IEEE 802.11 Procedures

Dave Halasz and Nancy Cam-Winget
December 2002
Disclaimer

• This presentation is an informal presentation on IEEE 802.11 procedures and the status of IEEE 802.11i draft 3.0.

• It should not be interpreted as coming from IEEE 802.11 or as a position statement from IEEE 802.11.
What is IEEE 802.11

From http://grouper.ieee.org/groups/802/11/main.html

- IEEE 802.11 is a standards working group on wireless local area networks
- The working group is a part of IEEE LMSC (LAN MAN Standards Committee) formerly called IEEE Project 802
- IEEE LMSC reports to the Standards Activity Board (SAB) of the IEEE Computer Society.
IEEE 802.11 Mechanics

- Open Forum: anyone can attend.
- Though recommended no IEEE membership is required
- Voting: limited to voting members.
 - Voting membership rights is gained by participating in at least 2 plenary meetings out of 4 consecutive plenary meetings
References

- About 802.11 & How to participate:

- 00/331 IEEE 802.11 Working Group Rules (Stuart Kerry, Chair - P802.11, Philips)

- Operating rules of IEEE project 802, LAN MAN Standards Committee (LMSC)
Overview of the Project Process

1. Call for Interest
2. Study Group
3. Task Group
4. Working Group Ballot
5. Sponsor Ballot
6. Standards Board Approval
7. Publication
Call for Interest and Start of Study Group

- Study group creates a Project Authorization Request (PAR) and Five Criteria:
 - Broad Market Potential
 - Compatibility (with IEEE Standard 802.11)
 - Distinct Identity
 - Technical Feasibility
 - Economic Feasibility

- In July of 1999, IEEE 802.11 had a study group meeting for people interested in enhancing the IEEE 802.11 MAC for QoS and Privacy
Task Group history

• In March of 2000, TGe was created to,
 – “enhance the 802.11 Medium Access Control (MAC) to improve and manage Quality of Service, provide classes of service, and enhanced security and authentication mechanisms.”
• The scope of TGe is bound by the PAR of TGe
• John Fakatselis (Intersil), Dave Halasz (Cisco) were co-Chairs of TGe
Task Group history continued

• In March of 2001, the TGe PAR was split into TGe (QoS) and TGi (Security)
 – TGi acted independently in May of 2001

• TGi PAR:
 – Enhancements to the current 802.11 MAC to provide improvements in security.

• Dave Halasz remains Task Group Chair of TGi
• John Fakatselis remains TGe Chair
Working Group Letter Ballot

- Conduct ballot on draft
- Resolve comments from WG ballot
- Iterate to closure

- Need 75% yes to proceed to Sponsor Ballot
TGi Working Group Letter Ballot history:

- Draft 1.0 went to LB in March 2001
- Draft 2.0 went to LB in March 2002
- Draft 3.0 went to LB in December 2002
Sponsor Ballot

- Form ballot pool
- Obtain approval to go to Sponsor Ballot from 802.11 WG & 802 EC (Executive Committee)
- Submit draft for Sponsor ballot
- Resolve comments
- Iterate to closure
Standards Board Approval

- Obtain approval for submission from WG 802.11 and 802 EC
- Check for Intellectual Property Rights requirements
- Submit to RevCom and IEEE Standards Board for approval
Publication

• Support IEEE editor in preparation for publication
Current TGi status

- Letter Ballot for draft version 3.0 soon
- TGi draft version 3.0 available for public purchase (review):
IEEE 802.11 2003 Meetings

- January 12-17: Ft Lauderdale, Fla
- March 9-14: Dallas, Tx
- May 11-16: Singapore
- July 20-25: San Francisco, Ca
- September: TBD
- November 9-14: Albuquerque, NM
802.11i Status
Current 802.11 Security

- IEEE Std 802.11-1999 defines Wireless Equivalent Privacy (WEP)
 - Protocol intended to effect privacy…
 - …because anyone with a radio receiver can eavesdrop!
- WEP’s Goals:
 - Create the privacy achieved by a wired network
- WEP has been broken!
 - Walker (Oct 2000), Borisov et. al. (Jan 2001), Fluhrer-Mantin-Shamir (Aug 2001)
Legacy Security Issues

- **WEP doesn’t work (old news)**
 - Key reuse allows data recovery without encryption key
 - Utilizes encryption improperly
 - No protection against replay attacks
 - Forgery of encrypted messages trivial

- **802.11 Authentication doesn’t work (old news)**
 - Trivial to steal authentication credentials
How does WEP work?

Append ICV = CRC32(Data)

Check ICV = CRC32(Data)

Select and insert IV

Per-packet Key = IV || RC4 Base Key

RC4 Encrypt Data || ICV

Remove IV from packet

Per-packet Key = IV || RC4 Base Key

RC4 Decrypt Data || ICV

24 bits
RC4 cipher review...

Pseudo-random number generator

Plaintext data byte p \rightarrow \oplus \rightarrow Ciphertext data byte c = $p \oplus b$

Decryption works the same way: $p = c \oplus b$

Thought experiment: what happens when p_1 and p_2 are encrypted under the same “key stream” byte b?

\[c_1 = p_1 \oplus b \quad c_2 = p_2 \oplus b \]

Then: \[c_1 \oplus c_2 = (p_1 \oplus b) \oplus (p_2 \oplus b) = p_1 \oplus p_2 \]
Collision attacks

![Diagram showing 802.11 Hdr, IV, Data, ICV]

- WEP expands each RC4 key into 2^{24} per-packet keys \Rightarrow data can be recovered if IV is ever repeated with same key \Rightarrow RC4 key must be changed at least every 2^{24} packets or data is exposed through IV collisions!

Some implemented IV selection strategies:

- Random: Collision probability P_n two packets will share same IV after n packets is $P_2 = 1/2^{24}$ for $n = 2$ and $P_n = P_{n-1} + (n-1)(1-P_{n-1})/2^{24}$ for $n > 2$.

 \square 50% chance of a collision exists already after only 4823 packets!!!

- Increment from 0: Collision probability $= 100\%$ after two devices transmit
Weak Key attack

Class of RC4 weak keys exists where patterns in the 1st 3 bytes of key causes corresponding patterns in 1st few bytes of the generated RC4 key stream.

For each packet, use IV and exposed key stream to identify potential weak keys.

Iterate over potential weak keys from a sequence of packets until the RC4 base key is found.
Replay attack

- Good guy STA
- Authorized WEP communications
- Eavesdrop and record
- Good guy AP
- Play back selections
- Bad guy (STA or AP)
How does WEP authentication work?

Authentication key stream = Challenge ⊕ RC4(Challenge)
Forgery attacks

- Sample Attack 1:
 - Recv-Addr, Src-Addr, Dest-Addr are all unprotected
 - On packets from a STA to the AP, corrupt the Dest-Addr
 - The AP will decrypt data and send it to the forged destination

- Sample Attack 2:
 - create a blank message with same number of data bytes
 - Flip some bits and compute the ICV
 - XOR resulting bit-flipped message + ICV into captured message
Problem statement

- Enterprises want protected campus access.
- Home users want to block unauthorized access.
- Everyone wants to stop unauthorized usage of their networks—particularly illegal activities!
- Users want to know they are connecting to a trusted access point instead of an imposter.
- Everyone wants to prevent credential theft.
- Everyone wants security without user complexity.
- Everyone wants a balance between ease of use and risk management.
802.11i Goals

- Security for Infrastructure
- Relies on 802.1X EAP for authentication, authorization and key management
- Adopts AES based encapsulation: CCMP
- Requires authentication servers for central authentication/authorization