

The attached DRAFT document (AUGUST 2012 draft of: SP 800-90B) (is provided here for

historical purposes) has been superseded by the following updated draft publication:

Publication Number: DRAFT SP 800-90B (second draft)

Title: Recommendation for the Entropy Sources Used for

Random Bit Generation

Publication Date: January 27, 2016

 January 2016 Draft Publication with full announcement details:

http://csrc.nist.gov/publications/PubsDrafts.html#800-90B

http://csrc.nist.gov/publications/PubsDrafts.html#800-90B

Announcement of 2nd draft SP 800-90B Released:

January 27, 2016

Draft SP 800-90 Series: Random Bit Generators

Recommendation for the Entropy Sources Used for Random Bit Generation

NIST announces the second draft of Special Publication (SP) 800-90B, Recommendation for the

Entropy Sources Used for Random Bit Generation. This Recommendation specifies the design

principles and requirements for the entropy sources used by Random Bit Generators, and the

tests for the validation of entropy sources. These entropy sources are intended to be combined

with Deterministic Random Bit Generator mechanisms that are specified in SP 800-90A to

construct Random Bit Generators, as specified in SP 800-90C. NIST is planning to host a

workshop on Random Number Generation to discuss the SP 800-90 series, specifically, SP 800-

90B and SP 800-90C. More information about the workshop is available at:

http://www.nist.gov/itl/csd/ct/rbg_workshop2016.cfm.

The specific areas where comments are solicited on SP 800-90B are:

 Post-processing functions (Section 3.2.2): We provided a list of approved post-processing

functions. Is the selection of the functions appropriate?

 Entropy assessment (Section 3.1.5): While estimating the entropy for entropy sources

using a conditioning component, the values of n and q are multiplied by the constant

0.85. Is the selection of this constant reasonable?

 Multiple noise sources: The Recommendation only allows using multiple noise sources if

the noise sources are independent. Should the use of dependent noise sources also be

allowed, and if so, how can we calculate an entropy assessment in this case?

 Health Tests: What actions should be taken when health tests raise an alarm? The

minimum allowed value of a type I error for health testing is selected as 2-50. Is this

selection reasonable?

NIST requests comments on the revised (second) Draft SP 800-90B by 5:00PM EST on May 9,

2016. Please submit comments on Draft SP 800-90B using the comments template form (Excel

Spreadsheet – see link below) to rbg_comments@nist.gov with “Comments on Draft SP 800-

90B” in the subject line.

NIST DRAFT Special Publication 800-90B

Recommendation for the Entropy
Sources Used for Random Bit

Generation

Elaine Barker

John Kelsey

Computer Security Division

Information Technology Laboratory

C O M P U T E R S E C U R I T Y

August 2012

U.S. Department of Commerce
John Bryson, Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Under Secretary for Standards and Technology and Director

NIST SP 800-90B (DRAFT) August 2012

ii

 Abstract

This Recommendation specifies the design principles and requirements for the entropy

sources used by Random Bit Generators, and the tests for the validation of entropy sources.

These entropy sources are intended to be combined with Deterministic Random Bit

Generator mechanisms that are specified in [SP 800-90A] to construct Random Bit

Generators, as specified in [SP 800-90C].

KEY WORDS: deterministic random bit generator (DRBG); entropy; hash function;

random number generator; noise source; entropy source; conditioning component

NIST SP 800-90B (DRAFT) August 2012

iii

Acknowledgements

The National Institute of Standards and Technology (NIST) gratefully acknowledges and

appreciates contributions by Mike Boyle and Mary Baish from the National Security

Agency for assistance in the development of this Recommendation. NIST also thanks the

many contributions by the public and private sectors.

NIST SP 800-90B (DRAFT) August 2012

iv

Table of Contents

1.0 Scope .. 8

2.0 Terms and Definitions ... 9

3.0 Symbols and Abbreviated Terms ... 16

4.0 General Discussion ... 18

4.1 Entropy Estimation and Validation .. 18

4.2 Entropy .. 19

4.3 The Entropy Source Model.. 19

4.3.1 Noise Source ... 20

4.3.2 Conditioning Component ... 20

4.3.3 Health Tests ... 21

5.0 Conceptual Interfaces ... 21

5.1.1 GetEntropy: An Interface to the Entropy Source ... 21

5.1.2 GetNoise: An Interface to the Noise Source .. 22

5.1.3 Health Test: An Interface to the Entropy Source ... 22

6.0 Entropy Source Development Requirements .. 23

6.1 General Requirements for Design and Validation .. 23

6.2 Full Entropy Source Requirements .. 24

6.3 Noise Source Requirements ... 25

6.4 Conditioning Component Requirements ... 25

6.4.1 Non-Approved Conditioning Components ... 26

6.4.2 Approved Cryptographic Conditioning Components 26

6.4.2.1 Approved Keyed Conditioning Functions 26

6.4.2.2 Approved Unkeyed Conditioning Functions 28

6.4.2.3 Recommendations for Improved Security 29

6.5 Health Test Requirements ... 29

6.5.1 Health Tests on the Noise Source ... 29

6.5.1.1 General Requirements ... 29

6.5.1.2 Continuous Testing .. 30

6.5.1.3 Start-up and On-Demand Testing ... 37

6.5.2 Health Tests on the Conditioning Component .. 38

NIST SP 800-90B (DRAFT) August 2012

v

7.0 Validation Data and Documentation Requirements.................................. 38

7.1 General Validation Requirements .. 38

7.2 Dealing with the Data Requirement for Noise Sources with Large Output
Spaces ... 41

8.0 Entropy Source Testing Strategy ... 42

8.1 General Noise Source Entropy Testing Strategy .. 42

8.2 Entropy Source Testing Strategy for Conditioned Output 45

8.3 Entropy Source Testing Strategy for Full Entropy Sources 46

8.4 Entropy Source Testing Strategy for the Health Test Component 47

9.0 Tests for Determining Entropy Provided by Entropy Sources 48

9.1 Determining if the Data is IID .. 48

9.1.1 General Discussion ... 48

9.1.2 Shuffling Tests on Independence and Stability ... 48

9.1.2.1 Compression Score .. 50

9.1.2.2 Over/Under Runs Scores (Two Scores) 51

9.1.2.3 Excursion Score ... 52

9.1.2.4 Directional Runs Scores (Three scores) 52

9.1.2.5 Covariance Score ... 54

9.1.2.6 Collision Score (Three scores) .. 55

9.1.3 Specific Statistical Tests .. 56

9.1.3.1 Chi-Square Test .. 56

9.1.3.2 Other Statistical Tests .. 60

9.2 Estimating the Min-Entropy of IID Sources ... 61

9.3 Estimating the Min-Entropy of non-IID Sources ... 61

9.3.1 General Discussion ... 61

9.3.2 Testing Summary .. 62

9.3.3 The Collision Test ... 62

9.3.3.1 Test Overview.. 62

9.3.3.2 Implementation Summary .. 63

9.3.3.3 Collision Test Details ... 63

9.3.4 The Partial Collection Test .. 65

9.3.4.1 Test Overview.. 65

NIST SP 800-90B (DRAFT) August 2012

vi

9.3.4.2 Implementation Summary .. 65

9.3.4.3 Partial Collection Test Details ... 66

9.3.5 The Markov Test .. 67

9.3.5.1 Test Overview.. 67

9.3.5.2 Implementation Summary .. 68

9.3.5.3 Markov Test Details .. 68

9.3.6 The Compression Test ... 69

9.3.6.1 Test Overview.. 69

9.3.6.2 Implementation Summary .. 69

9.3.6.3 Compression Test Details .. 69

9.3.7 The Frequency Test .. 71

9.3.7.1 Test Overview.. 71

9.3.7.2 Implementation Summary .. 72

9.3.7.3 Frequency Test Details .. 72

9.4 Sanity Checks Against Entropy Estimates .. 73

9.4.1 Compression Sanity Check ... 73

9.4.2 Collision Sanity Check ... 73

9.4.2.1 General Description .. 73

9.4.2.2 Testing Noise Sources With an Entropy Estimate per Sample .. 74

10.0 Health Test Validation: Testing for Equivalent Functionality 75

10.1 Demonstrating Equivalent Functionality to the Repetition Count Test 76

10.2 Demonstrating Equivalent Functionality to the Adaptive Proportion Test 76

Annex A: References ... 78

NIST SP 800-90B (DRAFT) August 2012

vii

Authority

This publication has been developed by the National Institute of Standards and Technology

(NIST) in furtherance of its statutory responsibilities under the Federal Information

Security Management Act (FISMA) of 2002, Public Law 107-347.

NIST is responsible for developing standards and guidelines, including minimum

requirements, for providing adequate information security for all agency operations and

assets, but such standards and guidelines shall not apply to national security systems.

This recommendation has been prepared for use by Federal agencies. It may be used by

nongovernmental organizations on a voluntary basis and is not subject to copyright.

(Attribution would be appreciated by NIST.)

Nothing in this Recommendation should be taken to contradict standards and guidelines

made mandatory and binding on federal agencies by the Secretary of Commerce under

statutory authority. Nor should this Recommendation be interpreted as altering or

superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or

any other federal official.

Conformance testing for implementations of this Recommendation will be conducted

within the framework of the Cryptographic Algorithm Validation Program (CAVP) and the

Cryptographic Module Validation Program (CMVP). The requirements of this

Recommendation are indicated by the word “shall.” Some of these requirements may be

out-of-scope for CAVP or CMVP validation testing, and thus are the responsibility of

entities using, implementing, installing or configuring applications that incorporate this

Recommendation.

NIST SP 800-90B (DRAFT) August 2012

8

Recommendation for the Entropy Sources Used for
Random Bit Generation

1.0 Scope

Cryptography and security applications make extensive use of random numbers and

random bits. However, the generation of random bits is problematic in many practical

applications of cryptography. The purpose of NIST Special Publication (SP) 800-90B is to

specify the design and testing requirements for entropy sources that can be validated as

approved entropy sources by NIST’s CAVP and CMVP. SPs 800-90A and 800-90C

address the construction of approved Deterministic Random Bit Generator (DRBG)

mechanisms and approved Random Bit Generators (RBGs) that utilize the entropy sources

and DRBG mechanisms, respectively.

An entropy source that conforms to this Recommendation generates random bits, primarily

for use in cryptographic applications. While there has been extensive research on the

subject of generating pseudorandom bits using a DRBG and an unknown seed value,

creating such an unknown value has not been as well documented. The only way for this

seed value to provide real security is for it to contain a sufficient amount of randomness,

i.e., from a non-deterministic process referred to as an entropy source. SP 800-90B

describes the properties that an entropy source must have to make it suitable for use by

cryptographic random bit generators, as well as the tests used to validate the quality of the

entropy source.

The development of entropy sources that provide unpredictable output is difficult, and

providing guidance for their design and validation testing is even more so. The testing

approach defined in this Recommendation assumes that the developer understands the

behavior of the entropy source and has made a good-faith effort to produce a consistent

source of entropy. It is expected that, over time, improvements to the guidance and testing

will be made, based on experience in using and validating against this Recommendation.

SP 800-90B is based on American National Standard (ANS) X9.82, Part 2, Random

Number Generation, Part 2: Entropy Sources [X9.82-2].

NIST SP 800-90B (DRAFT) August 2012

9

2.0 Terms and Definitions

Algorithm

A clearly specified mathematical process for computation; a set of rules that, if followed,

will give a prescribed result.

Approved

FIPS-approved or NIST-recommended.

Assessment (of Entropy)

An evaluation of the amount of entropy provided by a (digitized) noise source and/or the

entropy source that employs it.

Biased

A random process (or the output produced by such a process) is said to be biased with

respect to an assumed discrete set of potential outcomes (i.e., possible output values) if

some of those outcomes have a greater probability of occurring than do others. Contrast

with unbiased.

Binary Data (from a Noise Source)

Digitized output from a noise source that consists of a single bit; that is, each sampled

output value is represented as either 0 or 1.

Bitstring

A bitstring is a finite sequence (string) of 0’s and 1’s. The left-most bit is the most

significant bit in the bitstring. The right-most bit is the least significant bit of the bitstring.

Collision

An instance of duplicate sample values occurring in a dataset.

Conditioning (of Noise Source Output)

A method of post-processing the output of a (digitized) noise source to reduce bias and/or

ensure that the entropy rate of the conditioned output is no less than some specified

amount. Full entropy output is not necessarily provided.

Conditioning Component

An optional component of an entropy source used to post-process the output of its noise

source with the intent of reducing bias and/or increasing the entropy rate of the resulting

output to ensure that it meets some specific threshold. (See Conditioning, above.)

NIST SP 800-90B (DRAFT) August 2012

10

Continuous Test

A health test performed within an entropy source on the output of its noise source, in order

to gain some level of assurance that the noise source is working correctly, prior to

producing each output from the entropy source.

Consuming Application (for an RBG)

An application that uses the output from an approved random bit generator.

Cryptographic Hash Function

A function that maps bitstrings of arbitrary length (up to some maximum) to bitstrings of

fixed length (determined by the particular function) and is expected to have, at least, the

following three properties:

1. Collision resistance: It is computationally infeasible to find two distinct input

bitstrings that map to the same output bitstring;

2. Preimage resistance: Given a bitstring of the same length as those output by the

function (but not previously observed as the output corresponding to a known

input), it is computationally infeasible to find an input bitstring that maps to the

given bitstring;

3. Second-preimage resistance: Given one input bitstring (and the corresponding

bitstring output by the function), it is computationally infeasible to find a

second (distinct) input bitstring that maps to the same output bitstring.

Dataset

A sequence of sample values. (See Sample.)

Deterministic Random Bit Generator (DRBG)

An RBG that employs a DRBG mechanism and a source of entropy input. A DRBG

produces a pseudorandom sequence of bits from an initial secret value called a seed (and,

perhaps additional input). A DRBG is often called a Pseudorandom Bit (or Number)

Generator.

DRBG mechanism

The portion of an RBG that includes the functions necessary to instantiate and

uninstantiate a DRBG, generate pseudorandom bits, (optionally) reseed the DRBG and test

the health of the DRBG mechanism. Approved DRBG mechanisms are specified in [SP

800-90A].

Entropy

The (Shannon) entropy of a discrete random variable X is the expected amount of

information that will be provided by an observation of X. (See information content.) In this

Standard, the information content is measured in bits; when the expected information

content of an observation of X is m bits, we say that the random variable X has m bits of

entropy.

NIST SP 800-90B (DRAFT) August 2012

11

Entropy is defined relative to one's knowledge of (the probability distribution on) X prior

to an observation, and reflects the uncertainty associated with predicting its value – the

larger the entropy, the greater the uncertainty in predicting the value of an observation.

In the case of a discrete random variable, the entropy of X is determined by computing the

sum of p(x) log2(p(x)), where x varies over all possible values for an observation of X and

p(x) is the (a priori) probability that an observation will have value x.

If there are N distinct possibilities for an observation of X, then the maximum possible

value for the entropy of X is log2(N) bits, which is attained when X has the uniform

probability distribution (i.e., when the N possible observations are equally likely to occur).

See also min-entropy.

Entropy Rate

The rate at which a digitized noise source (or entropy source) provides entropy; it is

computed as the assessed amount of entropy provided by a bitstring output from the

source, divided by the total number of bits in the bitstring (yielding assessed bits of

entropy per output bit). This will be a value between zero (no entropy) and one (full

entropy).

Entropy Source

A source of random bitstrings. There is no assumption that the bitstrings are output in

accordance with a uniform distribution. The entropy source includes a noise source (e.g.,

thermal noise or hard drive seek times), health tests, and an optional conditioning

component.

False Alarm

An erroneous indication that a component has malfunctioned, despite the fact that the

component was behaving correctly. See also False Positive.

False Positive

An erroneous acceptance of the hypothesis that a statistically significant event has been

observed. This is also referred to as a Type 1 error. When ‘health-testing’ the components

of a device, it often refers to a declaration that a component has malfunctioned – based on

some statistical test(s) – despite the fact that the component was actually working

correctly. See False Alarm.

Full Entropy

Ideally, to say that a bitstring provides “full entropy” would imply that it was selected

uniformly at random from the set of all bitstrings of its length – in which case, each bit in

the string would be uniformly distributed (i.e., equally likely to be 0 or 1) and statistically

independent of the other bits in the string. However, for the purposes of this

Recommendation, an n-bit string is said to provide full entropy if it is obtained through a

process that is estimated to provide at least (1) n bits of entropy, where 0    2
-64

. Such

strings are an acceptable approximation to the ideal.

NIST SP 800-90B (DRAFT) August 2012

12

Full Entropy Source

An entropy source that is designed to output bitstrings providing full entropy output. See

Full Entropy, above.

Hash Function

See Cryptographic Hash Function. Hash algorithm and cryptographic hash function are

used interchangeably in this Recommendation.

Health Test

A test that is run to check that a mechanism continues to behave as expected.

Health Testing

Testing within an implementation prior to or during normal operation to determine that the

implementation continues to perform as expected and as validated.

Independent

Two discrete random variables X and Y are (statistically) independent if the probability that

an observation of X will have a certain value does not change, given knowledge of the

value of an observation of Y (and vice versa). When this is the case, the probability that the

observed values of X and Y will be x and y, respectively, is equal to the probability that the

observed value of X will be x (determined without regard for the value of y) multiplied by

the probability that the observed value of Y will be y (determined without regard for the

value of x).

Independent and Identically Distributed (IID)

A sequence of random variables for which each element of the sequence has the same

probability distribution as the other values and all values are mutually independent.

Known-Answer Test

A test that uses a fixed input/output pair (where the output is the correct output from the

component for that input), which is used to determine correct implementation and/or

continued correct operation.

Markov Model

A model for a probability distribution whereby the probability that the i
th

 element of a

sequence has a given value depends only on that value and the value of the previous k

elements of the sequence. The model is called a k
th

 order Markov model.

