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1. Comments from Marek Leśniewicz, Military Communications Institute, Poland, 
September 21, 2022  

Dear Sirs, 
 
I've read with interest NIST IR 8427 and NIST SP800-90C. 
 
I believe that the study of entropy in the sense of comparing the IDEAL entropy and the REAL entropy is 
the only correct way in the process of assessing the randomness of binary sequences (Kolmogorov: 
“information theory must precede probability theory and not be based on it”). 
 
However, IDEAL entropy and REAL entropy have different meanings and properties that need to be 
analyzed and interpreted differently. 
 
The one concerns theoretical analyzes in terms of Shannon entropy and is based on probability theory 
and information theory. 
 
In this case, entropy 

 
if we can prove that for a given sequence of random variables the probabilities P (X) = P (1) = P (0) = 1/2. 
It should always be remembered that in probability theory, probability is a measure of predictability, not 
the ratio of the number of a given event to the total number of events (Kolmogorov vs. Laplace / Buffon / 
von Mises).  
 
The second one concerns practical measurements of random sequence statistics and is based precisely 
on mathematical statistics. In this case, we are talking about the ratio of the number of a given event ni to 
the total number of events n, measured for a given sample.  
 
But in this case, even if the tested sample is the realization of a sequence of random variables with a 
proven probability P (X) = P (1) = P (0) = 1/2, then for any sample  

 
thus the entropy of the attempt HE(X) | n) goes to 1 with n → ∞. 
 
It is easy to check. 
 
If we have a sample of any random sequence (also pseudo-random – DES, AES, sponge, SHA-3 etc.) 
with a size of 1 GB = 1000 MB (1 MB = 8 x 1 048 576 bits), then using the above dependence in each 
case we get: 
 
HE(X) | n = 1 MB) = 1 – 8.6 · 10–8, 
HE(X) | n = 10 MB) = 1 – 8.6 · 10–9, 
HE(X) | n = 100 MB) = 1 – 8.6 · 10–10, 
HE(X) | n = 1 GB) = 1 – 8.6 · 10–11, and for any other size n, respectively. 
 
It follows that the values of H(X) and HE(X) | n), even for a perfectly random sequence, are never equal, 
i.e. 
 
H(X) > HE(X) | n) , 
 
and if the sequence is not perfectly random, then 



 

 

 

 
H(X) > HE(X) | n) – e(X), 
where e(X) is a measure of the non-randomness of the sequence resulting from generator construction 
errors and other errors. 
If this property is not included in the measurements of the string sample statistics, the comparison results 
of the IDEAL entropy and the REAL entropy in each case will be inconsistent.  
 
I have described these issues in detail in my book:  
 
Marek Leśniewicz, Hardware generation of binary random sequences, WAT, 2009, ISBN 978-83-61486-
31-2,  
 
unfortunately, only available in Polish (attached).  
 
I’ve provided extensive summaries of the most important results of this work in two articles in English 
(attached):  
 
Marek Leśniewicz, Expected Entropy as a Measure and Criterion of Randomness of Binary Sequences In 
Przeglad Elektrotechniczny, Volume 90, 1/2014, pp. 42– 46.  
 
Marek Leśniewicz, Analyses and Measurements of Hardware Generated Random Binary Sequences 
Modeled as Markov Chains In Przeglad Elektrotechniczny, Volume 92, 11/2016, pp. 268-274. 
 
and on the practical generation of random sequences in two others: 
 
Mariusz Borowski, Marek Leśniewicz, Modern usage of the "old" one-time pad, In Communications and 
Information Systems Conference (MCC), 2012. 
 
Mariusz Borowski, Marek Leśniewicz, Robert Wicik, Marcin Grzonkowski, Generation of random keys for 
cryptographic systems, Annales UMCS Informatica AI XII, 3 (2012) 75–87. 
 
All the theoretical results presented in these papers have been repeatedly checked with measurements 
and they seem to be correct. 
 
Since then, I’ve found several new mathematical relationships that theoretically justify some of the results 
obtained by the measurements. They concern entropy studies with the use of the χ2 test. I expect these 
papers to be published soon. 
 
I’m eager to join the further discussion on this topic. 
 
Best regards, Marek Leśniewicz 

2. Comments from Jonathan P. Ng Cheng Hin, September 22, 2022  

Just a small comment about the 3rd draft of 90C. I believe footnote 23 on page 39 should 
reference 90A’s Table 3 (related to CTR_DRBG) rather than 90A’s Table 2 (related to hash-based 
DRBGs): 

• 23 For a CTR_DRBG using AES, s + 128 = the length of the key + the length of the AES 
block = seedlen (see Table 2 in SP 800-90A). 

 Thanks, 

Jonathan 



 

 

 

3. Comments from Ignacio Dieguez, Entrust, November 29, 2022  
 

NIST SP800-90C Third Draft – Entrust comments 
 

Type Line# Comment (Include rationale for comment) Suggested change 

te n/a There is an industry critical need to support chained 
DRBGs more widely in SP 800-90C, 
e.g. being able to use RBG2/RBG3 as random sources 
for other RBG constructs, not just RBG1. This is the 
reality in many complex systems today, and will become 
more prevalent in the future. It can also has performance 
implications, if the entropy source is slow. 

