

Public Comments on SP 800-90C (3rd Draft) Recommendation for Random Bit Generator (RBG)
Constructions

Comment period: September 7 – December 7, 2022

LIST OF COMMENTS

1. Comments from Marek Leśniewicz, Military Communications Institute, Poland, September 21, 2022 2

2. Comments from Jonathan P. Ng Cheng Hin, September 22, 2022 ... 3

3. Comments from Ignacio Dieguez, Entrust, November 29, 2022 .. 4

4. Comments from Pranshu Bajpai, Motorola Solutions, November 30, 2022 .. 6

5. Comments from Entropy Working Group, December 6, 2022 ... 7

6. Comments from Microsoft Corp., December 6, 2022 .. 16

7. Comments from BSI, December 7, 2022 .. 18

8. Comments from Atsec Information Security Corp., December 7, 2022 ... 21

1. Comments from Marek Leśniewicz, Military Communications Institute, Poland,
September 21, 2022

Dear Sirs,

I've read with interest NIST IR 8427 and NIST SP800-90C.

I believe that the study of entropy in the sense of comparing the IDEAL entropy and the REAL entropy is
the only correct way in the process of assessing the randomness of binary sequences (Kolmogorov:
“information theory must precede probability theory and not be based on it”).

However, IDEAL entropy and REAL entropy have different meanings and properties that need to be
analyzed and interpreted differently.

The one concerns theoretical analyzes in terms of Shannon entropy and is based on probability theory
and information theory.

In this case, entropy

if we can prove that for a given sequence of random variables the probabilities P (X) = P (1) = P (0) = 1/2.
It should always be remembered that in probability theory, probability is a measure of predictability, not
the ratio of the number of a given event to the total number of events (Kolmogorov vs. Laplace / Buffon /
von Mises).

The second one concerns practical measurements of random sequence statistics and is based precisely
on mathematical statistics. In this case, we are talking about the ratio of the number of a given event ni to
the total number of events n, measured for a given sample.

But in this case, even if the tested sample is the realization of a sequence of random variables with a
proven probability P (X) = P (1) = P (0) = 1/2, then for any sample

thus the entropy of the attempt HE(X) | n) goes to 1 with n → ∞.

It is easy to check.

If we have a sample of any random sequence (also pseudo-random – DES, AES, sponge, SHA-3 etc.)
with a size of 1 GB = 1000 MB (1 MB = 8 x 1 048 576 bits), then using the above dependence in each
case we get:

HE(X) | n = 1 MB) = 1 – 8.6 · 10–8,
HE(X) | n = 10 MB) = 1 – 8.6 · 10–9,
HE(X) | n = 100 MB) = 1 – 8.6 · 10–10,
HE(X) | n = 1 GB) = 1 – 8.6 · 10–11, and for any other size n, respectively.

It follows that the values of H(X) and HE(X) | n), even for a perfectly random sequence, are never equal,
i.e.

H(X) > HE(X) | n) ,

and if the sequence is not perfectly random, then

H(X) > HE(X) | n) – e(X),
where e(X) is a measure of the non-randomness of the sequence resulting from generator construction
errors and other errors.
If this property is not included in the measurements of the string sample statistics, the comparison results
of the IDEAL entropy and the REAL entropy in each case will be inconsistent.

I have described these issues in detail in my book:

Marek Leśniewicz, Hardware generation of binary random sequences, WAT, 2009, ISBN 978-83-61486-
31-2,

unfortunately, only available in Polish (attached).

I’ve provided extensive summaries of the most important results of this work in two articles in English
(attached):

Marek Leśniewicz, Expected Entropy as a Measure and Criterion of Randomness of Binary Sequences In
Przeglad Elektrotechniczny, Volume 90, 1/2014, pp. 42– 46.

Marek Leśniewicz, Analyses and Measurements of Hardware Generated Random Binary Sequences
Modeled as Markov Chains In Przeglad Elektrotechniczny, Volume 92, 11/2016, pp. 268-274.

and on the practical generation of random sequences in two others:

Mariusz Borowski, Marek Leśniewicz, Modern usage of the "old" one-time pad, In Communications and
Information Systems Conference (MCC), 2012.

Mariusz Borowski, Marek Leśniewicz, Robert Wicik, Marcin Grzonkowski, Generation of random keys for
cryptographic systems, Annales UMCS Informatica AI XII, 3 (2012) 75–87.

All the theoretical results presented in these papers have been repeatedly checked with measurements
and they seem to be correct.

Since then, I’ve found several new mathematical relationships that theoretically justify some of the results
obtained by the measurements. They concern entropy studies with the use of the χ2 test. I expect these
papers to be published soon.

I’m eager to join the further discussion on this topic.

Best regards, Marek Leśniewicz

2. Comments from Jonathan P. Ng Cheng Hin, September 22, 2022

Just a small comment about the 3rd draft of 90C. I believe footnote 23 on page 39 should
reference 90A’s Table 3 (related to CTR_DRBG) rather than 90A’s Table 2 (related to hash-based
DRBGs):

• 23 For a CTR_DRBG using AES, s + 128 = the length of the key + the length of the AES
block = seedlen (see Table 2 in SP 800-90A).

