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 Abstract 

 

This Recommendation specifies the design principles and requirements for the entropy 

sources used by Random Bit Generators, and the tests for the validation of entropy sources. 

These entropy sources are intended to be combined with Deterministic Random Bit 

Generator mechanisms that are specified in [SP 800-90A] to construct Random Bit 

Generators, as specified in [SP 800-90C]. 

 

KEY WORDS: deterministic random bit generator (DRBG); entropy; hash function; 

random number generator; noise source; entropy source; conditioning component 
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Authority 

This publication has been developed by the National Institute of Standards and Technology 

(NIST) in furtherance of its statutory responsibilities under the Federal Information 

Security Management Act (FISMA) of 2002, Public Law 107-347.  

NIST is responsible for developing standards and guidelines, including minimum 

requirements, for providing adequate information security for all agency operations and 

assets, but such standards and guidelines shall not apply to national security systems.  

This recommendation has been prepared for use by Federal agencies. It may be used by 

nongovernmental organizations on a voluntary basis and is not subject to copyright. 

(Attribution would be appreciated by NIST.)  

Nothing in this Recommendation should be taken to contradict standards and guidelines 

made mandatory and binding on federal agencies by the Secretary of Commerce under 

statutory authority. Nor should this Recommendation be interpreted as altering or 

superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or 

any other federal official. 

Conformance testing for implementations of this Recommendation will be conducted 

within the framework of the Cryptographic Algorithm Validation Program (CAVP) and the 

Cryptographic Module Validation Program (CMVP). The requirements of this 

Recommendation are indicated by the word “shall.” Some of these requirements may be 

out-of-scope for CAVP or CMVP validation testing, and thus are the responsibility of 

entities using, implementing, installing or configuring applications that incorporate this 

Recommendation.



NIST SP 800-90B (DRAFT)  August 2012 

8  

 

Recommendation for the Entropy Sources Used for 
Random Bit Generation 

 

1.0 Scope 

Cryptography and security applications make extensive use of random numbers and 

random bits.  However, the generation of random bits is problematic in many practical 

applications of cryptography.  The purpose of NIST Special Publication (SP) 800-90B is to 

specify the design and testing requirements for entropy sources that can be validated as 

approved entropy sources by NIST’s CAVP and CMVP.  SPs 800-90A and 800-90C 

address the construction of approved Deterministic Random Bit Generator (DRBG) 

mechanisms and approved Random Bit Generators (RBGs) that utilize the entropy sources 

and DRBG mechanisms, respectively. 

 

An entropy source that conforms to this Recommendation generates random bits, primarily 

for use in cryptographic applications. While there has been extensive research on the 

subject of generating pseudorandom bits using a DRBG and an unknown seed value, 

creating such an unknown value has not been as well documented.  The only way for this 

seed value to provide real security is for it to contain a sufficient amount of randomness, 

i.e., from a non-deterministic process referred to as an entropy source.  SP 800-90B 

describes the properties that an entropy source must have to make it suitable for use by 

cryptographic random bit generators, as well as the tests used to validate the quality of the 

entropy source.  

 

The development of entropy sources that provide unpredictable output is difficult, and 

providing guidance for their design and validation testing is even more so. The testing 

approach defined in this Recommendation assumes that the developer understands the 

behavior of the entropy source and has made a good-faith effort to produce a consistent 

source of entropy.  It is expected that, over time, improvements to the guidance and testing 

will be made, based on experience in using and validating against this Recommendation. 

 

SP 800-90B is based on American National Standard (ANS) X9.82, Part 2, Random 

Number Generation, Part 2: Entropy Sources [X9.82-2].  
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2.0 Terms and Definitions 

Algorithm 

A clearly specified mathematical process for computation; a set of rules that, if followed, 

will give a prescribed result. 

Approved 

FIPS-approved or NIST-recommended. 

Assessment (of Entropy) 

An evaluation of the amount of entropy provided by a (digitized) noise source and/or the 

entropy source that employs it. 

Biased  

A random process (or the output produced by such a process) is said to be biased with 

respect to an assumed discrete set of potential outcomes (i.e., possible output values) if 

some of those outcomes have a greater probability of occurring than do others.  Contrast 

with unbiased. 

Binary Data (from a Noise Source) 

Digitized output from a noise source that consists of a single bit; that is, each sampled 

output value is represented as either 0 or 1. 

Bitstring 

A bitstring is a finite sequence (string) of 0’s and 1’s. The left-most bit is the most 

significant bit in the bitstring. The right-most bit is the least significant bit of the bitstring. 

Collision 

An instance of duplicate sample values occurring in a dataset.   

Conditioning (of Noise Source Output) 

A method of post-processing the output of a (digitized) noise source to reduce bias and/or 

ensure that the entropy rate of the conditioned output is no less than some specified 

amount.  Full entropy output is not necessarily provided. 

Conditioning Component 

An optional component of an entropy source used to post-process the output of its noise 

source with the intent of reducing bias and/or increasing the entropy rate of the resulting 

output to ensure that it meets some specific threshold.  (See Conditioning, above.) 
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Continuous Test 

A health test performed within an entropy source on the output of its noise source, in order 

to gain some level of assurance that the noise source is working correctly, prior to 

producing each output from the entropy source.  

Consuming Application (for an RBG) 

An application that uses the output from an approved random bit generator. 

Cryptographic Hash Function 

A function that maps bitstrings of arbitrary length (up to some maximum) to bitstrings of 

fixed length (determined by the particular function) and is expected to have, at least, the 

following three properties: 

1. Collision resistance:  It is computationally infeasible to find two distinct input 

bitstrings that map to the same output bitstring;  

2. Preimage resistance:  Given a bitstring of the same length as those output by the 

function (but not previously observed as the output corresponding to a known 

input), it is computationally infeasible to find an input bitstring that maps to the 

given bitstring; 

3. Second-preimage resistance:  Given one input bitstring (and the corresponding 

bitstring output by the function), it is computationally infeasible to find a 

second (distinct) input bitstring that maps to the same output bitstring. 

Dataset 

A sequence of sample values.  (See Sample.) 

Deterministic Random Bit Generator (DRBG)  

An RBG that employs a DRBG mechanism and a source of entropy input.  A DRBG 

produces a pseudorandom sequence of bits from an initial secret value called a seed (and, 

perhaps additional input). A DRBG is often called a Pseudorandom Bit (or Number) 

Generator.   

DRBG mechanism 

The portion of an RBG that includes the functions necessary to instantiate and 

uninstantiate a DRBG, generate pseudorandom bits, (optionally) reseed the DRBG and test 

the health of the DRBG mechanism.  Approved DRBG mechanisms are specified in [SP 

800-90A]. 

Entropy 

The (Shannon) entropy of a discrete random variable X is the expected amount of 

information that will be provided by an observation of X. (See information content.) In this 

Standard, the information content is measured in bits; when the expected information 

content of an observation of X is m bits, we say that the random variable X has m bits of 

entropy. 
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Entropy is defined relative to one's knowledge of (the probability distribution on) X prior 

to an observation, and reflects the uncertainty associated with predicting its value – the 

larger the entropy, the greater the uncertainty in predicting the value of an observation. 

In the case of a discrete random variable, the entropy of X is determined by computing the 

sum of p(x) log2(p(x)), where x varies over all possible values for an observation of X and 

p(x) is the (a priori) probability that an observation will have value x.  

If there are N distinct possibilities for an observation of X, then the maximum possible 

value for the entropy of X is log2(N) bits, which is attained when X has the uniform 

probability distribution (i.e., when the N possible observations are equally likely to occur). 

See also min-entropy. 

Entropy Rate 

The rate at which a digitized noise source (or entropy source) provides entropy; it is 

computed as the assessed amount of entropy provided by a bitstring output from the 

source, divided by the total number of bits in the bitstring (yielding assessed bits of 

entropy per output bit).  This will be a value between zero (no entropy) and one (full 

entropy). 

Entropy Source 

A source of random bitstrings. There is no assumption that the bitstrings are output in 

accordance with a uniform distribution. The entropy source includes a noise source (e.g., 

thermal noise or hard drive seek times), health tests, and an optional conditioning 

component.  

False Alarm 

An erroneous indication that a component has malfunctioned, despite the fact that the 

component was behaving correctly. See also False Positive. 

False Positive 

An erroneous acceptance of the hypothesis that a statistically significant event has been 

observed.  This is also referred to as a Type 1 error.  When ‘health-testing’ the components 

of a device, it often refers to a declaration that a component has malfunctioned – based on 

some statistical test(s) – despite the fact that the component was actually working 

correctly.  See False Alarm.   

Full Entropy 

Ideally, to say that a bitstring provides “full entropy” would imply that it was selected 

uniformly at random from the set of all bitstrings of its length – in which case, each bit in 

the string would be uniformly distributed (i.e., equally likely to be 0 or 1) and statistically 

independent of the other bits in the string. However, for the purposes of this 

Recommendation, an n-bit string is said to provide full entropy if it is obtained through a 

process that is estimated to provide at least (1) n bits of entropy, where 0     2
-64

. Such 

strings are an acceptable approximation to the ideal.  
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Full Entropy Source 

An entropy source that is designed to output bitstrings providing full entropy output.  See 

Full Entropy, above. 

Hash Function 

See Cryptographic Hash Function.  Hash algorithm and cryptographic hash function are 

used interchangeably in this Recommendation. 

Health Test 

A test that is run to check that a mechanism continues to behave as expected. 

Health Testing 

Testing within an implementation prior to or during normal operation to determine that the 

implementation continues to perform as expected and as validated. 

Independent 

Two discrete random variables X and Y are (statistically) independent if the probability that 

an observation of X will have a certain value does not change, given knowledge of the 

value of an observation of Y (and vice versa). When this is the case, the probability that the 

observed values of X and Y will be x and y, respectively, is equal to the probability that the 

observed value of X will be x (determined without regard for the value of y) multiplied by 

the probability that the observed value of Y will be y (determined without regard for the 

value of x). 

Independent and Identically Distributed (IID) 

A sequence of random variables for which each element of the sequence has the same 

probability distribution as the other values and all values are mutually independent. 

Known-Answer Test 

A test that uses a fixed input/output pair (where the output is the correct output from the 

component for that input), which is used to determine correct implementation and/or 

continued correct operation. 

Markov Model 

A model for a probability distribution whereby the probability that the i
th

 element of a 

sequence has a given value depends only on that value and the value of the previous k 

elements of the sequence. The model is called a k
th

 order Markov model. 

Min-entropy 

The min-entropy (in bits) of a discrete random variable X is the largest value m having the 

property that each observation of X provides at least m bits of information (i.e., the min-

entropy of X is the greatest lower bound for the information content of potential 

observations of X). The min-entropy of X is a lower bound on its entropy. The precise 

formulation for the min-entropy, m, for a given finite probability distribution, p1, …, pM, is 

m = log2( max(p1,…, pM) ). Min-entropy is often used as a worst-case measure of the 
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uncertainty associated with observations of X: If X has min-entropy m, then the probability 

of observing any particular value is no greater than 2
-m

.  (See also Entropy.) 

Noise Source 

The component of an entropy source that contains the non-deterministic, entropy-

producing activity.  

Non-Deterministic Random Bit Generator (NRBG) 

An RBG employing an entropy source, which (when working properly) produces outputs 

that have full entropy (see Full Entropy).  Also called a True Random Bit (or Number) 

Generator. 

On-demand Test 

A health test that is available to be run whenever a user or a relying component requests it. 

Output Space 

The set of all possible bitstrings that may be obtained as samples from a digitized noise 

source. 

P-value 

The probability (under the null hypothesis of randomness) that the chosen test statistic will 

assume values that are equal to or more extreme than the observed test statistic value when 

considering the null hypothesis. The p-value is frequently called the “tail probability.” 

Probability Distribution 

The probability distribution of a random variable X is a function F that assigns to the 

interval [a, b] the probability that X lies between a and b (inclusive). 

Probability Model 

A mathematical representation of a random phenomenon. 

Pseudorandom  

A deterministic process (or data produced by such a process) whose observed outcomes 

(e.g., output values) are effectively indistinguishable from those of a random process, as 

long as the internal states and internal actions of the process are hidden from observation.  

For cryptographic purposes, “effectively indistinguishable” means “not within the 

computational limits established by the intended security strength.” 

Random 

A non-deterministic process (or data produced by such a process) whose possible 

outcomes (e.g., output values) are observed in accordance with some probability 

distribution.  The term is sometimes (mis)used to imply that the probability distribution is 

uniform, but no such blanket assumption is made in this Recommendation. 
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Random Bit Generator (RBG) 

A device or algorithm that is capable of producing a random sequence of (what are 

effectively indistinguishable from) statistically independent and unbiased bits.  An RBG is 

classified as either a DRBG or an NRBG. 

Sample (from a Digitized Noise Source) 

An observation of the natural output unit from a digitized (but otherwise unprocessed) 

noise source.  Common examples of output values obtained by sampling are single bits, 

single bytes, etc.  (The term “sample” is often extended to denote a sequence of such 

observations; this Recommendation will refrain from that practice.) 

Security Boundary 

A conceptual boundary that is used to assess the amount of entropy provided by the values 

output from an entropy source. The entropy assessment is performed under the assumption 

that any observer (including any adversary) is outside of that boundary. 

Seed 

Noun: A bitstring that is used as input to (initialize) an algorithm.  In this 

Recommendation, the algorithm using a seed is usually a DRBG.  The entropy provided by 

the seed must be sufficient to support the intended security strength of the DRBG. 

Verb: To acquire a bitstring using a process that provides sufficient entropy for the desired 

security strength and subsequently supply that bitstring to (initialize) an algorithm (e.g., a 

DRBG).   

Sequence 

An ordered list of quantities. 

Shall 

Used to indicate a requirement of this Recommendation.  

Should 

Used to indicate a highly desirable feature that is not necessarily required by this 

Recommendation. 

Source of entropy input (SEI) 

A component of an RBG that outputs bitstrings that can be used as entropy input by a 

DRBG mechanism.  See [SP 800-90C]. 

Stable Distribution 

A random variable is stable if it has the property that linear combinations of two 

independent copies of the variable have the same distribution; i.e., let X1 and X2 be 

independent copies of a random variable X. Then X is said to be stable if for any constants 

a>0 and b>0 the random variable aX1 + bX2 has the same distribution as cX + d for some 

constants c>0 and d. 
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Startup Testing (of an Entropy Source) 

A suite of health tests that are performed every time the entropy source is initialized or 

powered up.  These tests are carried out before any output is released from the entropy 

source.   

String 

See Sequence. 

Testing Laboratory 

An entity that has been accredited to perform cryptographic security testing on an entropy 

source, as specified in this Recommendation. 

Unbiased 

A random process (or the output produced by such a process) is said to be unbiased with 

respect to an assumed discrete set of potential outcomes (e.g., possible output values) if 

each of those outcomes has the same probability of occurring. (Contrast with biased.) A 

pseudorandom process is said to be unbiased if it is effectively indistinguishable from an 

unbiased random process (with respect to the same assumed discrete set of potential 

outcomes). For cryptographic purposes, “effectively indistinguishable” means “not within 

the computational limits established by the intended security strength.” 
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3.0 Symbols and Abbreviated Terms 

The following symbols are used in this document. 

Symbol Meaning 

H The min-entropy of the samples from a (digitized) noise source or 

of the output from an entropy source; the min-entropy assessment 

for a noise source or entropy source. 

hamming_weight(si,…,si+n) The number of ones in the sequence si, si+1, …, si+n. 

max(a, b) The maximum of the two values, a and b; e.g. if a>b, max(a, b) = a. 

min(a, b) The minimum of the two values, a and b; e.g. if a<b, min(a, b) = a. 

N The number of samples in a dataset, i.e., the length of the dataset in 

samples. 

n The number of bits that an entropy source can obtain as a single 

(conditioned) output from its (digitized) noise source. 

p(xi) or prob(xi) The probability for an observation or occurrence of xi. 

pmax The probability of the most common sample from a noise source. 

si A sample in a dataset. 

S A dataset. 

xi A possible output from the (digitized) noise source. 

[a,b] The interval of numbers between a and b, including a and b. 

 x  A function that returns the smallest integer greater than or equal to 

x; also known as the ceiling function. 

 x  A function that returns the largest integer less than or equal to x; 

also known as the floor function. 

Round(x) A function that returns the integer that is closest to x.  If x lies half-

way between two integers, the larger integer is returned.  

Sqrt(x) or √𝑥 A function that returns a number y whose square is x.  For example, 

Sqrt(16) = 4. 

 

The following abbreviations are used in this document. 