We acknowledge that the current draft addresses 
chaining for RBG1, but with the requirement/assumption 
that the RBG2/RBG3 used to seed the RBG1 is only 
used at manufacturing and is part of a separate 
cryptographic module, and therefore not available any 
more. It is understood that this is aimed at the case of 
resource limited crypto modules, e.g. smartcards, which 
may not have an entropy source available within its 
boundary. 

This comment was already discussed with John Kelsey 
from NIST at the 20th Sept 2022 CMUF Entropy WG, 
which, based on my undertanding, he acknowledged and 
shared with the community that this is something that 
NIST supports and are currently working on defining the 
security requirements, which will be made available 
perhaps as a separate document, e.g. 90C part 2. This is 
very reassuring indeed and aleviates our concerns to a 
certain extent. I am sure that the CMUF community is 
willing to help NIST in defining the security requirements 
for chained DRBGs. 

This also needs to be coordinated with the CMVP, to 
ensure that compliance with SP 800- 90C within FIPS 140 
validations is not required before there is a way forward to 
certify designs with chained DRBGs. 

Add chained DRBGs more widely as a valid construct in SP 800-
90C. 

Leverage on the input from industry experts within the CMUF to 
help shape adequate security requirements for these 
constructions. 

te line 953 Terminating the RBG operation when any entropy 
source fails seems overly strict and does not leave room 
for system resiliency. As an example, let´s say a crypto 
module implements 3 physical entropy sources within an 
RBG#2 construction: 

• 2 of them are validated 

• 1 is non-validated, and it is used to feed the 
"additional input" of the DRBG 

Firstly, If the non-validated source is detected to fail, it 
should be possible to continue normal operation, as it 
does not affect the claims of the certified RBG. So, the 
requirement in line 953 should apply only to validated 
entropy sources. 

Secondly, it would be reasonable to allow some flexibility 
if only one of the validated sources is detected to fail. 
The DRBG, after receiving the failure signal and 
identifying which entropy source failed, can then pull all 
the required entropy from the other entropy source, which 
is fully functional, while the other is recovered if possible. 
If both entropy sources fail, then the RBG operation 
needs to be terminated. 

A suggested change: 

7. A detected failure of a validated entropy source shall cause 
the RBG to report the failure to the consuming application and to 
stop using the failed entropy source. If other validated entropy 
sources are available, the RBG operation may continue by 
making use of the healthy entropy sources only. If no other 
healthy entropy sources are available, the RBG operation shall 
be terminated. The RBG must not be returned to normal 
operation until the conditions that caused the failure have been 
corrected and tested for successful operation. 



 

 

 

 
Type Line# Comment (Include rationale for comment) Suggested change 

te 1316 Requirement #17 seems overly restrictive, and can have 
performance implications in cases where the RBG2(P) 
has a slow entropy source. Think of a high volume 
production line for embedded devices with RBG1s which 
are being seeded by an RBG2 at the factory. 

Considering that the SP 800-90B requirements and 
related FIPS IGs will likely make entropy sources designs 
much simpler, and thus likely slower, e.g. use of multiple 
noise sources and XOR them together is likely a design 
which will be difficult to justify for 90B, so developers are 
likely to seek simpler designs moving forward. It is also 
worth noting that the updated draft proposal for AIS 31 
published by the German BSI in Sept 2022 have much 
stronger entropy requirements for the source than 
previous versions, i.e. 0.98 bits of min-entropy, potentially 
making sources that need to comply to both SP-800-90 
and AIS 31 standards, slower. 

From a security perspective, this requirement is forcing 
the RBG2(P) to operate as an RBG3(RS) construction, 
while there is no obvious security rationale to do so in all 
cases. 

Instead of making this requirement mandatory ("shall"), 
we suggest making it recommended ("should"). 

We propose that the requirement is relaxed and make it a 
recommendation instead of an obligation. The following is 
proposed: 

17. If an RBG2(P) construction is used as the randomness 
source for the RBG1 construction, the RBG2(P) construction 
should be reseeded (i.e., prediction resistance must be 
obtained within the RBG2(P) construction) before generating 
bits for each RBG1 instantiation. 

ed footnote 
page 30 

Section 5.4.1 doesn´t exist Update section. 

ge n/a This comment is on the use of the word "pseudorandom" 
within this document. 

Even though within the well-versed crypto community we 
know well the meaning of pseudo-randomness, it can 
have a negative impact which can, unfortunately, be 
exploited by the marketing departments of some vendors, 
e.g. to promote use of their quantum RNG products, while 
creating the impression of pseudo-randomness as less 
random, or not random at all, and not appropriate for 
cryptographic needs. 

I would recommend that in this specification, 
"pseudorandom" is replaced by "random", which is 
already defined in the glossary (pseudorandom is not 
defined in the glossary) , and make the the appropriate 
clarifications in the glossary line 2884. 

Replace 

"pseudorandom" 

with "random". In 

the glossary, 

update the 

definition: 

randomness 

As used in this Recommendation, the unpredictability of a 
bitstring. If the randomness is produced by a non-deterministic 
source (e.g., an entropy source or RBG3 construction), the 
unpredictability is dependent on the quality of the source. If the 
randomness is produced by a deterministic source (e.g., a 
DRBG), the unpredictability is based on the capability of an 
adversary to break the cryptographic algorithm for producing the 
random bitstring. 