 Thanks,

Jonathan

3. Comments from Ignacio Dieguez, Entrust, November 29, 2022

NIST SP800-90C Third Draft – Entrust comments

Type Line# Comment (Include rationale for comment) Suggested change

te n/a There is an industry critical need to support chained
DRBGs more widely in SP 800-90C,
e.g. being able to use RBG2/RBG3 as random sources
for other RBG constructs, not just RBG1. This is the
reality in many complex systems today, and will become
more prevalent in the future. It can also has performance
implications, if the entropy source is slow.

We acknowledge that the current draft addresses
chaining for RBG1, but with the requirement/assumption
that the RBG2/RBG3 used to seed the RBG1 is only
used at manufacturing and is part of a separate
cryptographic module, and therefore not available any
more. It is understood that this is aimed at the case of
resource limited crypto modules, e.g. smartcards, which
may not have an entropy source available within its
boundary.

This comment was already discussed with John Kelsey
from NIST at the 20th Sept 2022 CMUF Entropy WG,
which, based on my undertanding, he acknowledged and
shared with the community that this is something that
NIST supports and are currently working on defining the
security requirements, which will be made available
perhaps as a separate document, e.g. 90C part 2. This is
very reassuring indeed and aleviates our concerns to a
certain extent. I am sure that the CMUF community is
willing to help NIST in defining the security requirements
for chained DRBGs.

This also needs to be coordinated with the CMVP, to
ensure that compliance with SP 800- 90C within FIPS 140
validations is not required before there is a way forward to
certify designs with chained DRBGs.

Add chained DRBGs more widely as a valid construct in SP 800-
90C.

Leverage on the input from industry experts within the CMUF to
help shape adequate security requirements for these
constructions.

te line 953 Terminating the RBG operation when any entropy
source fails seems overly strict and does not leave room
for system resiliency. As an example, let´s say a crypto
module implements 3 physical entropy sources within an
RBG#2 construction:

• 2 of them are validated

• 1 is non-validated, and it is used to feed the
"additional input" of the DRBG

Firstly, If the non-validated source is detected to fail, it
should be possible to continue normal operation, as it
does not affect the claims of the certified RBG. So, the
requirement in line 953 should apply only to validated
entropy sources.

Secondly, it would be reasonable to allow some flexibility
if only one of the validated sources is detected to fail.
The DRBG, after receiving the failure signal and
identifying which entropy source failed, can then pull all
the required entropy from the other entropy source, which
is fully functional, while the other is recovered if possible.
If both entropy sources fail, then the RBG operation
needs to be terminated.

A suggested change:

7. A detected failure of a validated entropy source shall cause
the RBG to report the failure to the consuming application and to
stop using the failed entropy source. If other validated entropy
sources are available, the RBG operation may continue by
making use of the healthy entropy sources only. If no other
healthy entropy sources are available, the RBG operation shall
be terminated. The RBG must not be returned to normal
operation until the conditions that caused the failure have been
corrected and tested for successful operation.

Type Line# Comment (Include rationale for comment) Suggested change

te 1316 Requirement #17 seems overly restrictive, and can have
performance implications in cases where the RBG2(P)
has a slow entropy source. Think of a high volume
production line for embedded devices with RBG1s which
are being seeded by an RBG2 at the factory.

Considering that the SP 800-90B requirements and
related FIPS IGs will likely make entropy sources designs
much simpler, and thus likely slower, e.g. use of multiple
noise sources and XOR them together is likely a design
which will be difficult to justify for 90B, so developers are
likely to seek simpler designs moving forward. It is also
worth noting that the updated draft proposal for AIS 31
published by the German BSI in Sept 2022 have much
stronger entropy requirements for the source than
previous versions, i.e. 0.98 bits of min-entropy, potentially
making sources that need to comply to both SP-800-90
and AIS 31 standards, slower.

From a security perspective, this requirement is forcing
the RBG2(P) to operate as an RBG3(RS) construction,
while there is no obvious security rationale to do so in all
cases.

Instead of making this requirement mandatory ("shall"),
we suggest making it recommended ("should").

We propose that the requirement is relaxed and make it a
recommendation instead of an obligation. The following is
proposed:

17. If an RBG2(P) construction is used as the randomness
source for the RBG1 construction, the RBG2(P) construction
should be reseeded (i.e., prediction resistance must be
obtained within the RBG2(P) construction) before generating
bits for each RBG1 instantiation.

ed footnote
page 30

Section 5.4.1 doesn´t exist Update section.

ge n/a This comment is on the use of the word "pseudorandom"
within this document.

Even though within the well-versed crypto community we
know well the meaning of pseudo-randomness, it can
have a negative impact which can, unfortunately, be
exploited by the marketing departments of some vendors,
e.g. to promote use of their quantum RNG products, while
creating the impression of pseudo-randomness as less
random, or not random at all, and not appropriate for
cryptographic needs.