Abbreviations Meaning 

ANS American National Standard 

CAVP Cryptographic Algorithm Validation Program 
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CMAC Cipher-based Message Authentication Code, as specified in 

SP800-38B 

CMVP Cryptographic Module Validation Program 

DRBG Deterministic Random Bit Generator 

FIPS Federal Information Processing Standard 

HMAC Keyed-Hash Message Authentication Code, specified in [FIPS 198]  

IID Independent and Identically Distributed 

NIST National Institute of Standards and Technology 

NRBG Non-deterministic Random Bit Generator 

NVLAP National Voluntary Laboratory Accreditation Program 

RBG Random Bit Generator 

SP NIST Special Publication 
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4.0 General Discussion 

Three things are required to build a cryptographic RBG. First, a source of random bits is 

needed (the entropy source). Second, an algorithm (typically, a DRBG) is needed for 

accumulating and providing these numbers to the consuming application. Finally, there 

needs to be a way to combine the first two components appropriately for the cryptographic 

application.  

SP 800-90B describes how to design and implement the entropy source. SP 800-90A 

describes deterministic algorithms that take an entropy input and use it to produce 

pseudorandom values. SP 800-90C provides the “glue” for putting the entropy source 

together with the algorithm to implement an RBG. 

Specifying an entropy source is a complicated matter. This is partly due to confusion in the 

meaning of entropy, and partly due to the fact that, while other parts of an RBG design are 

strictly algorithmic, entropy sources depend on physical processes that may vary from one 

instance of a source to another.  This section discusses, in detail, both the entropy source 

model and the meaning of entropy. 

4.1 Entropy Estimation and Validation 

The developer should make every effort to design an entropy source that can be shown to 

serve as a consistent source of entropy, producing bitstrings that can provide entropy at a 

rate that meets (or exceeds) a specified value. 

In order to design an entropy source that provides an adequate amount of entropy per 

output bitstring, the developer must be able to accurately estimate the amount of entropy 

that can be provided by sampling its (digitized) noise source. The developer must also 

understand the behavior of the other components included in the entropy source, since the 

interactions between the various components will affect any assessment of the entropy that 

can be provided by an implementation of the design. 

For example, if it is known that the (digitized) output from the noise source is biased, 

appropriate conditioning functions can be included in the design to reduce that bias to a 

tolerable level before any bits are output from the entropy source. Likewise, if the 

developer estimates that the noise source employed provides entropy at a rate of (at least) 

½ bit of entropy per bit of (digitized) sample, that assessment will likely be reflected in the 

number of samples that are combined by a conditioning component to produce bitstrings 

with an entropy rate that meets the design requirements for the entropy source. 

This Recommendation provides requirements and guidance that will allow for an entropy 

source to be validated and for an assessment of the entropy to be performed that will show 

the entropy source produces bitstrings that can provide entropy at a specified rate.  

Validation provides additional assurance that adequate entropy is provided by the source 

and may be necessary to satisfy some legal restrictions, policies, and/or directives of 

various organizations.  
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4.2 Entropy 

The central mathematical concept underlying this Recommendation is entropy. Entropy is 

defined relative to one's knowledge of X prior to an observation, and reflects the 

uncertainty associated with predicting its value – the larger the entropy, the greater the 

uncertainty in predicting the value of an observation.  There are many possible choices for 

an entropy measure; this Recommendation uses a very conservative measure known as 

min-entropy.   

Min-entropy is often used as a worst-case measure of the uncertainty associated with 

observations of X: If X has min-entropy m, then the probability of observing any particular 

value is no greater than 2
-m

.  Let xi be a digitized sample from the noise source that is 

represented in one or more bits, let x1, x2, ..., xM be the outputs from the noise source, and 

let p(xi) be the probability that xi is produced at any given sampling time. The min-entropy 

of the outputs is:  

log2 (max p(xi)).  

This represents the best-case work for an adversary who is trying to guess an output from 

the noise source.  For an in-depth discussion of entropy and the use of min-entropy in 

assessing an entropy source, see ANS X9.82, Part 1 [X9.82-1]. 

 

4.3 The Entropy Source Model 

This section considers the entropy source in detail. Figure 1 illustrates the model that this 

Recommendation uses to describe an entropy source, including the components that an 

entropy source developer shall implement. These components are described in the 

following sections.  Additional detail on each component can be found in ANS X9.82, Part 

2 [X9.82-2]. 
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4.3.1 Noise Source 

The noise source is the root of security for the entropy source and for the RBG as a whole. 

This is the component that contains the non-deterministic, entropy-providing activity that 

is ultimately responsible for the uncertainty associated with the bitstrings output by the 

entropy source.  If this component fails, no other mechanism in the RBG can compensate 

for the lack of entropy. 

Fundamentally, the noise source provides random bits in the form of digital samples 

obtained from a non-deterministic process. If the non-deterministic process being sampled 

produces something other than binary data, the sampling process includes digitization.  

This Recommendation assumes that the sample values obtained from a noise source 

consist of fixed-length bitstrings, which determine the output space of the component.  

4.3.2 Conditioning Component 

The optional conditioning component is responsible for reducing bias and/or increasing the 

entropy rate of the resulting output bits (if necessary to obtain a target value).  There are 

various methods for achieving this. In choosing an approach to implement, the developer 

may either choose to implement an approved cryptographic algorithm or a non-approved 

algorithm (see Section 6.4).  The use of either of these approaches is permitted by this 
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Recommendation.  The developer should consider the conditioning method and how 

variations in the behavior of the noise source may affect the entropy rate of the output.  

This will assist in determining the best approach to use when implementing a conditioning 

component.     

4.3.3 Health Tests 

Health tests are an integral part of the entropy source design; the health test component 

ensures that the noise source and the entropy source as a whole continue to operate as 

expected. The health tests can be separated into three categories; startup tests (on all 

components), continuous tests (mostly on the noise source), and on-demand tests (tests that 

are more thorough and time-consuming than the continuous tests).  

Behavior tests, a type of health test, are performed on the parts of an implementation for 

which an exact response cannot be predicted (i.e., the noise source, for which the behavior 

is non-deterministic); normally, the acceptable responses are expected within a specified 

range of all possible responses.  Behavior tests may be performed at specified times or may 

be performed continuously. 

When testing the entropy source, the end goal is to obtain assurance that failures of the 

entropy source are caught quickly and with a high probability.  Another aspect of health 

testing strategy is determining likely failure modes for the entropy source and, in 

particular, for the noise source. Comprehensive health tests will include tests that can 

detect these failure conditions.   

 

5.0 Conceptual Interfaces 

5.1.1 GetEntropy: An Interface to the Entropy Source 

This section describes a conceptual interface to the entropy source that is compatible with 

the RBG interfaces in [SP 800-90C]. The interface described here can be considered to be 

a command interface into the outer entropy source box in Figure 1. This interface is meant 

to indicate the types of requests for services that an entropy source may support.  

A GetEntropy call returns a bitstring and an assessment of the entropy it provides. 

GetEntropy( ):  

Output: 

entropy_bitstring The string that provides the requested entropy. 

assessed_entropy An integer that indicates the assessed number of bits of entropy 

provided by entropy_bitstring. 

status A boolean value that is TRUE if the request has been satisfied, 

and is FALSE otherwise. 

It should be noted that the interface defined here includes a return value indicating the 

amount of entropy provided by the returned bitstring.  In practice, assessed_entropy does 
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not need to be returned as output if the amount of entropy provided by entropy_bitstring 

would already be known to the relying application (e.g., in implementations for which the 

amount of entropy provided is a predefined constant). 

5.1.2 GetNoise: An Interface to the Noise Source 

The conceptual interface defined here can be considered to be a command interface into 

the noise source component of an entropy source.  This is used to obtain raw, digitized, but 

otherwise unprocessed, outputs from the noise source for use in validation testing or for 

external health tests.  While it is not required to be in this form, it is expected that an 

interface exist such that the data can be obtained without harm to the entropy source.  This 

interface is meant to provide test data to credit a noise source with an entropy estimate 

during validation or for health testing, and as such, does not contribute to the generation of 

entropy source output.  It is feasible that such an interface is available only in “test mode” 

and that it is disabled when the source is operational.   

This interface is not intended to constrain real-world implementations, but to provide a 

consistent notation to describe data collection from noise sources.  Thus, the interface may 

indicate, for example, that a noise source generates bits in response to a request from the 

entropy source, when, in practice, the noise source may be passing random bits to the 

entropy source as the bits are generated; i.e., it ‘pushes’ data to the entropy source as it 

becomes available.   

A GetNoise call returns raw, digitized, but otherwise unprocessed samples from the noise 

source. 

GetNoise(number_of_samples_requested) 

Input: 

number_of_samples_requested An integer value that indicates the requested 

number of samples to be returned from the noise 

source. 

Output: 

noise_source_data The sequence of samples from the noise source, 

with length number_of_samples_requested. 

status A boolean value that is TRUE if the request has 

been satisfied, and is FALSE otherwise. 

 

5.1.3 Health Test: An Interface to the Entropy Source  

A HealthTest call is a request to the entropy source to conduct a test of its health.  The 

HealthTest interface allows for various testing methods since this Recommendation does 

not require any particular on-demand health testing (see Section 6.5.1.3).  Note that it may 

not be necessary to include a separate HealthTest interface if the execution of the tests can 

be initiated in another manner that is acceptable to [FIPS 140] validation. 
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HealthTest(type_of_test_requested) 

Input: 

 type_of_test_requested  A bitstring that indicates the type or suite of tests to be 

performed (this may vary from one entropy source to 

another). 

Output: 

pass-fail flag  A boolean value that is TRUE if the entropy source 

passed the requested test, and is FALSE otherwise. 

 

6.0 Entropy Source Development Requirements 

Included in the following sections are requirements for the entropy source as a whole, as 

well as for each component individually.  The intent of these requirements is to assist the 

developer in designing/implementing an entropy source that can provide outputs with a 

consistent amount of entropy and to provide the required documentation for entropy source 

validation.  The requirements below are intended to justify why the entropy source can be 

relied upon.   

6.1 General Requirements for Design and Validation 

The functional requirements for the entropy source as a whole are as follows: 

1. The developer shall document the design of the entropy source as a whole, 

including the interaction of the components specified in Section 4.3. This 

documentation shall justify why the entropy source can be relied upon to produce 

bits with entropy. 

2. The entropy source shall have a well-defined (conceptual) security boundary, 

which shall be the same as or be contained within a [FIPS 140] cryptographic 

module boundary. This security boundary shall be documented; the documentation 

shall include: 

 A description of the content of the security boundary; note that the security 

boundary may extend beyond the entropy source itself (e.g. the entropy 

source may be contained within a larger boundary that also contains a 

DRBG); also note that the security boundary may be logical, rather than 

physical. 

 A description of how the security boundary ensures that an adversary 

outside the boundary cannot reduce the entropy below the assessed entropy, 

either through observation or manipulation. 
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 Any assumptions concerning support functions (such as a power supply that 

cannot be monitored or manipulated) upon which the security boundary 

depends. 

4. The developer shall document the range of operating conditions under which the 

entropy source may be expected to continue to generate acceptable random data; 

the documentation shall clearly describe the measures that have been taken in 

system design to ensure the entropy source continues to operate correctly under 

those conditions.  

5. The entropy source shall be capable of being validated for conformance to [FIPS 

140], and include appropriate interfaces to obtain test data, as described in Section 

5.0.  

6. Documentation shall be provided that describes the behavior of the noise source 

and why it is believed that the entropy rate does not fluctuate during normal 

operation.   

7. Upon notification that the health tests have detected a malfunction, the entropy 

source shall cease outputting data and should notify the consuming application 

(e.g., the RBG) of the error condition.   

An optional, recommended feature of the entropy source is as follows: 

8. The entropy source may contain multiple noise sources to improve resiliency with 

respect to degradation or misbehavior.  When this feature is implemented, the 

requirements specified in Section 6.3 shall apply to each noise source. 

6.2 Full Entropy Source Requirements 

Some of the RBG constructions in [SP 800-90C] depend on a Full Entropy Source, e.g. an 

entropy source that closely approximates one in which each output bit is uniformly 

distributed and independent of all other output bits.  Additional requirements are levied on 

sources that claim to provide full entropy output: 

1. Bitstrings output from the entropy source shall provide at least (1)n bits of 

entropy, where n is the length of each output string and 0    2
-64

.  

2. Noise source output, if conditioned, shall be conditioned with an approved 

cryptographic conditioning function for full entropy to be provided by the entropy 

source.  At least twice the block size of the underlying cryptographic primitive 

shall be provided as input to the conditioning function to produce full entropy 

output.  
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6.3 Noise Source Requirements 

The functional requirements for the noise source are as follows: 

1. Although the noise source is not required to produce unbiased and independent 

outputs, it shall exhibit probabilistic behavior; i.e., the output shall not be 

definable by any known algorithmic rule.   

2. The developer shall document the operation of the noise source; this 

documentation shall include a description of how the noise source works and 

rationale about why the noise provides acceptable entropy output, and should 

reference relevant, existing research and literature. 

3. The noise source shall be amenable to testing to ensure proper operation.  In 

particular, it shall be possible to collect data from the noise source for health 

testing and during the validation process in order to allow an independent 

determination of the entropy rate, and the appropriateness of the health tests on the 

noise source.  Acquiring outputs from the noise source shall not alter the behavior 

of the noise source or affect the subsequent output in any way.  

4. Failure or severe degradation of the noise source shall be detectable. Methods used 

to detect such conditions shall be documented. 

5. The noise source documentation shall describe the conditions, if any, under which 

the noise source is known to malfunction or become inconsistent, including a 

description of the range of environments in which the noise source can operate 

correctly. Continuous tests or other mechanisms in the entropy source shall protect 

against producing output during such malfunctions. 

6. The noise source shall be protected from adversarial knowledge or influence to the 

greatest extent possible. The methods used for this shall be documented, including 

a description of the (conceptual) security boundary’s role in protecting the noise 

source from adversarial observation or influence. 

6.4 Conditioning Component Requirements 

The functional requirements for the optional conditioning component are as follows: 

1. The entropy source developer shall document whether or not the entropy source 

performs conditioning. If conditioning depends on choices made external to the 

entropy source (i.e. if it is a selectable option), this feature shall be documented. 

2. If the entropy source performs conditioning, the method shall be described and 

shall include an argument for how the chosen method meets its objectives with 

respect to reducing the bias in the data obtained from the noise source and/or 

producing output that meets (or exceeds) a specified entropy rate.   
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3. The entropy source conditioning component outputs shall be capable of being 

subjected to health and validation testing.   

4. The entropy source developer shall state and justify estimates of the bias and 

entropy rate that is expected of the bitstrings output by the conditioning component. 

If the entropy source is meant to produce full entropy output, the output bitstrings 

shall satisfy the requirements in Section 6.2. 

5. Documentation describing how variations in the behavior of the noise source will 

affect the bias and entropy rate of the conditioning component’s output shall be 

provided. 

6.4.1 Non-Approved Conditioning Components 

As discussed previously, there are various methods for designing a conditioning 

component for an entropy source.  One such method involves using a non-approved 

conditioning function to condition the noise source outputs.  If a non-approved 

conditioning component is chosen in design of the entropy source, then this conditioning 

component shall undergo extensive testing to determine the entropy provided by the 

conditioned outputs (see Section 8.2).  The entropy rate provided shall be no greater than 

the entropy rate provided by the input to the conditioning component; full entropy shall 

not be provided by non-approved conditioning components. 

6.4.2 Approved Cryptographic Conditioning Components 

Using an approved cryptographic function (i.e., algorithm) to condition the noise source 

outputs is beneficial because the approved functions can uniformly distribute the input 

entropy throughout the output of the conditioning component and as such can be used to 

provide full entropy output.  In general, the entropy estimate for the conditioning function 

output will be no greater than the output length of the conditioning component. 

This Recommendation approves both keyed and unkeyed functions for the conditioning 

component, as discussed in Sections 6.4.2.1 and 6.4.2.2, respectively.  These approved 

conditioning functions produce the following results: 

1. When an input string with m bits of assessed entropy is provided to an approved 

conditioning function with an n-bit output, the resulting assessed entropy is 

uniformly distributed across the entire n-bit output.  Note that if 𝑚 ≥ 𝑛, full 

entropy output is not necessarily provided; see item 2. 

2. When an input string with 2n bits (or more) of assessed entropy is provided to an 

approved conditioning function with an n-bit output, the resulting n-bit output is 

considered to have full entropy. 

6.4.2.1 Approved Keyed Conditioning Functions 

Three keyed functions are approved for the conditioning component: 

1. HMAC, as specified in [FIPS 198], with any approved hash function specified in 

[FIPS 180], 
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2. CMAC, as specified in [SP 800-38B], with any approved block cipher algorithm 

(see [FIPS 197] and [SP 800-67]), and 

3. CBC-MAC, as specified in Section 6.4.2.1.2, with any approved block cipher 

algorithm.  CBC-MAC shall not be used for other purposes. 