Te Line 
1234 

The restrictions in lines 1234 to 1241 are not clear. 
Perhaps because the DRBG and sub- DRBGs are 
considered a single RBG1 boundary, and thus to avoid 
complexity of having to deal with multiple mechanisms? 

Consider adding a rationale in the document to justify those 
requirements on RBG1 and its sub-DRBGs. 

ed Line 
1319 

To align with ISO/IEC 19790 terminology, consider 
replacing "secure channel" with "trusted channel" from 
the current version. Note that the alternative term 
"trusted path" is being proposed in the 4th Working 
Draft. 

Also, replace "physically" with "physical". 

Proposed text: 

A physical trusted channel must be used to insert the 
randomness input from the randomness source into the DRBG 
for the RBG1 construction." 



 

 

 

4. Comments from Pranshu Bajpai, Motorola Solutions, November 30, 2022  
 

Comment 
Section #2.5, pg #9, Fig #2: RBG Health Test – This figure shows that a 3rd RBG health tests (top right in the 
figure) is required though both Entropy Source and DRBG already have such tests. What is the reason for 3rd 
RBG health tests? Is it optional? If so, please mention that it’s optional. 
Section 2.8, pg #12, line #702-705: “..if the status code does not indicate a success, an invalid output (e.g., a 
null bitstring) shall be returned with the status code if information other than the status code could be 
returned.” – Invalid output is open ended, arguably RGB generated corrupted value can be considered as 
“invalid”. Suggest to define the invalid output (ex, all 0s, 1s, NULL, or a fixed pattern) or mention that outputs 
shall be ignored in RBG returns failure. This comment also applies to other places in the document where 
“invalid” value is mentioned. 
Section 2.8.1.4, pg #15-16, line 782: reseed_function input parameters. To be consistent with S800-90A, 
suggest to add integer prediction_resistance_request to the input list. Update the texts in this section, and Fig. 
#6. In many cases, prediction_resistance_request parameter is inconsistent in both SP800-90A and -90C. 
Suggest to make it consistent in both standards. 
Section 3.3, pg #21, line #963-964: External conditioning function – Though SP800-90B (section 3.1.5.2) 
allows using non-vetted conditioning component, this [90C] standard allow only “vetted” conditioning 
function. To be aligned with 90B standard, suggest to allow both vetted and non-vetted condition 
components in 90C standard. 
Section 4.3 pg #32, line #1247: “Sub-DRBGs can’t be provide output with full entropy” – What is the reasoning 
for such restriction? In the next page, line #1257 it states that “note that s must be no greater than the security 
strength of the RBG1 construction”. That means it’s possible to get full entropy outputs (s bits) from Sub-
DRBG when Sub-DRBG is instantiated with full entropy (s+blocklen). 
Section 6.1, pg #44, line #1549: “If a failure is detected, the RBG operation shall be terminated” this statement 
contradicts requirement #8 (pg #45, line #1590-1592) which does not indicate such termination of DRBG, a 
failure notification is good enough. Suggest to edit. 
General comment - 128, 192, and 256 bits security strength. Several places in 90C document stated that “at 
least 256 bits of entropy” (ex, line #1610) is required, but 128 bits is good enough (even after 2030 when 
NIST plans to retire 112 bits security strength). What is the reasoning for restricting on RGB3 (XOR) to 256 
bits security strength? Can’t it be flexible to 128, 192, 256 bits security strength? 
General comment - RBG without DRBG: All 3 RBG constructions proposed in 90C draft include at least one 
DRBG. There might be HW modules that solely rely on SP800-90B validated TRNG. Suggest to add TRNG 
only option acceptable in this standard. 
General comment: Unlike previous draft version of SP800-90C (2012 version, Figure 2, pg #13), all 3 
proposed RBG construction in this new draft don’t allow DRBG chaining. DRBG chaining is required in certain 
cases. For example, the module doesn’t have any SP800-90B validated entropy source and entropy is loaded 
either at the factory during manufacturing or loaded into the module during provisioning through a keyloader. 
The module instantiates DRBG1 that saves its internal state in the non-volatile memory (ex. flash), and 
DRBG2 (that solely operates in volatile memory) is seeded by the DRBG1 in each power up. This new SP800-
90C standard does not recognize such chaining, suggest to include this option. 

 

  



 

 

 

5. Comments from Entropy Working Group, December 6, 2022  

 

# 90C location Comment (including rationale) Suggested change 

1 Line 113 In the “Note to Reviewers”, point 1, you state that 
this draft “does not address the use of an RBG 
software implementation in which a) a 
cryptographic library or an application is loaded into 
a system and b) the software accesses entropy 
sources or RBGs already associated with the system 
for its required randomness.” 

The scenario that you do not address is a very 
common case; for example, the device has an HSM 
with a good entropy source, which we sample to 
seed the DRBG we use (and we can’t use the HSM 
DRBG directly, as it is too slow for our use case).  My 
concern is that if you finalize the draft as is, then a 
zealous reference lab would forbid such a common 
technique and insist on less secure methods for FIPS 
certification.  And sometimes even longer chains are 
needed (e.g. we have an interface card without an 
entropy source, however we have a secure 
connection to the main processor which has an 
HSM).  