Min-entropy

The min-entropy (in bits) of a discrete random variable X is the largest value m having the

property that each observation of X provides at least m bits of information (i.e., the min-

entropy of X is the greatest lower bound for the information content of potential

observations of X). The min-entropy of X is a lower bound on its entropy. The precise

formulation for the min-entropy, m, for a given finite probability distribution, p1, …, pM, is

m = log2(max(p1,…, pM)). Min-entropy is often used as a worst-case measure of the

NIST SP 800-90B (DRAFT) August 2012

13

uncertainty associated with observations of X: If X has min-entropy m, then the probability

of observing any particular value is no greater than 2
-m

. (See also Entropy.)

Noise Source

The component of an entropy source that contains the non-deterministic, entropy-

producing activity.

Non-Deterministic Random Bit Generator (NRBG)

An RBG employing an entropy source, which (when working properly) produces outputs

that have full entropy (see Full Entropy). Also called a True Random Bit (or Number)

Generator.

On-demand Test

A health test that is available to be run whenever a user or a relying component requests it.

Output Space

The set of all possible bitstrings that may be obtained as samples from a digitized noise

source.

P-value

The probability (under the null hypothesis of randomness) that the chosen test statistic will

assume values that are equal to or more extreme than the observed test statistic value when

considering the null hypothesis. The p-value is frequently called the “tail probability.”

Probability Distribution

The probability distribution of a random variable X is a function F that assigns to the

interval [a, b] the probability that X lies between a and b (inclusive).

Probability Model

A mathematical representation of a random phenomenon.

Pseudorandom

A deterministic process (or data produced by such a process) whose observed outcomes

(e.g., output values) are effectively indistinguishable from those of a random process, as

long as the internal states and internal actions of the process are hidden from observation.

For cryptographic purposes, “effectively indistinguishable” means “not within the

computational limits established by the intended security strength.”

Random

A non-deterministic process (or data produced by such a process) whose possible

outcomes (e.g., output values) are observed in accordance with some probability

distribution. The term is sometimes (mis)used to imply that the probability distribution is

uniform, but no such blanket assumption is made in this Recommendation.

NIST SP 800-90B (DRAFT) August 2012

14

Random Bit Generator (RBG)

A device or algorithm that is capable of producing a random sequence of (what are

effectively indistinguishable from) statistically independent and unbiased bits. An RBG is

classified as either a DRBG or an NRBG.

Sample (from a Digitized Noise Source)

An observation of the natural output unit from a digitized (but otherwise unprocessed)

noise source. Common examples of output values obtained by sampling are single bits,

single bytes, etc. (The term “sample” is often extended to denote a sequence of such

observations; this Recommendation will refrain from that practice.)

Security Boundary

A conceptual boundary that is used to assess the amount of entropy provided by the values

output from an entropy source. The entropy assessment is performed under the assumption

that any observer (including any adversary) is outside of that boundary.

Seed

Noun: A bitstring that is used as input to (initialize) an algorithm. In this

Recommendation, the algorithm using a seed is usually a DRBG. The entropy provided by

the seed must be sufficient to support the intended security strength of the DRBG.

Verb: To acquire a bitstring using a process that provides sufficient entropy for the desired

security strength and subsequently supply that bitstring to (initialize) an algorithm (e.g., a

DRBG).

Sequence

An ordered list of quantities.

Shall

Used to indicate a requirement of this Recommendation.

Should

Used to indicate a highly desirable feature that is not necessarily required by this

Recommendation.

Source of entropy input (SEI)

A component of an RBG that outputs bitstrings that can be used as entropy input by a

DRBG mechanism. See [SP 800-90C].

Stable Distribution

A random variable is stable if it has the property that linear combinations of two

independent copies of the variable have the same distribution; i.e., let X1 and X2 be

independent copies of a random variable X. Then X is said to be stable if for any constants

a>0 and b>0 the random variable aX1 + bX2 has the same distribution as cX + d for some

constants c>0 and d.

NIST SP 800-90B (DRAFT) August 2012

15

Startup Testing (of an Entropy Source)

A suite of health tests that are performed every time the entropy source is initialized or

powered up. These tests are carried out before any output is released from the entropy

source.

String

See Sequence.

Testing Laboratory

An entity that has been accredited to perform cryptographic security testing on an entropy

source, as specified in this Recommendation.

Unbiased

A random process (or the output produced by such a process) is said to be unbiased with

respect to an assumed discrete set of potential outcomes (e.g., possible output values) if

each of those outcomes has the same probability of occurring. (Contrast with biased.) A

pseudorandom process is said to be unbiased if it is effectively indistinguishable from an

unbiased random process (with respect to the same assumed discrete set of potential

outcomes). For cryptographic purposes, “effectively indistinguishable” means “not within

the computational limits established by the intended security strength.”

NIST SP 800-90B (DRAFT) August 2012

16

3.0 Symbols and Abbreviated Terms

The following symbols are used in this document.

Symbol Meaning

H The min-entropy of the samples from a (digitized) noise source or

of the output from an entropy source; the min-entropy assessment

for a noise source or entropy source.

hamming_weight(si,…,si+n) The number of ones in the sequence si, si+1, …, si+n.

max(a, b) The maximum of the two values, a and b; e.g. if a>b, max(a, b) = a.

min(a, b) The minimum of the two values, a and b; e.g. if a<b, min(a, b) = a.

N The number of samples in a dataset, i.e., the length of the dataset in

samples.

n The number of bits that an entropy source can obtain as a single

(conditioned) output from its (digitized) noise source.

p(xi) or prob(xi) The probability for an observation or occurrence of xi.

pmax The probability of the most common sample from a noise source.

si A sample in a dataset.

S A dataset.

xi A possible output from the (digitized) noise source.

[a,b] The interval of numbers between a and b, including a and b.

 x A function that returns the smallest integer greater than or equal to

x; also known as the ceiling function.

 x A function that returns the largest integer less than or equal to x;

also known as the floor function.

Round(x) A function that returns the integer that is closest to x. If x lies half-

way between two integers, the larger integer is returned.

Sqrt(x) or √𝑥 A function that returns a number y whose square is x. For example,

Sqrt(16) = 4.

The following abbreviations are used in this document.

Abbreviations Meaning

ANS American National Standard

CAVP Cryptographic Algorithm Validation Program

NIST SP 800-90B (DRAFT) August 2012

17

CMAC Cipher-based Message Authentication Code, as specified in

SP800-38B

CMVP Cryptographic Module Validation Program

DRBG Deterministic Random Bit Generator

FIPS Federal Information Processing Standard

HMAC Keyed-Hash Message Authentication Code, specified in [FIPS 198]

IID Independent and Identically Distributed

NIST National Institute of Standards and Technology

NRBG Non-deterministic Random Bit Generator

NVLAP National Voluntary Laboratory Accreditation Program

RBG Random Bit Generator

SP NIST Special Publication

NIST SP 800-90B (DRAFT) August 2012

18

4.0 General Discussion

Three things are required to build a cryptographic RBG. First, a source of random bits is

needed (the entropy source). Second, an algorithm (typically, a DRBG) is needed for

accumulating and providing these numbers to the consuming application. Finally, there

needs to be a way to combine the first two components appropriately for the cryptographic

application.

SP 800-90B describes how to design and implement the entropy source. SP 800-90A

describes deterministic algorithms that take an entropy input and use it to produce

pseudorandom values. SP 800-90C provides the “glue” for putting the entropy source

together with the algorithm to implement an RBG.

Specifying an entropy source is a complicated matter. This is partly due to confusion in the

meaning of entropy, and partly due to the fact that, while other parts of an RBG design are

strictly algorithmic, entropy sources depend on physical processes that may vary from one

instance of a source to another. This section discusses, in detail, both the entropy source

model and the meaning of entropy.

4.1 Entropy Estimation and Validation

The developer should make every effort to design an entropy source that can be shown to

serve as a consistent source of entropy, producing bitstrings that can provide entropy at a

rate that meets (or exceeds) a specified value.

In order to design an entropy source that provides an adequate amount of entropy per

output bitstring, the developer must be able to accurately estimate the amount of entropy

that can be provided by sampling its (digitized) noise source. The developer must also

understand the behavior of the other components included in the entropy source, since the

interactions between the various components will affect any assessment of the entropy that

can be provided by an implementation of the design.

For example, if it is known that the (digitized) output from the noise source is biased,

appropriate conditioning functions can be included in the design to reduce that bias to a

tolerable level before any bits are output from the entropy source. Likewise, if the

developer estimates that the noise source employed provides entropy at a rate of (at least)

½ bit of entropy per bit of (digitized) sample, that assessment will likely be reflected in the

number of samples that are combined by a conditioning component to produce bitstrings

with an entropy rate that meets the design requirements for the entropy source.

This Recommendation provides requirements and guidance that will allow for an entropy

source to be validated and for an assessment of the entropy to be performed that will show

the entropy source produces bitstrings that can provide entropy at a specified rate.

Validation provides additional assurance that adequate entropy is provided by the source

and may be necessary to satisfy some legal restrictions, policies, and/or directives of

various organizations.

NIST SP 800-90B (DRAFT) August 2012

19

4.2 Entropy

The central mathematical concept underlying this Recommendation is entropy. Entropy is

defined relative to one's knowledge of X prior to an observation, and reflects the

uncertainty associated with predicting its value – the larger the entropy, the greater the

uncertainty in predicting the value of an observation. There are many possible choices for

an entropy measure; this Recommendation uses a very conservative measure known as

min-entropy.

Min-entropy is often used as a worst-case measure of the uncertainty associated with

observations of X: If X has min-entropy m, then the probability of observing any particular

value is no greater than 2
-m

. Let xi be a digitized sample from the noise source that is

represented in one or more bits, let x1, x2, ..., xM be the outputs from the noise source, and

let p(xi) be the probability that xi is produced at any given sampling time. The min-entropy

of the outputs is:

log2 (max p(xi)).

This represents the best-case work for an adversary who is trying to guess an output from

the noise source. For an in-depth discussion of entropy and the use of min-entropy in

assessing an entropy source, see ANS X9.82, Part 1 [X9.82-1].

4.3 The Entropy Source Model

This section considers the entropy source in detail. Figure 1 illustrates the model that this

Recommendation uses to describe an entropy source, including the components that an

entropy source developer shall implement. These components are described in the

following sections. Additional detail on each component can be found in ANS X9.82, Part

2 [X9.82-2].

NIST SP 800-90B (DRAFT) August 2012

20

4.3.1 Noise Source

The noise source is the root of security for the entropy source and for the RBG as a whole.

This is the component that contains the non-deterministic, entropy-providing activity that

is ultimately responsible for the uncertainty associated with the bitstrings output by the

entropy source. If this component fails, no other mechanism in the RBG can compensate

for the lack of entropy.

Fundamentally, the noise source provides random bits in the form of digital samples

obtained from a non-deterministic process. If the non-deterministic process being sampled

produces something other than binary data, the sampling process includes digitization.

This Recommendation assumes that the sample values obtained from a noise source

consist of fixed-length bitstrings, which determine the output space of the component.

4.3.2 Conditioning Component

The optional conditioning component is responsible for reducing bias and/or increasing the

entropy rate of the resulting output bits (if necessary to obtain a target value). There are

various methods for achieving this. In choosing an approach to implement, the developer

may either choose to implement an approved cryptographic algorithm or a non-approved

algorithm (see Section 6.4). The use of either of these approaches is permitted by this

Noise Source

Digitization

(Optional)

Conditioning

Assessment
Health

Testing

OUTPUT

ENTROPY

SOURCE

Noise Source

Digitization

(Optional)

Conditioning

Assessment
Health

Testing

OUTPUT

ENTROPY

SOURCE

Figure 1: Entropy Source Model

Noise Source

Digitization

(Optional)
Conditioning

Health
Testing

OUTPUT

ENTROPY

SOURCE

Noise Source

Digitization

(Optional)

Conditioning

Assessment
Health

Testing

OUTPUT

ENTROPY

SOURCE

Figure 1: Entropy Source Model
Figure 1: Entropy Source Model

NIST SP 800-90B (DRAFT) August 2012

21

Recommendation. The developer should consider the conditioning method and how

variations in the behavior of the noise source may affect the entropy rate of the output.

This will assist in determining the best approach to use when implementing a conditioning

component.

4.3.3 Health Tests

Health tests are an integral part of the entropy source design; the health test component

ensures that the noise source and the entropy source as a whole continue to operate as

expected. The health tests can be separated into three categories; startup tests (on all

components), continuous tests (mostly on the noise source), and on-demand tests (tests that

are more thorough and time-consuming than the continuous tests).

Behavior tests, a type of health test, are performed on the parts of an implementation for

which an exact response cannot be predicted (i.e., the noise source, for which the behavior

is non-deterministic); normally, the acceptable responses are expected within a specified

range of all possible responses. Behavior tests may be performed at specified times or may

be performed continuously.

When testing the entropy source, the end goal is to obtain assurance that failures of the

entropy source are caught quickly and with a high probability. Another aspect of health

testing strategy is determining likely failure modes for the entropy source and, in

particular, for the noise source. Comprehensive health tests will include tests that can

detect these failure conditions.

5.0 Conceptual Interfaces

5.1.1 GetEntropy: An Interface to the Entropy Source

This section describes a conceptual interface to the entropy source that is compatible with

the RBG interfaces in [SP 800-90C]. The interface described here can be considered to be

a command interface into the outer entropy source box in Figure 1. This interface is meant

to indicate the types of requests for services that an entropy source may support.

A GetEntropy call returns a bitstring and an assessment of the entropy it provides.

GetEntropy():

Output:

entropy_bitstring The string that provides the requested entropy.

assessed_entropy An integer that indicates the assessed number of bits of entropy

provided by entropy_bitstring.

status A boolean value that is TRUE if the request has been satisfied,

and is FALSE otherwise.

It should be noted that the interface defined here includes a return value indicating the

amount of entropy provided by the returned bitstring. In practice, assessed_entropy does

NIST SP 800-90B (DRAFT) August 2012

22

not need to be returned as output if the amount of entropy provided by entropy_bitstring

would already be known to the relying application (e.g., in implementations for which the

amount of entropy provided is a predefined constant).

5.1.2 GetNoise: An Interface to the Noise Source

The conceptual interface defined here can be considered to be a command interface into

the noise source component of an entropy source. This is used to obtain raw, digitized, but

otherwise unprocessed, outputs from the noise source for use in validation testing or for

external health tests. While it is not required to be in this form, it is expected that an

interface exist such that the data can be obtained without harm to the entropy source. This

interface is meant to provide test data to credit a noise source with an entropy estimate

during validation or for health testing, and as such, does not contribute to the generation of

entropy source output. It is feasible that such an interface is available only in “test mode”

and that it is disabled when the source is operational.

This interface is not intended to constrain real-world implementations, but to provide a

consistent notation to describe data collection from noise sources. Thus, the interface may

indicate, for example, that a noise source generates bits in response to a request from the

entropy source, when, in practice, the noise source may be passing random bits to the

entropy source as the bits are generated; i.e., it ‘pushes’ data to the entropy source as it

becomes available.

A GetNoise call returns raw, digitized, but otherwise unprocessed samples from the noise

source.

GetNoise(number_of_samples_requested)

Input:

number_of_samples_requested An integer value that indicates the requested

number of samples to be returned from the noise

source.

Output:

noise_source_data The sequence of samples from the noise source,

with length number_of_samples_requested.

status A boolean value that is TRUE if the request has

been satisfied, and is FALSE otherwise.

5.1.3 Health Test: An Interface to the Entropy Source

A HealthTest call is a request to the entropy source to conduct a test of its health. The

HealthTest interface allows for various testing methods since this Recommendation does

not require any particular on-demand health testing (see Section 6.5.1.3). Note that it may

not be necessary to include a separate HealthTest interface if the execution of the tests can

be initiated in another manner that is acceptable to [FIPS 140] validation.

NIST SP 800-90B (DRAFT) August 2012

23

HealthTest(type_of_test_requested)

Input:

 type_of_test_requested A bitstring that indicates the type or suite of tests to be

performed (this may vary from one entropy source to

another).

Output:

pass-fail flag A boolean value that is TRUE if the entropy source

passed the requested test, and is FALSE otherwise.

6.0 Entropy Source Development Requirements

Included in the following sections are requirements for the entropy source as a whole, as

well as for each component individually. The intent of these requirements is to assist the

developer in designing/implementing an entropy source that can provide outputs with a

consistent amount of entropy and to provide the required documentation for entropy source

validation. The requirements below are intended to justify why the entropy source can be

relied upon.

6.1 General Requirements for Design and Validation

The functional requirements for the entropy source as a whole are as follows:

1. The developer shall document the design of the entropy source as a whole,

including the interaction of the components specified in Section 4.3. This

documentation shall justify why the entropy source can be relied upon to produce

bits with entropy.

2. The entropy source shall have a well-defined (conceptual) security boundary,

which shall be the same as or be contained within a [FIPS 140] cryptographic

module boundary. This security boundary shall be documented; the documentation

shall include:

 A description of the content of the security boundary; note that the security

boundary may extend beyond the entropy source itself (e.g. the entropy

source may be contained within a larger boundary that also contains a

DRBG); also note that the security boundary may be logical, rather than

physical.

 A description of how the security boundary ensures that an adversary

outside the boundary cannot reduce the entropy below the assessed entropy,

either through observation or manipulation.

NIST SP 800-90B (DRAFT) August 2012

24

 Any assumptions concerning support functions (such as a power supply that

cannot be monitored or manipulated) upon which the security boundary

depends.

4. The developer shall document the range of operating conditions under which the

entropy source may be expected to continue to generate acceptable random data;

the documentation shall clearly describe the measures that have been taken in

system design to ensure the entropy source continues to operate correctly under

those conditions.

5. The entropy source shall be capable of being validated for conformance to [FIPS

140], and include appropriate interfaces to obtain test data, as described in Section

5.0.