6.4.2.1.1 General Constructions for Approved Keyed Conditioning Functions 

This general construction is to be used for the approved keyed conditioning functions listed 

in Section 6.4.2.1.  The following notation is used in the construction: 

F(K, X) The notation used to represent the approved keyed conditioning function, 

with key K and input string X. 

n The number of bits output by F; for CMAC and CBC-MAC, n is the length 

(in bits) of the output block of the block cipher algorithm; for HMAC, n is 

the length (in bits) of the hash function output block. 

S An input string with assessed entropy m. 

A Additional input; any bit string, including the null string (e.g., a timestamp, 

sequence number, or previous output value). 

K Any key, e.g., a constant across all implementations, or a value initialized 

once per entropy source, or initialized upon start-up. 

Y The n-bit output of the conditioning function. 

Process: 

1. Y = F(K, S||A). 

2. Output Y as the conditioned output. 

If the input string S was assessed at 2n bits of min-entropy or more (i.e., 𝑚 ≥ 2𝑛), then Y 

may be considered to have n bits of full entropy output.  If S was assessed at m bits of min-

entropy and 2𝑛 > 𝑚 ≥ 𝑛, then Y shall be assessed at 
𝑚

2
 bits of min-entropy.  If S was 

assessed at m bits of min-entropy and 𝑚 < 𝑛 then Y shall be assessed at m bits of min-

entropy. 

6.4.2.1.2 CBC-MAC Conditioning Function 

For an approved conditioning function, CBC-MAC is defined as follows.  This 

construction shall not be used for any other purpose.  The following notation is used for 

the construction: 

E(K,X)  The notation used to represent the encryption of input string X using key K. 

n  The length (in bits) of the output block of the cipher algorithm. 

S An input string; the length of S shall be an integer multiple of the output 

length n of the block cipher algorithm and shall always be the same length 

(i.e., variable length strings shall not be used as input). 

w The number of n-bit blocks in S; an integer. 
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K The key to be used. 

V The n-bit CBC-MAC output. 

Process: 

1. Let 𝑠0, 𝑠1, … 𝑠𝑤−1 be the sequence of blocks formed by dividing S into n-bit blocks; 

i.e., each 𝑠𝑖 consists of n bits. 

2. V = 0. 

3. For i = 0 to w-1 

V = E(K, V  𝑠𝑖). 

4. Output V as the CBC-MAC output. 

 

6.4.2.2 Approved Unkeyed Conditioning Functions 

Three unkeyed functions are approved as conditioning functions: 

1. Any approved hash function specified in [FIPS 180], 

2. hash_df, as specified in [SP 800-90A], using any approved hash function 

specified in [FIPS 180], and 

3. bc_df, as specified in [SP800-90A], using any approved block cipher algorithm 

(see [FIPS 197] and [SP 800-67]). 

The following notation is used for the construction of the unkeyed conditioning function: 

F(X) The notation used to represent the approved unkeyed conditioning function 

listed above, applied to input string X. 

S  An input string assessed at m bits of entropy. 

A Additional input; any bit string, including the null string (e.g. a timestamp, 

sequence number or previous output value). 

n The number of bits output by F; for bc_df, n is the length (in bits) of the 

output block of the block cipher algorithm; otherwise, n is the length (in 

bits) of the hash function output block. 

Y  The n-bit conditioned output. 

Process: 

1. Y = F(S||A). 

2. Output Y as the conditioned output. 

If the input string S was assessed at 2n bits of min-entropy or more (i.e., 𝑚 ≥ 2𝑛), then Y 

may be considered to have n bits of full entropy output.  If S was assessed at m bits of min-

entropy and 2𝑛 > 𝑚 ≥ 𝑛, then Y shall be assessed at 
𝑚

2
 bits of min-entropy.  If S was 
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assessed at m bits of min-entropy and 𝑚 < 𝑛 then Y shall be assessed at m bits of min-

entropy. 

6.4.2.3 Recommendations for Improved Security 

The developer is permitted to select keys and additional input arbitrarily.  However, the 

following recommendations may improve security: 

1. In the keyed functions in Section 6.4.2.1, the key K should be generated randomly 

each time a device starts up (e.g., K can be obtained by using entropy bits from the 

noise source with at least n bits of assessed entropy, where n is the output length of 

the conditioning function to be used, and processing the entropy bits using the 

conditioning function with an arbitrary key; the result can be used as K). 

2. The optional additional input A should include some function of the previous 

output from the conditioning function in order to smooth out variations in the 

entropy source behavior. 

6.5 Health Test Requirements 

The objective of these tests is to detect deviations from the intended behavior of the 

entropy source in general (and the noise source in particular) during operation.  The 

following are general requirements for entropy source health tests: 

1. Testing shall be performed at startup and continuously thereafter to ensure that all 

components of the entropy source continue to work correctly.   

2. All entropy source health tests and their rationale shall be documented. The 

documentation shall include a description of the health tests, the rate and 

conditions under which each health test is performed (e.g., at startup, continuously, 

or on-demand), the expected results for each health test, and rationale indicating 

why each test is believed to be appropriate for detecting one or more failures in the 

entropy source.  

6.5.1 Health Tests on the Noise Source 

6.5.1.1 General Requirements 

The health testing of a noise source is likely to be very technology-specific.  Since, in the 

vast majority of cases, the noise source will not produce unbiased, independent binary 

data, traditional statistical procedures (e.g., monobit, chi-square, and runs tests) that test 

the hypothesis of unbiased, independent bits almost always fail, and thus are not useful for 

monitoring the noise source.  In general, tests on the noise source have to be tailored 

carefully, taking into account the expected statistical behavior of the correctly operating 

noise source. 

Health testing of noise sources will typically be designed to detect failures of the noise 

source based on the expected output during a failure, or to detect a deviation from the 
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expected output during the correct operation of the noise source.  The following are 

requirements for noise source health tests. 

1. At a minimum, continuous testing as defined in Section 6.5.1.2 shall be 

implemented.  In addition, the developer shall document any known noise source 

failure modes.  Continuous tests should also be devised and implemented to detect 

those failures. 

2. Testing shall be performed on the digitized samples obtained from the noise 

source. 

3. The noise source shall be tested for variability in the output sample values.  (A 

sequence of outputs lacking in variability could, for example, consist of a single 

repeated value.)   

4. Noise source bits generated during start-up that have successfully passed the start-

up health tests may be used to produce entropy source output (after (optional) 

conditioning). 

5. When health testing detects a failure in the noise source, the entropy source shall 

be notified.  

Optional features for noise source health tests are: 

6. Appropriate health tests tailored to the noise source should place special emphasis 

on the detection of misbehavior near the boundary between the nominal operating 

environment and abnormal conditions.  This requires a thorough understanding of 

the operation of the noise source. 

 

6.5.1.2 Continuous Testing 

The purpose of continuous testing is to allow the entropy source to detect many kinds of 

disastrous failures in its underlying noise source.  These tests are run continuously on all 

digitized samples obtained from the noise source, and so must have a very low probability 

of yielding a false positive.  In many systems, a reasonable false positive rate will make it 

extremely unlikely that a properly-functioning device will indicate a malfunction, even in a 

very long service life.  In the case where an error is identified, the noise source shall notify 

the entropy source of the malfunction. 

Note that the tests defined operate over a stream of values. These sample values may be 

output as they are generated (i.e., processed by the conditioning component, as appropriate, 

and used by the entropy source to produce output); there is no need to inhibit output from 

the noise source or entropy source while running the test.  It is important to understand that 

this may result in poor entropy source outputs for a time since the error is only signaled 

once significant evidence has been accumulated and these values may have already been 

output by the source.  As a result it is important that the false positive rate be set to an 
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acceptable level.  Below, all calculations assume that a false positive rate of approximately 

once per billion samples generated by the noise source is acceptable; however, the 

formulas given can easily be adapted for even lower false positive probabilities, if 

necessary.   

Health tests are required for all entropy sources.  The continuous tests discussed in this 

Section are focused on noise source behavior and on detecting failures as the noise source 

runs.  The continuous tests shall: 

 Include the two tests below: the Repetition Count Test and the Adaptive Proportion 

Test; or 

 Include other tests that detect the same failure conditions reliably, according to the 

criteria given below in Section 10.0.        

6.5.1.2.1 Repetition Count Test  

The Repetition Count Test is an updated version of the "stuck bit" test—its goal is to 

quickly detect a catastrophic failure that causes the noise source to become "stuck" on a 

single output value for a long time.  Given the assessed min-entropy, H, of the noise 

source, it is easy to compute the probability that a sequence of N consecutive samples will 

yield identical sample values.  For example, a noise source with one bit of min-entropy per 

sample has no more than a 1/2 probability of repeating some sample value twice in a row, 

no more than 1/4 of repeating some sample value three times in a row, and in general, no 

more than (1/2)
N-1

 probability of repeating some sample value N times in a row.  More 

generally, if a dataset of N consecutive sample values is obtained from a noise source with 

H bits of min-entropy per sample, there is no greater than (2
-H

)
(N-1) 

of obtaining a sequence 

of N identical sample values. 

This test's cutoff values can be applied to any entropy estimate, H, including very small 

and very large estimates.  However, it is important to note that this test is not very 

powerful – it is able to detect only catastrophic failures of an entropy source.  For example, 

a noise source evaluated at eight bits of min-entropy per sample has a cutoff value of five 

repetitions to ensure a false-positive rate of approximately once per four billion samples 

generated.  If that noise source somehow failed to the point that it was providing only four 

bits of min-entropy per sample, it would still be expected to take about sixty-five thousand 

samples before the Repetition Count Test would notice the problem. 

As the noise source generates outputs, the entropy source keeps track of two variables and 

a constant, C: 

1. A  = the most recently seen sample value. 

2. B  = the number of consecutive times that the value A has been seen. 

3. C  = the cutoff value at which the Repetition Count Test fails. 

 

Therefore, running the Repetition Count Test requires enough memory to store A, B, and 

C.  The value of C does not need to be computed each time the test is run since C is 

computed at design time as follows.   
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If W > 0 is the acceptable false-positive probability associated with an alarm 

triggered by C repeated sample values, then the formula for the cutoff value 

employed by the Repetition Count Test is: 

 

C= 






 


H

W ))log((
1   2.  

 

This value of C is the smallest integer satisfying the inequality W  (
 
2

-H 
)
(C-1)

, which 

ensures that the probability of obtaining a sequence of C identical values from C 

consecutive noise source samples is no greater than W (when the noise source is providing 

entropy at the assessed rate of H bits per sample). 

 

Thus, for W = 2
-30

, an entropy source with H = 7.3 bits per sample would have a 

Repetition Count Test cutoff value of  .6
3.7
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The test is performed as follows: 

1. Let A be the first sample value produced by the noise source, and let B = 1. 

2. For each new sample processed: 

a) If the new sample value is A, then B is incremented by one. 

i. If B = C, then an error condition is raised due to a failure of the test. 

b) Else: 

i. A := the new sample 

ii. B := 1 

iii. Repeat Step 2. 

 

This test continues indefinitely while the entropy source is operating.  Note that the sample 

values may be output as they are generated (i.e., processed by the conditioning component, 

as appropriate, and used by the entropy source to produce output); there is no need to 

inhibit output from the noise source or entropy source while running the test. 

6.5.1.2.2 Adaptive Proportion Test  

The Adaptive Proportion Test is designed to detect a large loss of entropy, such as might 

occur as a result of some physical failure or environmental change affecting the noise 

source.  The test continuously measures the local frequency of occurrence of some sample 

value in a sequence of noise source samples to determine if the sample occurs too 

frequently. 

As the noise source generates sample values, the entropy source keeps track of three 

variables and three constants: 

1. A = the sample value currently being counted. 
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2. S = the number of noise source samples examined so far in this run of the test. 

3. B = the current number of times that A has been seen in the S samples examined so 

far.  

4. N = the total number of samples that must be observed in one run of the test, also 

known as the “window size” of the test. 

5. C = the cutoff value above which the test should fail. 

6. W = the probability of a false positive; W = 2
-30

 for this Recommendation. 

 

The test is performed as follows: 

1. The entropy source obtains the current sample from the noise source. 

2. If S = N, then a new run of the test begins: 

a) A := the current sample value. 

b) S := 0. 

c) B := 0. 

3. Else: (the test is already running) 

a) S := S + 1. 

b) If A = the current sample value, then: 

i. B := B + 1. 

ii. If B > C then raise an error condition, because the test has detected a failure. 

 

This test continues while the entropy source is running.  Running the test requires enough 

memory to store the sample value that is being counted, (A), the count of its occurrences 

(B), and an indication of the number of samples that have been examined in this run so far 

(S).  The other values listed above are constants that are defined in the following sections.  

Note that sample values are used by the entropy source as they are produced by the noise 

source; there is no need to inhibit output from the entropy source or noise source while 

running the test.   

6.5.1.2.2.1 Parameters for the Adaptive Proportion Test 

As noted above, there are three variables in the Adaptive Proportion Test that are modified 

as the test runs.  There are also three constant values that are determined prior to the start 

of the test.  W, the false positive rate, is set at 2
-30

 for this Recommendation.  This section 

will describe how to determine N and C based on the noise source being tested. 

 

6.5.1.2.2.1.1 Determining the Window Size, N 

The most important consideration in configuring this test is determining the window size.  

This involves the following trade-offs: 

 Some noise sources simply do not generate very many samples.  If an entropy 

source never processes as many noise source samples as appear in a window for 

this test, the test will never complete, and there will be little or no benefit in 

running the test at all. 
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 A larger window size allows for the detection of more subtle failures in the noise 

source.  On one extreme, a window size of 65536 samples can detect relatively 

small losses in entropy; on the other, a very small window size of 16 samples can 

reliably detect only the most catastrophic losses in entropy (and is therefore not 

included in this Recommendation).   

 A larger window size means that each test takes longer to complete.  Due to the 

way the Adaptive Proportion Test works, its result is dependent on what value it 

samples at the beginning of a test run.   Thus, the combination of a large window 

size and a relatively low-rate noise source can ensure that failures take a very long 

time to detect, even when the test is capable of detecting them.   

 

The window sizes allowed for this test are 64, 256, 4096, and 65536.  These provide a 

range of different performances.  All entropy sources shall continuously run the Adaptive 

Proportion Test using at least one of these window sizes, should run the Adaptive 

Proportion Test with the 4096 window size, and may continuously run the Adaptive 

Proportion Test in parallel for two or more different window sizes.  See Section 6.5.1.2.2.2 

for further discussion on running two or more versions of the test in parallel.   

 As seen in Table 1, a noise source claiming four bits of entropy per sample (i.e., H = 4 in 

the first column: the expected amount of entropy per sample), and using a window size of 

256, would be expected to be able to detect a 31% loss of entropy (that is, if the entropy 

was reduced to only 2.76 bits of entropy per sample, the test would detect the loss). 

H Window Size 

64 256 4096 65536 

1 67% 39% 13% 3% 

2 56% 32% 11% 3% 

4 50% 31% 12% 3% 

8 54% 40% 19% 6% 

16 69% 56% 40% 22% 

Table 1 Loss of Entropy Detected Based on Entropy per Sample and Window Size 

 

Figure 2 may make the tradeoff easier to understand.  It shows the relationship between the 

window size and the amount of entropy that must be lost by the noise source before the 

loss becomes detectable, for a variety of amounts of entropy claimed per sample.   

The black line at 30% provides a reasonable estimate for how much entropy can be lost 

before introducing a practical weakness in an RBG.  This suggests that the 4096-bit 

window size is sufficient to catch this amount of entropy loss for most noise sources.  

However, noise sources with a large number of bits per sample become less and less 

capable of detecting a large loss of entropy, both because the test is less powerful, and 
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because the test will only detect a failure of the noise source if the first value sampled in a 

run of the test is more probable than the entropy estimate expects it to be.   

 

 

Figure 2 Relationship Between Window Size and Detectable Loss of Entropy 

 

6.5.1.2.2.1.2 Computing the Cutoff Value, C 

The cutoff value is the value above which the Adaptive Proportion Test fails. The cutoff 

value C for the estimated min-entropy per sample H, window size N, and acceptable false-

positive rate W is computed by finding the critical value1 at α = 1-W of the binomial 

distribution with N trials and a probability per trial of 2
-H

.     

The following table gives cutoff values for various min-entropy estimates per sample (H) 

and window sizes (N), using an acceptable false-positive probability per N samples of 2
-30

. 