 

We would strongly urge you 
to publish the eventual 800-
90C with all the necessary 
functionality allowed. 
Alternately, this general 
design pattern could be 
made provisionally allowed, 
pending additional future 
rules, either through such a 
statement in this document, 
or through CMVP guidance. 

2  About RBG1s; my understanding (based on what I 
remember John Kelsey saying) is that it is designed 
so that, at construction time, the factory injects 
some randomness, and then when the device starts 
up in the field, it runs the DRBG (and updates its 
internal DRBG state).  One practical issue that you 
should mandate is detecting that the stored DRBG 
state (which would be from the last boot time) is 
not corrupted.  One can easily imagine a scenario 
where the state is corrupted (say, if the flash 
memory that stores the state is written too many 
times, or if the battery that maintains the SRAM 
state dies; or possibly the device loses power in the 
middle of the DRBG update). 

There should be some 
mandate that requires to 
detect such a situation (and 
fail, obviously) 



 

 

 

3 Section 4.1, 4.4.1, 
B.2.1 

One thing that 800-90C does not explicitly define is 
a ‘physically secure channel’; I wonder if you should 
spell it out. Here’s why: people have tried to sell me 
on a centralized entropy source, which distributes 
entropy over the network to client devices (with the 
entropy being encrypted as it is sent publicly).  I can 
see them trying to claim that the client devices are 
RBG1 constructions, and the encrypted connection 
is a physically secure channel. 

It should be obvious what the flaws in this system 
are: the encrypted packets themselves, as long as 
the attacker might see them, have no entropy (no 
matter what the centralized entropy source is); 
entropy is a measure of uncertainty to the attacker, 
and the attacker can see exactly the contents of the 
ciphertext packets.  What the client devices will do 
is decrypt those packets and use that as entropy – 
any such entropy that the decrypted entropy will 
have will come from the decryption keys (and not 
from the entropy source itself), as those keys are 
the only thing the attacker might not know. 

As I have run into this idea 
several times, it might be 
good to put in something 
which addresses this (and if 
a ‘physically secure channel’ 
is one which cannot be 
monitored by anyone who is 
not trusted, the above 
objection goes away). 

 

4 Several External conditioning. The 90C expresses cases in 
which external conditioning function is allowed, in 
which more than one entropy source contribute 
with their output to the conditioning function in 
order to obtain a full-entropy string at the output of 
the conditioning function. 

The 90C, however, only touches (1) the case in 
which full entropy is desired at the output of the 
conditioning function, and (2) when only compliant 
entropy sources are providing the input to the 
conditioning function. 

In 90B, a conditioning function is allowed to *not* 
provide full entropy at its output, and also is 
allowed to receive, as input, supplemental data, i.e., 
input data that contributes no entropy. The 
construction described in 90C does not seem to 
allow supplemental data (i.e., data without any 
claimed entropy) to be input to the external 
conditioning function, and also does not mention 

Clarify, and allow, external 
conditioning functions that 
do receive supplemental 
data as part of their input 
(at least for conditioning 
functions that are not 
susceptible to attack by 
chosen supplemental data), 
and clarify that the external 
conditioning function may 
provide less than full 
entropy if the DRBG 
mechanism is allowed to 
handle those less-than-full-
entropy entropy input 
strings.  



 

 

 

the possibility to have external conditioning that 
does not provide full entropy at its output. 

5 Page ii - Question 
1 : In a future 
revision of SP800-
90C, should other 
constructions be 
included? 

Why yes, yes they should. These additional 
external conditioning systems should be 
evaluated for inclusion: 

1) Multi source quantum secure 
conditioning chains. [NS1, NS2]  
Digitization  [CHT1, CHT2] 2EXT  
Conditioner … 

2) Multi source RNGs for higher 
throughput (entropy of all noise 
sources in counted) [NS+Dig]*n  
conditioners .. 

3) Multi source RNGs for reliability 
through redundancy. [NS + CHT]*n  
[Source Allocator][cond] 

4) Combined parallel DRBGs (E.G. non 
SP800-90A + SP800-90A xored 
together, much like SP800-90B permits 
non-vetted and vetted conditioners 
combined in a chain)  

SP800-90B conditioners give a means to 
achieve full entropy data that in the current 
90C draft can be used to seed a DRBG or feed 
one of the inputs of the XOR construction 
NRBG/RBG3.  

These are proposals for major changes and so 
deserve justification. 

1) Quantum Secure conditioning 
algorithms have common properties. 

a. The proof structure is 
compelling – showing no 
external entity, even one that 
is fully entangled with the state 
of a noise source can predict 
the output of the deterministic 
PQ conditioner. This is a much 
stronger claim that the sort 
that has been made in the post 
quantum signature 
competition for instance. 

b. They are multi source.  
c. Being multi source, they enable 

conditioning algorithms based 

 



 

 

 

on simple linear algebra rather 
than complex cryptographic 
algorithms. No reliance on the 
cryptographic security of 
cryptographic algorithms is 
needed and the 
implementations are small, 
efficient and fast. 

In 90B, at present quantum secure 
conditioners can precede a current 
vetted conditioner in a 90B 
conditioning chain, with the only 
disconnect being the requirement that 
only the entropy from a single source 
can be counted. To enable post 
quantum conditioners with simple and 
efficient implementation, we only need 
to the ability to count the entropy on 
each input so the addition claims of 
security from quantum computer 
based adversaries can hold.  