6. Documentation shall be provided that describes the behavior of the noise source

and why it is believed that the entropy rate does not fluctuate during normal

operation.

7. Upon notification that the health tests have detected a malfunction, the entropy

source shall cease outputting data and should notify the consuming application

(e.g., the RBG) of the error condition.

An optional, recommended feature of the entropy source is as follows:

8. The entropy source may contain multiple noise sources to improve resiliency with

respect to degradation or misbehavior. When this feature is implemented, the

requirements specified in Section 6.3 shall apply to each noise source.

6.2 Full Entropy Source Requirements

Some of the RBG constructions in [SP 800-90C] depend on a Full Entropy Source, e.g. an

entropy source that closely approximates one in which each output bit is uniformly

distributed and independent of all other output bits. Additional requirements are levied on

sources that claim to provide full entropy output:

1. Bitstrings output from the entropy source shall provide at least (1)n bits of

entropy, where n is the length of each output string and 0    2
-64

.

2. Noise source output, if conditioned, shall be conditioned with an approved

cryptographic conditioning function for full entropy to be provided by the entropy

source. At least twice the block size of the underlying cryptographic primitive

shall be provided as input to the conditioning function to produce full entropy

output.

NIST SP 800-90B (DRAFT) August 2012

25

6.3 Noise Source Requirements

The functional requirements for the noise source are as follows:

1. Although the noise source is not required to produce unbiased and independent

outputs, it shall exhibit probabilistic behavior; i.e., the output shall not be

definable by any known algorithmic rule.

2. The developer shall document the operation of the noise source; this

documentation shall include a description of how the noise source works and

rationale about why the noise provides acceptable entropy output, and should

reference relevant, existing research and literature.

3. The noise source shall be amenable to testing to ensure proper operation. In

particular, it shall be possible to collect data from the noise source for health

testing and during the validation process in order to allow an independent

determination of the entropy rate, and the appropriateness of the health tests on the

noise source. Acquiring outputs from the noise source shall not alter the behavior

of the noise source or affect the subsequent output in any way.

4. Failure or severe degradation of the noise source shall be detectable. Methods used

to detect such conditions shall be documented.

5. The noise source documentation shall describe the conditions, if any, under which

the noise source is known to malfunction or become inconsistent, including a

description of the range of environments in which the noise source can operate

correctly. Continuous tests or other mechanisms in the entropy source shall protect

against producing output during such malfunctions.

6. The noise source shall be protected from adversarial knowledge or influence to the

greatest extent possible. The methods used for this shall be documented, including

a description of the (conceptual) security boundary’s role in protecting the noise

source from adversarial observation or influence.

6.4 Conditioning Component Requirements

The functional requirements for the optional conditioning component are as follows:

1. The entropy source developer shall document whether or not the entropy source

performs conditioning. If conditioning depends on choices made external to the

entropy source (i.e. if it is a selectable option), this feature shall be documented.

2. If the entropy source performs conditioning, the method shall be described and

shall include an argument for how the chosen method meets its objectives with

respect to reducing the bias in the data obtained from the noise source and/or

producing output that meets (or exceeds) a specified entropy rate.

NIST SP 800-90B (DRAFT) August 2012

26

3. The entropy source conditioning component outputs shall be capable of being

subjected to health and validation testing.

4. The entropy source developer shall state and justify estimates of the bias and

entropy rate that is expected of the bitstrings output by the conditioning component.

If the entropy source is meant to produce full entropy output, the output bitstrings

shall satisfy the requirements in Section 6.2.

5. Documentation describing how variations in the behavior of the noise source will

affect the bias and entropy rate of the conditioning component’s output shall be

provided.

6.4.1 Non-Approved Conditioning Components

As discussed previously, there are various methods for designing a conditioning

component for an entropy source. One such method involves using a non-approved

conditioning function to condition the noise source outputs. If a non-approved

conditioning component is chosen in design of the entropy source, then this conditioning

component shall undergo extensive testing to determine the entropy provided by the

conditioned outputs (see Section 8.2). The entropy rate provided shall be no greater than

the entropy rate provided by the input to the conditioning component; full entropy shall

not be provided by non-approved conditioning components.

6.4.2 Approved Cryptographic Conditioning Components

Using an approved cryptographic function (i.e., algorithm) to condition the noise source

outputs is beneficial because the approved functions can uniformly distribute the input

entropy throughout the output of the conditioning component and as such can be used to

provide full entropy output. In general, the entropy estimate for the conditioning function

output will be no greater than the output length of the conditioning component.

This Recommendation approves both keyed and unkeyed functions for the conditioning

component, as discussed in Sections 6.4.2.1 and 6.4.2.2, respectively. These approved

conditioning functions produce the following results:

1. When an input string with m bits of assessed entropy is provided to an approved

conditioning function with an n-bit output, the resulting assessed entropy is

uniformly distributed across the entire n-bit output. Note that if 𝑚 ≥ 𝑛, full

entropy output is not necessarily provided; see item 2.

2. When an input string with 2n bits (or more) of assessed entropy is provided to an

approved conditioning function with an n-bit output, the resulting n-bit output is

considered to have full entropy.

6.4.2.1 Approved Keyed Conditioning Functions

Three keyed functions are approved for the conditioning component:

1. HMAC, as specified in [FIPS 198], with any approved hash function specified in

[FIPS 180],

NIST SP 800-90B (DRAFT) August 2012

27

2. CMAC, as specified in [SP 800-38B], with any approved block cipher algorithm

(see [FIPS 197] and [SP 800-67]), and

3. CBC-MAC, as specified in Section 6.4.2.1.2, with any approved block cipher

algorithm. CBC-MAC shall not be used for other purposes.

6.4.2.1.1 General Constructions for Approved Keyed Conditioning Functions

This general construction is to be used for the approved keyed conditioning functions listed

in Section 6.4.2.1. The following notation is used in the construction:

F(K, X) The notation used to represent the approved keyed conditioning function,

with key K and input string X.

n The number of bits output by F; for CMAC and CBC-MAC, n is the length

(in bits) of the output block of the block cipher algorithm; for HMAC, n is

the length (in bits) of the hash function output block.

S An input string with assessed entropy m.

A Additional input; any bit string, including the null string (e.g., a timestamp,

sequence number, or previous output value).

K Any key, e.g., a constant across all implementations, or a value initialized

once per entropy source, or initialized upon start-up.

Y The n-bit output of the conditioning function.

Process:

1. Y = F(K, S||A).

2. Output Y as the conditioned output.

If the input string S was assessed at 2n bits of min-entropy or more (i.e., 𝑚 ≥ 2𝑛), then Y

may be considered to have n bits of full entropy output. If S was assessed at m bits of min-

entropy and 2𝑛 > 𝑚 ≥ 𝑛, then Y shall be assessed at
𝑚

2
 bits of min-entropy. If S was

assessed at m bits of min-entropy and 𝑚 < 𝑛 then Y shall be assessed at m bits of min-

entropy.

6.4.2.1.2 CBC-MAC Conditioning Function

For an approved conditioning function, CBC-MAC is defined as follows. This

construction shall not be used for any other purpose. The following notation is used for

the construction:

E(K,X) The notation used to represent the encryption of input string X using key K.

n The length (in bits) of the output block of the cipher algorithm.

S An input string; the length of S shall be an integer multiple of the output

length n of the block cipher algorithm and shall always be the same length

(i.e., variable length strings shall not be used as input).

w The number of n-bit blocks in S; an integer.

NIST SP 800-90B (DRAFT) August 2012

28

K The key to be used.

V The n-bit CBC-MAC output.

Process:

1. Let 𝑠0, 𝑠1, … 𝑠𝑤−1 be the sequence of blocks formed by dividing S into n-bit blocks;

i.e., each 𝑠𝑖 consists of n bits.

2. V = 0.

3. For i = 0 to w-1

V = E(K, V  𝑠𝑖).

4. Output V as the CBC-MAC output.

6.4.2.2 Approved Unkeyed Conditioning Functions

Three unkeyed functions are approved as conditioning functions:

1. Any approved hash function specified in [FIPS 180],

2. hash_df, as specified in [SP 800-90A], using any approved hash function

specified in [FIPS 180], and

3. bc_df, as specified in [SP800-90A], using any approved block cipher algorithm

(see [FIPS 197] and [SP 800-67]).

The following notation is used for the construction of the unkeyed conditioning function:

F(X) The notation used to represent the approved unkeyed conditioning function

listed above, applied to input string X.

S An input string assessed at m bits of entropy.

A Additional input; any bit string, including the null string (e.g. a timestamp,

sequence number or previous output value).

n The number of bits output by F; for bc_df, n is the length (in bits) of the

output block of the block cipher algorithm; otherwise, n is the length (in

bits) of the hash function output block.

Y The n-bit conditioned output.

Process:

1. Y = F(S||A).

2. Output Y as the conditioned output.

If the input string S was assessed at 2n bits of min-entropy or more (i.e., 𝑚 ≥ 2𝑛), then Y

may be considered to have n bits of full entropy output. If S was assessed at m bits of min-

entropy and 2𝑛 > 𝑚 ≥ 𝑛, then Y shall be assessed at
𝑚

2
 bits of min-entropy. If S was

NIST SP 800-90B (DRAFT) August 2012

29

assessed at m bits of min-entropy and 𝑚 < 𝑛 then Y shall be assessed at m bits of min-

entropy.

6.4.2.3 Recommendations for Improved Security

The developer is permitted to select keys and additional input arbitrarily. However, the

following recommendations may improve security:

1. In the keyed functions in Section 6.4.2.1, the key K should be generated randomly

each time a device starts up (e.g., K can be obtained by using entropy bits from the

noise source with at least n bits of assessed entropy, where n is the output length of

the conditioning function to be used, and processing the entropy bits using the

conditioning function with an arbitrary key; the result can be used as K).

2. The optional additional input A should include some function of the previous

output from the conditioning function in order to smooth out variations in the

entropy source behavior.

6.5 Health Test Requirements

The objective of these tests is to detect deviations from the intended behavior of the

entropy source in general (and the noise source in particular) during operation. The

following are general requirements for entropy source health tests:

1. Testing shall be performed at startup and continuously thereafter to ensure that all

components of the entropy source continue to work correctly.

2. All entropy source health tests and their rationale shall be documented. The

documentation shall include a description of the health tests, the rate and

conditions under which each health test is performed (e.g., at startup, continuously,

or on-demand), the expected results for each health test, and rationale indicating

why each test is believed to be appropriate for detecting one or more failures in the

entropy source.

6.5.1 Health Tests on the Noise Source

6.5.1.1 General Requirements

The health testing of a noise source is likely to be very technology-specific. Since, in the

vast majority of cases, the noise source will not produce unbiased, independent binary

data, traditional statistical procedures (e.g., monobit, chi-square, and runs tests) that test

the hypothesis of unbiased, independent bits almost always fail, and thus are not useful for

monitoring the noise source. In general, tests on the noise source have to be tailored

carefully, taking into account the expected statistical behavior of the correctly operating

noise source.

Health testing of noise sources will typically be designed to detect failures of the noise

source based on the expected output during a failure, or to detect a deviation from the

NIST SP 800-90B (DRAFT) August 2012

30

expected output during the correct operation of the noise source. The following are

requirements for noise source health tests.

1. At a minimum, continuous testing as defined in Section 6.5.1.2 shall be

implemented. In addition, the developer shall document any known noise source

failure modes. Continuous tests should also be devised and implemented to detect

those failures.

2. Testing shall be performed on the digitized samples obtained from the noise

source.

3. The noise source shall be tested for variability in the output sample values. (A

sequence of outputs lacking in variability could, for example, consist of a single

repeated value.)

4. Noise source bits generated during start-up that have successfully passed the start-

up health tests may be used to produce entropy source output (after (optional)

conditioning).

5. When health testing detects a failure in the noise source, the entropy source shall

be notified.

Optional features for noise source health tests are:

6. Appropriate health tests tailored to the noise source should place special emphasis

on the detection of misbehavior near the boundary between the nominal operating

environment and abnormal conditions. This requires a thorough understanding of

the operation of the noise source.

6.5.1.2 Continuous Testing

The purpose of continuous testing is to allow the entropy source to detect many kinds of

disastrous failures in its underlying noise source. These tests are run continuously on all

digitized samples obtained from the noise source, and so must have a very low probability

of yielding a false positive. In many systems, a reasonable false positive rate will make it

extremely unlikely that a properly-functioning device will indicate a malfunction, even in a

very long service life. In the case where an error is identified, the noise source shall notify

the entropy source of the malfunction.

Note that the tests defined operate over a stream of values. These sample values may be

output as they are generated (i.e., processed by the conditioning component, as appropriate,

and used by the entropy source to produce output); there is no need to inhibit output from

the noise source or entropy source while running the test. It is important to understand that

this may result in poor entropy source outputs for a time since the error is only signaled

once significant evidence has been accumulated and these values may have already been

output by the source. As a result it is important that the false positive rate be set to an

NIST SP 800-90B (DRAFT) August 2012

31

acceptable level. Below, all calculations assume that a false positive rate of approximately

once per billion samples generated by the noise source is acceptable; however, the

formulas given can easily be adapted for even lower false positive probabilities, if

necessary.

Health tests are required for all entropy sources. The continuous tests discussed in this

Section are focused on noise source behavior and on detecting failures as the noise source

runs. The continuous tests shall:

 Include the two tests below: the Repetition Count Test and the Adaptive Proportion

Test; or

 Include other tests that detect the same failure conditions reliably, according to the

criteria given below in Section 10.0.

6.5.1.2.1 Repetition Count Test

The Repetition Count Test is an updated version of the "stuck bit" test—its goal is to

quickly detect a catastrophic failure that causes the noise source to become "stuck" on a

single output value for a long time. Given the assessed min-entropy, H, of the noise

source, it is easy to compute the probability that a sequence of N consecutive samples will

yield identical sample values. For example, a noise source with one bit of min-entropy per

sample has no more than a 1/2 probability of repeating some sample value twice in a row,

no more than 1/4 of repeating some sample value three times in a row, and in general, no

more than (1/2)
N-1

 probability of repeating some sample value N times in a row. More

generally, if a dataset of N consecutive sample values is obtained from a noise source with

H bits of min-entropy per sample, there is no greater than (2
-H

)
(N-1)

of obtaining a sequence

of N identical sample values.

This test's cutoff values can be applied to any entropy estimate, H, including very small

and very large estimates. However, it is important to note that this test is not very

powerful – it is able to detect only catastrophic failures of an entropy source. For example,

a noise source evaluated at eight bits of min-entropy per sample has a cutoff value of five

repetitions to ensure a false-positive rate of approximately once per four billion samples

generated. If that noise source somehow failed to the point that it was providing only four

bits of min-entropy per sample, it would still be expected to take about sixty-five thousand

samples before the Repetition Count Test would notice the problem.

As the noise source generates outputs, the entropy source keeps track of two variables and

a constant, C:

1. A = the most recently seen sample value.

2. B = the number of consecutive times that the value A has been seen.

3. C = the cutoff value at which the Repetition Count Test fails.

Therefore, running the Repetition Count Test requires enough memory to store A, B, and

C. The value of C does not need to be computed each time the test is run since C is

computed at design time as follows.

NIST SP 800-90B (DRAFT) August 2012

32

If W > 0 is the acceptable false-positive probability associated with an alarm

triggered by C repeated sample values, then the formula for the cutoff value

employed by the Repetition Count Test is:

C= 






 


H

W))log((
1  2.

This value of C is the smallest integer satisfying the inequality W  (

2

-H
)
(C-1)

, which

ensures that the probability of obtaining a sequence of C identical values from C

consecutive noise source samples is no greater than W (when the noise source is providing

entropy at the assessed rate of H bits per sample).

Thus, for W = 2
-30

, an entropy source with H = 7.3 bits per sample would have a

Repetition Count Test cutoff value of .6
3.7

30
1 










The test is performed as follows:

1. Let A be the first sample value produced by the noise source, and let B = 1.

2. For each new sample processed:

a) If the new sample value is A, then B is incremented by one.

i. If B = C, then an error condition is raised due to a failure of the test.

b) Else:

i. A := the new sample

ii. B := 1

iii. Repeat Step 2.

This test continues indefinitely while the entropy source is operating. Note that the sample

values may be output as they are generated (i.e., processed by the conditioning component,

as appropriate, and used by the entropy source to produce output); there is no need to

inhibit output from the noise source or entropy source while running the test.

6.5.1.2.2 Adaptive Proportion Test

The Adaptive Proportion Test is designed to detect a large loss of entropy, such as might

occur as a result of some physical failure or environmental change affecting the noise

source. The test continuously measures the local frequency of occurrence of some sample

value in a sequence of noise source samples to determine if the sample occurs too

frequently.

As the noise source generates sample values, the entropy source keeps track of three

variables and three constants:

1. A = the sample value currently being counted.

NIST SP 800-90B (DRAFT) August 2012

33

2. S = the number of noise source samples examined so far in this run of the test.

3. B = the current number of times that A has been seen in the S samples examined so

far.

4. N = the total number of samples that must be observed in one run of the test, also

known as the “window size” of the test.

5. C = the cutoff value above which the test should fail.

6. W = the probability of a false positive; W = 2
-30

 for this Recommendation.

The test is performed as follows:

1. The entropy source obtains the current sample from the noise source.

2. If S = N, then a new run of the test begins:

a) A := the current sample value.

b) S := 0.

c) B := 0.

3. Else: (the test is already running)

a) S := S + 1.

b) If A = the current sample value, then:

i. B := B + 1.

ii. If B > C then raise an error condition, because the test has detected a failure.

This test continues while the entropy source is running. Running the test requires enough

memory to store the sample value that is being counted, (A), the count of its occurrences

(B), and an indication of the number of samples that have been examined in this run so far

(S). The other values listed above are constants that are defined in the following sections.