N 64 256 4096 65536 

H Cutoff Cutoff Cutoff Cutoff 

1 51 168 2240 33537 

2 35 100 1193 17053 

                                                 

1 This can be computed using widely-available spreadsheet applications.  In Microsoft Excel, Open Office 

Calc, and iWork Numbers, the calculation is done with the function =CRITBINOM().  For example, in 

Microsoft Excel, C would be computed as =CRITBINOM(N,2^(-H),1-T). 
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3 24 61 643 8705 

4 16 38 354 4473 

5 12 25 200 2321 

6 9 17 117 1220 

7 7 15 71 653 

8 5 9 45 358 

9 4 7 30 202 

10 4 5 21 118 

11 3 4 15 71 

12 3 4 11 45 

13 2 3 9 30 

14 2 3 7 21 

15 2 2 6 15 

16 2 2 5 11 

17 1 2 4 9 

18 1 2 4 7 

19 1 1 3 6 

20 1 1 3 5 

Table 2 Cutoff Values Based on Entropy per Sample and Window Size Given a 2
-30

 False 
Positive Rate 

Table 2 shows that for a noise source claiming four bits of min-entropy per sample and 

using a 4096 sample window size, the Adaptive Proportion Test would have a cutoff value 

of 354.  If the count within the window ever exceeds 354 matches of the first value 

sampled in a run of the test, the test fails, and an error condition shall be raised. 

Notice that given the window sizes above, the Adaptive Proportion Test is not defined for 

H < 1.  That is, when the noise source has less than one bit of min-entropy per sample, the 

Adaptive Proportion Test cutoffs are not defined.  When H is too small for the required 

window sizes, the test shall be performed as follows:   

1. Let Q be the number of samples needed to get a combined entropy estimate large 

enough for the chosen window size.  (For example, if N = 256, Table 2 requires that 

H have a minimum value of one. However, if the actual value of H for a sample is 

0.1, then 10 samples need to be combined; i.e., Q = 10.) 

2. For the Adaptive Proportion Test, successive Q-long sequences of low-entropy 

samples are concatenated into a single combined sample with an acceptable min-

entropy. 

3. The Adaptive Proportion Test's cutoff value is chosen for the combined samples' 
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entropy estimate of QH bits2. 

6.5.1.2.2.2  Running Adaptive Proportion Tests in Parallel 

The performance tradeoffs between different window sizes means that choosing a single 

window size requires either losing the ability to quickly discover large failures of the noise 

source, or losing the ability to eventually discover subtle failures.  A natural solution to this 

is to run the Adaptive Proportion Test in parallel with different window sizes.  For 

example, it would be natural in some applications to use window sizes of both N = 64 and 

N = 4096 to be used in parallel.   

If two different window sizes are used, individual counters and cutoff values shall be 

maintained for each window size.   

 

6.5.1.3 Start-up and On-Demand Testing 

Start-up testing is required to ensure that the entropy source components are working as 

expected in order to verify that nothing failed since the last time the start-up tests were run.  

This Recommendation requires that, at a minimum, the continuous tests be run at start-up; 

note that the same requirements apply to the start-up tests as do the continuous tests:  either 

both the Repetition Count Test and the Adaptive Proportion test or their equivalent(s) (See 

Section 10.0) shall be used as the start-up tests. At a minimum, the start-up tests shall 

consist of one full cycle of the continuous tests to ensure that the continuous tests have had 

an opportunity to verify that the device is working before it is used.  Other tests in addition 

to the continuous tests may also be run at start-up.   

The parameters chosen for the start-up testing may be different than those used for the 

continuous tests if power and memory are areas of concern while the entropy source is 

starting up.  Note that the entropy source shall not use noise source output for operational 

purposes until it has passed the start-up tests.  Therefore, more memory will be required, 

depending on the parameters chosen, if the noise source outputs used during start-up 

testing are intended to be used to create operational entropy source output since it will have 

to be buffered until the start-up health tests have completed successfully.  An alternative is 

to throw out any noise source output used in start-up testing. 

This Recommendation does not require that any particular on-demand testing be performed 

during operation. However, it does require that the entropy source be capable of 

performing on-demand health tests.  Note that resetting, rebooting, or powering up are 

acceptable methods for instituting an on-demand test if the procedure results in immediate 

execution of the start-up tests.       

 

                                                 
2
 Note that due to the conservative approach to entropy estimation it is possible to safely add together entropy 

estimates, so that concatenating ten samples with one bit of min-entropy per sample yields a combined 

sample with no less than ten bits of min-entropy. 
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6.5.2 Health Tests on the Conditioning Component 

The role of the conditioning component is to reduce the bias that would otherwise be 

present in the entropy source output and/or to ensure that the output bitstrings provide 

entropy at an acceptable rate.  The conditioning component will implement a deterministic 

algorithm.  

The functional requirements for the health tests of the conditioning component are: 

1. The conditioning component shall be tested during start-up with known answer 

tests necessary to establish that the conditioning component is working as designed. 

2. The developer shall describe the health tests implemented for the conditioning 

component to include the failure conditions covered by the tests chosen. 

 

7.0 Validation Data and Documentation Requirements 

Entropy source validation is necessary in order to obtain assurance that all relevant 

requirements of this Recommendation are met. Validation consists of testing by an 

NVLAP-accredited laboratory against the requirements of SP 800-90B, followed by a 

review of the results by NIST’s CAVP and CMVP.  

The validation of an entropy source presents many challenges.  No other part of an RBG is 

so dependent on technological and environmental differences. At the same time, the proper 

operation of the entropy source is essential to the security of an RBG. This section presents 

high-level requirements (on both developers and testers) for validation and provides a 

method for mapping large samples into smaller bitstrings for situations in which it is 

difficult to collect sufficient data for validation, given the size of the sample (see Section 

7.2).  The requirements below are intended to enable entropy source validation to help 

justify why the entropy source can be relied upon.  

7.1 General Validation Requirements 

The entropy source consists of three components:  the noise source, health tests, and an 

optional conditioning component.  The entropy source will have no more entropy than that 

provided by the noise source, and as such, the noise source requires special attention 

during validation testing. This is partly due to the fundamental importance of the noise 

source (if it does not do its job, the entropy source will not provide the expected amount of 

security), and partly because the probabilistic nature of its behavior requires more 

complicated testing.       

This section contains requirements for submitting an entropy source for [FIPS 140] 

validation.  Section 8.0 describes the testing strategy for noise sources, conditioned output, 

and full-entropy sources.  Section 9.0 details the specific validation tests.  

The following are general requirements for validation testing. 

1. Data Collection:   
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 Data collection will be performed in one of two ways 1) by the developer with a 

witness from the testing lab, or 2) by the testing lab itself.  The entropy source 

shall contain an interface that enables access to raw bits from the noise source 

and conditioned outputs from the conditioning component (if utilized).  This 

interface shall consume the noise source outputs (i.e., these outputs shall not be 

used for anything else once received by the interface).  The interface shall be 

accessible during validation testing but may be disabled, otherwise. 

 Data shall be collected from the noise source and conditioning component (if 

available) under normal operating conditions (i.e., when it is reasonable to 

expect entropy in the outputs).    

 Data collected from the noise source for validation testing shall be raw, 

digitized, but otherwise unprocessed, sample values.  NIST will provide 

guidance as to the appropriate format of the data for input to the validation 

tests.   

 One long dataset of at least 1,000,000 consecutive sample values obtained 

directly from the noise source (i.e., raw and unprocessed samples) shall be 

collected for validation3.       

 If a non-approved conditioning component is used, one long dataset of at least 

1,000,000 consecutive conditioned output values shall be collected for 

validation.  Note that the data collected from the noise source for validation 

may be used as input to the conditioning component for the collection of 

conditioned output values.       

 For sample values consisting of more than a single bit, the developer shall 

provide the tester with an ordered ranking of the bits in the sample values (see 

Section 7.2). 

Note that some tests will divide a dataset into multiple subsets of sample values; these 

subsets will be called “data subsets”. 

2. Validation Testing: 

 The continuous health tests shall be verified; the tester will verify that the 

implemented tests detect the failure conditions detected by the Repetition Count 

Test and Adaptive Proportion Test (See Section 6.5.1.2).   

 The tests in Section 9.0 will be run on all samples (noise source and non-

approved conditioning component output) submitted for testing; all data 

collected will be tested as defined in Section 8.0.   

                                                 

3 Providing additional data beyond what is required will result in more accurate entropy estimates.  Lack of 

sufficient data for the tests in Section 9.0 yields lower entropy estimates due to the necessity of mapping 

down the output values (see Section 7.2).  It is recommended that, if possible, more data than is required be 

collected for validation.  However, it is assumed in subsequent text that only the required data has been 

collected.   
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 The developer shall indicate whether the noise source produces IID data or 

non-IID data.  This claim will be used in determining the test path followed 

during validation.  A claim of full-entropy will be interpreted as an IID claim. 

 The min-entropy estimate generated by the tests in Section 9.0 will be the value 

at which the entropy source is validated.  This entropy estimate will be in terms 

of min-entropy per sample. 

 Full-entropy will be credited to an entropy source only after passing the tests 

for IID data in this Recommendation (see Sections 9.1 and 9.2). 

 The tester will test all data as specified in Section 8.0, and will examine all 

documentation and theoretical justifications submitted by the developer. 

3. Documentation for Validation Testing (not for general consumption): 

 The developer shall provide documentation that describes the operation of the 

entropy source to include how it works, how entropy is produced, and how to 

obtain data from within the entropy source for testing purposes (i.e., from the 

noise source and, if present, the conditioning component).   

 Documentation shall be provided so that the lab or vendor can perform (or 

replicate) the collection process at a later time, if necessary.  The collection 

process shall not require advanced knowledge of the source or intrusive actions 

that may alter the behavior of the entropy source (e.g., drilling into the device). 

 Documentation shall provide a technical argument for why the noise source can 

support a defined entropy rate.  This can be in broad terms of where the 

unpredictability comes from and a rough description of the behavior of the 

noise source (to show that it is reasonable to assume the behavior is stable).    

 Documentation shall describe the conditions under which the entropy source is 

claimed to operate correctly (e.g., temperature range, voltages, system activity, 

etc.). Analysis of the entropy source’s behavior at the edges of these conditions 

shall be documented, along with likely failure modes. 

 A description of the health tests and the rationale for implementing those tests 

shall be included.  The developer shall provide source code for any tests 

implemented as an alternative or in addition to those listed in this 

Recommendation. 

 The developer shall provide a description of the output space of the noise 

source, including its size, and shall specify the sample size from the noise 

source - a fixed quantity for a given noise source.   

 For entropy sources containing a conditioning component, a description of the 

conditioning component shall be provided that includes specification of the size 

of the output blocks from the conditioning component. 
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7.2 Dealing with the Data Requirement for Noise Sources with Large Output 
Spaces  

It is often the case that the data requirements for a test on noise source samples depend on 

the number of possible different bitstrings from the source (i.e., the output space).  For 

example, consider two different noise sources, A and B.  Source A outputs four-bit 

samples, and thus has a possible total of 2
4
 = 16 different outputs.  Source B outputs 32-bit 

samples, for a possible total of 2
32

 different outputs.   

In many cases, the variability in output that contributes to the entropy in a sample may be 

concentrated among some portion of the bits in the sample.  For example, consider a noise 

source that outputs 32-bit high-precision clock samples that represent the time it takes to 

perform some system process.  Suppose that the bits in a sample are ordered in the 

conventional way, so that the lower-order bits of the sample correspond to the higher 

resolution measurements of the clock.  It is easy to imagine that in this case, the low-order 

bits would contain most of the variability.  In fact, it would seem likely that some of the 

high-order bits may be constantly 0.  For this example, it would be reasonable to truncate 

the 32-bit sample to a four-bit string by taking the lower four bits, and perform the tests on 

the four-bit strings.  Of course, it must be noted that in this case, a maximum of four bits of 

min-entropy per sample could be credited to the noise source. 

The description below provides a method for mapping the n-bit noise source samples, 

collected as specified in Section 7.1, to strings of bit-length, m, where 𝑛 ≥ 𝑚.  The 

resulting strings can be used as input to tests that may have infeasible data requirements if 

the mapping were not performed.  Note that after the mapping is performed, the maximum 

amount of entropy per n-bit sample is m bits. 

In extreme cases, it is possible that there exists some dependency in the samples that is 

controlled by the bits that have been discarded.  If this is the case, any testing performed to 

validate the entropy estimate of the processed samples may result in an over-estimate of 

the entropy.  To minimize this possibility, the mapping technique will not be performed 

unless the sample bit-length is greater than can be handled by a particular test. 

Given a noise source that produces n-bit samples, where n exceeds the bit-length that can 

be handled by the test, the developer shall provide the tester with an ordered ranking of the 

bits in the n-bit samples.  The rank of ‘1’ shall correspond to the bit assumed to be 

contributing the most entropy to the sample, and the rank of n shall correspond to the bit 

contributing the least amount.  If multiple bits contribute the same amount of entropy, the 

ranks can be assigned arbitrarily among those bits.  The following algorithm, or its 

equivalent, shall be used to assign ranks. 

Input:  A noise source and corresponding statistical model with samples of the form 

𝑋 = 𝑥1𝑥2 … 𝑥𝑛, where each xi is a bit. 

Output:  An ordered ranking of the bits x1 through xn, based on the amount of entropy that 

each bit is assumed to contribute to the noise source outputs. 

1. Set 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑛}. 

2. For i = 1 to n: 
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a. Choose an output bit xj such that no other bit in S is assumed to contribute 

more entropy to the noise source samples than xj. 

b. Set rank(xj) = i. 

c. Set 𝑆 = 𝑆 − {𝑥𝑗}. 

Given the ranking, n-bit samples are mapped to m-bit strings by simply taking the m-bits of 

greatest rank in order (i.e., bit 1 of the m-bit string is the bit from an n-bit sample with rank 

1, bit 2 of the m-bit string is the bit from an n-bit sample with rank 2, … and bit m of the 

m-bit string is the bit from an n-bit sample with rank m). 

Note that for the tests in Section 9.0, a reference to a sample in the dataset will be 

interpreted as a reference to the m-bit string of the sample when the test necessitates 

processing the dataset as specified in this section. 

 

8.0 Entropy Source Testing Strategy 

8.1 General Noise Source Entropy Testing Strategy 

The most basic requirement for any entropy source is estimating the min-entropy correctly.  

A min-entropy estimate for the entropy source is calculated from the data submitted for 

testing, as defined in Section 7.1.  As shown in Figure 3, the test track is initially 

influenced by the developer’s claim that the data source does or does not produce IID data.  

Both tracks result in a min-entropy estimate, but use different information to determine the 

entropy in a dataset, based upon whether or not the data is IID.  Claims for full-entropy 

imply an entropy source produces IID data; any claim for full-entropy will be interpreted 

as an IID claim. 

1. If the data is claimed to be IID, a full set of shuffling and statistical tests is run on 

the data to verify that the data is IID (see Section 9.1); the claim is verified if there 

is no evidence that the data is not IID.     

2. If the results from the tests in Section 9.1 verify that the data is IID (via a lack of 

evidence to the contrary), the min-entropy of the noise source is estimated using the 

tests in Section 9.2.  This estimate will be used as the validated min-entropy 

estimate for a noise source that produces IID data.       

3. Alternatively, if there is no IID claim or if the tests in Section 9.1 do not support 

such a claim, a set of five conservative entropy tests are performed on the non-IID 

data to obtain the min-entropy estimate.  The five tests for non-IID data in Section 

9.3 will result in the calculation of five different entropy estimates.  By selecting 

the minimum of all estimates calculated by the tests, a worst-case estimate of the 

entropy is obtained, and this conservative estimate will be used as the min-entropy 

estimate for a noise source that does not produce IID data.  

4. Following the generation of an entropy estimate, the datasets are subjected to the 

sanity checks defined in Section 9.4.  These tests are designed to discover major 

failures in the design and gross overestimates of entropy by the test suite.  Failure 
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to pass the sanity checks means that the entropy source fails testing.  Entropy will 

not be credited to that entropy source. 

At this point, if the entropy source does not include a conditioning component, given that 

the entropy source components pass the tests, the entropy source will be validated at the 

determined min-entropy per noise source sample.  Otherwise, see Section 8.2. 
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Figure 3: Flowchart Depicting the Entropy Testing Strategy 
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8.2 Entropy Source Testing Strategy for Conditioned Output 

There are various methods for designing a conditioning component for an entropy source.  

One such method involves using an approved cryptographic algorithm/function to 

condition the noise source outputs.  If an approved algorithm, discussed in Section 6.4.1, 

is used as the conditioning component, validation testing on the output from the 

conditioning component using the appropriate tests in Section 9.0 will not be performed4.  

If a non-approved algorithm is used as the conditioning component, validation testing on 

the output from the conditioning component using the tests in Section 9.1 will be 

performed.  Any conditioned output must be IID. 

