing the one-pass MQV protocol. In other
cases (the 2- and 3-message variants), this validation is needed only if one
wants to protect the protocol against the disclosure of ephemeral exponents
(something we consider important in general but not necessary if ephemeral

5

exponents are as protected as static private keys – as an analogy such a
protection must be provided for systems that implement the DSA signature
algorithm).

3 Additional Mechanisms

3.1 Proof of Possession (PoP)

The specification in 800-56 mandates that each participant in a key estab
lishment protocol receives assurance of the fact that the peer to the exchange
has been (currently or at some point in the past) in possession of the private
key corresponding to the peer’s static public key. Such a proof by the owner
of a public key is usually referred to as a “proof of possession” (PoP). As
we see here, not only PoPs do not help in making the specified protocols
secure but they add both complexity and further security vulnerabilities.

800-56 proposes different ways to accomplish PoPs. At a minimum each
party is required to provide a PoP to the CA as a requisite for receiving a
certificate for its public key. In this way, by seeing a certificate of Alice’s
public key, Bob can be sure that Alice was in possession of the private key at
the time of public key registration. 800-56 further recommends that parties
seek more fresh assurance by running more frequent PoP protocols with the
owner of a public key.

PoPs present several difficult issues at the level of system complexity,
performance, implementation and security. Two main issues are: (1) the
need to rely on the CA in doing these checks or, alternatively, to go through
the expensive operation of providing these proofs in real time to the ex
change’s peer; (2) implementing the PoP operation in a way that provides
the required assurance without compromising the normal use of the key.
The first puts the burden of implementing and mandating the PoP on the
CA; yet, in many real-life scenarios CAs (or other certificate issuing mecha
nisms) do not implement these measures. The second issue is more delicate
and very hard to get it right; indeed, the specification in 800-56 is a good
example of this difficulty. Let us elaborate.

The document suggests that when Alice is to provide Bob with a PoP
then Alice and Bob run a key establishment (KE) protocol using Alice’s
private/public key pair. It is argued that if the protocol includes key con
firmation then the successful completion of the protocol will show Bob that

6

Alice knows her private key. Now, this presents a circular problem: sup
posedly, the reason to request PoP in the first place is to provide some
assurance necessary for the security of the KE protocol. But now we are
using the very same KE protocol, that required the PoP for its security, as
the means to provide the PoP (in particular, this first run of the KE protocol
with the given private key cannot be guaranteed to be secure since it was
not preceded by a PoP).

Moreover, to further illustrate the failure of such a measure (running a
KE as a proof of possession), consider a KE protocol such as the UM (the in
secure version in 800-56 or the more secure version described in Section 2.1).
All that is needed to run a successful execution of this protocol is knowledge
of the static shared key Zs = gab where a and b are the private keys of Alice
and Bob. Therefore, an attacker that learns Zs can “prove knowledge” of
a according to 800-56 even though the attacker may have never learn a. In
particular, any party knowing Bob’s key b can prove to Bob possession of the
private key of any other party! In other protocols, such as MQV, providing
PoP by running the protocol can also be insufficient since there is always
an ephemeral value whose knowledge suffices to successfully complete the
protocol.

An additional vulnerability created by the use of a KE protocol to pro
vide PoP is that the private key may be created for exclusive use by some
specific applications in some special settings. Hence, having to use the key
in an exchange with, say, the CA would contradict the intended usage of the
key and jeopardize its security. The best solution to the PoP problem is to
avoid these proofs all together through the use of protocols that do not re
quire them for security. (In theory, ZK proofs could help in providing sound
PoPs but such techniques are seldom implemented – not even discussed in
800-56 – and even if they are implemented the need to expose the key to
the PoP interface also presents a vulnerability.)

The bottom line is that getting PoPs right is very hard, and they add
non-trivial complexity to a security system. Moreover, not in all cases this
measure will be implemented (especially when it is not integral part of the
KE protocol) and, even when implemented PoPs may add a security vulner
ability. Hence, one should recommend to avoid PoPs except when absolutely
necessary. Is this the case of 800-56? We do not know if it helps in any way
to the original MQV, but we do know that it does not help the UKS attack
of Kaliski. For HMQV the situation is far better: we have a proof that the

7

protocol is secure without PoPs; hence, by replacing MQV with HMQV in
the spec of 800-56 the PoP issue is completely avoided. As for the UM pro
tocol as defined in 800-56 the protocol is insecure with and without PoPs.
If the protocol is re-defined as recommended in Section 2.1 then PoPs may
or may not be needed. They are definitely needed when the identities are
not included under the KDF, and KC is not performed. However, since the
spec mandates identities under the KDF one may be able to show that PoP
is not necessary in this case. This, however, requires further analysis.