Note that sample values are used by the entropy source as they are produced by the noise

source; there is no need to inhibit output from the entropy source or noise source while

running the test.

6.5.1.2.2.1 Parameters for the Adaptive Proportion Test

As noted above, there are three variables in the Adaptive Proportion Test that are modified

as the test runs. There are also three constant values that are determined prior to the start

of the test. W, the false positive rate, is set at 2
-30

 for this Recommendation. This section

will describe how to determine N and C based on the noise source being tested.

6.5.1.2.2.1.1 Determining the Window Size, N

The most important consideration in configuring this test is determining the window size.

This involves the following trade-offs:

 Some noise sources simply do not generate very many samples. If an entropy

source never processes as many noise source samples as appear in a window for

this test, the test will never complete, and there will be little or no benefit in

running the test at all.

NIST SP 800-90B (DRAFT) August 2012

34

 A larger window size allows for the detection of more subtle failures in the noise

source. On one extreme, a window size of 65536 samples can detect relatively

small losses in entropy; on the other, a very small window size of 16 samples can

reliably detect only the most catastrophic losses in entropy (and is therefore not

included in this Recommendation).

 A larger window size means that each test takes longer to complete. Due to the

way the Adaptive Proportion Test works, its result is dependent on what value it

samples at the beginning of a test run. Thus, the combination of a large window

size and a relatively low-rate noise source can ensure that failures take a very long

time to detect, even when the test is capable of detecting them.

The window sizes allowed for this test are 64, 256, 4096, and 65536. These provide a

range of different performances. All entropy sources shall continuously run the Adaptive

Proportion Test using at least one of these window sizes, should run the Adaptive

Proportion Test with the 4096 window size, and may continuously run the Adaptive

Proportion Test in parallel for two or more different window sizes. See Section 6.5.1.2.2.2

for further discussion on running two or more versions of the test in parallel.

 As seen in Table 1, a noise source claiming four bits of entropy per sample (i.e., H = 4 in

the first column: the expected amount of entropy per sample), and using a window size of

256, would be expected to be able to detect a 31% loss of entropy (that is, if the entropy

was reduced to only 2.76 bits of entropy per sample, the test would detect the loss).

H Window Size

64 256 4096 65536

1 67% 39% 13% 3%

2 56% 32% 11% 3%

4 50% 31% 12% 3%

8 54% 40% 19% 6%

16 69% 56% 40% 22%

Table 1 Loss of Entropy Detected Based on Entropy per Sample and Window Size

Figure 2 may make the tradeoff easier to understand. It shows the relationship between the

window size and the amount of entropy that must be lost by the noise source before the

loss becomes detectable, for a variety of amounts of entropy claimed per sample.

The black line at 30% provides a reasonable estimate for how much entropy can be lost

before introducing a practical weakness in an RBG. This suggests that the 4096-bit

window size is sufficient to catch this amount of entropy loss for most noise sources.

However, noise sources with a large number of bits per sample become less and less

capable of detecting a large loss of entropy, both because the test is less powerful, and

NIST SP 800-90B (DRAFT) August 2012

35

because the test will only detect a failure of the noise source if the first value sampled in a

run of the test is more probable than the entropy estimate expects it to be.

Figure 2 Relationship Between Window Size and Detectable Loss of Entropy

6.5.1.2.2.1.2 Computing the Cutoff Value, C

The cutoff value is the value above which the Adaptive Proportion Test fails. The cutoff

value C for the estimated min-entropy per sample H, window size N, and acceptable false-

positive rate W is computed by finding the critical value1 at α = 1-W of the binomial

distribution with N trials and a probability per trial of 2
-H

.

The following table gives cutoff values for various min-entropy estimates per sample (H)

and window sizes (N), using an acceptable false-positive probability per N samples of 2
-30

.

N 64 256 4096 65536

H Cutoff Cutoff Cutoff Cutoff

1 51 168 2240 33537

2 35 100 1193 17053

1 This can be computed using widely-available spreadsheet applications. In Microsoft Excel, Open Office

Calc, and iWork Numbers, the calculation is done with the function =CRITBINOM(). For example, in

Microsoft Excel, C would be computed as =CRITBINOM(N,2^(-H),1-T).

0 5 10 15 20 25

0%

10%

20%

30%

40%

50%

60%

70%

80%

How Does Window Size Affect Power of Tests?

64

256

4096

65536

Size of Entropy Loss Detectable

B
it
s
 o

f
E

n
tr

o
p

y
 P

e
r

S
a
m

p
le

NIST SP 800-90B (DRAFT) August 2012

36

3 24 61 643 8705

4 16 38 354 4473

5 12 25 200 2321

6 9 17 117 1220

7 7 15 71 653

8 5 9 45 358

9 4 7 30 202

10 4 5 21 118

11 3 4 15 71

12 3 4 11 45

13 2 3 9 30

14 2 3 7 21

15 2 2 6 15

16 2 2 5 11

17 1 2 4 9

18 1 2 4 7

19 1 1 3 6

20 1 1 3 5

Table 2 Cutoff Values Based on Entropy per Sample and Window Size Given a 2
-30

 False
Positive Rate

Table 2 shows that for a noise source claiming four bits of min-entropy per sample and

using a 4096 sample window size, the Adaptive Proportion Test would have a cutoff value

of 354. If the count within the window ever exceeds 354 matches of the first value

sampled in a run of the test, the test fails, and an error condition shall be raised.

Notice that given the window sizes above, the Adaptive Proportion Test is not defined for

H < 1. That is, when the noise source has less than one bit of min-entropy per sample, the

Adaptive Proportion Test cutoffs are not defined. When H is too small for the required

window sizes, the test shall be performed as follows:

1. Let Q be the number of samples needed to get a combined entropy estimate large

enough for the chosen window size. (For example, if N = 256, Table 2 requires that

H have a minimum value of one. However, if the actual value of H for a sample is

0.1, then 10 samples need to be combined; i.e., Q = 10.)

2. For the Adaptive Proportion Test, successive Q-long sequences of low-entropy

samples are concatenated into a single combined sample with an acceptable min-

entropy.

3. The Adaptive Proportion Test's cutoff value is chosen for the combined samples'

NIST SP 800-90B (DRAFT) August 2012

37

entropy estimate of QH bits2.

6.5.1.2.2.2 Running Adaptive Proportion Tests in Parallel

The performance tradeoffs between different window sizes means that choosing a single

window size requires either losing the ability to quickly discover large failures of the noise

source, or losing the ability to eventually discover subtle failures. A natural solution to this

is to run the Adaptive Proportion Test in parallel with different window sizes. For

example, it would be natural in some applications to use window sizes of both N = 64 and

N = 4096 to be used in parallel.

If two different window sizes are used, individual counters and cutoff values shall be

maintained for each window size.

6.5.1.3 Start-up and On-Demand Testing

Start-up testing is required to ensure that the entropy source components are working as

expected in order to verify that nothing failed since the last time the start-up tests were run.

This Recommendation requires that, at a minimum, the continuous tests be run at start-up;

note that the same requirements apply to the start-up tests as do the continuous tests: either

both the Repetition Count Test and the Adaptive Proportion test or their equivalent(s) (See

Section 10.0) shall be used as the start-up tests. At a minimum, the start-up tests shall

consist of one full cycle of the continuous tests to ensure that the continuous tests have had

an opportunity to verify that the device is working before it is used. Other tests in addition

to the continuous tests may also be run at start-up.

The parameters chosen for the start-up testing may be different than those used for the

continuous tests if power and memory are areas of concern while the entropy source is

starting up. Note that the entropy source shall not use noise source output for operational

purposes until it has passed the start-up tests. Therefore, more memory will be required,

depending on the parameters chosen, if the noise source outputs used during start-up

testing are intended to be used to create operational entropy source output since it will have

to be buffered until the start-up health tests have completed successfully. An alternative is

to throw out any noise source output used in start-up testing.

This Recommendation does not require that any particular on-demand testing be performed

during operation. However, it does require that the entropy source be capable of

performing on-demand health tests. Note that resetting, rebooting, or powering up are

acceptable methods for instituting an on-demand test if the procedure results in immediate

execution of the start-up tests.

2
 Note that due to the conservative approach to entropy estimation it is possible to safely add together entropy

estimates, so that concatenating ten samples with one bit of min-entropy per sample yields a combined

sample with no less than ten bits of min-entropy.

NIST SP 800-90B (DRAFT) August 2012

38

6.5.2 Health Tests on the Conditioning Component

The role of the conditioning component is to reduce the bias that would otherwise be

present in the entropy source output and/or to ensure that the output bitstrings provide

entropy at an acceptable rate. The conditioning component will implement a deterministic

algorithm.

The functional requirements for the health tests of the conditioning component are:

1. The conditioning component shall be tested during start-up with known answer

tests necessary to establish that the conditioning component is working as designed.

2. The developer shall describe the health tests implemented for the conditioning

component to include the failure conditions covered by the tests chosen.

7.0 Validation Data and Documentation Requirements

Entropy source validation is necessary in order to obtain assurance that all relevant

requirements of this Recommendation are met. Validation consists of testing by an

NVLAP-accredited laboratory against the requirements of SP 800-90B, followed by a

review of the results by NIST’s CAVP and CMVP.

The validation of an entropy source presents many challenges. No other part of an RBG is

so dependent on technological and environmental differences. At the same time, the proper

operation of the entropy source is essential to the security of an RBG. This section presents

high-level requirements (on both developers and testers) for validation and provides a

method for mapping large samples into smaller bitstrings for situations in which it is

difficult to collect sufficient data for validation, given the size of the sample (see Section

7.2). The requirements below are intended to enable entropy source validation to help

justify why the entropy source can be relied upon.

7.1 General Validation Requirements

The entropy source consists of three components: the noise source, health tests, and an

optional conditioning component. The entropy source will have no more entropy than that

provided by the noise source, and as such, the noise source requires special attention

during validation testing. This is partly due to the fundamental importance of the noise

source (if it does not do its job, the entropy source will not provide the expected amount of

security), and partly because the probabilistic nature of its behavior requires more

complicated testing.

This section contains requirements for submitting an entropy source for [FIPS 140]

validation. Section 8.0 describes the testing strategy for noise sources, conditioned output,

and full-entropy sources. Section 9.0 details the specific validation tests.

The following are general requirements for validation testing.

1. Data Collection:

NIST SP 800-90B (DRAFT) August 2012

39

 Data collection will be performed in one of two ways 1) by the developer with a

witness from the testing lab, or 2) by the testing lab itself. The entropy source

shall contain an interface that enables access to raw bits from the noise source

and conditioned outputs from the conditioning component (if utilized). This

interface shall consume the noise source outputs (i.e., these outputs shall not be

used for anything else once received by the interface). The interface shall be

accessible during validation testing but may be disabled, otherwise.

 Data shall be collected from the noise source and conditioning component (if

available) under normal operating conditions (i.e., when it is reasonable to

expect entropy in the outputs).

 Data collected from the noise source for validation testing shall be raw,

digitized, but otherwise unprocessed, sample values. NIST will provide

guidance as to the appropriate format of the data for input to the validation

tests.

 One long dataset of at least 1,000,000 consecutive sample values obtained

directly from the noise source (i.e., raw and unprocessed samples) shall be

collected for validation3.

 If a non-approved conditioning component is used, one long dataset of at least

1,000,000 consecutive conditioned output values shall be collected for

validation. Note that the data collected from the noise source for validation

may be used as input to the conditioning component for the collection of

conditioned output values.

 For sample values consisting of more than a single bit, the developer shall

provide the tester with an ordered ranking of the bits in the sample values (see

Section 7.2).

Note that some tests will divide a dataset into multiple subsets of sample values; these

subsets will be called “data subsets”.

2. Validation Testing:

 The continuous health tests shall be verified; the tester will verify that the

implemented tests detect the failure conditions detected by the Repetition Count

Test and Adaptive Proportion Test (See Section 6.5.1.2).

 The tests in Section 9.0 will be run on all samples (noise source and non-

approved conditioning component output) submitted for testing; all data

collected will be tested as defined in Section 8.0.

3 Providing additional data beyond what is required will result in more accurate entropy estimates. Lack of

sufficient data for the tests in Section 9.0 yields lower entropy estimates due to the necessity of mapping

down the output values (see Section 7.2). It is recommended that, if possible, more data than is required be

collected for validation. However, it is assumed in subsequent text that only the required data has been

collected.

NIST SP 800-90B (DRAFT) August 2012

40

 The developer shall indicate whether the noise source produces IID data or

non-IID data. This claim will be used in determining the test path followed

during validation. A claim of full-entropy will be interpreted as an IID claim.

 The min-entropy estimate generated by the tests in Section 9.0 will be the value

at which the entropy source is validated. This entropy estimate will be in terms

of min-entropy per sample.

 Full-entropy will be credited to an entropy source only after passing the tests

for IID data in this Recommendation (see Sections 9.1 and 9.2).

 The tester will test all data as specified in Section 8.0, and will examine all

documentation and theoretical justifications submitted by the developer.

3. Documentation for Validation Testing (not for general consumption):

 The developer shall provide documentation that describes the operation of the

entropy source to include how it works, how entropy is produced, and how to

obtain data from within the entropy source for testing purposes (i.e., from the

noise source and, if present, the conditioning component).

 Documentation shall be provided so that the lab or vendor can perform (or

replicate) the collection process at a later time, if necessary. The collection

process shall not require advanced knowledge of the source or intrusive actions

that may alter the behavior of the entropy source (e.g., drilling into the device).

 Documentation shall provide a technical argument for why the noise source can

support a defined entropy rate. This can be in broad terms of where the

unpredictability comes from and a rough description of the behavior of the

noise source (to show that it is reasonable to assume the behavior is stable).

 Documentation shall describe the conditions under which the entropy source is

claimed to operate correctly (e.g., temperature range, voltages, system activity,

etc.). Analysis of the entropy source’s behavior at the edges of these conditions

shall be documented, along with likely failure modes.

 A description of the health tests and the rationale for implementing those tests

shall be included. The developer shall provide source code for any tests

implemented as an alternative or in addition to those listed in this

Recommendation.

 The developer shall provide a description of the output space of the noise

source, including its size, and shall specify the sample size from the noise

source - a fixed quantity for a given noise source.

 For entropy sources containing a conditioning component, a description of the

conditioning component shall be provided that includes specification of the size

of the output blocks from the conditioning component.

NIST SP 800-90B (DRAFT) August 2012

41

7.2 Dealing with the Data Requirement for Noise Sources with Large Output
Spaces

It is often the case that the data requirements for a test on noise source samples depend on

the number of possible different bitstrings from the source (i.e., the output space). For

example, consider two different noise sources, A and B. Source A outputs four-bit

samples, and thus has a possible total of 2
4
 = 16 different outputs. Source B outputs 32-bit

samples, for a possible total of 2
32

 different outputs.

In many cases, the variability in output that contributes to the entropy in a sample may be

concentrated among some portion of the bits in the sample. For example, consider a noise

source that outputs 32-bit high-precision clock samples that represent the time it takes to

perform some system process. Suppose that the bits in a sample are ordered in the

conventional way, so that the lower-order bits of the sample correspond to the higher

resolution measurements of the clock. It is easy to imagine that in this case, the low-order

bits would contain most of the variability. In fact, it would seem likely that some of the

high-order bits may be constantly 0. For this example, it would be reasonable to truncate

the 32-bit sample to a four-bit string by taking the lower four bits, and perform the tests on

the four-bit strings. Of course, it must be noted that in this case, a maximum of four bits of

min-entropy per sample could be credited to the noise source.

The description below provides a method for mapping the n-bit noise source samples,

collected as specified in Section 7.1, to strings of bit-length, m, where 𝑛 ≥ 𝑚. The

resulting strings can be used as input to tests that may have infeasible data requirements if

the mapping were not performed. Note that after the mapping is performed, the maximum

amount of entropy per n-bit sample is m bits.

In extreme cases, it is possible that there exists some dependency in the samples that is

controlled by the bits that have been discarded. If this is the case, any testing performed to

validate the entropy estimate of the processed samples may result in an over-estimate of

the entropy. To minimize this possibility, the mapping technique will not be performed

unless the sample bit-length is greater than can be handled by a particular test.

Given a noise source that produces n-bit samples, where n exceeds the bit-length that can

be handled by the test, the developer shall provide the tester with an ordered ranking of the

bits in the n-bit samples. The rank of ‘1’ shall correspond to the bit assumed to be

contributing the most entropy to the sample, and the rank of n shall correspond to the bit

contributing the least amount. If multiple bits contribute the same amount of entropy, the

ranks can be assigned arbitrarily among those bits. The following algorithm, or its

equivalent, shall be used to assign ranks.

Input: A noise source and corresponding statistical model with samples of the form

𝑋 = 𝑥1𝑥2 … 𝑥𝑛, where each xi is a bit.

Output: An ordered ranking of the bits x1 through xn, based on the amount of entropy that

each bit is assumed to contribute to the noise source outputs.

1. Set 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑛}.

2. For i = 1 to n:

NIST SP 800-90B (DRAFT) August 2012

42

a. Choose an output bit xj such that no other bit in S is assumed to contribute

more entropy to the noise source samples than xj.

b. Set rank(xj) = i.

c. Set 𝑆 = 𝑆 − {𝑥𝑗}.

Given the ranking, n-bit samples are mapped to m-bit strings by simply taking the m-bits of

greatest rank in order (i.e., bit 1 of the m-bit string is the bit from an n-bit sample with rank

1, bit 2 of the m-bit string is the bit from an n-bit sample with rank 2, … and bit m of the

m-bit string is the bit from an n-bit sample with rank m).

Note that for the tests in Section 9.0, a reference to a sample in the dataset will be

interpreted as a reference to the m-bit string of the sample when the test necessitates

processing the dataset as specified in this section.

8.0 Entropy Source Testing Strategy

8.1 General Noise Source Entropy Testing Strategy

The most basic requirement for any entropy source is estimating the min-entropy correctly.