1. If a conditioning component is implemented in the entropy source, use the results of 

noise source testing to determine the amount of entropy provided in each input to the 

conditioning component (i.e., the amount of entropy in the input is the assessed amount 

of entropy per sample from the noise source times the number of samples provided for 

the conditioning component input). 

a. If the conditioning component is approved, then: 

i. Given assurance of correct implementation of the approved algorithm, the 

entropy estimate for each output of the conditioning component is 

min(outlen, entropy_in), where outlen is the length of the output from the 

conditioning component, and entropy_in is the amount of entropy per bit in 

the input to the conditioning component.  Note that it is acceptable to 

truncate the cryptographic output.  If this is done, the entropy estimate is 

reduced to a proportion of the output (e.g., if there are 6 bits of entropy in 

an 8 bit output and the output is truncated to 6 bits, then the entropy is 

reduced by ¼ to 4.5 bits). 

ii. If validation testing of the approved algorithm indicates that it has not been 

implemented correctly, the conditioning component will be treated as not 

approved. 

b. If the conditioning component is not approved, then: 

i. Determine the input/output ratio, R.  Most conditioning functions will take 

in more bits than they output. In some cases, the ratio of input to output bits 

will be fixed.  If this is the case, the input/output ratio will be determined by 

simply calculating the number of bits of input needed to produce a given 

number of output bits. On the other hand, some conditioning components 

may take an indeterminate number of input bits to produce a given number 

of output bits (e.g. von Neumann unbiasing, where the number of bits of 

output depends not only on the number of bits of input, but on the actual 

values of the input bits.) In this case, the ratio of input bits to output bits 

                                                 

4 Note, however, that these algorithms are subject to other validation testing to obtain assurance of correct 

implementation and obtain their approval rating. 
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will be estimated by processing 1,000,000 bits of noise source data through 

the conditioning component and observing the number of bits of output. 

ii. Run the tests in Section 9.1 on the output of the conditioning component.  

Any conditioned output must be IID; a full set of shuffling and statistical 

tests is run on the data to verify that the data is IID.  The sample size of the 

conditioned output is the size of the output space of the non-approved 

conditioning component (e.g., if MD5 is the conditioning component, the 

sample size is 128 bits). 

a. The claim is verified if there is no evidence that the data is not IID 

and testing continues.   

i. The min-entropy of the conditioned output is estimated using 

the test in Section 9.2. 

ii. Let S be the entropy estimate for the noise source (i.e. the 

number of bits of entropy per bit of noise source output.) as 

determined by the noise source validation tests.  Let E be the 

entropy estimate for the conditioned output values, and let R 

be the input/output ratio of the conditioning component. 

Since the conditioning component cannot increase the 

entropy, it must be the case that S/R ≥ E. If this condition is 

not met, the entropy estimate E will be adjusted to be equal 

to S/R. 

b. If the tests in Section 9.1 do not support the IID claim, then the 

entropy source fails validation, and testing is terminated. 

iii. Following the generation of an entropy estimate, the data is subjected to the 

sanity checks defined in Section 9.4.  These tests are designed to discover 

major failures in the design and gross overestimates of entropy by the test 

suite.  Failure to pass the sanity checks means that the entropy source fails 

testing.  Entropy will not be credited to that entropy source. 

At this point, given that the conditioned output is found to be IID and the components have 

passed the sanity checks, the entropy source will be validated at the min-entropy per 

conditioned output, E, computed above. 

8.3 Entropy Source Testing Strategy for Full Entropy Sources 

Claims for full-entropy imply that a noise source or an entropy source produces IID data; 

any claim for full-entropy will be interpreted as an IID claim.  There are two basic options 

for full-entropy:  full-entropy with no conditioning component, and full-entropy through 

implementation of an approved conditioning component.  Entropy sources that implement 

a non-approved conditioning component will not be validated as full-entropy sources. 

1. If full entropy is claimed, the data must be IID.  A full set of shuffling and 

statistical tests is run on the data to verify that the data is IID (see Section 9.1).  
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a. If the noise source passes the IID tests in Section 9.1 (i.e., there is no 

evidence that the data is not IID), then testing continues.  The min-entropy 

of the noise source is estimated using the tests in Section 9.2.   

i. For full-entropy sources with no conditioning component:  Credit 

for full-entropy will be given only if the data is verified to be IID, 

and a full-entropy estimate is produced by the tests in this 

Recommendation. 

ii. For full-entropy sources with an approved conditioning component:  

Credit for full-entropy will be given only if the data is verified to be 

IID, and the noise source input used to derive the W -bit full entropy 

conditioned output has at least 2W bits of min-entropy (see Section 

6.4). 

b. If the noise source does not pass the IID tests in Section 9.1, then full 

entropy is not provided and the entropy source will not be validated as a 

full-entropy source.  Validation may continue, however, using the non-IID 

path. 

2. Following the generation of an entropy estimate, the datasets are subjected to the 

sanity checks defined in Section 9.4.  These tests are designed to discover major 

failures in the design and gross overestimates of entropy by the test suite.  Failure 

to pass the sanity checks means that the entropy source fails testing.  Entropy will 

not be credited to that entropy source. 

At this point, given that the entropy source components have passed the tests, the entropy 

source will be validated at the determined min-entropy per sample. 

 

8.4 Entropy Source Testing Strategy for the Health Test Component 

Entropy sources that do not implement the Repetition Count Test and the Adaptive 

Proportion Test shall include alternative continuous tests that detect the same failure 

conditions.  The tester will determine the equivalence of the alternative test(s) as described 

in Section 10.0.     

Submitters of entropy sources for validation testing are required to provide a dataset of at 

least a million samples drawn from their noise source for validation testing.  The testing of 

the submitter’s alternative test(s) for equivalent functionality also requires a dataset; the 

same dataset may be used for both noise source validation testing and the testing of 

equivalent functionality of the continuous health tests.   

The tests work as follows: 

1. A dataset, D, taken from the noise source is modified to simulate a particular kind 

of failure that the Repetition Count or Adaptive Proportion Test will detect with 

very high probability.  Note that a different simulated failure is used (and thus a 

different altered dataset is created) for each test, although the same “original” 

dataset may be used. 
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2. The alternative test(s) is applied to this modified dataset, D'.  If the simulated 

failure is detected, then the alternative test is assumed to provide equivalent 

functionality. 

If these tests for equivalent functionality fail, then the requirement on the health test 

component is not met and the entropy source will not be validated. 

 

9.0 Tests for Determining Entropy Provided by Entropy Sources 

One of the essential requirements of an entropy source is the ability to reliably create 

random outputs.  To ensure that sufficient entropy is input to a DRBG (see [SP 800-90C] 

for DRBG constructions), the amount of entropy produced per noise source sample must 

be determined.  This Section describes generic tests that will be used to test the noise 

source and, when non-approved methods are used, the conditioning component as well 

(see Section 8.2).   

The tests described in this Section are appropriate for a wide range of noise sources. 

Because these tests are generic, they are aimed at catching serious problems and are not 

meant to address all possible types of sources or all failure conditions.  

The test descriptions in this Section are written for an accredited testing laboratory, 

although the tests are also useful for entropy source developers. 

9.1 Determining if the Data is IID 

9.1.1 General Discussion 

This section describes tests appropriate for a wide range of noise sources and non-

approved conditioning components in which each sample is drawn from the same 

distribution, and its probability of occurrence is independent of any other value sampled.  

A noise source or conditioning component that meets this requirement is known as IID 

(independent and identically distributed).  These tests are designed to find evidence that the 

data is IID by testing the dataset against the hypothesis that the distribution of samples is 

IID.  These tests are used as a check on the validity of the developer’s claim that an IID 

source has been submitted; the testing consists of the shuffling tests defined in Section 

9.1.2, and the statistical tests defined in Section 9.1.3.  If the tests do not disprove the IID 

claim (i.e., the dataset passes the IID testing), further testing continues under the 

assumption that the noise source outputs IID data (see Figure 3).  A failure of any of the 

shuffling or statistical tests in Section 9.1 results in a cessation of IID testing and a switch 

to tests for non-IID data (see Section 9.3).     

9.1.2 Shuffling Tests on Independence and Stability 

Given the null hypothesis that the samples follow an IID distribution, a shuffled version of 

a dataset should be just as likely to have occurred as the original dataset that was produced.  

The original dataset’s test score is expected to be drawn from the same distribution as the 

scores of the shuffled datasets; an original dataset test score of unusually high or low rank 
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(see Step 2c below) is expected to occur very infrequently.  However, if the null hypothesis 

is not true (i.e., the samples do not follow an IID distribution), then some test scores may 

be very different for the original and shuffled datasets.   

A dataset created as specified in Section 7.1 will be divided into ten non-overlapping data 

subsets of equal size, i.e., for a dataset consisting of N samples, each data subset would be 










10

N
 samples in length.  Each of these data subsets will be tested to determine if the 

samples follow an IID distribution. 

Shuffling tests detect a deviation of the noise source or conditioning component 

distribution from independent and stable behavior using the following strategy: 

1. Several statistical scores are calculated.  Certain behavior is not consistent with the 

expected model of an independent, stable distribution for the samples and is 

expected to be associated with unusually low or high values for the test scores. The 

following scores are computed: 

 Compression score: one score per data subset (see Section 9.1.2.1), 

 Over/Under Runs score: two scores per data subset (see Section 9.1.2.2), 

 Excursion score: one score per data subset (see Section 9.1.2.3),  

 Directional Runs score: three scores per data subset (see Section 9.1.2.4), 

 Covariance score: one score per data subset (see Section 9.1.2.5), and 

 Collision score: three scores per data subset (see Section 9.1.2.6). 

2. The following steps are performed on each of the ten data subsets being tested:   

a. The scores are computed for the (original) data subset, yielding a vector of J 

scores.  

b. The following steps are repeated 1,000 times for the data subset: 

i. The values in the (original) data subset are shuffled (i.e., permuted), 

using a pseudorandom number generator as specified by the Fisher-

Yates shuffle [Knuth]. 

ii. The scores are computed for the shuffled data subset, yielding a 

vector of J scores, where J is the number of scores for a given test 

on a single dataset (see step 1 above). 

iii. The scores are stored in a list. 

c. For each of the corresponding scores for a data subset (e.g., all the first 

scores resulting from the directional runs test), the original data subset’s 

score (from step 2a) is ranked, in terms of how it compares to the scores of 

the shuffled data subsets.  For example, if the original data subset’s score is 

lower than the score of all the shuffled data subsets, the rank of the original 

data subset’s score is 1, and the scores for all the other shuffled data subsets 

would have a higher rank.  If the original data subset’s score is higher than 
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the score of all the shuffled data subsets, it has a rank of 1000, and all other 

scores would have a rank < 1000.   

It is possible for many shuffled data subsets to have the same score.  When 

the original data subset has the same score as one or more shuffled data 

subsets, its score is taken to be the closest one to the median.   Given a 

sorted list L[0…1001] of shuffled data subset scores, and a score for the 

original data subset, S, the following rule is used: 

     max(j) such that L[j] ≤ S  if L[500] > S 

 Rank(S) =   500     if L[500] = S 

    min(j) such that L[j] ≥ S  if L[500] < S  

 This rule ensures that only exceptionally high or low scores show up as 

anomalous in the shuffling tests. 

 For example, if S = 20, L[500] = 22, L[299] = 19, L[300] = 20, L[301] = 

20, and L[302] = 22, then Rank(S) = 301.  If S = 20, L[500] = 18, L[599] = 

19, L[600] = 20, and L[601] = 20, then Rank(S) = 600. 

3. The ranks are treated as p-values in a two-tailed test.  The ten data subsets produce 

a set of 10×J p-values for each of the six test types.   

4. The p-values are combined according to the following rules: 

a. Any rank  50 or ≥ 950 is noted.  Such events have a probability of 10% of 

happening by chance. 

b. If eight or more of the original data subsets have a rank  50 or ≥950 on the 

same test for each score, the source fails.   

i. If a noise source is being tested, it fails the tests for independence 

and stability and is not considered to be IID.  The testing of the 

noise source will proceed along the alternate test path (see Section 

9.3).   

ii. If a non-approved conditioning component is being tested, the 

entropy source fails validation. 

9.1.2.1 Compression Score 

General-purpose compression algorithms are extremely well adapted for removing 

redundancy in a character string, particularly involving commonly recurring subsequences 

of characters.  The compression score of a data subset (original or shuffled) measures the 

length of that data subset after the samples are encoded into a character string and 

processed by a general-purpose compression algorithm.       

The compression score is computed as follows: 

1. The samples in the data subset are encoded as a character string containing a list of 

values separated by commas, e.g., “144,21,139,0,0,15”. 
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2. The character string is processed with the [BZ2] compression algorithm.   

3. The score returned is the length of the compressed string, in bytes. 

9.1.2.2 Over/Under Runs Scores (Two Scores) 

The median value of a data subset is computed, and all sample values not equal to the 

median are identified as either above it or below it.  Long runs of samples above or below 

the median are then expected to be relatively rare if the outputs are independent and stable.  

Similarly, the number of runs of samples that are above or below the median is a measure 

of whether a given sample is at all dependent on its neighbors, and whether the distribution 

is stable.    

This test is applicable for any data subset whose samples take on numeric or ordinal 

values.  However, for testing simplicity, the tests should be run even if the data is non-

numeric or non-ordinal.  

Each data subset (original and shuffled) is used to produce a temporary data subset, 

consisting of only the values 1 and +1. Sample values less than the median of the original 

data subset are assigned a 1 value in the temporary data subset; those greater than the 

median are assigned a +1 value, and those equal to the median are omitted from the 

temporary data subset.  The longest run and number of runs in the temporary data subset 

are then noted, yielding two scores for each of the original and shuffled data subsets.   

The scores are computed as follows: 

1. The data subset is used to compute a median for the values in this data subset.  If 

the data subset is binary, then the median is 0.5.   

2. A temporary data subset is constructed as follows for each of the original and 

shuffled data subsets.  For each element in the data subset: 

a. If the element is larger than the median, append a +1 to the temporary data 

subset. 

b. If the element is smaller than the median, append a 1 to the temporary data 

subset. 

c. If the element is the same as the median, do not append anything to the 

temporary data subset. 

3. Determine the longest run of –1 or +1 in the temporary data subset, and let the 

length of this longest run be the first score.   

4. The number of runs of 1 and +1 values in the temporary data subset is reported as 

the second score.  

For example, assume that the original data subset consists of seven samples {5, 15, 12, 1, 

13, 9, 4}; the median for this data subset is 9. The temporary data subset on this original 

data subset is {–1, +1, +1, –1, +1, –1}; note that the entry for 9 is omitted, by rule 2c. The 

runs are (–1), (+1, +1), (–1), (+1), and (–1). The longest run has a length of 2 (the first 

score), and the number of runs is 5 (the second score). 
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9.1.2.3 Excursion Score 

The excursion score detects when a sequence of extremely high or low values clusters 

together in the data subset.  This indicates a distribution that may fail to be stable or 

independent.  Both high and low excursion scores are of interest.  High scores represent 

clusters of unusually high/low values occurring together; low scores represent some 

process that prevents unusually high/low values from clustering together even as often as 

would be expected by chance.   

The excursion score is meaningful if the average value of the samples is meaningful (e.g., 

an average can be computed on the dataset values).  In a large number of cases in which 

the sample value is a count or a digitized value, the average of the dataset values can be 

computed.  However, for test simplicity, the tests should be run even if an average cannot 

be computed.      

The excursion score is a measure of how far the running sum of sample values deviates 

from its expected value at each point in the data subset.  If the data subset is s0, s1, s2,..., 

and the mean of the sample values is , then the excursion at position i is s0+s1+...+si – 

i×.  The score returned is the maximum absolute value of any excursion in the data 

subset.   

The score is computed as follows, where  = the mean of the values in the data subset. 

1. For j = 1 to 








10

N
 (where 









10

N
 is the length of the data subset in samples): 

dj = the absolute value of (the sum of the first j samples – j×) 

2. The score returned is the largest of the dj values. 

For example, if the data subset is {2, 15, 4, 10, 9}, then  = 8. d1 = |2-8| = 6; d2 =  |(2+15) – 

(28)| = 1; d3 = |(2+15+4) – (38)| = 3; d4 = |(2+15+4+10) – (48)| = 1; d5 = 

|(2+15+4+10+9) – (58)| = 0. Therefore, the score is 6, the highest value for dj. 

9.1.2.4 Directional Runs Scores (Three scores) 

Many physical processes are best understood in terms of their derivatives.  If the first 

derivative alternates signs between samples, then a large number of short directional runs 

will be noted.     

Each data subset (original and shuffled) is used to generate a temporary data subset that is 

one element shorter than the original (or non-temporary) data subset.  The temporary data 

subset contains an indication of whether the first value in each pair of elements is less than, 

equal to, or greater than the second element in the pair. If the first element is less than the 

second element, then a +1 is appended to the temporary data subset; if the two elements are 

equal, then a 0 is appended to the temporary data subset; otherwise the first element is 

greater than the second element, and a 1 is appended to the temporary data subset. For 
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example, if the data subset is {24,19,33,4,4,11}, then the temporary data subset would be 

{1,+1,1,0,+1}. Three scores are then computed on this temporary data subset:  

1. The total number of runs (in this case, 0 values do not break a run, e.g., a run of 

{...+1, 0, 0, +1...} is considered to be a continuous run of +1 values);  

2. The length of the longest run; for this count, leading zeroes are ignored, 

however, zeroes do not break a run (i.e., runs must start with 1 or +1; 0 values 

do not break a run); and  

3. The number of 1 or +1 values in the temporary data subset, whichever is 

greater (e.g., if there are 33 occurrences of 1, and 35 occurrences of +1, then 

the score is 35).    