I would recommend that in this specification,
"pseudorandom" is replaced by "random", which is
already defined in the glossary (pseudorandom is not
defined in the glossary) , and make the the appropriate
clarifications in the glossary line 2884.

Replace

"pseudorandom"

with "random". In

the glossary,

update the

definition:

randomness

As used in this Recommendation, the unpredictability of a
bitstring. If the randomness is produced by a non-deterministic
source (e.g., an entropy source or RBG3 construction), the
unpredictability is dependent on the quality of the source. If the
randomness is produced by a deterministic source (e.g., a
DRBG), the unpredictability is based on the capability of an
adversary to break the cryptographic algorithm for producing the
random bitstring.

Te Line
1234

The restrictions in lines 1234 to 1241 are not clear.
Perhaps because the DRBG and sub- DRBGs are
considered a single RBG1 boundary, and thus to avoid
complexity of having to deal with multiple mechanisms?

Consider adding a rationale in the document to justify those
requirements on RBG1 and its sub-DRBGs.

ed Line
1319

To align with ISO/IEC 19790 terminology, consider
replacing "secure channel" with "trusted channel" from
the current version. Note that the alternative term
"trusted path" is being proposed in the 4th Working
Draft.

Also, replace "physically" with "physical".

Proposed text:

A physical trusted channel must be used to insert the
randomness input from the randomness source into the DRBG
for the RBG1 construction."

4. Comments from Pranshu Bajpai, Motorola Solutions, November 30, 2022

Comment
Section #2.5, pg #9, Fig #2: RBG Health Test – This figure shows that a 3rd RBG health tests (top right in the
figure) is required though both Entropy Source and DRBG already have such tests. What is the reason for 3rd
RBG health tests? Is it optional? If so, please mention that it’s optional.
Section 2.8, pg #12, line #702-705: “..if the status code does not indicate a success, an invalid output (e.g., a
null bitstring) shall be returned with the status code if information other than the status code could be
returned.” – Invalid output is open ended, arguably RGB generated corrupted value can be considered as
“invalid”. Suggest to define the invalid output (ex, all 0s, 1s, NULL, or a fixed pattern) or mention that outputs
shall be ignored in RBG returns failure. This comment also applies to other places in the document where
“invalid” value is mentioned.
Section 2.8.1.4, pg #15-16, line 782: reseed_function input parameters. To be consistent with S800-90A,
suggest to add integer prediction_resistance_request to the input list. Update the texts in this section, and Fig.
#6. In many cases, prediction_resistance_request parameter is inconsistent in both SP800-90A and -90C.
Suggest to make it consistent in both standards.
Section 3.3, pg #21, line #963-964: External conditioning function – Though SP800-90B (section 3.1.5.2)
allows using non-vetted conditioning component, this [90C] standard allow only “vetted” conditioning
function. To be aligned with 90B standard, suggest to allow both vetted and non-vetted condition
components in 90C standard.
Section 4.3 pg #32, line #1247: “Sub-DRBGs can’t be provide output with full entropy” – What is the reasoning
for such restriction? In the next page, line #1257 it states that “note that s must be no greater than the security
strength of the RBG1 construction”. That means it’s possible to get full entropy outputs (s bits) from Sub-
DRBG when Sub-DRBG is instantiated with full entropy (s+blocklen).
Section 6.1, pg #44, line #1549: “If a failure is detected, the RBG operation shall be terminated” this statement
contradicts requirement #8 (pg #45, line #1590-1592) which does not indicate such termination of DRBG, a
failure notification is good enough. Suggest to edit.
General comment - 128, 192, and 256 bits security strength. Several places in 90C document stated that “at
least 256 bits of entropy” (ex, line #1610) is required, but 128 bits is good enough (even after 2030 when
NIST plans to retire 112 bits security strength). What is the reasoning for restricting on RGB3 (XOR) to 256
bits security strength? Can’t it be flexible to 128, 192, 256 bits security strength?
General comment - RBG without DRBG: All 3 RBG constructions proposed in 90C draft include at least one
DRBG. There might be HW modules that solely rely on SP800-90B validated TRNG. Suggest to add TRNG
only option acceptable in this standard.
General comment: Unlike previous draft version of SP800-90C (2012 version, Figure 2, pg #13), all 3
proposed RBG construction in this new draft don’t allow DRBG chaining. DRBG chaining is required in certain
cases. For example, the module doesn’t have any SP800-90B validated entropy source and entropy is loaded
either at the factory during manufacturing or loaded into the module during provisioning through a keyloader.
The module instantiates DRBG1 that saves its internal state in the non-volatile memory (ex. flash), and
DRBG2 (that solely operates in volatile memory) is seeded by the DRBG1 in each power up. This new SP800-
90C standard does not recognize such chaining, suggest to include this option.

5. Comments from Entropy Working Group, December 6, 2022

90C location Comment (including rationale) Suggested change

1 Line 113 In the “Note to Reviewers”, point 1, you state that
this draft “does not address the use of an RBG
software implementation in which a) a
cryptographic library or an application is loaded into
a system and b) the software accesses entropy
sources or RBGs already associated with the system
for its required randomness.”