A min-entropy estimate for the entropy source is calculated from the data submitted for

testing, as defined in Section 7.1. As shown in Figure 3, the test track is initially

influenced by the developer’s claim that the data source does or does not produce IID data.

Both tracks result in a min-entropy estimate, but use different information to determine the

entropy in a dataset, based upon whether or not the data is IID. Claims for full-entropy

imply an entropy source produces IID data; any claim for full-entropy will be interpreted

as an IID claim.

1. If the data is claimed to be IID, a full set of shuffling and statistical tests is run on

the data to verify that the data is IID (see Section 9.1); the claim is verified if there

is no evidence that the data is not IID.

2. If the results from the tests in Section 9.1 verify that the data is IID (via a lack of

evidence to the contrary), the min-entropy of the noise source is estimated using the

tests in Section 9.2. This estimate will be used as the validated min-entropy

estimate for a noise source that produces IID data.

3. Alternatively, if there is no IID claim or if the tests in Section 9.1 do not support

such a claim, a set of five conservative entropy tests are performed on the non-IID

data to obtain the min-entropy estimate. The five tests for non-IID data in Section

9.3 will result in the calculation of five different entropy estimates. By selecting

the minimum of all estimates calculated by the tests, a worst-case estimate of the

entropy is obtained, and this conservative estimate will be used as the min-entropy

estimate for a noise source that does not produce IID data.

4. Following the generation of an entropy estimate, the datasets are subjected to the

sanity checks defined in Section 9.4. These tests are designed to discover major

failures in the design and gross overestimates of entropy by the test suite. Failure

NIST SP 800-90B (DRAFT) August 2012

43

to pass the sanity checks means that the entropy source fails testing. Entropy will

not be credited to that entropy source.

At this point, if the entropy source does not include a conditioning component, given that

the entropy source components pass the tests, the entropy source will be validated at the

determined min-entropy per noise source sample. Otherwise, see Section 8.2.

NIST SP 800-90B (DRAFT) August 2012

44

Figure 3: Flowchart Depicting the Entropy Testing Strategy

Submitted with

an IID or Full

Entropy claim?

Estimate the min-

entropy with the

IID ‘bins’ test

(Section 9.2).

Estimate the min-

entropy with tests

for non-IID data

(Section 9.3).

yes

No

Perform Sanity Checks on

data/entropy estimate submitted

(Section 9.410.0).

No

Yes

Yes (may be Full Entropy)

Validated at entropy

estimate calculated above.

Verify IID with shuffling and

statistical tests (Section 9.1).

Is the data IID?
No

Pass?
Testing Fails. No

entropy estimate

awarded.

(not Full Entropy)

NIST SP 800-90B (DRAFT) August 2012

45

8.2 Entropy Source Testing Strategy for Conditioned Output

There are various methods for designing a conditioning component for an entropy source.

One such method involves using an approved cryptographic algorithm/function to

condition the noise source outputs. If an approved algorithm, discussed in Section 6.4.1,

is used as the conditioning component, validation testing on the output from the

conditioning component using the appropriate tests in Section 9.0 will not be performed4.

If a non-approved algorithm is used as the conditioning component, validation testing on

the output from the conditioning component using the tests in Section 9.1 will be

performed. Any conditioned output must be IID.

1. If a conditioning component is implemented in the entropy source, use the results of

noise source testing to determine the amount of entropy provided in each input to the

conditioning component (i.e., the amount of entropy in the input is the assessed amount

of entropy per sample from the noise source times the number of samples provided for

the conditioning component input).

a. If the conditioning component is approved, then:

i. Given assurance of correct implementation of the approved algorithm, the

entropy estimate for each output of the conditioning component is

min(outlen, entropy_in), where outlen is the length of the output from the

conditioning component, and entropy_in is the amount of entropy per bit in

the input to the conditioning component. Note that it is acceptable to

truncate the cryptographic output. If this is done, the entropy estimate is

reduced to a proportion of the output (e.g., if there are 6 bits of entropy in

an 8 bit output and the output is truncated to 6 bits, then the entropy is

reduced by ¼ to 4.5 bits).

ii. If validation testing of the approved algorithm indicates that it has not been

implemented correctly, the conditioning component will be treated as not

approved.

b. If the conditioning component is not approved, then:

i. Determine the input/output ratio, R. Most conditioning functions will take

in more bits than they output. In some cases, the ratio of input to output bits

will be fixed. If this is the case, the input/output ratio will be determined by

simply calculating the number of bits of input needed to produce a given

number of output bits. On the other hand, some conditioning components

may take an indeterminate number of input bits to produce a given number

of output bits (e.g. von Neumann unbiasing, where the number of bits of

output depends not only on the number of bits of input, but on the actual

values of the input bits.) In this case, the ratio of input bits to output bits

4 Note, however, that these algorithms are subject to other validation testing to obtain assurance of correct

implementation and obtain their approval rating.

NIST SP 800-90B (DRAFT) August 2012

46

will be estimated by processing 1,000,000 bits of noise source data through

the conditioning component and observing the number of bits of output.

ii. Run the tests in Section 9.1 on the output of the conditioning component.

Any conditioned output must be IID; a full set of shuffling and statistical

tests is run on the data to verify that the data is IID. The sample size of the

conditioned output is the size of the output space of the non-approved

conditioning component (e.g., if MD5 is the conditioning component, the

sample size is 128 bits).

a. The claim is verified if there is no evidence that the data is not IID

and testing continues.

i. The min-entropy of the conditioned output is estimated using

the test in Section 9.2.

ii. Let S be the entropy estimate for the noise source (i.e. the

number of bits of entropy per bit of noise source output.) as

determined by the noise source validation tests. Let E be the

entropy estimate for the conditioned output values, and let R

be the input/output ratio of the conditioning component.

Since the conditioning component cannot increase the

entropy, it must be the case that S/R ≥ E. If this condition is

not met, the entropy estimate E will be adjusted to be equal

to S/R.

b. If the tests in Section 9.1 do not support the IID claim, then the

entropy source fails validation, and testing is terminated.

iii. Following the generation of an entropy estimate, the data is subjected to the

sanity checks defined in Section 9.4. These tests are designed to discover

major failures in the design and gross overestimates of entropy by the test

suite. Failure to pass the sanity checks means that the entropy source fails

testing. Entropy will not be credited to that entropy source.

At this point, given that the conditioned output is found to be IID and the components have

passed the sanity checks, the entropy source will be validated at the min-entropy per

conditioned output, E, computed above.

8.3 Entropy Source Testing Strategy for Full Entropy Sources

Claims for full-entropy imply that a noise source or an entropy source produces IID data;

any claim for full-entropy will be interpreted as an IID claim. There are two basic options

for full-entropy: full-entropy with no conditioning component, and full-entropy through

implementation of an approved conditioning component. Entropy sources that implement

a non-approved conditioning component will not be validated as full-entropy sources.

1. If full entropy is claimed, the data must be IID. A full set of shuffling and

statistical tests is run on the data to verify that the data is IID (see Section 9.1).

NIST SP 800-90B (DRAFT) August 2012

47

a. If the noise source passes the IID tests in Section 9.1 (i.e., there is no

evidence that the data is not IID), then testing continues. The min-entropy

of the noise source is estimated using the tests in Section 9.2.

i. For full-entropy sources with no conditioning component: Credit

for full-entropy will be given only if the data is verified to be IID,

and a full-entropy estimate is produced by the tests in this

Recommendation.

ii. For full-entropy sources with an approved conditioning component:

Credit for full-entropy will be given only if the data is verified to be

IID, and the noise source input used to derive the W -bit full entropy

conditioned output has at least 2W bits of min-entropy (see Section

6.4).

b. If the noise source does not pass the IID tests in Section 9.1, then full

entropy is not provided and the entropy source will not be validated as a

full-entropy source. Validation may continue, however, using the non-IID

path.

2. Following the generation of an entropy estimate, the datasets are subjected to the

sanity checks defined in Section 9.4. These tests are designed to discover major

failures in the design and gross overestimates of entropy by the test suite. Failure

to pass the sanity checks means that the entropy source fails testing. Entropy will

not be credited to that entropy source.

At this point, given that the entropy source components have passed the tests, the entropy

source will be validated at the determined min-entropy per sample.

8.4 Entropy Source Testing Strategy for the Health Test Component

Entropy sources that do not implement the Repetition Count Test and the Adaptive

Proportion Test shall include alternative continuous tests that detect the same failure

conditions. The tester will determine the equivalence of the alternative test(s) as described

in Section 10.0.

Submitters of entropy sources for validation testing are required to provide a dataset of at

least a million samples drawn from their noise source for validation testing. The testing of

the submitter’s alternative test(s) for equivalent functionality also requires a dataset; the

same dataset may be used for both noise source validation testing and the testing of

equivalent functionality of the continuous health tests.

The tests work as follows:

1. A dataset, D, taken from the noise source is modified to simulate a particular kind

of failure that the Repetition Count or Adaptive Proportion Test will detect with

very high probability. Note that a different simulated failure is used (and thus a

different altered dataset is created) for each test, although the same “original”

dataset may be used.

NIST SP 800-90B (DRAFT) August 2012

48

2. The alternative test(s) is applied to this modified dataset, D'. If the simulated

failure is detected, then the alternative test is assumed to provide equivalent

functionality.

If these tests for equivalent functionality fail, then the requirement on the health test

component is not met and the entropy source will not be validated.

9.0 Tests for Determining Entropy Provided by Entropy Sources

One of the essential requirements of an entropy source is the ability to reliably create

random outputs. To ensure that sufficient entropy is input to a DRBG (see [SP 800-90C]

for DRBG constructions), the amount of entropy produced per noise source sample must

be determined. This Section describes generic tests that will be used to test the noise

source and, when non-approved methods are used, the conditioning component as well

(see Section 8.2).

The tests described in this Section are appropriate for a wide range of noise sources.

Because these tests are generic, they are aimed at catching serious problems and are not

meant to address all possible types of sources or all failure conditions.

The test descriptions in this Section are written for an accredited testing laboratory,

although the tests are also useful for entropy source developers.

9.1 Determining if the Data is IID

9.1.1 General Discussion

This section describes tests appropriate for a wide range of noise sources and non-

approved conditioning components in which each sample is drawn from the same

distribution, and its probability of occurrence is independent of any other value sampled.

A noise source or conditioning component that meets this requirement is known as IID

(independent and identically distributed). These tests are designed to find evidence that the

data is IID by testing the dataset against the hypothesis that the distribution of samples is

IID. These tests are used as a check on the validity of the developer’s claim that an IID

source has been submitted; the testing consists of the shuffling tests defined in Section

9.1.2, and the statistical tests defined in Section 9.1.3. If the tests do not disprove the IID

claim (i.e., the dataset passes the IID testing), further testing continues under the

assumption that the noise source outputs IID data (see Figure 3). A failure of any of the

shuffling or statistical tests in Section 9.1 results in a cessation of IID testing and a switch

to tests for non-IID data (see Section 9.3).

9.1.2 Shuffling Tests on Independence and Stability

Given the null hypothesis that the samples follow an IID distribution, a shuffled version of

a dataset should be just as likely to have occurred as the original dataset that was produced.

The original dataset’s test score is expected to be drawn from the same distribution as the

scores of the shuffled datasets; an original dataset test score of unusually high or low rank

NIST SP 800-90B (DRAFT) August 2012

49

(see Step 2c below) is expected to occur very infrequently. However, if the null hypothesis

is not true (i.e., the samples do not follow an IID distribution), then some test scores may

be very different for the original and shuffled datasets.

A dataset created as specified in Section 7.1 will be divided into ten non-overlapping data

subsets of equal size, i.e., for a dataset consisting of N samples, each data subset would be










10

N
 samples in length. Each of these data subsets will be tested to determine if the

samples follow an IID distribution.

Shuffling tests detect a deviation of the noise source or conditioning component

distribution from independent and stable behavior using the following strategy:

1. Several statistical scores are calculated. Certain behavior is not consistent with the

expected model of an independent, stable distribution for the samples and is

expected to be associated with unusually low or high values for the test scores. The

following scores are computed:

 Compression score: one score per data subset (see Section 9.1.2.1),

 Over/Under Runs score: two scores per data subset (see Section 9.1.2.2),

 Excursion score: one score per data subset (see Section 9.1.2.3),

 Directional Runs score: three scores per data subset (see Section 9.1.2.4),

 Covariance score: one score per data subset (see Section 9.1.2.5), and

 Collision score: three scores per data subset (see Section 9.1.2.6).

2. The following steps are performed on each of the ten data subsets being tested:

a. The scores are computed for the (original) data subset, yielding a vector of J

scores.

b. The following steps are repeated 1,000 times for the data subset:

i. The values in the (original) data subset are shuffled (i.e., permuted),

using a pseudorandom number generator as specified by the Fisher-

Yates shuffle [Knuth].

ii. The scores are computed for the shuffled data subset, yielding a

vector of J scores, where J is the number of scores for a given test

on a single dataset (see step 1 above).

iii. The scores are stored in a list.

c. For each of the corresponding scores for a data subset (e.g., all the first

scores resulting from the directional runs test), the original data subset’s

score (from step 2a) is ranked, in terms of how it compares to the scores of

the shuffled data subsets. For example, if the original data subset’s score is

lower than the score of all the shuffled data subsets, the rank of the original

data subset’s score is 1, and the scores for all the other shuffled data subsets

would have a higher rank. If the original data subset’s score is higher than

NIST SP 800-90B (DRAFT) August 2012

50

the score of all the shuffled data subsets, it has a rank of 1000, and all other

scores would have a rank < 1000.

It is possible for many shuffled data subsets to have the same score. When

the original data subset has the same score as one or more shuffled data

subsets, its score is taken to be the closest one to the median. Given a

sorted list L[0…1001] of shuffled data subset scores, and a score for the

original data subset, S, the following rule is used:

 max(j) such that L[j] ≤ S if L[500] > S

 Rank(S) = 500 if L[500] = S

 min(j) such that L[j] ≥ S if L[500] < S

 This rule ensures that only exceptionally high or low scores show up as

anomalous in the shuffling tests.

 For example, if S = 20, L[500] = 22, L[299] = 19, L[300] = 20, L[301] =

20, and L[302] = 22, then Rank(S) = 301. If S = 20, L[500] = 18, L[599] =

19, L[600] = 20, and L[601] = 20, then Rank(S) = 600.

3. The ranks are treated as p-values in a two-tailed test. The ten data subsets produce

a set of 10×J p-values for each of the six test types.

4. The p-values are combined according to the following rules:

a. Any rank  50 or ≥ 950 is noted. Such events have a probability of 10% of

happening by chance.

b. If eight or more of the original data subsets have a rank  50 or ≥950 on the

same test for each score, the source fails.

i. If a noise source is being tested, it fails the tests for independence

and stability and is not considered to be IID. The testing of the

noise source will proceed along the alternate test path (see Section

9.3).

ii. If a non-approved conditioning component is being tested, the

entropy source fails validation.

9.1.2.1 Compression Score

General-purpose compression algorithms are extremely well adapted for removing

redundancy in a character string, particularly involving commonly recurring subsequences

of characters. The compression score of a data subset (original or shuffled) measures the

length of that data subset after the samples are encoded into a character string and

processed by a general-purpose compression algorithm.

The compression score is computed as follows:

1. The samples in the data subset are encoded as a character string containing a list of

values separated by commas, e.g., “144,21,139,0,0,15”.

NIST SP 800-90B (DRAFT) August 2012

51

2. The character string is processed with the [BZ2] compression algorithm.

3. The score returned is the length of the compressed string, in bytes.

9.1.2.2 Over/Under Runs Scores (Two Scores)

The median value of a data subset is computed, and all sample values not equal to the

median are identified as either above it or below it. Long runs of samples above or below

the median are then expected to be relatively rare if the outputs are independent and stable.

Similarly, the number of runs of samples that are above or below the median is a measure

of whether a given sample is at all dependent on its neighbors, and whether the distribution

is stable.

This test is applicable for any data subset whose samples take on numeric or ordinal

values. However, for testing simplicity, the tests should be run even if the data is non-

numeric or non-ordinal.

Each data subset (original and shuffled) is used to produce a temporary data subset,

consisting of only the values 1 and +1. Sample values less than the median of the original

data subset are assigned a 1 value in the temporary data subset; those greater than the

median are assigned a +1 value, and those equal to the median are omitted from the

temporary data subset. The longest run and number of runs in the temporary data subset

are then noted, yielding two scores for each of the original and shuffled data subsets.

The scores are computed as follows:

1. The data subset is used to compute a median for the values in this data subset. If

the data subset is binary, then the median is 0.5.

2. A temporary data subset is constructed as follows for each of the original and

shuffled data subsets. For each element in the data subset:

a. If the element is larger than the median, append a +1 to the temporary data

subset.

b. If the element is smaller than the median, append a 1 to the temporary data

subset.

c. If the element is the same as the median, do not append anything to the

temporary data subset.

3. Determine the longest run of –1 or +1 in the temporary data subset, and let the

length of this longest run be the first score.

4. The number of runs of 1 and +1 values in the temporary data subset is reported as

the second score.

For example, assume that the original data subset consists of seven samples {5, 15, 12, 1,

13, 9, 4}; the median for this data subset is 9. The temporary data subset on this original

data subset is {–1, +1, +1, –1, +1, –1}; note that the entry for 9 is omitted, by rule 2c. The

runs are (–1), (+1, +1), (–1), (+1), and (–1). The longest run has a length of 2 (the first

score), and the number of runs is 5 (the second score).

NIST SP 800-90B (DRAFT) August 2012

52

9.1.2.3 Excursion Score

The excursion score detects when a sequence of extremely high or low values clusters

together in the data subset. This indicates a distribution that may fail to be stable or

independent. Both high and low excursion scores are of interest. High scores represent

clusters of unusually high/low values occurring together; low scores represent some

process that prevents unusually high/low values from clustering together even as often as

would be expected by chance.