3.2 Key Derivation Function (KDF)

As said in Section 2 all protocols specified in 800-56 generate a shared secret
(denoted Z) between the peers to the exchange from which further keying
material is derived. The function used for this further key derivation is called
a key derivation function (KDF). The standard defines a default KDF and
allows for two other variants (for use with the TLS and IKEv2 protocols
only). In all cases the KDF uses a hash function H which is applied to the
shared secret Z, to the identities of the peers, and in particular cases to one
or two nonces. The default KDF uses a “counter mode” style derivation to
produce the required keying material.

While the general concept of KDF is correct, we believe that the default
KDF in 800-56 could be improved. The approach we recommend follows
the design of the KDF in IKEv2 [8], namely, to define the KDF process in
two steps (for some detailed rationale see [9, 5]). In the first, a key K of a
given size is derived by hashing the shared secret (possibly with additional
information such as the parties’ identities); in the second step, K is used as
the key to a PRF (pseudorandom function) which is then repeatedly used to
derive as much keying material as needed. The advantage of this approach
is its modularity and analytical soundness. In particular, the second stage
dispenses completely of the need for random oracles and related idealized
primitives. Such primitive, when needed (as in the case of the UM and
HMQV protocols), can be confined to the first step. In some cases one may
use the same PRF family for the derivation of K also in the first step (such is
the case of IKEv2). A PRF can be implemented using a variety of methods,
such as using the HMAC algorithm or using a block cipher in CBC-MAC
mode.

In addition, and regardless of whether one goes for the two-step ap
proach above or the one-step of the current specification, we recommend

8

using a “feedback mode” rather than ”counter mode” in the derivation of
keying material. Such feedback mode is used in IKEv2 [8] (and explained
in Appendix B of 800-56). Its main advantage over counter mode is that
successive blocks of keying material are derived from computationally inde
pendent inputs to the hash or PRF functions (in counter mode such inputs
differ by very few bits).

Note: In the implementation of the counter-mode KDF in 800-56 the
counter is concatenated before the value of Z. We are not sure about the
reason for this definition but we point out that Preneel and van Oorschot
[15] showed that in some cases spreading the key over two input blocks of a
hash function may weaken the scheme. This may be the case, in principle,
when prepending the counter as in 800-56.

3.3 Key Confirmation

The protocols specified in 800-56 accommodate the possible (optional) per
formance of explicit key confirmation (KC) by which a party in the protocol
proves to its peer knowledge of the shared secret (this is done by transmit
ting a MAC value computed using a freshly derived key from the shared
secret). Providing KC may be significant for operational reasons in some
cases; e.g., an application may need some assurance that the keying mate
rial established through a KE protocol has been correctly calculated before
using these keys. More significantly, as pointed out in [10], in the case of
implicitly authenticated DH protocols the execution of KC is necessary to
ensure the full property of perfect forward secrecy (PFS) (this should be
pointed out in 800-56).

The specific mechanisms defined in 800-56 for key confirmation seem
correct (they may be simplified with a protocol such as HMQV). Our only
(strong) criticism in this context is the way that 800-56 uses the KC mech
anism in the context of providing a proof of possession of private keys, an
issue discussed in Section 3.1.

3.4 Public key validation

One of the important elements embedded in the 800-56 specifications is the
need for validation of public keys, both static and ephemeral (the latter
refers to ephemeral DH values). This validation includes checking that a

9

given DH value lies in the right group and has the right order. The cost
of such a validation may be negligible for static public keys (if done at
certification) but may be substantial for ephemeral DH values (in which case,
the validation needs to be performed with each run of the KE protocol).

Specifically, 800-56 considers two main tests for ephemeral DH values:
membership in a supergroup (such as an elliptic curve or Z∗) and member-p
ship in a prime-order subgroup (i.e., membership in a group generated by
the specified generator). The first test is inexpensive but the latter may be
costly depending on the underlying group. More precisely, let’s consider the
two group families from 800-56: elliptic curves and finite fields, and let’s
denote by N the order of the corresponding super group (i.e., N is the order
of the containing curve in the ECC case while N = p − 1 in the Z∗ case), p
and by q the prime order of the sub-group generated by a given element g.
Testing that a DH value X is of order q can be done by testing that either
(i) xq = 1 or that (ii) Xh = 1 where � h is the co-factor defined as h = N/q.
The first option costs a full exponentiation (i.e., it uses a |q|-bit exponent)
while the latter uses an exponent of size |h|. For the parameters specified
in 800-56 for the FFC case h is much larger than q while for the ECC case
h is small (|h| ≤ 32). Therefore, it makes sense to use test (i) in the FFC
case and (ii) for ECC. What 800-56 specifies is that (i) be performed in
the FFC case. For ECC the test is made optional; instead, the computed
shared secret is ensured to be of prime order by exponentiating this value
to the power of h (this has the same computational cost than an explicit
membership test).