The scenario that you do not address is a very
common case; for example, the device has an HSM
with a good entropy source, which we sample to
seed the DRBG we use (and we can’t use the HSM
DRBG directly, as it is too slow for our use case). My
concern is that if you finalize the draft as is, then a
zealous reference lab would forbid such a common
technique and insist on less secure methods for FIPS
certification. And sometimes even longer chains are
needed (e.g. we have an interface card without an
entropy source, however we have a secure
connection to the main processor which has an
HSM).

We would strongly urge you
to publish the eventual 800-
90C with all the necessary
functionality allowed.
Alternately, this general
design pattern could be
made provisionally allowed,
pending additional future
rules, either through such a
statement in this document,
or through CMVP guidance.

2 About RBG1s; my understanding (based on what I
remember John Kelsey saying) is that it is designed
so that, at construction time, the factory injects
some randomness, and then when the device starts
up in the field, it runs the DRBG (and updates its
internal DRBG state). One practical issue that you
should mandate is detecting that the stored DRBG
state (which would be from the last boot time) is
not corrupted. One can easily imagine a scenario
where the state is corrupted (say, if the flash
memory that stores the state is written too many
times, or if the battery that maintains the SRAM
state dies; or possibly the device loses power in the
middle of the DRBG update).

There should be some
mandate that requires to
detect such a situation (and
fail, obviously)

3 Section 4.1, 4.4.1,
B.2.1

One thing that 800-90C does not explicitly define is
a ‘physically secure channel’; I wonder if you should
spell it out. Here’s why: people have tried to sell me
on a centralized entropy source, which distributes
entropy over the network to client devices (with the
entropy being encrypted as it is sent publicly). I can
see them trying to claim that the client devices are
RBG1 constructions, and the encrypted connection
is a physically secure channel.

It should be obvious what the flaws in this system
are: the encrypted packets themselves, as long as
the attacker might see them, have no entropy (no
matter what the centralized entropy source is);
entropy is a measure of uncertainty to the attacker,
and the attacker can see exactly the contents of the
ciphertext packets. What the client devices will do
is decrypt those packets and use that as entropy –
any such entropy that the decrypted entropy will
have will come from the decryption keys (and not
from the entropy source itself), as those keys are
the only thing the attacker might not know.

As I have run into this idea
several times, it might be
good to put in something
which addresses this (and if
a ‘physically secure channel’
is one which cannot be
monitored by anyone who is
not trusted, the above
objection goes away).

4 Several External conditioning. The 90C expresses cases in
which external conditioning function is allowed, in
which more than one entropy source contribute
with their output to the conditioning function in
order to obtain a full-entropy string at the output of
the conditioning function.

The 90C, however, only touches (1) the case in
which full entropy is desired at the output of the
conditioning function, and (2) when only compliant
entropy sources are providing the input to the
conditioning function.

In 90B, a conditioning function is allowed to *not*
provide full entropy at its output, and also is
allowed to receive, as input, supplemental data, i.e.,
input data that contributes no entropy. The
construction described in 90C does not seem to
allow supplemental data (i.e., data without any
claimed entropy) to be input to the external
conditioning function, and also does not mention

Clarify, and allow, external
conditioning functions that
do receive supplemental
data as part of their input
(at least for conditioning
functions that are not
susceptible to attack by
chosen supplemental data),
and clarify that the external
conditioning function may
provide less than full
entropy if the DRBG
mechanism is allowed to
handle those less-than-full-
entropy entropy input
strings.

the possibility to have external conditioning that
does not provide full entropy at its output.

5 Page ii - Question
1 : In a future
revision of SP800-
90C, should other
constructions be
included?

Why yes, yes they should. These additional
external conditioning systems should be
evaluated for inclusion:

1) Multi source quantum secure
conditioning chains. [NS1, NS2] 
Digitization  [CHT1, CHT2] 2EXT 
Conditioner …

2) Multi source RNGs for higher
throughput (entropy of all noise
sources in counted) [NS+Dig]*n 
conditioners ..

3) Multi source RNGs for reliability
through redundancy. [NS + CHT]*n 
[Source Allocator][cond]

4) Combined parallel DRBGs (E.G. non
SP800-90A + SP800-90A xored
together, much like SP800-90B permits
non-vetted and vetted conditioners
combined in a chain)

SP800-90B conditioners give a means to
achieve full entropy data that in the current
90C draft can be used to seed a DRBG or feed
one of the inputs of the XOR construction
NRBG/RBG3.

These are proposals for major changes and so
deserve justification.

1) Quantum Secure conditioning
algorithms have common properties.

a. The proof structure is
compelling – showing no
external entity, even one that
is fully entangled with the state
of a noise source can predict
the output of the deterministic
PQ conditioner. This is a much
stronger claim that the sort
that has been made in the post
quantum signature
competition for instance.

b. They are multi source.
c. Being multi source, they enable

conditioning algorithms based

on simple linear algebra rather
than complex cryptographic
algorithms. No reliance on the
cryptographic security of
cryptographic algorithms is
needed and the
implementations are small,
efficient and fast.