The excursion score is meaningful if the average value of the samples is meaningful (e.g.,

an average can be computed on the dataset values). In a large number of cases in which

the sample value is a count or a digitized value, the average of the dataset values can be

computed. However, for test simplicity, the tests should be run even if an average cannot

be computed.

The excursion score is a measure of how far the running sum of sample values deviates

from its expected value at each point in the data subset. If the data subset is s0, s1, s2,...,

and the mean of the sample values is , then the excursion at position i is s0+s1+...+si –

i×. The score returned is the maximum absolute value of any excursion in the data

subset.

The score is computed as follows, where  = the mean of the values in the data subset.

1. For j = 1 to 








10

N
 (where 









10

N
 is the length of the data subset in samples):

dj = the absolute value of (the sum of the first j samples – j×)

2. The score returned is the largest of the dj values.

For example, if the data subset is {2, 15, 4, 10, 9}, then  = 8. d1 = |2-8| = 6; d2 = |(2+15) –

(28)| = 1; d3 = |(2+15+4) – (38)| = 3; d4 = |(2+15+4+10) – (48)| = 1; d5 =

|(2+15+4+10+9) – (58)| = 0. Therefore, the score is 6, the highest value for dj.

9.1.2.4 Directional Runs Scores (Three scores)

Many physical processes are best understood in terms of their derivatives. If the first

derivative alternates signs between samples, then a large number of short directional runs

will be noted.

Each data subset (original and shuffled) is used to generate a temporary data subset that is

one element shorter than the original (or non-temporary) data subset. The temporary data

subset contains an indication of whether the first value in each pair of elements is less than,

equal to, or greater than the second element in the pair. If the first element is less than the

second element, then a +1 is appended to the temporary data subset; if the two elements are

equal, then a 0 is appended to the temporary data subset; otherwise the first element is

greater than the second element, and a 1 is appended to the temporary data subset. For

NIST SP 800-90B (DRAFT) August 2012

53

example, if the data subset is {24,19,33,4,4,11}, then the temporary data subset would be

{1,+1,1,0,+1}. Three scores are then computed on this temporary data subset:

1. The total number of runs (in this case, 0 values do not break a run, e.g., a run of

{...+1, 0, 0, +1...} is considered to be a continuous run of +1 values);

2. The length of the longest run; for this count, leading zeroes are ignored,

however, zeroes do not break a run (i.e., runs must start with 1 or +1; 0 values

do not break a run); and

3. The number of 1 or +1 values in the temporary data subset, whichever is

greater (e.g., if there are 33 occurrences of 1, and 35 occurrences of +1, then

the score is 35).

These scores can detect a wide variety of ways in which the physical processes underlying

a noise source cause the distribution of samples to not be stable or independent. Both high

and low values of all three scores are of interest.

The scores are computed as follows, where si is the i
th

 element of the data subset, and

“hamming_weight(si, si+1, …, si+n)” is defined as the number of ones in the sequence si, si+1,

…, si+n:

1. The temporary data subset temp is produced from the data subset as follows:

a. If the input is not binary:

For i = 0 to (the length of original data subset) 2:

If si < si+1, then tempi = 1

Else if si > si+1, then tempi = 1

Else tempi = 0.

b. If the input is binary:

Data subsets containing binary data first require processing in which the bits

are combined into bytes. Then, a new data subset is created from the

Hamming weights of the successive bytes and the temporary data subset is

generated from this.

For i = 0 to the (length of original data subset)/8 1:

 Wi= hamming_weight(si,..., si+7)

For i = 0 to (length of sequence W)-2:

 If Wi<Wi+1 then tempi = 1

 Else if Wi>Wi+1 then tempi = -1

 Else tempi = 0

2. Calculate the scores on the temporary data subset.

NIST SP 800-90B (DRAFT) August 2012

54

Example of a non-binary data subset {2, 2, 2, 5, 7, 7, 9, 3, 1, 4, 4}: The temporary data

subset is {0, 0, +1, +1, 0, +1, 1, 1, +1, 0}. There are three runs: (+1, +1, 0, +1), (1, 1)

and (+1, 0), so the first score is three. The longest run has a length of four (the second

score). Since there are four “1” values, and two “1” values, the third score is four.

Example of a binary data subset: The bytes produced by step 1b (represented as

hexadecimal values) are {a3, 57, 3f, 42, bd}. The hamming weights are {4, 5, 6, 2, 6}. The

temporary data subset is {+1, +1, 1, +1}. There are three runs: (+1, +1), (1) and (+1), so

the first score is three. The longest run has a length of two (the second score). Since there

are three “+1” values and one “1” value, the third score is three.

9.1.2.5 Covariance Score

Many of the likely ways that a noise source can fail to be IID involve dependencies

between nearby samples. The chi-square test of independence (see Section 9.1.3.1), and

the compression score (see Section 9.1.2.1) are effective at detecting repeating patterns of

particular values (e.g., strings of sample values that occur more often than would be

expected by chance if the noise source were IID), but will not, in general, detect

relationships between the numeric values of successive samples (e.g., high sample values

usually being followed by low sample values). The covariance score will detect such

relationships.

The behavior of the covariance score is well-understood for bivariate normal distributions.

However, any linear relationship between the successive pairs of values will affect this

score, and so the covariance is expected to be different (larger or smaller) for the original

data subsets than for the shuffled data subsets, if such a relationship exists.

The covariance of two variables is defined as the expected value of their product, minus

the product of their expected values. The covariance is a common statistical measure of

whether two variables have a linear relationship. The covariance score is computed over

each pair of the data subset S, so that s0 is paired with s1, s1 with s2, etc.

The score is computed as follows, where si is the i
th

 element of the data subset, numbered

from zero, and there are a total of 








10

N
 samples in the data subset:

1. count = 0

2.  = the mean of s0, s1, s2, ..., sN/10-1.

3. For i = 1 to 








10

N
:

count = count + (si  )(si1  )

4. Score =

1
10








 N

count
.

NIST SP 800-90B (DRAFT) August 2012

55

For example, if the data subset is {15, 2, 6, 10, 12}, then there are five samples in the data

subset, and the mean  is 9. For i=1, count = (29)(159) = 42; for i=2, count = 42 +

(69)(29) = 21; for i=3, count = 21 + (109)(69) = 24; for i=4, count = 24 +

(129)(109) = 21. The score is (21/4) = 5.

9.1.2.6 Collision Score (Three scores)

A natural measure of how much entropy is in a variable comes from the number of times it

must be sampled before the first duplicate value (“collision”) occurs. A source that is IID

can be expected to have the same behavior with respect to the number of samples that

occur before a collision occurs as its shuffled variants. By contrast, a source in which the

probability of the most likely value changes over time is likely to require fewer samples to

find a collision in its unshuffled outputs than in its shuffled outputs.

The collision score measures the number of successive sample values until a duplicate (a

“collision”) is seen. A single data subset will normally have many times this number of

values, and so many such collisions can be sought in different parts of the data subset.

Starting at the beginning of the data subset, samples are examined until a duplicate is

found. The number of samples examined is noted, and then a new search for duplicates

starts at the next element in the data subset. This continues until the whole data subset has

been checked. The set of numbers of samples examined is then used to compute three

scores: the smallest number, the average, and the largest number.

In the case of binary data, a data subset consisting of binary data is converted into a

sequence of 8-bit bytes before being subjected to this test, so that each sequence of eight

bits in the original data subset becomes one byte in the modified data subset. The modified

data subset is then subjected to the above process to compute collision scores. Note that

both the (original) data subset and each shuffled data subset are separately modified by this

process. Also note that the length of this modified data subset is 








80

N
 because of this

process, whereas the length of the original binary data subset and data subsets that do not

consist of binary data have a length of 








10

N
.

The scores are computed as follows:

1. Counts is a list of counts of samples needed to see a duplicate; the list is initially

empty.

2. pos = 0

3. While pos < (the length of the data subset):

a. Find the smallest j such that spos .. spos+j contains one duplicate value.

i. If no such j exists, break out of the while loop.

b. Add j to the list of Counts.

c. pos = pos + j + 1

NIST SP 800-90B (DRAFT) August 2012

56

4. Return the following values as scores: the minimum value in the Counts list, the

average of all values in the Counts list, and the maximum value in the Counts list.

For example, if the data subset is {2, 1, 1, 2, 0, 1, 0, 1, 1, 2}, the length of the data subset is

10. If the first “2” is at position 0, then the first collision occurs when j = 2 (i.e., samples 1

and 2 are both ones). Disregarding the first three samples in the data subset, the next

sequence to be examined is {2, 0, 1, 0, 1, 1, 2}, the collision for this new sequence occurs

when j = 3 (i.e., samples 1 and 3 of this second sequence are both zeros). The third

sequence to be examined is {1, 1, 2}; the collision for this third sequence occurs when j =

1 (i.e., samples 0 and 1 are both ones). The final sequence to be examined is {2}, for which

there are no collisions. The counts collected for this test occur when j = 2, j = 3, and j = 1.

The first score returned is 1 (the minimum count value); the second score is 2 (the average

of the count values); the third score is 3 (the maximum value of the count values).

9.1.3 Specific Statistical Tests

9.1.3.1 Chi-Square Test

Sample values are limited to a fixed range of possibilities. If the requirements on the noise

source and non-approved conditioning component to be IID are met, then the distribution

of these values can be seen as an independent category distribution (a multinomial

distribution, in which the individual sample values have no meaningful relationship.) The

chi-square test can be used to test whether a particular dataset fits a particular multinomial

distribution.

Chi-square tests can be used to check whether a dataset of samples follows some expected

distribution, and also whether two or more datasets follow the same distribution. It should

be noted that there are some distributions for which a chi-square test cannot be performed

because the data requirements are too great. This occurs when the output samples have a

large number of possible values, none with very high probability. In these cases, two

options are available: 1) more data than required in Section 7.1 should be submitted (or

collected) such that the test can be executed, or 2) if additional data cannot be obtained, the

chi-square test can be skipped, since it will not be possible to perform the test. If the test is

not performed due to lack of data, the rest of the validation testing will continue as

specified.

Two different types of chi-square tests are employed for validating a noise source and non-

approved conditioning components: a test for independence, and a test for goodness-of-fit.

The independence test attempts to discover dependencies in probabilities between

successive samples in the (entire) dataset submitted for testing as specified in Section 7.1

(see Section 9.1.3.1.1 for non-binary data and Section 9.1.3.1.3 for binary data); the

goodness-of-fit test attempts to discover a failure to follow the same distribution in the ten

data subsets produced from the (entire) dataset submitted for testing (see Section 9.1.3.1.2

for non-binary data and Section 9.1.3.1.4 for binary data).

NIST SP 800-90B (DRAFT) August 2012

57

9.1.3.1.1 Testing Independence for Non-Binary Data

For this test, the (entire) dataset submitted for testing, as defined in Section 7.1 is used to

estimate the probability of each possible value occurring (i.e., each value that a single

sample could assume). The dataset is used to estimate the probabilities for each possible

value of x that could occur. The occurrences of pairs of such values in the dataset are then

checked against their theoretical probability of occurrence.

Let p(xi) equal the estimated probability that value xi will occur in any given sample. Let

List1 contain a list of (xi, xj) pairs that is expected to occur at least five times, and List2

contain a list of (xi, xj) pairs that is expected to occur less than five times. Let E(xi, xj) be

the expected number of occurrences for the (xi, xj) pairs in List1, and Eother be the total of

the expected number of occurrences of the entries in List2.

Informally, the chi-square test for independence is carried out as follows:

1. Determine p(xi) for each possible output value in the dataset by counting the

number of occurrences of each xi, and dividing by the length of the dataset.

2. Determine pmax = the maximum probability that occurs in the dataset.

3. Let N = the number of samples in the dataset.

4. Count the number of parameters to be estimated. Let q = 1; start with 1 because the

catch-all category probability will be estimated.

a. For each p(xi) :

If p(xi)pmax ≥ 5/N, let q = q + 1.

q now contains the number of parameters that are estimated in this test.

Now, determine the number of bins.

b. If q=1, then the test halts with no result--there are no pairs with high enough

probability to run the test on. This means that the dataset is too small to run

this test on this source distribution.

5. The sets of pairs of values that are expected to occur at least five times or less than

five times are constructed, as follows:

a. Set List1 and List2 to empty sets.

b. Eother = 0.

c. For each possible pair of values (xi, xj), including (xi, xi):

If p(xi)p(xj)N ≥ 5:

i. Add the (xi, xj) pair to List1.

ii. Let E(xi, xj) = p(xi)p(xj)N.

Else:

iii. Add the (xi, xj) pair to List2.

iv. Eother = Eother + p(xi)p(xj)N.

NIST SP 800-90B (DRAFT) August 2012

58

6. Verify that enough degrees of freedom are obtained to run the test. If not, this test

has no result; the test may be omitted or more data may be requested.

a. Let w = the number of pairs that appear in List1.

b. If w+1-q < 1: halt the test with no result – there is not enough data to run the

test properly.

7. Compute the chi-square score:

a. X1 = 0.

b. For each pair (xi, xj) in List1:

i. Obs(xi, xj) = the number of occurrences of this pair of values in the

dataset.

ii. X1 = X1 + (E(xi, xj) – Obs(xi, xj))
2
/E(xi, xj).

c. X2 = 0.

d. For each pair (xi, xj) in List2:

i. Obs(xi, xj) = the number of occurrences of this pair in the dataset.

ii. X2 = X2 + Obs(xi, xj).

e. X = X1 + (X2  Eother)
2
/Eother.

X is a chi-square value. Compare X with the 0.001 cutoff value for a chi-square with w+1-

q degrees of freedom. If X is larger than this cutoff value, the dataset fails the test; this is

strong evidence that sample values in the sequence are not independent. A high chi-square

score indicates a lack of independence, and a p-value less than 0.001 causes this test to fail

9.1.3.1.2 The Test for Goodness of Fit for Non-Binary Data

For this test, the (entire) dataset, as defined in Section 7.1, is used to estimate the expected

number of occurrences of each sample value in each of the ten subsets of the dataset.

These values are then used to test the hypothesis that the values have the same probabilities

of occurring in each of the ten data subsets.

Let xi be a possible output (i.e., a possible sample). Let E(xi) = the expected number of

occurrences of xi in any one data subset. Let List3 and List4 be lists of the values of xi. Let

Eother = the sum of the E(xi) for each xi in List4.

Informally, the chi-square test for goodness of fit is carried out as follows:

1. Determine E(xi) for each xi. This is the total number of occurrences of xi in the

entire dataset, divided by ten.

2. Let List3 be the list of values of xi, such that E(xi) ≥ 5.

3. Let List4 be the list of values of xi, such that E(xi) <5.

4. Eother = 0.

5. For each xi in List4:

NIST SP 800-90B (DRAFT) August 2012

59

Eother = Eother + E(xi).

6. Let X1= 0.

7. For each of the ten data subsets:

a. Let Obs (xi) be the observed number of occurrences of xi in the data subset.

b. For each xi in List3 (i.e., each xi that is expected to occur at least five times):

X 1= X1 + (Obs(xi)  E(xi))
2
/E(xi).

c. Obsother = the number of occurrences of values in List4 in the data subset.

d. X = X1 + (Obsother  Eother)
2
/Eother.

The final total value X is a chi-square variable, with 9|L| degrees of freedom, where L is the

length of List3, plus 1 (i.e., the number of values with expected value ≥ 5, plus 1). A p-

value of less than 0.001 means that one or more of the ten data subsets do not fit the

distribution determined from the (entire) dataset, and the test fails.

9.1.3.1.3 Testing Independence for Binary Data

If the binary source is IID, then each bit appears with the same probability everywhere in

the dataset. This means that the probability of each k-bit string is the probabilities of each

of its successive bits, multiplied together. This test checks to see if these k-bit strings have

the expected probability over the whole dataset. If nearby bits are not independent, then

the expected probabilities of k-bit strings derived from bit probabilities will be wrong for

the whole dataset, and the chi-square score will be much larger than expected.

This test can be applied to binary data to test the independence of the bits in the dataset. In

order to do this, successive bits must be grouped together as follows:

1. Let C0 be the count of zeros in the dataset, and C1 be the count of ones.

2. Let Cx be whichever of those two is smaller. That is, Cx = min(C0, C1).

3. Let N be the total number of bits in the dataset.

4. Let k = 2

5. While k < 12 and (Cx/N)
k
 > 5/N:

k = k + 1

6. k = k – 1

At the end of this process, 2  k < 12. Construct a modified dataset from the dataset as

follows:

 new_dataset[i] = dataset[ki .. (k+1)i-1]

That is, each successive k bits of the dataset becomes a new element in new_dataset. The

expected probabilities of each value in the dataset, and a chi-square score are computed as

follows:

1. p = C1/N (the probability of getting a one bit in the dataset).

NIST SP 800-90B (DRAFT) August 2012

60

2. S = 0.0.

3. For value = 0 to 2
k
-1:

a. W = hamming_weight(value) (i.e., number of ones in value)

b. prob(value) = p
W

(1-p)
k-W

 .

(That is, the probability of each value is estimated, based on the bit

probabilities.)

c. E(value) = prob(value)N/k.

d. Let Cvalue = the number of times that value appears in new_dataset.

e. S = S + (Cvalue-E(value))
2
/E(value).

The final total value S is a chi-square variable, with 2
k
-1 degrees of freedom. Compare S

with the 0.001 cut-off value for a chi-square with 2
k
-1 degrees of freedom. A high chi-

square score indicates a lack of independence; if S is larger than this cut-off value, the

dataset fails the test.

9.1.3.1.4 Testing for Stability of Distribution in Binary Data

Given an estimate of the bit probability p for a one over the (entire) dataset, a goodness-of-

fit test can be used to verify that the probability is stable across the ten individual data

subsets as follows:

1. Let p be the probability that a bit in the (original) dataset is a one. This is

computed as:

p = (number of one bits in the dataset/N).