2)  Multi source RNGs for higher 
throughput. This is very simple. 
Support for fast full entropy data is 
something that is needed in multiple 
contexts. Particularly in large data 
centre compute situations. The 
computational prediction resistance 
claims for DRBGs falls to incrementing 
requirements. The O(2^128) DRBGs of 
recent CPUs has fallen to revised 
requirements for O(2^256) and this in 
turn is failing to meet demands for 
O(2^512) from some government 
customers.  

3) Multi source entropy sources for 
redundant reliability. One goal of a 
secure system is availability. This is 
commonly enhanced with redundancy. 
The necessary self test elements are 
already in the standard. The standard 
talks with the apparent notion that 
there is a one-true-source while all 
other sources are not counted. In a 
redundantly reliable system, the 
current source can be any of the 



 

 

 

current set of not-broken sources. 
Explicit text making these constructs 
compliance should be added. 

4) Combined parallel DRBGs. There is 
legitimate concern that the SP800-90A 
DRBGs are not secure.  

a. The CTR-DRBG can be 
parameterized to create a large 
amount of key-reuse in AES, 
enabling side channel attacks. 

b. The derivation functions do not 
generate full entropy data, 
while the 90B conditioning 
components do. A compliant 
implementation can use a DF in 
place of a 90B conditioner and 
so never be reseeded from full 
entropy data. 

Combining DRBGs from distinct 
algorithms is a solution (e.g., 
output = 
XOR(CTR_DRBG_GENERATE() , 
CHA_CHA_Generate() ). The 
security falls to that of the 
strongest of the two algorithms. 
Currently, mixing the output of 
multiple DRBGs is common outside 
of NIST/FIPS contexts since there is 
justifiably little trust in individual 
DRBGs, combining them provides 
some resistance to discovery of 
attacks against an individual DRBG. 

 

6 Page iii, Question: 
Are there any 
issues that still 
need to be 
addressed in SP 
800-90C to allow 
the reuse of 
validated entropy 
sources in 
different RBG 
implementations? 
Note that in many 

The proposals above for more flexible use 
models of 90B compliant modules would 
enable people to take one or more ESV 
certified entropy sources and implement the 
SP800-90C constructs in software or hardware. 
With the tying of SP800-90C to XOR and 
oversampling (RS) constructions for ESV 
certified designs, it is not feasible to present a 
raw conditioner output as a primary function in 
a CPU instruction set. If it were and the above 
models were allowed, the supply of raw 
entropy could be as fast as a DRBG output. 

 



 

 

 

cases, specific 
issues need to be 
addressed in the 
FIPS 140 
implementation 
guide rather than 
in this document 

The issues of handling online errors remain 
unclear in SP800-90A, B, C, or FIPS 140-3. This 
is because entropy source errors are statistical 
in nature and in a well-designed system will 
happen often as false positives. A high false 
positive rate is desirable since it is traded off 
with a low false negative error rate and so 
represents a conservative testing style. Yet the 
standard talks about errors as if they represent 
hard errors that lead to a failure and need to 
be reported. This runs counter to the ‘poker 
face’ approach of hiding detected and 
corrected errors in order to not hand oracles to 
adversaries. What would mirror the things we 
create for ourselves to understand the 
performance of our designs is to support real 
time health metrics that can be used as 
information in the policy of a cryptosystem.  

7 Section 2.1, first 
paragraph 

Current wording: 

Real-world RBGs are designed with a security 
goal of indistinguishability from the output of 
an ideal randomness source. 

 

Comment:  

Actually there are two goals, one for 
indistinguishability from uniform to a 
computationally bounded adversary, the other 
for full entropy for an NRBG, giving information 
theoretic security. The latter is the better goal 
and given sufficient performance, this is the 
only needed goal. DRBGs in isolation can be 
evaluated on the indistinguishability bound, 
but in SP800-90C, this is not a typical construct. 
As a designer of “Real-world RBGs” it’s clear 
that non-full entropy sources are a stepping 
stone to full entropy only sources which will 
replace them all in time. 

Proposed Change: 

Both goals should be 
listed; therefore, the 
following change should 
be made:  

 

“Real-world RBGs are 
designed with a security 
goal of full entropy or 
indistinguishability from 
the output of a full 
entropy source.” 



 

 

 

8 Section 6.2.2, 
item 2 

Current wording (snapshot from draft): 

“The same entropy-source outputs used by the 
DRBG for instantiation or reseeding shall not be 
used as input into the RBG’s XOR operation.” 

 

 

Proposed Change: 

Please reword item #2 as it 
could be read as requiring 
a separate entropy 
source.  

9 3.2, Entropy 
Source 
Expectations, 
Item 2 

Current wording (snapshot from draft): 

 

 

 

Comment: 

Philosophically, it seems that this requirement 
is impossible to wholly meet, and it is not clear 
how to test this requirement for positive 
compliance.  

Proposed Change: 

Remove requirement, or 
state a testable criteria for 
establishing what degree of 
mutual information is 
tolerable. 