In 90B, at present quantum secure
conditioners can precede a current
vetted conditioner in a 90B
conditioning chain, with the only
disconnect being the requirement that
only the entropy from a single source
can be counted. To enable post
quantum conditioners with simple and
efficient implementation, we only need
to the ability to count the entropy on
each input so the addition claims of
security from quantum computer
based adversaries can hold.

2) Multi source RNGs for higher
throughput. This is very simple.
Support for fast full entropy data is
something that is needed in multiple
contexts. Particularly in large data
centre compute situations. The
computational prediction resistance
claims for DRBGs falls to incrementing
requirements. The O(2^128) DRBGs of
recent CPUs has fallen to revised
requirements for O(2^256) and this in
turn is failing to meet demands for
O(2^512) from some government
customers.

3) Multi source entropy sources for
redundant reliability. One goal of a
secure system is availability. This is
commonly enhanced with redundancy.
The necessary self test elements are
already in the standard. The standard
talks with the apparent notion that
there is a one-true-source while all
other sources are not counted. In a
redundantly reliable system, the
current source can be any of the

current set of not-broken sources.
Explicit text making these constructs
compliance should be added.

4) Combined parallel DRBGs. There is
legitimate concern that the SP800-90A
DRBGs are not secure.

a. The CTR-DRBG can be
parameterized to create a large
amount of key-reuse in AES,
enabling side channel attacks.

b. The derivation functions do not
generate full entropy data,
while the 90B conditioning
components do. A compliant
implementation can use a DF in
place of a 90B conditioner and
so never be reseeded from full
entropy data.

Combining DRBGs from distinct
algorithms is a solution (e.g.,
output =
XOR(CTR_DRBG_GENERATE() ,
CHA_CHA_Generate()). The
security falls to that of the
strongest of the two algorithms.
Currently, mixing the output of
multiple DRBGs is common outside
of NIST/FIPS contexts since there is
justifiably little trust in individual
DRBGs, combining them provides
some resistance to discovery of
attacks against an individual DRBG.

6 Page iii, Question:
Are there any
issues that still
need to be
addressed in SP
800-90C to allow
the reuse of
validated entropy
sources in
different RBG
implementations?
Note that in many

The proposals above for more flexible use
models of 90B compliant modules would
enable people to take one or more ESV
certified entropy sources and implement the
SP800-90C constructs in software or hardware.
With the tying of SP800-90C to XOR and
oversampling (RS) constructions for ESV
certified designs, it is not feasible to present a
raw conditioner output as a primary function in
a CPU instruction set. If it were and the above
models were allowed, the supply of raw
entropy could be as fast as a DRBG output.

cases, specific
issues need to be
addressed in the
FIPS 140
implementation
guide rather than
in this document

The issues of handling online errors remain
unclear in SP800-90A, B, C, or FIPS 140-3. This
is because entropy source errors are statistical
in nature and in a well-designed system will
happen often as false positives. A high false
positive rate is desirable since it is traded off
with a low false negative error rate and so
represents a conservative testing style. Yet the
standard talks about errors as if they represent
hard errors that lead to a failure and need to
be reported. This runs counter to the ‘poker
face’ approach of hiding detected and
corrected errors in order to not hand oracles to
adversaries. What would mirror the things we
create for ourselves to understand the
performance of our designs is to support real
time health metrics that can be used as
information in the policy of a cryptosystem.

7 Section 2.1, first
paragraph

Current wording:

Real-world RBGs are designed with a security
goal of indistinguishability from the output of
an ideal randomness source.

Comment:

Actually there are two goals, one for
indistinguishability from uniform to a
computationally bounded adversary, the other
for full entropy for an NRBG, giving information
theoretic security. The latter is the better goal
and given sufficient performance, this is the
only needed goal. DRBGs in isolation can be
evaluated on the indistinguishability bound,
but in SP800-90C, this is not a typical construct.
As a designer of “Real-world RBGs” it’s clear
that non-full entropy sources are a stepping
stone to full entropy only sources which will
replace them all in time.

Proposed Change:

Both goals should be
listed; therefore, the
following change should
be made:

“Real-world RBGs are
designed with a security
goal of full entropy or
indistinguishability from
the output of a full
entropy source.”

8 Section 6.2.2,
item 2

Current wording (snapshot from draft):

“The same entropy-source outputs used by the
DRBG for instantiation or reseeding shall not be
used as input into the RBG’s XOR operation.”

Proposed Change:

Please reword item #2 as it
could be read as requiring
a separate entropy
source.

9 3.2, Entropy
Source
Expectations,
Item 2

Current wording (snapshot from draft):

Comment:

Philosophically, it seems that this requirement
is impossible to wholly meet, and it is not clear
how to test this requirement for positive
compliance.

Proposed Change:

Remove requirement, or
state a testable criteria for
establishing what degree of
mutual information is
tolerable.