2. Let Nd be the length of each of the ten individual data subsets (i.e., 








10

N
).

3. Let Ed = pNd.

4. S = 0.0

5. For d = 1 to 10:

a. Cd = the number of ones in data subset d.

b. S = S + (Cd - Ed)
2
/ Ed .

S is a chi-square variable with 9 degrees of freedom. The test fails if S is larger than the

critical value at .001, which is 27.9.

9.1.3.2 Other Statistical Tests

Other statistical tests may be added in the future.

NIST SP 800-90B (DRAFT) August 2012

61

9.2 Estimating the Min-Entropy of IID Sources

Similar to a ‘bins’ test, this test estimates the entropy provided by an IID source, based on

the number of observations of the most common output value. Estimating entropy in an

IID source is a simple process: the most common value in the dataset described in Section

7.1 is found and counted. This is used to produce a 99% upper bound on the probability of

the most common value, pmax, and that upper bound is used to produce a lower bound

estimate of min-entropy per sample of the source.

Simply counting the most common value introduces a small bias in favor of more

conservative estimates, as it tends to overestimate pmax in some distributions. However,

in practice, this bias is small enough to have little importance5.

It is important to note that the estimate is not meaningful when the source is not IID. The

test is performed as follows:

Given a dataset with N samples.

1. Find the most common value in the dataset.

2. Count the occurrences of that value, and call the result CMAX.

3. Let pmax = CMAX/N.

4. Calculate CBOUND = CMAX + 2.3√𝑁𝑝𝑚𝑎𝑥(1 − 𝑝𝑚𝑎𝑥).

5. Let H = –log2(CBOUND/N).

6. Let W be the number of bits in each sample of the dataset (i.e., the size of the

sample).

7. min(W, H) is the lower-bounded entropy estimate.

For example, if the dataset is {0, 1, 1, 2, 0, 1, 2, 2, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 1}, the most

common value is “1”, CMAX = 8, and pmax = 0.4.

CBOUND = 8 + 2.3√4.8 = 13.04.

H = –log(0.652) = 0.186.

W = 3.

min(3, 0.186) = 0.186.

9.3 Estimating the Min-Entropy of non-IID Sources

9.3.1 General Discussion

Many viable noise sources fail to produce independent outputs. Moreover, some sources

may have dependencies that are beyond the ability of the tester to address. To derive any

utility out of such sources, a diverse and conservative set of entropy tests are required.

5 Experimentally, uniform eight-bit random values lose less than a bit from their entropy estimates, while

uniform 16-bit random values lose a little more than two bits from their entropy estimates.

NIST SP 800-90B (DRAFT) August 2012

62

Testing sources with dependencies in time and/or state may result in overestimates of

entropy instead of underestimates. However, a large, diverse battery of tests minimizes the

probability that such a source’s entropy is greatly overestimated.

The battery of tests presented in this section will be performed on noise sources

determined to be non-IID by the testing performed in Section 9.1, and any noise source

submitted for testing without an IID claim6. The five tests, each designed to compute a

different statistic on the samples, provide information about the structure of the data:

collision, collection, compression, Markov, and frequency. While the tests (except for the

Markov) were originally designed for application to independent outputs, the tests have

performed well when applied to data with dependencies. Given empirical evidence and the

confidence level of the tests, their application to non-IID data will produce valid, although

conservative, entropy estimates.

9.3.2 Testing Summary

The working assumption for these tests is that a probability distribution describes the

output of a random noise source, but that the probability distribution is unknown. The goal

of each test is to reveal information about the unknown distribution, based on a statistical

measurement. The presented entropy tests define a set of IID probability distributions that

contain the unknown distribution; the entropy is conservatively estimated by minimizing

over this set of distributions. The five tests fall into two types: the first type bounds the

entropy of a noise source, based on a statistical measurement with a prescribed amount of

confidence, while the second type constructs a set of probability distributions based on the

distance to the measured statistic within a prescribed confidence level.

For the tests defined in this section, a confidence level of 95%, denoted by , is used; the

confidence interval encompasses the true value of the measured statistic 95% of the time.

9.3.3 The Collision Test

9.3.3.1 Test Overview

The collision test measures the mean time to the first collision in a dataset. The goal of the

collision statistic is to estimate the probability of the most-likely state, based on the

collision times. The test will produce a low entropy estimate for noise sources that have

considerable bias toward an output or state (i.e., the mean time until a collision is relatively

short), while producing longer mean times to collision results in higher entropy estimates.

This test yields a lower bound on the entropy present with a prescribed confidence level

when the samples are independent. Dependencies in the sample data may cause an

overestimate of the entropy of the data. In practice, a slight overestimate is resolved by

selecting the minimum entropy estimate from all the tests as the expected entropy provided

by the noise source.

6 Any conditioned output must be IID, so the tests in this section will not be performed on conditioning

component output (see Section 8.2).

NIST SP 800-90B (DRAFT) August 2012

63

9.3.3.2 Implementation Summary

Given a dataset from the noise source, step through the dataset (i.e., sample by sample)

until any observed value is repeated. Record the number of steps to the observed collision.

Beginning from that point, step through the remaining samples until another observed

value is repeated. Continue this process at least 1000 times until the end of the dataset is

reached, generating a sequence of collision times, where the collision time corresponds to

the number of samples observed before a collision occurs. The observation of 1000

collisions is dependent on the sample size, and may not be possible for sources with large

samples. Given the data requirement specified in Section 7.1, an observation of 1000

collisions in sources with samples larger than 20 bits will not be feasible. For example, a

source that produces 32-bit outputs would need approximately 2
26

 samples to observe 1000

collisions. As an alternative for noise sources with large sample sizes, the method in

Section 7.2 for mapping noise source outputs together7 (based on a ranking of the bits in

the output) may be implemented, or additional data may be collected for testing purposes.

This will enable the observation of at least 1000 collision events regardless of the sample

size. One of these options will be enforced, based on the data provided, so that the test can

be run and 1000 collision events observed.

Once the end of the dataset is reached, calculate the mean collision time of the differences

in the sequence of collision times. Then, determine the probability distribution that has the

minimum possible entropy for the calculated mean collision time. For this distribution, the

min-entropy is calculated and returned as the lower bound on the entropy that is present.

9.3.3.3 Collision Test Details

Given a dataset {s1, s2, …, sN}, of noise or entropy source observations.

1. Beginning with s1, step through the dataset until any observed value is repeated;

i.e., find the smallest j such that si = sj, for some i with 1 ≤ 𝑖 < 𝑗.

2. Define a sequence t. Set t0 = 0, t1 = j.

3. Set v = 1.

4. Starting with sample j, step through the remaining samples, sj+1, sj+2, …, sN, until

there is a k and an l such that sk = sl, with 𝑗 < 𝑘 < 𝑙.

5. v = v + 1.

6. Define tv = l.

7. Set j = l.

8. Repeat steps 4-7 until the end of the dataset is reached. A sequence {t0, t1, t2, …, tv}

is generated. If v < 1000, the noise source outputs will be mapped down based on

the ranking provided, and the data will be retested.

7 Note that mapping outputs together will result in potentially smaller entropy estimates than if sufficient data

was tested.

NIST SP 800-90B (DRAFT) August 2012

64

9. Calculate the sample mean, µ, and the sample standard deviation, σ, of the

differences of collision times, ti.

𝜇 =
∑ (𝑡𝑖 − 𝑡𝑖−1)𝑣

𝑖=1

𝑣

𝜎 = √
∑ (𝑡𝑖 − 𝑡𝑖−1)2𝑣

𝑖=1

𝑣
− 𝜇2

10. Compute the lower-bound of the confidence interval for the mean based on a

normal distribution with confidence level α:

�̅� = 𝜇 −
1.96𝜎

√𝑣
.

11. Define a one-parameter family of probability distributions parameterized by p, Pp:

𝑃𝑝(𝑖) = {

𝑝 𝑖𝑓 𝑖 = 0
1 − 𝑝

𝑛 − 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where n is the number of states in the output space.

12. Using a binary search, solve for the parameter p, such that
p

E the expected value

of the statistic applied to Pp, equals  .

𝐸𝑃𝑝
(𝑆) = 𝑝𝑞−2 (1 +

1

𝑛
(𝑝−1 − 𝑞−1)) 𝐹(𝑞) − 𝑝𝑞−1

1

𝑛
(𝑝−1 − 𝑞−1)

 where

𝑞 =
1 − 𝑝

𝑛 − 1
,

 and

𝐹(1 𝑧⁄) = Γ(𝑛 + 1, 𝑧)𝑧−𝑛−1𝑒−𝑧 .

13. The min-entropy is the negative logarithm of the parameter, p:

min-entropy = –log2(p).

NIST SP 800-90B (DRAFT) August 2012

65

9.3.4 The Partial Collection Test

9.3.4.1 Test Overview

The partial collection test computes the entropy of a dataset based on how many distinct

values in the output space are observed; it yields low entropy estimates for output streams

that contain a small number of distinct output values, and yields high entropy estimates for

output streams that diversify quickly. The partial collection test provides a reasonable

estimate for sources with output values that appear with higher probability than others in

the output space. An advantage of the partial collection test over the traditional collection

test8 is that it finishes in finite time, since the test estimates the entropy of a source, given

the number of distinct values in a set of samples in the dataset.

It should be noted that the partial collection test will only produce an accurate entropy

estimate if the size of the output space is known. For example, consider a noise source that

outputs four-bit samples, but only two of those bits are ever influenced/used by the noise

source. This reduces the number of possible output values and limits the output space.

Instead of 2
4
 = 16 possible values, this source only produces 2

2
 = 4 different values. A

search for all 16 possibilities will be fruitless, and the entropy will be greatly overestimated

by this test. Therefore, the output space of the noise source or an indication of values that

never appear in the output from the noise source shall be provided by the developer for

validation testing.

Given the data requirement specified in Section 7.1, samples larger than 10 bits will not be

feasible. As an alternative for noise or entropy sources with large sample sizes, the method

in Section 7.2 for mapping noise source outputs together9 (based on a ranking of the bits in

the output) may be implemented, or additional data may be collected for testing purposes.

Based on the data provided for validation, one of these options will be enforced such that

the test can be run and 500 events observed.

9.3.4.2 Implementation Summary

Partition the dataset into non-overlapping subsets of size n (where n is the size of the

output space). The partial collection test computes the number of distinct values in each

subset of n samples. Once all subsets have been parsed, calculate the mean number of

distinct values in each subset of n samples. Then, determine the probability distribution

that has the minimum possible entropy for the calculated mean number of distinct values.

For this distribution, the min-entropy is calculated and returned as the lower bound on the

entropy that is present.

8 The traditional collection test measures the expected number of samples that must be generated to produce

every possible output, and as such, could potentially never terminate.

9 Note that mapping outputs together will result in potentially smaller entropy estimates than if sufficient data

was tested.

NIST SP 800-90B (DRAFT) August 2012

66

9.3.4.3 Partial Collection Test Details

Given a dataset {s1, s2, …, sN}, of noise or entropy source observations.

1. Consider the dataset as v non-overlapping data subsets of length n, where n is the

size of the output space (i.e. the number of possible outputs)10.

2. Count the number of distinct values seen in each data subset: Ti is equal to the

number of distinct values in subset i.

3. Repeat Step 2 until the end of the dataset is reached. If a minimum of 500 events

have not been observed, the noise source outputs will be mapped down (see Section

7.2) and the test rerun. Otherwise, continue to Step 4.

4. Calculate the sample mean,  , and the sample standard deviation,  , of the Ti

values.

𝜇 =
∑ 𝑇𝑖

𝑣
𝑖=1

𝑣

𝜎 = √
∑ 𝑇𝑖

2𝑣
𝑖=1

𝑣
− 𝜇2

5. Compute the lower-bound of the confidence interval for the mean based on a

normal distribution with confidence level :

�̅� = 𝜇 −
1.96𝜎

√𝑣
.

6. Define a one-parameter family of probability distributions parameterized by p ,
p :

𝑃𝑝(𝑖) = {

𝑝 𝑖𝑓 𝑖 = 0
1 − 𝑝

𝑛 − 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

7. Using a binary search, solve for the parameter p, such that
p

E the expected value

of the statistic applied to Pp, equals the mean  .

𝐸𝑃𝑝
(𝑆) = 1 − (1 − 𝑝)𝑛 + (𝑛 − 1)(1 − (1 − 𝑞)𝑛)

 where

𝑞 =
1 − 𝑝

𝑛 − 1
.

10 𝑡 = ⌊
𝑁

𝑛
⌋; if n does not divide N, the remaining data is not used in this test.

NIST SP 800-90B (DRAFT) August 2012

67

8. The min-entropy is the negative logarithm of the parameter, p:

min-entropy = –log2(p).

9.3.5 The Markov Test

9.3.5.1 Test Overview

In a first-order Markov process, the output state depends only on the current state; in an

n
th

-order Markov process, the output state depends on the current state and the previous n-1

states. Therefore, a Markov model can be used as a template for testing sources with

dependencies. The test provides a min-entropy estimate by measuring the dependencies

between consecutive outputs from the noise source. The min-entropy estimate is based on

the entropy present in any chain of outputs, instead of an estimate of min-entropy per

output.

The key component in estimating the entropy of a Markov process is the ability to

accurately estimate the matrix of transition probabilities of the Markov process. The main

difficulty in making these estimates is the large data requirement necessary to resolve the

dependencies. In particular, low probability transitions may not occur often in a ‘small’

dataset; the more data provided, the easier it becomes to make accurate estimates of

transition probabilities. This test, however, avoids large data requirements by

overestimating the low probability transitions; as a consequence, an underestimate of min-

entropy is obtained with less data.

This test has a data requirement that is dependent upon the sample size; the largest sample

size accommodated by this test is six bits. Samples larger than six bits cannot be

accommodated, since an unreasonable amount of data would be required to accurately

estimate the matrix of transition probabilities, far more than is specified in Section 7.111.

For 16-bit samples, for instance, a transition matrix of size 2
16

 x 2
16

, containing 2
32

 sample

entries, would have to be approximated, and the data requirement for this would be

impractical.

As an alternative for noise sources with samples greater than six bits, the method in

Section 7.2 for mapping noise source outputs together (based on a ranking of the bits in the

output) will be implemented. This will reduce the data requirement to a more feasible

quantity.

11 This statement assumes that the output space is defined such that it contains all 2
6
 (or more) possible

outputs; if, however, the output space is defined to have 2
6
 or less elements, regardless of the sample size, the

test can accurately estimate the transition probabilities with the amount of data specified in Section 9.2.

NIST SP 800-90B (DRAFT) August 2012

68

9.3.5.2 Implementation Summary

Samples are collected from the noise source, and specified as k-long chains. From this

data, probabilities are determined for both the initial state and transitions between any two

states. Any values for which these probabilities cannot be determined empirically are

overestimated to guarantee that the eventual min-entropy estimate is a lower bound. These

probabilities are used to determine the highest probability of any particular k-long chain of

samples. The corresponding maximum probability is used to determine the min-entropy

present in all such chains generated by the noise source. This min-entropy value is

particular to k-long chains and cannot be extrapolated linearly; i.e., chains of length wk will

not necessarily have w times as much min-entropy present as a k-long chain. However, it

may not be possible to know what a typical output length will be at the time of validation.

Therefore, although not mathematically correct, in practice, calculating an entropy estimate

per sample (extrapolated from that of the k-long chain) provides estimates that are close.

9.3.5.3 Markov Test Details

Given a dataset {s1, s2, …, sN}, of noise or entropy source observations.

1. Re-define the confidence level to be 𝛼 = 𝑚𝑖𝑛(𝛼𝑛2
, 𝛼𝑘), where n

2
 is the number of

terms in the transition matrix, and k = 128 is the assumed length of the Markov

chain.

2. Estimate the initial state probability distribution, P, with:

𝑃𝑖 = 𝑚𝑖𝑛 {1,
𝑜𝑖

𝑁
+ 𝜀}

where io denotes the number of times that state i has occurred in the sample, and  is

defined by:

𝜀 =
√𝑙𝑜𝑔 (

1
1 − 𝛼)

2𝑁
.

3. Estimate the probabilities in the transition matrix S , overestimating where

𝑆𝑖,𝑗 = {

1 𝑖𝑓 𝑜𝑖 = 0

𝑚𝑖𝑛 {1,
𝑜𝑖,𝑗

𝑜𝑖
+ 𝜀𝑖} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

where jio , is the number of transitions from state i to state j observed in the sample,

and i is defined to be

𝜀𝑖 = √
𝑙𝑜𝑔 (

1
1 − 𝛼)

2𝑜𝑖
.

NIST SP 800-90B (DRAFT) August 2012

69

4. Using the transition matrix S , find the probability of the most likely sequence of

states, pmax.

𝑝𝑚𝑎𝑥 = max
𝑖1…𝑖𝑙…𝑖𝑘

{𝑃𝑖𝑙
∏ 𝑆𝑖𝑗,𝑖𝑗+1

𝑘

𝑗=1

}

where the product runs over all possible sequences of states and where an

individual state is denoted by il.

5. The min-entropy is the negative logarithm of the probability of the most likely

sequence of states, pmax:

min-entropy = –log2(pmax).

9.3.6 The Compression Test

9.3.6.1 Test Overview

The compression test computes the entropy rate of a dataset, based on how much the

dataset can be compressed. Based on the Maurer Universal Statistic [Maurer], the test

generates a dictionary of values, and then computes the average number of samples

required to write an output based on the dictionary. One advantage of using the Maurer

statistic is that there is no assumption of independence. When output with dependencies is

tested with this statistic, the compression rate is affected (and therefore the entropy), but an

entropy estimate is still obtained. A calculation of the Maurer statistic requires only one

pass through the dataset to provide an entropy estimate. This makes it a more efficient test

than other compression algorithms. The Maurer statistic is the mean of the compression

values, computed over the data.