10 3.2, Entropy 
Source 
Expectations, 
Item 6 

Current wording (snapshot from draft): 

 

 

 

Comment: 

‘Immediately reporting’ a failure to a 
consuming application is not possible when the 
consuming application is not trying to interact 
with the entropy source. In CSP terminology a 
rendezvous between the sending and receiving 
entity is needed for the error to be 

Proposed Change: 

The language in item 6 
should be refined to 
remove the “immediately 
report” language and 
instead indicate that the 
Get_ES_Biststring 
function will return an 
error if a total failure of 
the source is detected. 
There should be some 
acknowledgment that 
there may be a broader 
logic governing 
classification of a “total 
failure” beyond a single 



 

 

 

communicated. So unless the receiver is ready 
to take the error report, the RNG cannot 
provide it. 

health test failure (e.g., as 
described in SP 800-90B’s 
“persistent error” state). 

11 3.3.1.3 Block-
cipher-based 
Conditioning 
Functions, Item 
2.b 

 

 

Current wording (snapshot from draft): 

 

 

 

Comment: 

This appears to  impose restrictions on the 
CBC-MAC in order to avoid extension-style 
attacks without any clear technical rationale. It 
is not clear that extension attacks are an issue 
in this context. i. 

Proposed Change: 

Update to “minimum 
length” or justify the 
restriction. 

12 Figures 13 and 14 
and maybe others 

Comment: 

There appear to be wonky arrows in Figures 13 
and 14. This appears to be a broad problem 
present in many of the diagrams.  

Proposed Change: 

Fix arrows 

13 Multiple places in 
sections 6.1, 6.2, 
and 6.3  

Typical wording (snapshot from draft): 

 

 

 

 

Comment: 

The full-entropy nature of a conditioner, an 
XOR construction RBG3 or an RS construction 
RBG3 is independent of key size or key privacy. 
The size of the key is immaterial to the security 
(notwithstanding the key weaknesses of 
AES256 relative to 128). If a security strength is 
deemed appropriate for general use (e.g., in SP 
800-90A), then it should also be sufficient to 

Proposed Change: 

Remove the requirement 
for the DRBG component 
of the RBG3 to be 
instantiated at a security 
strength of 256 bits.  Any 
security strength allowed 
by 90A should be allowed 
here. 



 

 

 

act as a backup in this context. The security 
strength of such included DRBGs should be 
specified on any resulting validation 
certificates. 

This requirement would render every current 
Intel chip past Broadwell as non-compliant (as 
these designs use 128 bit keys in the 
conditioner and DRBG for the XOR construction 
RBG3). 

14 3.2 Entropy Source 
requirements #7 
and 7.1.2.2 

Comment:  
3.2: What does “terminate the RBG operation” 
exactly mean? Dropping one block ? Reset ?  

7.1.2.2: What does “corrected”, resp. “repaired” 
mean here ?  

Provide further explanation 
in the 90C text 

 

  



 

 

 

6. Comments from Microsoft Corp., December 6, 2022  

 

Line Section Text Comment 

113 – 116 Note to Reviewers “This version of SP 800-90C 
does not address the use of an 
RBG software implementation 
in which a) a cryptographic 
library or an application is 
loaded into a system and b) 
the software accesses entropy 
sources or RBGs already 
associated with the system for 
its required randomness. NIST 
intends to address this 
situation in the near future” 

Please provide clear guidance 
in the final SP 800-90C and 
Implementation Guidance for 
the SP 800-90C scope to avoid 
confusion by module users, 
validators, and product 
developers. 

590 – 592 Section 2.5 

RBG Security Boundaries 

“The RBG security boundary 
shall either be the same as the 
cryptographic module 
boundary or be completely 
contained within that 
boundary.” 

Please clarify this is the 
module physical boundary as 
described later in the SP 800-
90C draft. 

1557 – 
1560 

Section 6  

RBG3 Constructions Based on 
Physical Entropy Sources 

“An RBG3 construction 
continually accesses its 
entropy sources, and its DRBG 
may be reseeded whenever 
requested (e.g., to provide 
prediction resistance for the 
DRBG’s output). Upon receipt 
of a request for random bits 
from a consuming application, 
the entropy source is accessed 
to obtain sufficient bits for the 
request.” 

Please consider that reseeding 
or getting random bits can be 
an optional service provided to 
the caller in a RBG3 
construction, i.e., the DRBG 
implementation could initiate 
a reseed on its own before the 
seedlife such as when a timer 
expires. 

1571 – 
1574 

6.1 General Requirements “An RBG3 construction shall be 
designed to provide outputs 
with full entropy using one or 
more validated independent 
physical entropy sources as 
specified for Method 1 in 
Section 3.3 (i.e., only the 
entropy provided by validated 
physical entropy sources shall 
be counted toward fulfilling 
entropy requests, although 
entropy provided by any 
validated non-physical entropy 
source may be used but not 
counted).” 

If the entropy source was 
validated successfully for SP 
800-90B, then using any  
validated should always 
receive credit in SP 800-90C. 



 

 

 

1712 – 
1713 

6.2.2 RBG3(XOR) 
Requirements 

“In the latter case, the output 
of validated non-physical 
entropy sources may be used 
without counting any entropy 
that they might provide.” 

If the entropy source was 
validated successfully for SP 
800-90B, then using any 
validated should always 
receive credit in SP 800-90C. 

1916 – 
1917 

7.2 Implementation Validation “…and the [SP 800-90A and 
800-90B] validations 
successfully finalized before 
the completion of RBG 
implementation validation.” 