These measures seem to be intended as a protection against some known
attacks such as small-group and Lim-Lee attacks [12]. Unfortunately, lacking
a formal analysis of these protocols it is hard to know to what extent these
measures are needed and, more significantly, to what extent they achieve
their intended goals. In particular, is the co-factor exponentiation in the
ECC case the right replacement for a membership test of ephemeral DH
values? In the the FFC case, where membership tests are expensive, are
they always needed?

We do not know the exact answers for MQV and UM. In contrast, in the
case of HMQV we have an exact characterization for the need of member
ship validation. The analysis from [10] shows that these tests are not needed
for the basic security of the 2- and 3-message variants of the protocol but
are essential for the security of the one-pass protocol. If one is interested

10

to protect the secrecy of static private keys in the case that the ephemeral
private DH exponents are revealed then the test is necessary also in the
interactive cases. This establishes a security-performance trade-off depend
ing on the protocols used and the level of protection provided to ephemeral
exponents. In particular, if one uses the interactive modes of the protocol
(2 or 3 messages) and the ephemeral exponents are protected as well as the
long-term static private key (as is assumed in some implementations, such
as those of the DSS signature scheme) then the ephemeral validation can
be omitted. We note that with the parameters considered in 800-56 this
trade-off is significant in the FFC case; for ECC groups, the specification
that h be small makes the membership test of small computational cost.

If HMQV is adopted the co-factor exponentiation can be completely
avoided thus making the FFC and ECC versions of the protocol more uni
form. The only difference is in the way the membership test is performed
(through q or h exponentiation).

3.5 Temporal ordering of static and ephemeral keys

In Section 5.6.4.3 of 800-56 (page 41) it is required that a party make sure
that the generation of the peer’s static public key preceded the creation
(or transmission) of the party’s own ephemeral DH value. No rationale is
provided for this “obscure” and cumbersome requirement (naive as it looks
this requirement may be non-trivial to accommodate; for example, it may
disallow for simultaneous transmission of static and ephemeral public keys
thus incurring in extra protocol flows).

We speculate that it may be intended to prevent Kaliski’s UKS attack
against MQV, probably in combination with the requirement for proofs of
possession for static private keys and the inclusion of identities under the
KDF. But is this required? And does it really prevent UKS attacks? This
seems as a perfect example for “safety margins” in the design intended to
compensate for the lack of clear analysis of a protocol, which comes at the
expense of additional complexity and performance degradation.

Fortunately, with the available analysis of HMQV [10] we know that we
can safely dispense of such complex measures while still having a guarantee
of security against UKS and related authentication attacks.

11

3.6 Miscellaneous

1. The definition of cryptographic primitives in 800-56, even if intention
ally informal, should be more accurate. In particular, MAC functions
are not just one-way functions (Sec 5.2 of [1]). They are keyed families
with the property of being unforgeable under a chosen message attack.
Similarly, for PRFs the property of collision resistance is irrelevant
(page 115 of [1]); instead, they are keyed families with unpredictable
outputs. In general, the use of hash functions in this document is not
as collision resistant functions (page 14 of [1]) but rather as generating
random outputs.

2. 160 bits for the subgroup order may well prove insufficient even for 80
bit security requirements; 800-56 should recommend larger parameters
(even with 80-bit security in mind).

3. If there is some good reason to standardize on	 C(2, 0) protocols (I
doubt it is a good idea) then at least strongly caution about the dif
ficulty of making such a protocol secure even in combination with
digital signatures. The current text (page 69) is a perfect receipt for
home-grown wrong protocols.

4. In defining C(0, 2) protocols you should warn about the possibility of
nonce replays and the adversarial effect of such a replay especially if
the uniqueness and freshness of the nonce cannot be verified by the
recipient.