10 3.2, Entropy
Source
Expectations,
Item 6

Current wording (snapshot from draft):

Comment:

‘Immediately reporting’ a failure to a
consuming application is not possible when the
consuming application is not trying to interact
with the entropy source. In CSP terminology a
rendezvous between the sending and receiving
entity is needed for the error to be

Proposed Change:

The language in item 6
should be refined to
remove the “immediately
report” language and
instead indicate that the
Get_ES_Biststring
function will return an
error if a total failure of
the source is detected.
There should be some
acknowledgment that
there may be a broader
logic governing
classification of a “total
failure” beyond a single

communicated. So unless the receiver is ready
to take the error report, the RNG cannot
provide it.

health test failure (e.g., as
described in SP 800-90B’s
“persistent error” state).

11 3.3.1.3 Block-
cipher-based
Conditioning
Functions, Item
2.b

Current wording (snapshot from draft):

Comment:

This appears to impose restrictions on the
CBC-MAC in order to avoid extension-style
attacks without any clear technical rationale. It
is not clear that extension attacks are an issue
in this context. i.

Proposed Change:

Update to “minimum
length” or justify the
restriction.

12 Figures 13 and 14
and maybe others

Comment:

There appear to be wonky arrows in Figures 13
and 14. This appears to be a broad problem
present in many of the diagrams.

Proposed Change:

Fix arrows

13 Multiple places in
sections 6.1, 6.2,
and 6.3

Typical wording (snapshot from draft):

Comment:

The full-entropy nature of a conditioner, an
XOR construction RBG3 or an RS construction
RBG3 is independent of key size or key privacy.
The size of the key is immaterial to the security
(notwithstanding the key weaknesses of
AES256 relative to 128). If a security strength is
deemed appropriate for general use (e.g., in SP
800-90A), then it should also be sufficient to

Proposed Change:

Remove the requirement
for the DRBG component
of the RBG3 to be
instantiated at a security
strength of 256 bits. Any
security strength allowed
by 90A should be allowed
here.

act as a backup in this context. The security
strength of such included DRBGs should be
specified on any resulting validation
certificates.

This requirement would render every current
Intel chip past Broadwell as non-compliant (as
these designs use 128 bit keys in the
conditioner and DRBG for the XOR construction
RBG3).

14 3.2 Entropy Source
requirements #7
and 7.1.2.2

Comment:
3.2: What does “terminate the RBG operation”
exactly mean? Dropping one block ? Reset ?

7.1.2.2: What does “corrected”, resp. “repaired”
mean here ?

Provide further explanation
in the 90C text

6. Comments from Microsoft Corp., December 6, 2022

Line Section Text Comment

113 – 116 Note to Reviewers “This version of SP 800-90C
does not address the use of an
RBG software implementation
in which a) a cryptographic
library or an application is
loaded into a system and b)
the software accesses entropy
sources or RBGs already
associated with the system for
its required randomness. NIST
intends to address this
situation in the near future”

Please provide clear guidance
in the final SP 800-90C and
Implementation Guidance for
the SP 800-90C scope to avoid
confusion by module users,
validators, and product
developers.

590 – 592 Section 2.5

RBG Security Boundaries

“The RBG security boundary
shall either be the same as the
cryptographic module
boundary or be completely
contained within that
boundary.”

Please clarify this is the
module physical boundary as
described later in the SP 800-
90C draft.

1557 –
1560

Section 6

RBG3 Constructions Based on
Physical Entropy Sources

“An RBG3 construction
continually accesses its
entropy sources, and its DRBG
may be reseeded whenever
requested (e.g., to provide
prediction resistance for the
DRBG’s output). Upon receipt
of a request for random bits
from a consuming application,
the entropy source is accessed
to obtain sufficient bits for the
request.”

Please consider that reseeding
or getting random bits can be
an optional service provided to
the caller in a RBG3
construction, i.e., the DRBG
implementation could initiate
a reseed on its own before the
seedlife such as when a timer
expires.

1571 –
1574

6.1 General Requirements “An RBG3 construction shall be
designed to provide outputs
with full entropy using one or
more validated independent
physical entropy sources as
specified for Method 1 in
Section 3.3 (i.e., only the
entropy provided by validated
physical entropy sources shall
be counted toward fulfilling
entropy requests, although
entropy provided by any
validated non-physical entropy
source may be used but not
counted).”

If the entropy source was
validated successfully for SP
800-90B, then using any
validated should always
receive credit in SP 800-90C.

1712 –
1713

6.2.2 RBG3(XOR)
Requirements

“In the latter case, the output
of validated non-physical
entropy sources may be used
without counting any entropy
that they might provide.”

If the entropy source was
validated successfully for SP
800-90B, then using any
validated should always
receive credit in SP 800-90C.

1916 –
1917

7.2 Implementation Validation “…and the [SP 800-90A and
800-90B] validations
successfully finalized before
the completion of RBG
implementation validation.”

Does this mean NIST is
anticipating a separate
certification for 90C?