Does this mean NIST is 
anticipating a separate 
certification for 90C? 

 

  



 

 

 

7. Comments from BSI, December 7, 2022  

Johannes Mittmann and Werner Schindler 
Bundesamt für Sicherheit in der Informationstechnik (BSI), Bonn, Germany December 7, 2022 

 
Line number Text passage Comment 
320 Mittman Mittmann 
345-346 true random variables (variables that 

may be biased, i.e., each possible 
outcome does not need to have the 
same chance of occurring) 

Entropy sources cannot generate 
random variables (mathematical 
construct!), but their output values can 
be interpreted as realizations of random 
variables (= values taken on by random 
variables). 

 
Could the random variables not only be 
biased but also be correlated? 

457 SP 800 90B SP 800-90B 
464 it uses dedicated hardware to provide 

entropy 
Should this read “a dedicated hardware 
design”? 
A physical noise source may be built 
using (carefully selected) general- 
purpose components. 

486 j^{h} j^{th} 
502-503 However, the Method 1 or Method 2 

criteria for counting entropy still applies. 
It could be mentioned at this place that 
the noise sources should not affect each 
other (= part of the evaluation); see 
2.6.8 (independent noise sources). Of 
course, otherwise, the overall entropy of 
an entropy string might be smaller than 
the sum of the entropy values of the 
substrings generated by the particular 
noise sources. 

668-669 a bitstring of at least 3s/2 bits long is 
needed from a randomness source for an 
RBG1 construction, 

Shouldn't it read 3s/2 bits of min- 
entropy? (Of course, the formulation is 
an immediate consequence thereof.). 
Requires full entropy seed string. 

679 17. The assumptions and assertions in 
items 3, 10, and 14 (above) apply to sub- 
DRBGs. 

Is this enumeration correct? Item 14 
refers to RBG2 and RBG3. 

805-818  Does an entropy source have to specify 
the length of ES_output in advance, 
when bits_of_entropy have been 
requested? Or does the calling 
mechanism have to support any length 
of output (within the range given by the 
0.1 entropy per bit requirement)? 

875-876 The RBG3(XOR)_Generate function 
(shown in Figure 10) includes a 
prediction_resistance_request parameter 
to request a reseed of the RBG3(XOR)’s 
DRBG instantiation, when desired. 

What is the reason for a 
prediction_resistance_request 
parameter for RBG3(XOR)? The 
entropy source should provide sufficient 
fresh entropy. 



 

 

 

963 the vetted conditioning function listed in 
[SP800-90B] 

Should this read “a vetted conditioning 
function”? (SP 800-90B lists more than 
one vetted conditioning functions.) 

1065 3.3 conditioned_output = 
Conditioning_function(input_parameters). 

Is this full entropy output? 

1075-1076 outlen + 64 bits Should this read “output_len + 64 bits”? 
1096 If at least n full-entropy bits have not 

been produced, repeat the process 
starting at step 3.1. 

“If less than n full-entropy bits have 
been produced,” seems to be easier to 
read. 

1294-1295 8. The internal state of the RBG1 
construction shall be maintained^{19} 
and updated to produce output on 
demand. 

It should be ensured that output of a 
generate request is only output or used, 
after the updated internal state has 
been successfully stored in non-volatile 
memory. Otherwise, in case of e.g. a 
system crash, there is a risk that 
previously generated random bits are 
generated and used again. 

1461-1462 This RBG may be designed to always 
provide prediction resistance, to only 
provide prediction resistance upon 
request, or to be unable to provide 
prediction resistance (i.e., to not support 
prediction-resistance requests during 
generation). 

Isn't the ability to provide prediction 
resistance a key feature of the RBG2 
construction? 
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Line number Text passage Comment 
1478 (see Section 2.8.1.3 herein and in 

[SP800-90A]. 
The closing parenthesis is missing. 

1504 The RBG may include a reseed 
capability. 

Isn't this a central feature of RBG2 
constructions? (See the comment on 
lines 1461-1462 above.) 

1509-1510 A non-validated entropy sources shall not 
be used for this purpose. 

entropy source (singular) 

1547-1548 If an entropy source fails in an 
undetected manner, the RBG continues to 
operate as an RBG2(P) construction, 

Would such a DRNG be RBG2(P)- 
compliant? Prediction resistance cannot 
be guaranteed any longer even if the 
DRBG is reseeded (with entropy 0 in the 
worst case). 

1557-1558 An RBG3 construction continually 
accesses its entropy sources, and its 
DRBG may be reseeded whenever 
requested 

Should a RBG3(RS) be reseeded twice 
(continuously and by request)? 

1779 3.1 Obtain generated_bits from the 
entropy source. 

Should this read “Obtain generated_bits 
of full-entropy DRBG output.” or similar? 
(The generated bits are not a direct 
output of the entropy source.) 

1806-1807 additional_input || additional_entropy The order of additional_input and 
additional_entropy could be reversed, 
so that the Reseed step in Hash_DRBG 
and HMAC_DRBG is equivalent to a 
modified Reseed with 64 additional bits 
in entropy_input. 

1809-1810 256 + 64 = 384 256 + 64 = 320 
1811-1813 2) concatenating the additional entropy 

bits with any additional_input provided in 
the RBG3(RS)_Generate call 

In lines 1806-1807 it is the other way 
around, but also see the comment on 
those lines above. 