These scores can detect a wide variety of ways in which the physical processes underlying 

a noise source cause the distribution of samples to not be stable or independent.  Both high 

and low values of all three scores are of interest. 

The scores are computed as follows, where si is the i
th

 element of the data subset, and 

“hamming_weight(si, si+1, …, si+n)” is defined as the number of ones in the sequence si, si+1, 

…, si+n: 

1. The temporary data subset temp is produced from the data subset as follows:   

a. If the input is not binary: 

For i = 0 to (the length of original data subset)  2: 

If si < si+1, then tempi = 1 

Else if si > si+1, then tempi = 1 

Else tempi = 0. 

b. If the input is binary: 

Data subsets containing binary data first require processing in which the bits 

are combined into bytes.  Then, a new data subset is created from the 

Hamming weights of the successive bytes and the temporary data subset is 

generated from this. 

For i = 0 to the (length of original data subset)/8  1: 

 Wi= hamming_weight( si,..., si+7) 

For i = 0 to (length of sequence W)-2: 

 If Wi<Wi+1 then tempi = 1 

 Else if Wi>Wi+1 then tempi = -1 

 Else tempi = 0 

 

2. Calculate the scores on the temporary data subset.  
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Example of a non-binary data subset {2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4}: The temporary data 

subset is {0, 0, +1, +1, 0, +1, 1, 1, +1, 0}. There are three runs:  (+1, +1, 0, +1), (1, 1) 

and (+1, 0), so the first score is three. The longest run has a length of four (the second 

score). Since there are four “1” values, and two “1” values, the third score is four. 

Example of a binary data subset: The bytes produced by step 1b (represented as 

hexadecimal values) are {a3, 57, 3f, 42, bd}. The hamming weights are {4, 5, 6, 2, 6}. The 

temporary data subset is {+1, +1, 1, +1}. There are three runs: (+1, +1), (1) and (+1), so 

the first score is three. The longest run has a length of two (the second score). Since there 

are three “+1” values and one “1” value, the third score is three. 

9.1.2.5 Covariance Score 

Many of the likely ways that a noise source can fail to be IID involve dependencies 

between nearby samples.  The chi-square test of independence (see Section 9.1.3.1), and 

the compression score (see Section 9.1.2.1) are effective at detecting repeating patterns of 

particular values (e.g., strings of sample values that occur more often than would be 

expected by chance if the noise source were IID), but will not, in general, detect 

relationships between the numeric values of successive samples (e.g., high sample values 

usually being followed by low sample values).  The covariance score will detect such 

relationships. 

The behavior of the covariance score is well-understood for bivariate normal distributions.  

However, any linear relationship between the successive pairs of values will affect this 

score, and so the covariance is expected to be different (larger or smaller) for the original 

data subsets than for the shuffled data subsets, if such a relationship exists.  

The covariance of two variables is defined as the expected value of their product, minus 

the product of their expected values.  The covariance is a common statistical measure of 

whether two variables have a linear relationship. The covariance score is computed over 

each pair of the data subset S, so that s0 is paired with s1, s1 with s2, etc. 

The score is computed as follows, where si is the i
th

 element of the data subset, numbered 

from zero, and there are a total of 








10

N
 samples in the data subset: 

1. count = 0 

2.  = the mean of s0, s1, s2, ..., sN/10-1. 

3. For i = 1 to 








10

N
: 

count = count + (si  )(si1  ) 

4. Score = 

1
10








 N

count
. 
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For example, if the data subset is {15, 2, 6, 10, 12}, then there are five samples in the data 

subset, and the mean  is 9. For i=1, count = (29)(159) = 42; for i=2, count = 42 + 

(69)(29) = 21; for i=3, count = 21 + (109)(69) = 24; for i=4, count = 24 + 

(129)(109) = 21. The score is (21/4) = 5. 

9.1.2.6 Collision Score (Three scores) 

A natural measure of how much entropy is in a variable comes from the number of times it 

must be sampled before the first duplicate value (“collision”) occurs.  A source that is IID 

can be expected to have the same behavior with respect to the number of samples that 

occur before a collision occurs as its shuffled variants.  By contrast, a source in which the 

probability of the most likely value changes over time is likely to require fewer samples to 

find a collision in its unshuffled outputs than in its shuffled outputs. 

The collision score measures the number of successive sample values until a duplicate (a 

“collision”) is seen.  A single data subset will normally have many times this number of 

values, and so many such collisions can be sought in different parts of the data subset.   

Starting at the beginning of the data subset, samples are examined until a duplicate is 

found.  The number of samples examined is noted, and then a new search for duplicates 

starts at the next element in the data subset.  This continues until the whole data subset has 

been checked.  The set of numbers of samples examined is then used to compute three 

scores: the smallest number, the average, and the largest number.   

In the case of binary data, a data subset consisting of binary data is converted into a 

sequence of 8-bit bytes before being subjected to this test, so that each sequence of eight 

bits in the original data subset becomes one byte in the modified data subset.  The modified 

data subset is then subjected to the above process to compute collision scores.  Note that 

both the (original) data subset and each shuffled data subset are separately modified by this 

process.  Also note that the length of this modified data subset is 








80

N
 because of this 

process, whereas the length of the original binary data subset and data subsets that do not 

consist of binary data have a length of 








10

N
. 

The scores are computed as follows: 

1. Counts is a list of counts of samples needed to see a duplicate; the list is initially 

empty. 

2. pos = 0 

3. While pos < (the length of the data subset): 

a. Find the smallest j such that spos .. spos+j contains one duplicate value. 

i. If no such j exists, break out of the while loop. 

b. Add j to the list of Counts. 

c. pos = pos + j + 1 
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4. Return the following values as scores: the minimum value in the Counts list, the 

average of all values in the Counts list, and the maximum value in the Counts list. 

For example, if the data subset is {2, 1, 1, 2, 0, 1, 0, 1, 1, 2}, the length of the data subset is 

10. If the first “2” is at position 0, then the first collision occurs when j = 2 (i.e., samples 1 

and 2 are both ones). Disregarding the first three samples in the data subset, the next 

sequence to be examined is {2, 0, 1, 0, 1, 1, 2}, the collision for this new sequence occurs 

when j = 3 (i.e., samples 1 and 3 of this second sequence are both zeros). The third 

sequence to be examined is {1, 1, 2}; the collision for this third sequence occurs when j = 

1 (i.e., samples 0 and 1 are both ones). The final sequence to be examined is {2}, for which 

there are no collisions. The counts collected for this test occur when j = 2, j = 3, and j = 1. 

The first score returned is 1 (the minimum count value); the second score is 2 (the average 

of the count values); the third score is 3 (the maximum value of the count values). 

9.1.3 Specific Statistical Tests  

9.1.3.1 Chi-Square Test  

Sample values are limited to a fixed range of possibilities.  If the requirements on the noise 

source and non-approved conditioning component to be IID are met, then the distribution 

of these values can be seen as an independent category distribution (a multinomial 

distribution, in which the individual sample values have no meaningful relationship.)  The 

chi-square test can be used to test whether a particular dataset fits a particular multinomial 

distribution.   

Chi-square tests can be used to check whether a dataset of samples follows some expected 

distribution, and also whether two or more datasets follow the same distribution.  It should 

be noted that there are some distributions for which a chi-square test cannot be performed 

because the data requirements are too great.  This occurs when the output samples have a 

large number of possible values, none with very high probability.  In these cases, two 

options are available:  1) more data than required in Section 7.1 should be submitted (or 

collected) such that the test can be executed, or 2) if additional data cannot be obtained, the 

chi-square test can be skipped, since it will not be possible to perform the test.  If the test is 

not performed due to lack of data, the rest of the validation testing will continue as 

specified.    

Two different types of chi-square tests are employed for validating a noise source and non-

approved conditioning components: a test for independence, and a test for goodness-of-fit.  

The independence test attempts to discover dependencies in probabilities between 

successive samples in the (entire) dataset submitted for testing as specified in Section 7.1 

(see Section 9.1.3.1.1 for non-binary data and Section 9.1.3.1.3 for binary data); the 

goodness-of-fit test attempts to discover a failure to follow the same distribution in the ten 

data subsets produced from the (entire) dataset submitted for testing (see Section 9.1.3.1.2 

for non-binary data and Section 9.1.3.1.4 for binary data). 
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9.1.3.1.1 Testing Independence for Non-Binary Data 

For this test, the (entire) dataset submitted for testing, as defined in Section 7.1 is used to 

estimate the probability of each possible value occurring (i.e., each value that a single 

sample could assume).  The dataset is used to estimate the probabilities for each possible 

value of x that could occur.  The occurrences of pairs of such values in the dataset are then 

checked against their theoretical probability of occurrence.  

Let p(xi) equal the estimated probability that value xi will occur in any given sample. Let 

List1 contain a list of (xi, xj) pairs that is expected to occur at least five times, and List2 

contain a list of (xi, xj) pairs that is expected to occur less than five times. Let E(xi, xj) be 

the expected number of occurrences for the (xi, xj) pairs in List1, and Eother be the total of 

the expected number of occurrences of the entries in List2. 

Informally, the chi-square test for independence is carried out as follows: 

1. Determine p(xi) for each possible output value in the dataset by counting the 

number of occurrences of each xi, and dividing by the length of the dataset.  

2. Determine pmax = the maximum probability that occurs in the dataset.  

3. Let N = the number of samples in the dataset.  

4. Count the number of parameters to be estimated.  Let q = 1; start with 1 because the 

catch-all category probability will be estimated. 

a. For each p(xi ) : 

If p(xi )pmax ≥ 5/N, let q = q + 1. 

q now contains the number of parameters that are estimated in this test.  

Now, determine the number of bins. 

b. If q=1, then the test halts with no result--there are no pairs with high enough 

probability to run the test on.  This means that the dataset is too small to run 

this test on this source distribution.   

5. The sets of pairs of values that are expected to occur at least five times or less than 

five times are constructed, as follows: 

a. Set List1 and List2 to empty sets. 

b. Eother = 0. 

c. For each possible pair of values (xi, xj), including (xi, xi): 

If p(xi)p(xj)N ≥ 5: 

i. Add the (xi, xj) pair to List1.  

ii. Let E(xi, xj) =  p(xi)p(xj)N. 

Else: 

iii. Add the (xi, xj) pair to List2.  

iv. Eother = Eother + p(xi)p(xj)N. 
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6. Verify that enough degrees of freedom are obtained to run the test.  If not, this test 

has no result; the test may be omitted or more data may be requested. 

a. Let w = the number of pairs that appear in List1. 

b. If w+1-q < 1: halt the test with no result – there is not enough data to run the 

test properly. 

7. Compute the chi-square score: 

a. X1 = 0. 

b. For each pair (xi, xj) in List1:  

i. Obs(xi, xj) = the number of occurrences of this pair of values in the 

dataset. 

ii. X1 = X1 + (E(xi, xj) – Obs(xi, xj))
2
/E(xi, xj). 

c. X2 = 0. 

d. For each pair (xi, xj) in List2: 

i. Obs(xi, xj) = the number of occurrences of this pair in the dataset. 

ii. X2 = X2 + Obs(xi, xj). 

e. X = X1 + (X2  Eother)
2
/Eother. 

X is a chi-square value.  Compare X with the 0.001 cutoff value for a chi-square with w+1-

q degrees of freedom.  If X is larger than this cutoff value, the dataset fails the test; this is 

strong evidence that sample values in the sequence are not independent.  A high chi-square 

score indicates a lack of independence, and a p-value less than 0.001 causes this test to fail 

9.1.3.1.2 The Test for Goodness of Fit for Non-Binary Data 

For this test, the (entire) dataset, as defined in Section 7.1, is used to estimate the expected 

number of occurrences of each sample value in each of the ten subsets of the dataset.  

These values are then used to test the hypothesis that the values have the same probabilities 

of occurring in each of the ten data subsets.   

Let xi be a possible output (i.e., a possible sample). Let E(xi) = the expected number of 

occurrences of xi in any one data subset.  Let List3 and List4 be lists of the values of xi. Let 

Eother = the sum of the E(xi) for each xi in List4.   

Informally, the chi-square test for goodness of fit is carried out as follows: 

1. Determine E(xi) for each xi.  This is the total number of occurrences of xi in the 

entire dataset, divided by ten.   

2. Let List3 be the list of values of xi, such that E(xi)  ≥ 5. 

3. Let List4 be the list of values of xi, such that E(xi) <5. 

4. Eother = 0.  

5. For each xi in List4: 
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Eother = Eother + E(xi). 

6. Let X1= 0. 

7. For each of the ten data subsets: 

a. Let Obs (xi) be the observed number of occurrences of xi in the data subset. 

b. For each xi in List3 (i.e., each xi that is expected to occur at least five times):  

X 1= X1 + (Obs(xi)  E(xi))
2
/E(xi). 

c. Obsother = the number of occurrences of values in List4 in the data subset. 

d. X = X1 + (Obsother  Eother)
2
/Eother. 

The final total value X is a chi-square variable, with 9|L| degrees of freedom, where L is the 

length of List3, plus 1 (i.e., the number of values with expected value ≥ 5, plus 1).  A p-

value of less than 0.001 means that one or more of the ten data subsets do not fit the 

distribution determined from the (entire) dataset, and the test fails.   

9.1.3.1.3 Testing Independence for Binary Data 

If the binary source is IID, then each bit appears with the same probability everywhere in 

the dataset.  This means that the probability of each k-bit string is the probabilities of each 

of its successive bits, multiplied together.   This test checks to see if these k-bit strings have 

the expected probability over the whole dataset.  If nearby bits are not independent, then 

the expected probabilities of k-bit strings derived from bit probabilities will be wrong for 

the whole dataset, and the chi-square score will be much larger than expected. 

This test can be applied to binary data to test the independence of the bits in the dataset.  In 

order to do this, successive bits must be grouped together as follows: 

1. Let C0 be the count of zeros in the dataset, and C1 be the count of ones. 

2. Let Cx be whichever of those two is smaller.  That is, Cx = min(C0, C1). 

3. Let N be the total number of bits in the dataset. 

4. Let k = 2 

5. While k < 12 and  (Cx/N)
k
 > 5/N: 

k = k + 1 

6. k = k – 1 

At the end of this process, 2  k < 12.  Construct a modified dataset from the dataset as 

follows: 

 new_dataset[i] = dataset[ki .. (k+1)i-1] 

That is, each successive k bits of the dataset becomes a new element in new_dataset.  The 

expected probabilities of each value in the dataset, and a chi-square score are computed as 

follows: 

1. p = C1/N (the probability of getting a one bit in the dataset). 
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2. S = 0.0. 

3. For value = 0 to 2
k
-1: 

a. W = hamming_weight(value) (i.e., number of ones in value) 

b. prob(value) = p
W

(1-p)
k-W

 . 

(That is, the probability of each value is estimated, based on the bit 

probabilities.)   

c. E(value) = prob(value)N/k. 

d. Let Cvalue = the number of times that value appears in new_dataset. 

e. S = S + (Cvalue-E(value))
2
/E(value). 

The final total value S is a chi-square variable, with 2
k
-1 degrees of freedom.  Compare S 

with the 0.001 cut-off value for a chi-square with 2
k
-1 degrees of freedom.  A high chi-

square score indicates a lack of independence; if S is larger than this cut-off value, the 

dataset fails the test.   

9.1.3.1.4 Testing for Stability of Distribution in Binary Data 

Given an estimate of the bit probability p for a one over the (entire) dataset, a goodness-of-

fit test can be used to verify that the probability is stable across the ten individual data 

subsets as follows: 

1. Let p be the probability that a bit in the (original) dataset is a one.  This is 

computed as: 

p = (number of one bits in the dataset/N). 

2. Let Nd be the length of each of the ten individual data subsets (i.e., 








10

N
).   

3. Let Ed = pNd. 

4. S = 0.0 

5. For d = 1 to 10: 

a. Cd = the number of ones in data subset d. 

b. S = S + (Cd - Ed)
2
/ Ed . 

S is a chi-square variable with 9 degrees of freedom.  The test fails if S is larger than the 

critical value at .001, which is 27.9. 