7. Comments from BSI, December 7, 2022

Johannes Mittmann and Werner Schindler
Bundesamt für Sicherheit in der Informationstechnik (BSI), Bonn, Germany December 7, 2022

Line number Text passage Comment
320 Mittman Mittmann
345-346 true random variables (variables that

may be biased, i.e., each possible
outcome does not need to have the
same chance of occurring)

Entropy sources cannot generate
random variables (mathematical
construct!), but their output values can
be interpreted as realizations of random
variables (= values taken on by random
variables).

Could the random variables not only be
biased but also be correlated?

457 SP 800 90B SP 800-90B
464 it uses dedicated hardware to provide

entropy
Should this read “a dedicated hardware
design”?
A physical noise source may be built
using (carefully selected) general-
purpose components.

486 j^{h} j^{th}
502-503 However, the Method 1 or Method 2

criteria for counting entropy still applies.
It could be mentioned at this place that
the noise sources should not affect each
other (= part of the evaluation); see
2.6.8 (independent noise sources). Of
course, otherwise, the overall entropy of
an entropy string might be smaller than
the sum of the entropy values of the
substrings generated by the particular
noise sources.

668-669 a bitstring of at least 3s/2 bits long is
needed from a randomness source for an
RBG1 construction,

Shouldn't it read 3s/2 bits of min-
entropy? (Of course, the formulation is
an immediate consequence thereof.).
Requires full entropy seed string.

679 17. The assumptions and assertions in
items 3, 10, and 14 (above) apply to sub-
DRBGs.

Is this enumeration correct? Item 14
refers to RBG2 and RBG3.

805-818 Does an entropy source have to specify
the length of ES_output in advance,
when bits_of_entropy have been
requested? Or does the calling
mechanism have to support any length
of output (within the range given by the
0.1 entropy per bit requirement)?

875-876 The RBG3(XOR)_Generate function
(shown in Figure 10) includes a
prediction_resistance_request parameter
to request a reseed of the RBG3(XOR)’s
DRBG instantiation, when desired.

What is the reason for a
prediction_resistance_request
parameter for RBG3(XOR)? The
entropy source should provide sufficient
fresh entropy.

963 the vetted conditioning function listed in
[SP800-90B]

Should this read “a vetted conditioning
function”? (SP 800-90B lists more than
one vetted conditioning functions.)

1065 3.3 conditioned_output =
Conditioning_function(input_parameters).

Is this full entropy output?

1075-1076 outlen + 64 bits Should this read “output_len + 64 bits”?
1096 If at least n full-entropy bits have not

been produced, repeat the process
starting at step 3.1.

“If less than n full-entropy bits have
been produced,” seems to be easier to
read.

1294-1295 8. The internal state of the RBG1
construction shall be maintained^{19}
and updated to produce output on
demand.

It should be ensured that output of a
generate request is only output or used,
after the updated internal state has
been successfully stored in non-volatile
memory. Otherwise, in case of e.g. a
system crash, there is a risk that
previously generated random bits are
generated and used again.

1461-1462 This RBG may be designed to always
provide prediction resistance, to only
provide prediction resistance upon
request, or to be unable to provide
prediction resistance (i.e., to not support
prediction-resistance requests during
generation).

Isn't the ability to provide prediction
resistance a key feature of the RBG2
construction?

Public Comments on SP 800-90C (3rd Draft)

20

Line number Text passage Comment
1478 (see Section 2.8.1.3 herein and in

[SP800-90A].
The closing parenthesis is missing.

1504 The RBG may include a reseed
capability.

Isn't this a central feature of RBG2
constructions? (See the comment on
lines 1461-1462 above.)

1509-1510 A non-validated entropy sources shall not
be used for this purpose.

entropy source (singular)

1547-1548 If an entropy source fails in an
undetected manner, the RBG continues to
operate as an RBG2(P) construction,

Would such a DRNG be RBG2(P)-
compliant? Prediction resistance cannot
be guaranteed any longer even if the
DRBG is reseeded (with entropy 0 in the
worst case).

1557-1558 An RBG3 construction continually
accesses its entropy sources, and its
DRBG may be reseeded whenever
requested

Should a RBG3(RS) be reseeded twice
(continuously and by request)?

1779 3.1 Obtain generated_bits from the
entropy source.

Should this read “Obtain generated_bits
of full-entropy DRBG output.” or similar?
(The generated bits are not a direct
output of the entropy source.)

1806-1807 additional_input || additional_entropy The order of additional_input and
additional_entropy could be reversed,
so that the Reseed step in Hash_DRBG
and HMAC_DRBG is equivalent to a
modified Reseed with 64 additional bits
in entropy_input.

1809-1810 256 + 64 = 384 256 + 64 = 320
1811-1813 2) concatenating the additional entropy

bits with any additional_input provided in
the RBG3(RS)_Generate call

In lines 1806-1807 it is the other way
around, but also see the comment on
those lines above.

2049-2050 These bitstrings are only unpredictable to
an adversary who does not know the
DRBG’s internal state.

“and who is computationally bounded”
(or similar) could be added.

2069-2070 an n-bit output from the RBG3
construction is said to provide n bits of
entropy.

In fact, only n(1-2^{-32}) bits of entropy
are guaranteed.