9.3.6.2 Implementation Summary

Given a dataset from the noise source, first partition the samples into two disjoint groups.

The first group serves as the dictionary for the compression algorithm; the second group is

the test group. Calculate compression values over the test group and determine the mean,

which is the Maurer statistic. Using the same method as the collision test, determine the

probability distribution that has the minimum possible entropy for the calculated Maurer

statistic. For this distribution, the entropy per sample is calculated and produced as the

lower bound on the entropy that is present.

9.3.6.3 Compression Test Details

Given a dataset, {s1, s2, …, sN} of noise or entropy source observations.

1. Partition the dataset into two groups. These two groups will form the dictionary

and the test data.

a. Create the dictionary from the first d observations, {s1, s2, …, sd} where d =

1000.

NIST SP 800-90B (DRAFT) August 2012

70

b. The remaining 𝑣 = 𝑁 − 𝑑 − 1 observations, {sd+1, …, sN}, will be the test

data.

2. Initialize the dictionary.

a. Beginning with s1, step through the dictionary sequence.

b. Record each unique observation and the index of observation.

c. When any observed value is repeated, update the index of observation with

the most recent index value (the larger index value).

3. Run the test data against the dictionary created in Step 2.

a. Beginning with 𝑠𝑑+1, step through the test data.

b. Determine if the value of the observation is contained in the dictionary.

i. If the value is in the dictionary, calculate and record the difference

between the current observation index and the recorded index in the

dictionary as Ai, where i is the current index. Update the dictionary

with the index of the most recent observation.

ii. If the value is not in the dictionary, add that value to the dictionary,

and record the index of this first observation.

4. Repeat Step 3 until the end of the test data has been reached.

5. Calculate the sample mean,  , and the sample standard deviation,  , of the

following values:

(𝑙𝑜𝑔2(𝐴𝑖))
𝑖=𝑑+1

𝑁

where the Ai are the calculated differences from Step 3b.

 𝜇 =
∑ 𝑙𝑜𝑔2𝐴𝑖

𝑁
𝑖=𝑑+1

𝑣

𝜎 = √
∑ (𝑙𝑜𝑔2𝐴𝑖)2𝑁

𝑖=𝑑+1

𝑣
− 𝜇2

NIST SP 800-90B (DRAFT) August 2012

71

6. Compute the lower-bound of the confidence interval for the mean based on a

normal distribution with confidence level :

�̅� = 𝜇 −
1.96𝜎

√𝑣
.

7. Define a one-parameter family of probability distributions parameterized by p ,
p :

𝑃𝑝(𝑖) = {

𝑝 𝑖𝑓 𝑖 = 0
1 − 𝑝

𝑛 − 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where n is the number of states in the output space.

8. Using a binary search, solve for the parameter p, such that
p

E the expected value

of the statistic applied to Pp, equals the mean  .

𝐸𝑃𝑝
(𝑆) = 𝐺(𝑝) + (𝑛 − 1)𝐺(𝑞)

 where

 𝐺(𝑝𝑖) =
1

𝑣
∑ ∑ 𝜑(𝑠)𝑃[𝐴𝑡 = 𝑠 ∩ 𝑋𝑡 = 𝑖]𝑡

𝑠=1
𝑁
𝑡=𝑑+1 ,

𝑃[𝐴𝑡 = 𝑠 ∩ 𝑋𝑡 = 𝑖] = {
𝑝𝑖

2(1 − 𝑝𝑖)
𝑠−1 𝑖𝑓 𝑠 < 𝑡

𝑝𝑖(1 − 𝑝𝑖)
𝑡−1 𝑖𝑓 𝑠 = 𝑡

,

 𝜑(𝑥) = 𝑙𝑜𝑔2(𝑥),

and

 𝑞 =
1−𝑝

𝑛−1
.

9. The min-entropy is the negative logarithm of the parameter, p:

min-entropy = –log2(p).

9.3.7 The Frequency Test

9.3.7.1 Test Overview

The frequency statistic computes entropy based on the occurrence of the most-likely

sample value. The entropy is computed by modeling the probability distribution of the

samples from a noise source. Like the Markov test, this calculation performs better with

NIST SP 800-90B (DRAFT) August 2012

72

more data – the more data provided, the more accurate the frequency calculations, since

low probability values may not appear often, or at all, in ‘small’ datasets. This test,

however, ignores/overestimates unlikely sample values and, therefore, does not require

large amounts of data. In fact, this test will provide a conservative estimate of entropy

based on whatever data is collected. As a result, an underestimate of min-entropy is

obtained with less data.

9.3.7.2 Implementation Summary

Given a dataset from the noise source, step through the dataset, keeping track of the

number of times that each sample value is observed. Record the occurrence of each value

and continue the process until the end of the dataset. Once the end of the dataset is

reached, determine the most likely sample value, based on the frequency counts gathered.

The min-entropy frequency statistic is the negative logarithm of the probability of the most

likely sample value.

9.3.7.3 Frequency Test Details

Given a dataset, {s1, s2, …, sN}, and the confidence level α:

1. Beginning with s1, step through the dataset, keeping track of the number of times a

value is observed, counti, for all i=1...n, where n is the number of possible output

values.

2. Calculate ε from the specified confidence level, α, and the number of observations

in the dataset.

𝜀 =
√𝑙𝑜𝑔 (

1
1 − 𝛼

)

2𝑁

3. Determine the probability of the most likely observation value, pmax (the value

with the largest frequency of occurrence):

 𝑝𝑚𝑎𝑥 = max𝑖=1..𝑛 (
𝑐𝑜𝑢𝑛𝑡𝑖

𝑁
).

4. The min-entropy is the negative logarithm of the sum of ε and the frequency of the

probability of the occurrence of the most likely state, pmax:

min-entropy = –log2(pmax + ε).

NIST SP 800-90B (DRAFT) August 2012

73

9.4 Sanity Checks Against Entropy Estimates

This section identifies tests that provide an opportunity to discover major failures that may

have undermined the entropy estimates generated in the more extensive test suites.

9.4.1 Compression Sanity Check

The compression test is intended to determine whether the entropy estimates for the noise

source and conditioning component are so incorrect that a general-purpose compression

algorithm is able to encode the sequence of samples in fewer bits per sample than is

required by the entropy estimate computed during validation testing. The Burrows-

Wheeler compression algorithm as implemented in the BZ2 software package will be used

[BZ2].

If the min-entropy of a dataset is estimated to be H bits, then no compression algorithm

should be capable, in general, of encoding that dataset in fewer than H bits.

By nature, general-purpose compression algorithms like Burrows-Wheeler will perform

poorly, compared to what is attainable in encoding specialized data, especially independent

values. Thus, a single failed test is an indication that the entropy estimate is deeply flawed.

Let S be a collected dataset defined in Section 7.1. Divide S into ten equal-length, non-

overlapping data subsets S1, …, S10. Let Si be one of the ten data subsets, and let H be the

entropy estimate for the data source, as calculated in Section 9.2 or Section 9.3 (depending

upon the test track taken). The test is performed as follows on the ten data subsets of

samples:

For i = 1 to 10:

1. EncodeS = the encoding of Si as a string12.

2. C = compress(EncodeS).

3. Len = the length of C in bits.

4. If 𝐿𝑒𝑛 < 𝐻 ⌊
𝑁

10
⌋, the dataset fails the test.

If the test fails for even one of the ten data subsets, it is likely that the entropy estimate is

inaccurate.

9.4.2 Collision Sanity Check

9.4.2.1 General Description

The min-entropy can be used to provide a bound on the probability of seeing a collision in

many trials because the collision entropy (Renyi entropy of second order) is bounded by

12 EncodeS consists of representing the sequence of samples as a character string containing their decimal

values separated by commas. Thus, a sequence (3, 1, 4, 1, 5, 9) becomes “3, 1, 4, 1, 5, 9”.

NIST SP 800-90B (DRAFT) August 2012

74

the min-entropy. There are many ways in which a noise source might suffer rare,

intermittent failures that would lead to an occasional repeated sequence that should, given

the entropy estimates, have an extremely low probability of occurring. This kind of

problem will be detected by the collision sanity check, while it might not be detected by

any other test.

The collision sanity check offers a chance to notice a particular kind of gross overestimate

of entropy, in which sequences of samples with some useful amount of entropy (for

example, 30 bits) repeat more often than expected.

This test may be applied to any noise source, using a dataset as specified in Section 7.1.

9.4.2.2 Testing Noise Sources With an Entropy Estimate per Sample

For datasets whose entropy estimate is in terms of H bits of entropy per sample, the testing

is performed as follows:

1. Using the complete dataset collected as specified in Section 7.1, determine the size

of the ‘tuples’ to be examined for collisions. This test will examine each

successive b-tuple of samples from the dataset. To determine b, numerically solve

using the following equation for b:

b = Round((2 log2(N/b) -1)/H).

The formula is derived as follows: Given N samples in the dataset, the dataset can

be divided into (N/b) non-overlapping b-tuples. The number of times each b-tuple

occurs in the dataset must be counted; since there are ⌊
𝑁

𝑏
⌋ b-tuples, there are about

(⌊
𝑁

𝑏
⌋)

2

2
 potential collisions of b-tuples. Since each b-tuple has Hb bits of entropy,

the expected number of b-tuple collisions is:

2−𝐻𝑏
(⌊

𝑁

𝑏
⌋)

2

2
.

The test requires choosing the value of b so that the expected number of collisions

is as close to one as possible. Some approximate b values given N and H are

included in Figure 4 for reference13.

H

N

1,000,000 10,000,000 100,000,000

0.01 1735 2315 2913

13 The first column contains the approximate b values for the data requirement specified in Section 9.2. The

other columns indicate how additional data may affect the implementation of this test.

NIST SP 800-90B (DRAFT) August 2012

75

0.1 232 291 353

0.5 55 67 79

1.0 29 35 41

2.0 15 19 22

5.0 7 8 9

10.0 4 4 5

20.0 2 2 2

Figure 3: Approximate b values given N and H

2. Divide the dataset into successive b-tuples and count the number of occurrences of

each value of a b-tuple. A dataset of N samples yields ⌊
𝑁

𝑏
⌋ non-overlapping

successive b-tuples. For example, the combined dataset (1,2,3,4,2,3,1,2,4) would

yield four 2-tuples, ((1,2), (3,4), (2,3), (1,2)). Each tuple is treated as an individual

value, and the total number of times each value appears in the dataset is counted.

In the above example, there are two occurrences of the (1,2) 2-tuple, and one

occurrence of each of the others.

3. Determine whether the noise source and entropy estimate should be rejected.

Rule 1: If three or more b-tuples have the same value, the source is rejected. Given

the parameters chosen by the above formula, this has a very low probability,

assuming that the entropy estimate is correct.

Rule 2: A p-value on the number of collisions is determined, approximating the

probability of x collisions as a Poisson distribution with 𝜆 = 2−𝐻𝑏
(⌊

𝑁

𝑏
⌋)

2

2
, and

choosing as the cutoff value the smallest number of collisions such that the

probability of that many or more collisions is less than 1/10000.

If the total number of colliding pairs of b-tuples is greater than or equal to the cutoff value,

then the source is rejected.

10.0 Health Test Validation: Testing for Equivalent Functionality

Entropy sources that do not implement the Repetition Count Test and the Adaptive

Proportion Test shall include alternative continuous tests that detect the same failure

conditions. The developer shall provide the tester with an implementation of their

alternative test(s) that can be run incrementally on a dataset of arbitrary length, and a

dataset of the required length drawn from the underlying noise source, referred to as the

original dataset. Using the min-entropy per sample, H, that is obtained from the tests

specified in Section 9.0, a new dataset is generated from the original dataset that simulates

a failure that would be detected by the Repetition Count or Adaptive Proportion Test, as

NIST SP 800-90B (DRAFT) August 2012

76

appropriate. The tester will determine the equivalence of the alternative test(s) as

described in Sections 10.1and 10.2.

10.1 Demonstrating Equivalent Functionality to the Repetition Count Test

The original dataset, in this case, is modified to contain a repeated sequence of sample

values that is slightly longer than would be allowed to pass by the Repetition Count Test.

If the alternative test detects this repetition, it is assumed to have equivalent functionality

to the Repetition Count Test.

In order to demonstrate equivalent functionality to the Repetition Count Test, the following

steps are performed:

1. Based on H, the cutoff value, C, at which the Repetition Count Test should fail, is

determined as described in Section 6.5.1.2.1.

2. A modified dataset D' is created, in which a repetition of C samples of the same

value will be inserted at some point.

a) Let the length of the original dataset, D, be N (i.e., N is the number of sample

values in dataset D). The minimum value of N is one million samples; the

dataset used for validation testing may be used.

b) A random position k is chosen within the dataset, where 0  k < N  (2C + 2);

the sample value at position k (i.e., Dk) is selected as the sample to be

repeated.

c) The modified dataset, D', is formed by replacing C – 1 sample values in D'

with Dk. That is,

For i = k+1, k+C: D'i = Dk.

Note that this simply places a sequence of C repeated values into the dataset.

3. The alternative test is run on the modified dataset, D'.

a) If the alternative test detects the simulated failure, then equivalent

functionality to the Repetition Count Test has been demonstrated, and the

developer’s alternative test can be used in place of the Repetition Count Test.

b) If the alternative test fails to detect this simulated failure, then equivalent

functionality has not been demonstrated, and the alternative test shall not be

used in place of the Repetition Count Test.

10.2 Demonstrating Equivalent Functionality to the Adaptive Proportion Test

This test generates a simulated dataset that is very similar to the original validation dataset,

but which has one new feature: a randomly-selected sample value in the dataset is made to

occur more often than it should, given the per-sample min-entropy estimate H for the noise

source. If the alternative continuous test detects the simulated failure in this dataset,

equivalent functionality to the required Adaptive Proportion Test has been demonstrated.

In order to demonstrate equivalent functionality to the Adaptive Proportion Test, the

following steps are performed:

NIST SP 800-90B (DRAFT) August 2012

77

1. Determine the parameters needed to generate a dataset that simulates a large loss of

entropy, with enough samples that the Adaptive Proportion Test with N = 64 is

overwhelmingly-likely to detect the failure.

a) Let C = the cutoff value for N = 64, computed for the assessed min-entropy per

sample, H, of this noise source.

b) Let Pfailure = (C+1)/N be the maximum probability for any sample value in the

simulated failure dataset.

c) Let L = 1280(2
H
) be the minimum-acceptable length of the simulated dataset,

to guarantee that an alternative test that provides equivalent functionality to

the Adaptive Proportion Test has a very low probability of failing this test of

equivalence.

2. Obtain a dataset D from the noise source, that contains L successive sample values,

to generate a modified dataset D' that contains a particular value with higher

probability than should be occurring in the dataset. Note that if L is less than or

equal to the length of the original dataset provided for validation, the original

dataset may simply be reused for this test.

a) Let A = a randomly selected sample from the dataset D.

b) Let Poriginal = (the number of times that A appears in D) / L

c) Let Pdelta = (Pfailure-Poriginal)/(1-Poriginal) = the fraction of sample values in D to

change.

d) For j = 0 to L-1:

i. Generate a random number R between 0 and 1 using any reasonably good

RNG.

ii. If R < Pdelta: D'i = A.

iii. Else: D'i = Di .

3. Run the alternative test on this dataset.

If the alternative test does not detect the simulated failure, then equivalent functionality to

the adaptive proportion test with N = 64 has not been provided, and the alternative test

shall not be used in place of the Adaptive Proportion Test.

NIST SP 800-90B (DRAFT) August 2012

78

Annex A: References

(Informative)

[FIPS 140] Federal Information Processing Standard 140-2, Security Requirements for

Cryptographic Modules, May 25, 2001.

[FIPS 180] Federal Information Processing Standard 180-4, Secure Hash Standard (SHS),

March 2012.

[FIPS 197] Federal Information Processing Standard 197, Advanced Encryption Standard

(AES), November 2001.

[FIPS 198] Federal Information Processing Standard 198-1, Keyed-Hash Message

Authentication Code (HMAC), July 2008.

[SP 800-38B] National Institute of Standards and Technology Special Publication (SP) 800-

38B, Recommendation for Block Cipher Modes of Operation – The CMAC

Mode for Authentication, May 2005.

[SP 800-67] NIST Special Publication (SP) 800-67, Recommendation for the Triple Data

Encryption Algorithm (TDEA) Block Cipher, May 2004.

[SP 800-90A] National Institute of Standards and Technology Special Publication (SP) 800-

90A, Recommendation for Random Number Generation Using Deterministic

Random Bit Generators, January 2012.

[SP 800-90C] National Institute of Standards and Technology Special Publication (SP) 800-

90C, Draft.

[X9.82-1] American National Standard (ANS) X9.82, Part 1-2006, Random Number

Generation Part 1: Overview and Basic Principles.

[X9.82-2] American National Standard (ANS) X9.82, Part 2, Random Number

Generation Part 2: Entropy Sources, Draft.

[BZ2] BZ2 Compression Algorithm. http://www.bzip.org/.

[Bellman] Richard Bellman, Dynamic Programming. Princeton University Press,

1957.

[Knuth] Knuth (1998) [1969]. The Art of Computer Programming vol.2 (3
rd

 ed.).

Boston: Addison-Wesley.

[Maurer] Ueli Maurer, “A Universal Statistical Test for Random Bit Generators,”

Journal of Cryptology, Vol. 5, No. 2, 1992, pp. 89-105.

[Peres] Yuval Peres, “Iterating von Neumann's procedure for extracting random

bits,” Ann. Statist., 1992.

[Rabiner] Lawrence R. Rabiner, “A tutorial on hidden Markov models and selected

applications in speech recognition,” Proceedings of the IEEE, Vol. 77, pp.

257–286, Feb. 1989.