5. In Section 5.6.3.1 of [1] several ways of checking that one possesses
the right private key for a given public key are proposed. Considering
that the whole document is about DH keys why not just check that
the given pair (x, X) of private-public keys satisfies X = gx? Is this
what it is meant in option 3? Why are other methods needed (is it for
the case that the private key is not available for a calculation as above
even to the owner of the key?). Please explain. Also, as in the case of
PoPs (Section 3.1), validating or testing a key via a KE with the CA
should be discouraged; in particular since an application’s policy may
strictly enforce the use of the private key in specific environments (not
for interaction with the CA).

12

4 Concluding Remarks and Recommendations

We conclude by discussing the essential role of formal analysis in the design
and choice of cryptographic mechanisms, and by providing some specific
recommendations.

4.1 The fundamental role of analysis

The security analysis of protocols not only gives us a significant assurance of
security (as long as the protocol is implemented with secure primitives) but
also a precise understanding of the role and rationale of each design element.
The recent results leading to the design and analysis of the HMQV protocol
[10] serve to highlight this role of analysis. Examples include the essential
need to bind the key computation to identities (lacking in the original MQV
protocol and the reason for the vulnerability of MQV to UKS attacks),
the need for hashing the shared secret (stated as non-essential in [11]), the
dispensability of proofs of possession, what can and cannot be stored in
temporary storage, when and for what s PK validation required, and the
exact added value of key confirmation. (The latter is required not just to
provide the operational certainty that the peer computed the correct key
but to ensure full PFS – on the other hand the usual justification of KC for
preventing UKS is not necessarily true if ephemeral information leaks).

Hence, while security, formal or otherwise, is never an absolute term but
rather a statement relative to a specific adversarial model and execution
environment, a sound analysis provides us with well-defined properties and
statements amenable to the examination and review by others, as well as
with a guide for making informed decisions about the functionality and
necessity of each protocol component, and for understanding the interaction
between these components. It allows the designer (and analyst) to discern
between the essential, the desirable and the dispensable elements of a design.
The result is not just a more secure scheme but also one with less complexity
and better performance.

At a time when we demand the best (almost perfect) security from ba
sic encryption and hash functions, and having witnessed the way in which
initially-mild attacks shaked our confidence in such functions, we can only
hope that the applied-cryptography community and its representing stan
dard bodies will see formal analysis as a requirement, and main source of

13

confidence, when adopting protocols for wide use. These analyses can (and
must) be verified by the community at large (in contrast, ad-hoc designs
do not even provide the “luxury” of judging well-defined security proper
ties). This is all the more significant in the case of influential standards
such as NIST’s that serve not only to regulate use of cryptography by gov
ernment agencies but to provide guidance and standards for the industry at
large, and whose mandated mechanisms are likely to be adopted by other
organizations.

4.2 Recommendations

In this section we summarize some of our specific recommendations. The
central recommendation is to choose the core key agreement protocols in
the standard from the set of existing protocols for which security is well
understood and proven in a sound formal model. The exact choices may
depend on what the engineering requirements are and the preferred security
properties (unfortunately these are not explained in 800-56). Assuming that
NIST will be interested in protocols which will require minimal changes to
the current spec then the obvious choices would be to (1) correct the UM
protocol via the inclusion of the ephemeral DH values under the KDF com
putation; and (2) replace the current MQV specification with the similar
but analytically superior HMQV protocol. The latter requires little change
to the current protocol: just replace the truncated DH values used as ex
ponents in the computation of the shared secret with a value computed as
the hash of the party’s DH value and peer’s identity (see Section 2.2). Also,
make the ECC and FFC versions of the protocol identical except for the
way prime-order tests (when required) are performed (see Section 3.4). In
particular, no need for the difference arising from the co-factor involvement
in the computation of the shared secret.

In the case of HMQV, remove any requirement for proofs of possession.
These may be left for the corrected UM protocol at least until clearer results
on the need for these proofs are obtained (as said earlier, without including
the identities under the KDF such a PoP is essential but it may be otherwise
unnecessary). If protocols that need PoPs will still be specified in the doc
ument then better guidelines for the way to perform these proofs must be
provided, including warnings about the dangers of these mechanisms as we
pointed out in Section 3.1. Eliminate the requirement to check that static
private keys were generated before ephemeral DH values.

14

Replace the preferred mechanism for KDF with the one described in Sec
tion 3.2, namely, using a two-step computation involving a PRF in feedback
mode. The current mechanisms can be allowed as well. Take care of the
additional comments in Section 3.6. Also important would be to provide
some guidance as for the level of protection that different secret elements
in the protocol require: from the obvious need to protect the static private
key as the most valuable secret in the protocol to the specification of which
computations should be computed in secure hardware (e.g., not just the
shared secret but its hashing too) to the specification of values that affect a
single session but whose disclosure do not compromise other sessions (such
as the session key itself and ephemeral exponents if membership tests are
performed). Similarly, indicate whether can one cache the Zs values used in
UM or whether these values must be generated with each run of the protocol.