2154 The personalization string to be used for
this example is “Device 7056.”

The period “.” in “Device 7056.” is not
part of the personalization string and
should be moved outside the inverted
commas.

2174 randomnessy_bitstring randomness_bitstring
2618 / 3rd
line of
footnote 38

with prediction requested. with prediction resistance requested.

2656 Both of the derivation methods specified
in Appendices C.3.2 and C.3.3 an AES
derivation key

A verb such as “use” seems to be
missing.

Public Comments on SP 800-90C (3rd Draft)

21

8. Comments from Atsec Information Security Corp., December 7, 2022

Please submit comments to: rbg_comments@nist.gov

Type Line # Comment (Include rationale for
comment)

Suggested Change

1 T

Table 1

RBG1 and RBG3 constructions restrict
the entropy source to physical. Why
would the nature of the randomness
affect the different RBG constructions,
assuming that the entropy source is
SP800-90B validated and has been
certified to provide entropy?

Remove the dependency between RBG
construction and the nature of the entropy
(physical or non-physical).

2 T

Line 672

FIPS 140-3 does not distinguish
anymore between logical and physical
boundary for a cryptographic module.
Notice that IG 9.3.A, use instead
“located within the physical perimeter
of the operational environment”

Replace "within the physical boundary of a
single [FIPS140]-validated cryptographic
module", with "within the physical
perimeter of a single [FIPS140]-validated
cryptographic module (either the
boundary of a hardware module, or the
physical perimeter of the operational
environment of a software or hybrid-
software module).

3

Line 1030

The paragraph states “This
construction will produce a bitstring
with full entropy using one of the
conditioning functions identified in
Section 3.3.1.1 for an RBG2 or RBG3
construction whenever a bitstring with
full entropy is required”. Is the
reference to section 3.3.1.1 correct, or
should be 3.3.1 instead? Section 3.3.1.1
only mentions HMAC, CMAC and CBC-
MAC, whereas SP800-90B referenced
in line 963 mentions in section
3.1.5.1.1 unkeyed conditioning
components (approved hash function
per FIPS 180 or FIPS 202, Hash_df, and
Block_Cipher_df)

Replace "Section 3.3.1.1" with "Section
3.3.1"

4
Line 1196

The length of entropy input in 1.c)
should be "s+128" instead of "3s/2", as
items 1.a) and 1.b).

Update item 1.c)

5

External
conditioning
function

The 90C expresses cases in which
external conditioning function is
allowed, in which more than one
entropy source contribute with their
output to the conditioning function in
order to obtain a full-entropy string at

Clarify, and allow:

(1) external conditioning functions that do
receive supplemental data as part of their
input, in which such supplemental data
contributes no entropy.

mailto:%20rbg_comments@nist.gov?Subject=Comment%20on%20NIST%20SP%20800-90C%20third%20public%20draft

Public Comments on SP 800-90C (3rd Draft)

22

the output of the conditioning
function.

The 90C, however, only touches (1) the
case in which full entropy is desired at
the output of the conditioning
function, and (2) when only compliant
entropy sources are providing the input
to the conditioning function.

In 90B, a conditioning function is
allowed to *not* provide full entropy
at its output, and also is allowed to
receive, as input, supplemental data,
i.e., input data that contributes no
entropy. The construction described in
90C does not seem to allow
supplemental data (i.e., data without
any entropy) to be input to the
external conditioning function, and also
does not mention the possibility to
have external conditioning that does
not provide full entropy at its output.

(2) clarify that the external conditioning
function may provide less than full entropy
in its output in the cases that the DRBG
mechanism connected to such external
conditioning function is allowed to handle
those less-than-full-entropy entropy input
strings.

6 T

Lines 1579-
1583

The requirements in items 3 and 4
state that an RBG3 construction shall
support, and essentially only be
instantiated at 256 bits of security
strength. Thus, there cannot be an
RBG3 at 192 or 128 bits of security
strength, regardless of whether these
192 or 128 bits are full entropy.

Because of the nature of the
construction of the RBG3, and since it
is being designed to provide full
entropy at its output, we do not see
reason to limit those RBG3 to 256 bits
of strength only, if the instantiations of
128 and 192 would also provide full
entropy and would be appropriate for
FIPS validations at those security
strengths.

Remove the limitation than an RBG3
construction supports only 256 bits of
security strength by removing item 3.

Rewrite item 4: The DRBG shall be
instantiated at its claimed security strength
(128, 192, or 256 bits according to the
DRBG mechanism) before the first use of
the RBG3 construction or direct access of
the DRBG.

	1. Comments from Marek Leśniewicz, Military Communications Institute, Poland, September 21, 2022
	2. Comments from Jonathan P. Ng Cheng Hin, September 22, 2022
	3. Comments from Ignacio Dieguez, Entrust, November 29, 2022
	4. Comments from Pranshu Bajpai, Motorola Solutions, November 30, 2022
	5. Comments from Entropy Working Group, December 6, 2022
	6. Comments from Microsoft Corp., December 6, 2022
	7. Comments from BSI, December 7, 2022
	8. Comments from Atsec Information Security Corp., December 7, 2022