9.1.3.2 Other Statistical Tests 

Other statistical tests may be added in the future. 
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9.2 Estimating the Min-Entropy of IID Sources 

Similar to a ‘bins’ test, this test estimates the entropy provided by an IID source, based on 

the number of observations of the most common output value.  Estimating entropy in an 

IID source is a simple process:  the most common value in the dataset described in Section 

7.1 is found and counted.  This is used to produce a 99% upper bound on the probability of 

the most common value, pmax, and that upper bound is used to produce a lower bound 

estimate of min-entropy per sample of the source.   

Simply counting the most common value introduces a small bias in favor of more 

conservative estimates, as it tends to overestimate pmax in some distributions.  However, 

in practice, this bias is small enough to have little importance5. 

It is important to note that the estimate is not meaningful when the source is not IID.  The 

test is performed as follows: 

Given a dataset with N samples. 

1. Find the most common value in the dataset. 

2. Count the occurrences of that value, and call the result CMAX. 

3. Let pmax = CMAX/N. 

4. Calculate CBOUND = CMAX + 2.3√𝑁𝑝𝑚𝑎𝑥(1 − 𝑝𝑚𝑎𝑥). 

5. Let H = –log2(CBOUND/N). 

6. Let W be the number of bits in each sample of the dataset (i.e., the size of the 

sample). 

7. min(W, H) is the lower-bounded entropy estimate. 

For example, if the dataset is {0, 1, 1, 2, 0, 1, 2, 2, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 1}, the most 

common value is “1”, CMAX = 8, and pmax = 0.4. 

CBOUND = 8 + 2.3√4.8 = 13.04. 

H = –log(0.652) = 0.186. 

W = 3.  

min(3, 0.186) = 0.186. 

9.3 Estimating the Min-Entropy of non-IID Sources 

9.3.1 General Discussion 

Many viable noise sources fail to produce independent outputs. Moreover, some sources 

may have dependencies that are beyond the ability of the tester to address.  To derive any 

utility out of such sources, a diverse and conservative set of entropy tests are required. 

                                                 

5 Experimentally, uniform eight-bit random values lose less than a bit from their entropy estimates, while 

uniform 16-bit random values lose a little more than two bits from their entropy estimates. 
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Testing sources with dependencies in time and/or state may result in overestimates of 

entropy instead of underestimates.  However, a large, diverse battery of tests minimizes the 

probability that such a source’s entropy is greatly overestimated.   

The battery of tests presented in this section will be performed on noise sources 

determined to be non-IID by the testing performed in Section 9.1, and any noise source 

submitted for testing without an IID claim6.  The five tests, each designed to compute a 

different statistic on the samples, provide information about the structure of the data:  

collision, collection, compression, Markov, and frequency.  While the tests (except for the 

Markov) were originally designed for application to independent outputs, the tests have 

performed well when applied to data with dependencies.  Given empirical evidence and the 

confidence level of the tests, their application to non-IID data will produce valid, although 

conservative, entropy estimates. 

9.3.2 Testing Summary 

The working assumption for these tests is that a probability distribution describes the 

output of a random noise source, but that the probability distribution is unknown. The goal 

of each test is to reveal information about the unknown distribution, based on a statistical 

measurement. The presented entropy tests define a set of IID probability distributions that 

contain the unknown distribution; the entropy is conservatively estimated by minimizing 

over this set of distributions.  The five tests fall into two types: the first type bounds the 

entropy of a noise source, based on a statistical measurement with a prescribed amount of 

confidence, while the second type constructs a set of probability distributions based on the 

distance to the measured statistic within a prescribed confidence level.   

For the tests defined in this section, a confidence level of 95%, denoted by , is used; the 

confidence interval encompasses the true value of the measured statistic 95% of the time.   

9.3.3 The Collision Test  

9.3.3.1 Test Overview 

The collision test measures the mean time to the first collision in a dataset.  The goal of the 

collision statistic is to estimate the probability of the most-likely state, based on the 

collision times.  The test will produce a low entropy estimate for noise sources that have 

considerable bias toward an output or state (i.e., the mean time until a collision is relatively 

short), while producing longer mean times to collision results in higher entropy estimates.  

This test yields a lower bound on the entropy present with a prescribed confidence level 

when the samples are independent.  Dependencies in the sample data may cause an 

overestimate of the entropy of the data.  In practice, a slight overestimate is resolved by 

selecting the minimum entropy estimate from all the tests as the expected entropy provided 

by the noise source.   

                                                 

6 Any conditioned output must be IID, so the tests in this section will not be performed on conditioning 

component output (see Section 8.2). 



NIST SP 800-90B (DRAFT)  August 2012 

63  

 

9.3.3.2 Implementation Summary 

Given a dataset from the noise source, step through the dataset (i.e., sample by sample) 

until any observed value is repeated. Record the number of steps to the observed collision.  

Beginning from that point, step through the remaining samples until another observed 

value is repeated.  Continue this process at least 1000 times until the end of the dataset is 

reached, generating a sequence of collision times, where the collision time corresponds to 

the number of samples observed before a collision occurs. The observation of 1000 

collisions is dependent on the sample size, and may not be possible for sources with large 

samples.  Given the data requirement specified in Section 7.1, an observation of 1000 

collisions in sources with samples larger than 20 bits will not be feasible.  For example, a 

source that produces 32-bit outputs would need approximately 2
26

 samples to observe 1000 

collisions.  As an alternative for noise sources with large sample sizes, the method in 

Section 7.2 for mapping noise source outputs together7 (based on a ranking of the bits in 

the output) may be implemented, or additional data may be collected for testing purposes.  

This will enable the observation of at least 1000 collision events regardless of the sample 

size.  One of these options will be enforced, based on the data provided, so that the test can 

be run and 1000 collision events observed.   

Once the end of the dataset is reached, calculate the mean collision time of the differences 

in the sequence of collision times.  Then, determine the probability distribution that has the 

minimum possible entropy for the calculated mean collision time.  For this distribution, the 

min-entropy is calculated and returned as the lower bound on the entropy that is present. 

9.3.3.3 Collision Test Details 

Given a dataset {s1, s2, …, sN}, of noise or entropy source observations.   

1. Beginning with s1, step through the dataset until any observed value is repeated; 

i.e., find the smallest j such that si = sj, for some i with 1 ≤ 𝑖 < 𝑗.   

2. Define a sequence t.  Set t0 = 0, t1 = j. 

3. Set v = 1. 

4. Starting with sample j, step through the remaining samples, sj+1, sj+2, …, sN, until 

there is a k and an l such that sk = sl, with 𝑗 < 𝑘 < 𝑙. 

5. v = v + 1. 

6. Define tv = l. 

7. Set j = l. 

8. Repeat steps 4-7 until the end of the dataset is reached. A sequence {t0, t1, t2, …, tv} 

is generated.  If v < 1000, the noise source outputs will be mapped down based on 

the ranking provided, and the data will be retested. 

                                                 

7 Note that mapping outputs together will result in potentially smaller entropy estimates than if sufficient data 

was tested. 
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9. Calculate the sample mean, µ, and the sample standard deviation, σ, of the 

differences of collision times, ti.   

     

𝜇 =
∑ (𝑡𝑖 − 𝑡𝑖−1)𝑣

𝑖=1

𝑣
 

 

𝜎 = √
∑ (𝑡𝑖 − 𝑡𝑖−1)2𝑣

𝑖=1

𝑣
− 𝜇2 

10. Compute the lower-bound of the confidence interval for the mean based on a 

normal distribution with confidence level α: 

�̅� = 𝜇 −
1.96𝜎

√𝑣
. 

11. Define a one-parameter family of probability distributions parameterized by p, Pp: 

𝑃𝑝(𝑖) = {

𝑝 𝑖𝑓 𝑖 = 0
1 − 𝑝

𝑛 − 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where n is the number of states in the output space. 

12. Using a binary search, solve for the parameter p, such that 
p

E the expected value 

of the statistic applied to Pp, equals  .   

𝐸𝑃𝑝
(𝑆) = 𝑝𝑞−2 (1 +

1

𝑛
(𝑝−1 − 𝑞−1)) 𝐹(𝑞) − 𝑝𝑞−1

1

𝑛
(𝑝−1 − 𝑞−1) 

 where  

𝑞 =
1 − 𝑝

𝑛 − 1
, 

 and 

𝐹(1 𝑧⁄ ) = Γ(𝑛 + 1, 𝑧)𝑧−𝑛−1𝑒−𝑧 . 

 

13. The min-entropy is the negative logarithm of the parameter, p: 

min-entropy = –log2(p). 
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9.3.4 The Partial Collection Test  

9.3.4.1 Test Overview 

The partial collection test computes the entropy of a dataset based on how many distinct 

values in the output space are observed; it yields low entropy estimates for output streams 

that contain a small number of distinct output values, and yields high entropy estimates for 

output streams that diversify quickly. The partial collection test provides a reasonable 

estimate for sources with output values that appear with higher probability than others in 

the output space.  An advantage of the partial collection test over the traditional collection 

test8 is that it finishes in finite time, since the test estimates the entropy of a source, given 

the number of distinct values in a set of samples in the dataset.  

It should be noted that the partial collection test will only produce an accurate entropy 

estimate if the size of the output space is known.  For example, consider a noise source that 

outputs four-bit samples, but only two of those bits are ever influenced/used by the noise 

source.  This reduces the number of possible output values and limits the output space.  

Instead of 2
4
 = 16 possible values, this source only produces 2

2
 = 4 different values.  A 

search for all 16 possibilities will be fruitless, and the entropy will be greatly overestimated 

by this test.  Therefore, the output space of the noise source or an indication of values that 

never appear in the output from the noise source shall be provided by the developer for 

validation testing. 

Given the data requirement specified in Section 7.1, samples larger than 10 bits will not be 

feasible.  As an alternative for noise or entropy sources with large sample sizes, the method 

in Section 7.2 for mapping noise source outputs together9 (based on a ranking of the bits in 

the output) may be implemented, or additional data may be collected for testing purposes.  

Based on the data provided for validation, one of these options will be enforced such that 

the test can be run and 500 events observed. 

 

9.3.4.2 Implementation Summary 

Partition the dataset into non-overlapping subsets of size n (where n is the size of the 

output space).  The partial collection test computes the number of distinct values in each 

subset of n samples.  Once all subsets have been parsed, calculate the mean number of 

distinct values in each subset of n samples. Then, determine the probability distribution 

that has the minimum possible entropy for the calculated mean number of distinct values.  

For this distribution, the min-entropy is calculated and returned as the lower bound on the 

entropy that is present. 

                                                 

8 The traditional collection test measures the expected number of samples that must be generated to produce 

every possible output, and as such, could potentially never terminate. 

9 Note that mapping outputs together will result in potentially smaller entropy estimates than if sufficient data 

was tested. 
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9.3.4.3 Partial Collection Test Details 

Given a dataset {s1, s2, …, sN}, of noise or entropy source observations. 

1. Consider the dataset as v non-overlapping data subsets of length n, where n is the 

size of the output space (i.e. the number of possible outputs)10.   

2. Count the number of distinct values seen in each data subset:  Ti is equal to the 

number of distinct values in subset i. 

3. Repeat Step 2 until the end of the dataset is reached.  If a minimum of 500 events 

have not been observed, the noise source outputs will be mapped down (see Section 

7.2) and the test rerun.  Otherwise, continue to Step 4. 

4. Calculate the sample mean,  , and the sample standard deviation,  , of the Ti 

values.  

𝜇 =
∑ 𝑇𝑖

𝑣
𝑖=1

𝑣
 

 

𝜎 = √
∑ 𝑇𝑖

2𝑣
𝑖=1

𝑣
− 𝜇2 

5. Compute the lower-bound of the confidence interval for the mean based on a 

normal distribution with confidence level : 

�̅� = 𝜇 −
1.96𝜎

√𝑣
. 

6. Define a one-parameter family of probability distributions parameterized by p ,
p : 

𝑃𝑝(𝑖) = {

𝑝 𝑖𝑓 𝑖 = 0
1 − 𝑝

𝑛 − 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

7. Using a binary search, solve for the parameter p, such that 
p

E the expected value 

of the statistic applied to Pp, equals the mean  .   

𝐸𝑃𝑝
(𝑆) = 1 − (1 − 𝑝)𝑛 + (𝑛 − 1)(1 − (1 − 𝑞)𝑛) 

 where  

𝑞 =
1 − 𝑝

𝑛 − 1
. 

                                                 

10 𝑡 = ⌊
𝑁

𝑛
⌋; if n does not divide N, the remaining data is not used in this test. 
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8. The min-entropy is the negative logarithm of the parameter, p: 

 

min-entropy = –log2(p). 

9.3.5 The Markov Test 

9.3.5.1 Test Overview 

In a first-order Markov process, the output state depends only on the current state; in an 

n
th

-order Markov process, the output state depends on the current state and the previous n-1 

states.  Therefore, a Markov model can be used as a template for testing sources with 

dependencies.  The test provides a min-entropy estimate by measuring the dependencies 

between consecutive outputs from the noise source.  The min-entropy estimate is based on 

the entropy present in any chain of outputs, instead of an estimate of min-entropy per 

output.   

The key component in estimating the entropy of a Markov process is the ability to 

accurately estimate the matrix of transition probabilities of the Markov process.  The main 

difficulty in making these estimates is the large data requirement necessary to resolve the 

dependencies.  In particular, low probability transitions may not occur often in a ‘small’ 

dataset; the more data provided, the easier it becomes to make accurate estimates of 

transition probabilities.  This test, however, avoids large data requirements by 

overestimating the low probability transitions; as a consequence, an underestimate of min-

entropy is obtained with less data. 

This test has a data requirement that is dependent upon the sample size; the largest sample 

size accommodated by this test is six bits.  Samples larger than six bits cannot be 

accommodated, since an unreasonable amount of data would be required to accurately 

estimate the matrix of transition probabilities, far more than is specified in Section 7.111.  

For 16-bit samples, for instance, a transition matrix of size 2
16

 x 2
16

, containing 2
32

 sample 

entries, would have to be approximated, and the data requirement for this would be 

impractical.   

As an alternative for noise sources with samples greater than six bits, the method in 

Section 7.2 for mapping noise source outputs together (based on a ranking of the bits in the 

output) will be implemented.  This will reduce the data requirement to a more feasible 

quantity.   

 

                                                 

11 This statement assumes that the output space is defined such that it contains all 2
6
 (or more) possible 

outputs; if, however, the output space is defined to have 2
6
 or less elements, regardless of the sample size, the 

test can accurately estimate the transition probabilities with the amount of data specified in Section 9.2. 
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9.3.5.2 Implementation Summary 

Samples are collected from the noise source, and specified as k-long chains.  From this 

data, probabilities are determined for both the initial state and transitions between any two 

states.  Any values for which these probabilities cannot be determined empirically are 

overestimated to guarantee that the eventual min-entropy estimate is a lower bound.  These 

probabilities are used to determine the highest probability of any particular k-long chain of 

samples.  The corresponding maximum probability is used to determine the min-entropy 

present in all such chains generated by the noise source.  This min-entropy value is 

particular to k-long chains and cannot be extrapolated linearly; i.e., chains of length wk will 

not necessarily have w times as much min-entropy present as a k-long chain.  However, it 

may not be possible to know what a typical output length will be at the time of validation.  

Therefore, although not mathematically correct, in practice, calculating an entropy estimate 

per sample (extrapolated from that of the k-long chain) provides estimates that are close.   

9.3.5.3 Markov Test Details 

Given a dataset {s1, s2, …, sN}, of noise or entropy source observations. 

1. Re-define the confidence level to be 𝛼 = 𝑚𝑖𝑛(𝛼𝑛2
, 𝛼𝑘), where n

2
 is the number of 

terms in the transition matrix, and k = 128 is the assumed length of the Markov 

chain.  

 

2. Estimate the initial state probability distribution, P, with: 

𝑃𝑖 = 𝑚𝑖𝑛 {1,
𝑜𝑖

𝑁
+ 𝜀} 

where io denotes the number of times that state i  has occurred in the sample, and   is 

defined by: 

𝜀 =
√𝑙𝑜𝑔 (

1
1 − 𝛼)

2𝑁
. 

 

3. Estimate the probabilities in the transition matrix S , overestimating where  

𝑆𝑖,𝑗 = {

1 𝑖𝑓 𝑜𝑖 = 0

𝑚𝑖𝑛 {1,
𝑜𝑖,𝑗

𝑜𝑖
+ 𝜀𝑖} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

where jio , is the number of transitions from state i  to state j observed in the sample, 

and i  is defined to be 

𝜀𝑖 = √
𝑙𝑜𝑔 (

1
1 − 𝛼)

2𝑜𝑖
. 
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4. Using the transition matrix S , find the probability of the most likely sequence of 

states, pmax. 

𝑝𝑚𝑎𝑥 = max
𝑖1…𝑖𝑙…𝑖𝑘

{𝑃𝑖𝑙
∏ 𝑆𝑖𝑗,𝑖𝑗+1

𝑘

𝑗=1

} 

where the product runs over all possible sequences of states and where an 

individual state is denoted by il. 