Finally, the document must provide rationale for its choices, ranging from
basic operational and engineering considerations to the theoretical backing
of the specified mechanisms. At the very least, it should provide pointers
to other documents and works where this rationale is given. In addition,
to aid implementations and analysis, the spec should be streamlined with
a uniform and systematic description of protocols for both ECC and FFC
cases except, of course, for the difference in the underlying algebra (but as
protocols they should be essentially the same). In addition, the document
should provide similar names to the ECC and FFC variants (if differentia
tion is required call the protocols ECC-UM and FFC-UM rather than “Full
UM” and “dhHybrid1” as currently named). Yet another way to further
simplify the spec is to minimize the number of mechanisms described: is
the description of both FFC DH and ECC CDH really needed? Are all the
C(·, ·) variants needed too? And what is the added value of having both
UM and MQV (or HMQV), how should one choose one or the other in an
application?

References

[1] “Draft Special Publication 800-56, Recommendation for Pair-Wise Key
Establishment Schemes Using Discrete Logarithm Cryptography”, July
2005. Available from http://csrc.nist.gov/publications/drafts.html

[2] American National Standard (ANSI) X9.42-2001, Public Key Cryptog
raphy for the Financial Services Industry: Agreement of Symmetric

15

http://csrc.nist.gov/publications/drafts.html

Keys Using Discrete Logarithm Cryptography.

[3] S. Blake-Wilson, D. Johnson and A. Menezes, “Key exchange protocols
and their security analysis,” Sixth IMA International Conference on
Cryptography and Coding, 1997.

[4] Canetti,	 R., and Krawczyk, H., “Analysis of Key-Exchange Proto
cols and Their Use for Building Secure Channels”, Eurocrypt’2001,
LNCS Vol. 2045. Full version in: Cryptology ePrint Archive
(http://eprint.iacr.org/), Report 2001/040.

[5] Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk H., and Rabin, T., “Ran
domness Extraction and Key Derivation Using the CBC, Cascade and
HMAC Modes”, Crypto’04, LNCS 3152, pp. 494–510.

[6] Ik Rae Jeong, Jonathan Katz, Dong Hoon Lee, “One-Round Protocols
for Two-Party Authenticated Key Exchange”, ACNS 2004: 220-232

[7] B. Kaliski, “An unknown key-share attack on the MQV key agree
ment protocol”, ACM Transactions on Information and System Secu
rity (TISSEC). Vol. 4 No. 3, 2001, pp. 275–288.

[8] C. Kaufman, “Internet Key Exchange (IKEv2) Protocol”, draft-ietf
ipsec-ikev2-xx.txt, 2004 (to be published as an RFC).

[9] H. Krawczyk, “SIGMA: The ‘SiGn-and-MAc’ Approach to Authenti
cated Diffie-Hellman and Its Use in the IKE Protocols”, Crypto ’03,
LNCS No. 2729, pp. 400–425, 2003.

[10] H. Krawczyk, “HMQV: A High-Performance Secure Diffie-Hellman Pro
tocol”, Crypto’05. Full version: http://eprint.iacr.org/2005/176

[11] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone, “An effi
cient Protocol for Authenticated Key Agreement”, Designs, Codes and
Cryptography, 28, 119-134, 2003.

[12] C. H. Lim and P.J. Lee, “A Key Recovery Attack on Discrete Log-
based Schemes Using a Prime Order Subgroup”, Advances in Cryptol
ogy – CRYPTO 97 Proceedings, Lecture Notes in Computer Science,
Springer-Verlag Vol. 1294, B. Kaliski, ed, 1997, pp. 249–263

[13] T. Matsumoto, Y. Takashima, and H. Imai, “On seeking smart public-
key distribution systems”, Trans. IECE of Japan, 1986, E69(2), pp.
99-106.

16

http://eprint.iacr.org/2005/176
http:http://eprint.iacr.org

[14] A. Menezes, M. Qu, and S. Vanstone, “Some new key agreement pro
tocols providing mutual implicit authentication”, Second Workshop on
Selected Areas in Cryptography (SAC 95), 1995.

[15] B. Preneel and P. van Oorschot, “MD-x MAC and building fast MACs
from hash functions,” Crypto’95, LNCS 963.

17