2049-2050 These bitstrings are only unpredictable to 
an adversary who does not know the 
DRBG’s internal state. 

“and who is computationally bounded” 
(or similar) could be added. 

2069-2070 an n-bit output from the RBG3 
construction is said to provide n bits of 
entropy. 

In fact, only n(1-2^{-32}) bits of entropy 
are guaranteed. 

2154 The personalization string to be used for 
this example is “Device 7056.” 

The period “.” in “Device 7056.” is not 
part of the personalization string and 
should be moved outside the inverted 
commas. 

2174 randomnessy_bitstring randomness_bitstring 
2618 / 3rd 
line of 
footnote 38 

with prediction requested. with prediction resistance requested. 

2656 Both of the derivation methods specified 
in Appendices C.3.2 and C.3.3 an AES 
derivation key 

A verb such as “use” seems to be 
missing. 
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8. Comments from Atsec Information Security Corp., December 7, 2022  

Please submit comments to: rbg_comments@nist.gov 

# Type Line # Comment (Include rationale for 
comment) 

Suggested Change 

1 T 

Table 1 

RBG1 and RBG3 constructions restrict 
the entropy source to physical. Why 
would the nature of the randomness 
affect the different RBG constructions, 
assuming that the entropy source is 
SP800-90B validated and has been 
certified to provide entropy? 

Remove the dependency between RBG 
construction and the nature of the entropy 
(physical or non-physical). 

2 T 

Line 672 

FIPS 140-3 does not distinguish 
anymore between logical and physical 
boundary for a cryptographic module. 
Notice that IG 9.3.A, use instead 
“located within the physical perimeter 
of the operational environment” 

Replace "within the physical boundary of a 
single [FIPS140]-validated cryptographic 
module", with "within the physical 
perimeter of a single [FIPS140]-validated 
cryptographic module (either the 
boundary of a hardware module, or the 
physical perimeter of the operational 
environment of a software or hybrid-
software module). 

3  

Line 1030 

The paragraph states “This 
construction will produce a bitstring 
with full entropy using one of the 
conditioning functions identified in 
Section 3.3.1.1 for an RBG2 or RBG3 
construction whenever a bitstring with 
full entropy is required”. Is the 
reference to section 3.3.1.1 correct, or 
should be 3.3.1 instead? Section 3.3.1.1 
only mentions HMAC, CMAC and CBC-
MAC, whereas SP800-90B referenced 
in line 963 mentions in section 
3.1.5.1.1 unkeyed conditioning 
components (approved hash function 
per FIPS 180 or FIPS 202, Hash_df, and 
Block_Cipher_df) 

Replace "Section 3.3.1.1" with "Section 
3.3.1" 

4  
Line 1196 

The length of entropy input in 1.c) 
should be "s+128" instead of "3s/2", as 
items 1.a) and 1.b). 

Update item 1.c) 

5  

External 
conditioning 
function 

The 90C expresses cases in which 
external conditioning function is 
allowed, in which more than one 
entropy source contribute with their 
output to the conditioning function in 
order to obtain a full-entropy string at 

Clarify, and allow: 

(1) external conditioning functions that do 
receive supplemental data as part of their 
input, in which such supplemental data 
contributes no entropy. 

mailto:%20rbg_comments@nist.gov?Subject=Comment%20on%20NIST%20SP%20800-90C%20third%20public%20draft
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the output of the conditioning 
function. 

The 90C, however, only touches (1) the 
case in which full entropy is desired at 
the output of the conditioning 
function, and (2) when only compliant 
entropy sources are providing the input 
to the conditioning function. 

In 90B, a conditioning function is 
allowed to *not* provide full entropy 
at its output, and also is allowed to 
receive, as input, supplemental data, 
i.e., input data that contributes no 
entropy. The construction described in 
90C does not seem to allow 
supplemental data (i.e., data without 
any entropy) to be input to the 
external conditioning function, and also 
does not mention the possibility to 
have external conditioning that does 
not provide full entropy at its output. 

 

(2) clarify that the external conditioning 
function may provide less than full entropy 
in its output in the cases that the DRBG 
mechanism connected to such external 
conditioning function is allowed to handle 
those less-than-full-entropy entropy input 
strings. 

6 T 

Lines 1579-
1583 

The requirements in items 3 and 4 
state that an RBG3 construction shall 
support, and essentially only be 
instantiated at 256 bits of security 
strength. Thus, there cannot be an 
RBG3 at 192 or 128 bits of security 
strength, regardless of whether these 
192 or 128 bits are full entropy. 

Because of the nature of the 
construction of the RBG3, and since it 
is being designed to provide full 
entropy at its output, we do not see 
reason to limit those RBG3 to 256 bits 
of strength only, if the instantiations of 
128 and 192 would also provide full 
entropy and would be appropriate for 
FIPS validations at those security 
strengths. 

Remove the limitation than an RBG3 
construction supports only 256 bits of 
security strength by removing item 3. 

Rewrite item 4: The DRBG shall be 
instantiated at its claimed security strength 
(128, 192, or 256 bits according to the 
DRBG mechanism) before the first use of 
the RBG3 construction or direct access of 
the DRBG. 
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