 

5. The min-entropy is the negative logarithm of the probability of the most likely 

sequence of states, pmax: 

min-entropy = –log2(pmax). 

9.3.6 The Compression Test  

9.3.6.1 Test Overview 

The compression test computes the entropy rate of a dataset, based on how much the 

dataset can be compressed. Based on the Maurer Universal Statistic [Maurer], the test 

generates a dictionary of values, and then computes the average number of samples 

required to write an output based on the dictionary.  One advantage of using the Maurer 

statistic is that there is no assumption of independence.  When output with dependencies is 

tested with this statistic, the compression rate is affected (and therefore the entropy), but an 

entropy estimate is still obtained.  A calculation of the Maurer statistic requires only one 

pass through the dataset to provide an entropy estimate.  This makes it a more efficient test 

than other compression algorithms.  The Maurer statistic is the mean of the compression 

values, computed over the data. 

9.3.6.2 Implementation Summary 

Given a dataset from the noise source, first partition the samples into two disjoint groups.  

The first group serves as the dictionary for the compression algorithm; the second group is 

the test group.  Calculate compression values over the test group and determine the mean, 

which is the Maurer statistic.  Using the same method as the collision test, determine the 

probability distribution that has the minimum possible entropy for the calculated Maurer 

statistic.  For this distribution, the entropy per sample is calculated and produced as the 

lower bound on the entropy that is present.  

9.3.6.3 Compression Test Details 

Given a dataset, {s1, s2, …, sN} of noise or entropy source observations. 

1. Partition the dataset into two groups.  These two groups will form the dictionary 

and the test data. 

a. Create the dictionary from the first d observations, {s1, s2, …, sd} where d = 

1000.   
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b. The remaining 𝑣 = 𝑁 − 𝑑 − 1 observations, {sd+1, …, sN}, will be the test 

data. 

 

2. Initialize the dictionary. 

a. Beginning with s1, step through the dictionary sequence. 

b. Record each unique observation and the index of observation. 

c. When any observed value is repeated, update the index of observation with 

the most recent index value (the larger index value).   

 

3. Run the test data against the dictionary created in Step 2. 

a. Beginning with 𝑠𝑑+1, step through the test data.   

b. Determine if the value of the observation is contained in the dictionary. 

i. If the value is in the dictionary, calculate and record the difference 

between the current observation index and the recorded index in the 

dictionary as Ai, where i is the current index.  Update the dictionary 

with the index of the most recent observation. 

ii. If the value is not in the dictionary, add that value to the dictionary, 

and record the index of this first observation.   

 

4. Repeat Step 3 until the end of the test data has been reached. 

 

5. Calculate the sample mean,  , and the sample standard deviation,  , of the 

following values:  

(𝑙𝑜𝑔2(𝐴𝑖))
𝑖=𝑑+1

𝑁
 

where the Ai are the calculated differences from Step 3b. 

 

    𝜇 =
∑ 𝑙𝑜𝑔2𝐴𝑖

𝑁
𝑖=𝑑+1

𝑣
 

 

𝜎 = √
∑ (𝑙𝑜𝑔2𝐴𝑖)2𝑁

𝑖=𝑑+1

𝑣
− 𝜇2 
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6. Compute the lower-bound of the confidence interval for the mean based on a 

normal distribution with confidence level : 

�̅� = 𝜇 −
1.96𝜎

√𝑣
. 

 

7. Define a one-parameter family of probability distributions parameterized by p ,
p : 

𝑃𝑝(𝑖) = {

𝑝 𝑖𝑓 𝑖 = 0
1 − 𝑝

𝑛 − 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where n is the number of states in the output space. 

 

8. Using a binary search, solve for the parameter p, such that 
p

E the expected value 

of the statistic applied to Pp, equals the mean  .   

𝐸𝑃𝑝
(𝑆) = 𝐺(𝑝) + (𝑛 − 1)𝐺(𝑞) 

 where  

   𝐺(𝑝𝑖) =
1

𝑣
∑ ∑ 𝜑(𝑠)𝑃[𝐴𝑡 = 𝑠 ∩ 𝑋𝑡 = 𝑖]𝑡

𝑠=1
𝑁
𝑡=𝑑+1 , 

    

𝑃[𝐴𝑡 = 𝑠 ∩ 𝑋𝑡 = 𝑖] = {
𝑝𝑖

2(1 − 𝑝𝑖)
𝑠−1 𝑖𝑓 𝑠 < 𝑡

𝑝𝑖(1 − 𝑝𝑖)
𝑡−1 𝑖𝑓 𝑠 = 𝑡

, 

      

    𝜑(𝑥) = 𝑙𝑜𝑔2(𝑥), 

and 

    𝑞 =  
1−𝑝

𝑛−1
. 

 

9. The min-entropy is the negative logarithm of the parameter, p: 

min-entropy = –log2(p). 

 

9.3.7 The Frequency Test  

9.3.7.1 Test Overview 

The frequency statistic computes entropy based on the occurrence of the most-likely 

sample value.  The entropy is computed by modeling the probability distribution of the 

samples from a noise source.  Like the Markov test, this calculation performs better with 
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more data – the more data provided, the more accurate the frequency calculations, since 

low probability values may not appear often, or at all, in ‘small’ datasets.  This test, 

however, ignores/overestimates unlikely sample values and, therefore, does not require 

large amounts of data.  In fact, this test will provide a conservative estimate of entropy 

based on whatever data is collected.  As a result, an underestimate of min-entropy is 

obtained with less data.   

9.3.7.2 Implementation Summary 

Given a dataset from the noise source, step through the dataset, keeping track of the 

number of times that each sample value is observed.  Record the occurrence of each value 

and continue the process until the end of the dataset.  Once the end of the dataset is 

reached, determine the most likely sample value, based on the frequency counts gathered.  

The min-entropy frequency statistic is the negative logarithm of the probability of the most 

likely sample value. 

9.3.7.3 Frequency Test Details 

Given a dataset, {s1, s2, …, sN}, and the confidence level α: 

1. Beginning with s1, step through the dataset, keeping track of the number of times a 

value is observed, counti, for all i=1...n, where n is the number of possible output 

values.  

 

2. Calculate ε from the specified confidence level, α, and the number of observations 

in the dataset. 

𝜀 =  
√𝑙𝑜𝑔 (

1
1 − 𝛼

)

2𝑁
 

 

3. Determine the probability of the most likely observation value, pmax (the value 

with the largest frequency of occurrence):   

    𝑝𝑚𝑎𝑥 =  max𝑖=1..𝑛 (
𝑐𝑜𝑢𝑛𝑡𝑖

𝑁
). 

 

4. The min-entropy is the negative logarithm of the sum of ε and the frequency of the 

probability of the occurrence of the most likely state, pmax: 

min-entropy = –log2(pmax + ε). 
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9.4 Sanity Checks Against Entropy Estimates 

This section identifies tests that provide an opportunity to discover major failures that may 

have undermined the entropy estimates generated in the more extensive test suites.   

9.4.1 Compression Sanity Check 

The compression test is intended to determine whether the entropy estimates for the noise 

source and conditioning component are so incorrect that a general-purpose compression 

algorithm is able to encode the sequence of samples in fewer bits per sample than is 

required by the entropy estimate computed during validation testing.  The Burrows-

Wheeler compression algorithm as implemented in the BZ2 software package will be used 

[BZ2].  

If the min-entropy of a dataset is estimated to be H bits, then no compression algorithm 

should be capable, in general, of encoding that dataset in fewer than H bits.   

By nature, general-purpose compression algorithms like Burrows-Wheeler will perform 

poorly, compared to what is attainable in encoding specialized data, especially independent 

values.  Thus, a single failed test is an indication that the entropy estimate is deeply flawed. 

Let S be a collected dataset defined in Section 7.1.  Divide S into ten equal-length, non-

overlapping data subsets S1, …, S10. Let Si be one of the ten data subsets, and let H be the 

entropy estimate for the data source, as calculated in Section 9.2 or Section 9.3 (depending 

upon the test track taken). The test is performed as follows on the ten data subsets of 

samples:    

For i = 1 to 10: 

1. EncodeS = the encoding of Si as a string12.   

2. C = compress(EncodeS). 

3. Len = the length of C in bits. 

4. If 𝐿𝑒𝑛 < 𝐻 ⌊
𝑁

10
⌋, the dataset fails the test.   

If the test fails for even one of the ten data subsets, it is likely that the entropy estimate is 

inaccurate.   

 

9.4.2 Collision Sanity Check 

9.4.2.1 General Description 

The min-entropy can be used to provide a bound on the probability of seeing a collision in 

many trials because the collision entropy (Renyi entropy of second order) is bounded by 

                                                 

12 EncodeS consists of representing the sequence of samples as a character string containing their decimal 

values separated by commas.  Thus, a sequence (3, 1, 4, 1, 5, 9) becomes “3, 1, 4, 1, 5, 9”. 
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the min-entropy.  There are many ways in which a noise source might suffer rare, 

intermittent failures that would lead to an occasional repeated sequence that should, given 

the entropy estimates, have an extremely low probability of occurring.  This kind of 

problem will be detected by the collision sanity check, while it might not be detected by 

any other test.   

The collision sanity check offers a chance to notice a particular kind of gross overestimate 

of entropy, in which sequences of samples with some useful amount of entropy (for 

example, 30 bits) repeat more often than expected.    

This test may be applied to any noise source, using a dataset as specified in Section 7.1.   

9.4.2.2 Testing Noise Sources With an Entropy Estimate per Sample 

For datasets whose entropy estimate is in terms of H bits of entropy per sample, the testing 

is performed as follows: 

1. Using the complete dataset collected as specified in Section 7.1, determine the size 

of the ‘tuples’ to be examined for collisions.  This test will examine each 

successive b-tuple of samples from the dataset.  To determine b, numerically solve 

using the following equation for b: 

b = Round((2 log2(N/b) -1)/H). 

 

The formula is derived as follows: Given N samples in the dataset, the dataset can 

be divided into (N/b) non-overlapping b-tuples.  The number of times each b-tuple 

occurs in the dataset must be counted; since there are ⌊
𝑁

𝑏
⌋  b-tuples, there are about 

(⌊
𝑁

𝑏
⌋)

2

2
 potential collisions of b-tuples.  Since each b-tuple has Hb bits of entropy, 

the expected number of b-tuple collisions is:   

2−𝐻𝑏
(⌊

𝑁

𝑏
⌋)

2

2
. 

The test requires choosing the value of b so that the expected number of collisions 

is as close to one as possible.  Some approximate b values given N and H are 

included in Figure 4 for reference13. 

 

 

H 

N 

1,000,000 10,000,000 100,000,000 

0.01 1735 2315 2913 

                                                 

13 The first column contains the approximate b values for the data requirement specified in Section 9.2.  The 

other columns indicate how additional data may affect the implementation of this test. 
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0.1 232 291 353 

0.5 55 67 79 

1.0 29 35 41 

2.0 15 19 22 

5.0 7 8 9 

10.0 4 4 5 

20.0 2 2 2 

Figure 3: Approximate b values given N and H 

2. Divide the dataset into successive b-tuples and count the number of occurrences of 

each value of a b-tuple.  A dataset of N samples yields ⌊
𝑁

𝑏
⌋ non-overlapping 

successive b-tuples.  For example, the combined dataset (1,2,3,4,2,3,1,2,4) would 

yield four 2-tuples, ((1,2), (3,4), (2,3), (1,2)).  Each tuple is treated as an individual 

value, and the total number of times each value appears in the dataset is counted.  

In the above example, there are two occurrences of the (1,2) 2-tuple, and one 

occurrence of each of the others.   

3. Determine whether the noise source and entropy estimate should be rejected.   

Rule 1: If three or more b-tuples have the same value, the source is rejected.  Given 

the parameters chosen by the above formula, this has a very low probability, 

assuming that the entropy estimate is correct. 

Rule 2: A p-value on the number of collisions is determined, approximating the 

probability of x collisions as a Poisson distribution with 𝜆 =  2−𝐻𝑏
(⌊

𝑁

𝑏
⌋)

2

2
, and 

choosing as the cutoff value the smallest number of collisions such that the 

probability of that many or more collisions is less than 1/10000.   

If the total number of colliding pairs of b-tuples is greater than or equal to the cutoff value, 

then the source is rejected.  

 

10.0 Health Test Validation: Testing for Equivalent Functionality 

Entropy sources that do not implement the Repetition Count Test and the Adaptive 

Proportion Test shall include alternative continuous tests that detect the same failure 

conditions.  The developer shall provide the tester with an implementation of their 

alternative test(s) that can be run incrementally on a dataset of arbitrary length, and a 

dataset of the required length drawn from the underlying noise source, referred to as the 

original dataset.  Using the min-entropy per sample, H, that is obtained from the tests 

specified in Section 9.0, a new dataset is generated from the original dataset that simulates 

a failure that would be detected by the Repetition Count or Adaptive Proportion Test, as 
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appropriate.  The tester will determine the equivalence of the alternative test(s) as 

described in Sections 10.1and 10.2. 

10.1 Demonstrating Equivalent Functionality to the Repetition Count Test 

The original dataset, in this case, is modified to contain a repeated sequence of sample 

values that is slightly longer than would be allowed to pass by the Repetition Count Test.  

If the alternative test detects this repetition, it is assumed to have equivalent functionality 

to the Repetition Count Test.   

In order to demonstrate equivalent functionality to the Repetition Count Test, the following 

steps are performed: 

1. Based on H, the cutoff value, C, at which the Repetition Count Test should fail, is 

determined as described in Section 6.5.1.2.1.     

2. A modified dataset D' is created, in which a repetition of C samples of the same 

value will be inserted at some point.   

a) Let the length of the original dataset, D, be N (i.e., N is the number of sample 

values in dataset D).  The minimum value of N is one million samples; the 

dataset used for validation testing may be used.   

b) A random position k is chosen within the dataset, where 0  k < N  (2C + 2); 

the sample value at position k (i.e., Dk) is selected as the sample to be 

repeated. 

c) The modified dataset, D', is formed by replacing C – 1 sample values in D' 

with Dk.  That is,  

For i = k+1, k+C: D'i = Dk. 

Note that this simply places a sequence of C repeated values into the dataset. 

3. The alternative test is run on the modified dataset, D'.   

a) If the alternative test detects the simulated failure, then equivalent 

functionality to the Repetition Count Test has been demonstrated, and the 

developer’s alternative test can be used in place of the Repetition Count Test.   

b) If the alternative test fails to detect this simulated failure, then equivalent 

functionality has not been demonstrated, and the alternative test shall not be 

used in place of the Repetition Count Test. 

 

10.2 Demonstrating Equivalent Functionality to the Adaptive Proportion Test 

This test generates a simulated dataset that is very similar to the original validation dataset, 

but which has one new feature: a randomly-selected sample value in the dataset is made to 

occur more often than it should, given the per-sample min-entropy estimate H for the noise 

source.  If the alternative continuous test detects the simulated failure in this dataset, 

equivalent functionality to the required Adaptive Proportion Test has been demonstrated. 

In order to demonstrate equivalent functionality to the Adaptive Proportion Test, the 

following steps are performed: 
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1. Determine the parameters needed to generate a dataset that simulates a large loss of 

entropy, with enough samples that the Adaptive Proportion Test with N = 64 is 

overwhelmingly-likely to detect the failure. 

a) Let C = the cutoff value for N = 64, computed for the assessed min-entropy per 

sample, H, of this noise source. 

b) Let Pfailure = (C+1)/N  be the maximum probability for any sample value in the 

simulated failure dataset.   

c) Let L = 1280(2
H
) be the minimum-acceptable length of the simulated dataset, 

to guarantee that an alternative test that provides equivalent functionality to 

the Adaptive Proportion Test has a very low probability of failing this test of 

equivalence.   

2. Obtain a dataset D from the noise source, that contains L successive sample values, 

to generate a modified dataset D' that contains a particular value with higher 

probability than should be occurring in the dataset.  Note that if L is less than or 

equal to the length of the original dataset provided for validation, the original 

dataset may simply be reused for this test. 

a) Let A = a randomly selected sample from the dataset D. 

b) Let Poriginal = (the number of times that A appears in D) / L 

c) Let Pdelta = (Pfailure-Poriginal)/(1-Poriginal) = the fraction of sample values in D to 

change. 

d) For j = 0 to L-1: 

i. Generate a random number R between 0 and 1 using any reasonably good 

RNG. 

ii. If R < Pdelta: D'i = A. 

iii. Else: D'i = Di . 

3. Run the alternative test on this dataset. 

If the alternative test does not detect the simulated failure, then equivalent functionality to 

the adaptive proportion test with N = 64 has not been provided, and the alternative test 

shall not be used in place of the Adaptive Proportion Test. 
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