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Abstract. In this work, we show a general method to find preimages for a cryptographic hash function 
H which is composed of two parts as H = H1 ◦H2. We use the ideas of Dinur and Shamir (FSE 2011) 
and Bernstein (SHA-3 mailing list) for the H1 part, invert a part of H2 and connect the two using a 
table lookup to find preimages for H. The suggested approach works whenever the internal constituents 
of H1 have low algebraic degree and H2 has low diffusion. 
We show an application of this technique on round-reduced variants of the Keccak hash function, the 
winner of the SHA-3 competition. Using our approach, we show new 1st and 2nd preimage attacks on 
7-round Keccak-224, 8-round Keccak-256/384 and 9-round Keccak-512. The previous best preimage 
attack was on 8 round Keccak. Our attacks take advantage of the low degree of Keccak permutation, 
such that the output of each round of Keccak can be represented as an equation of degree 2 in terms of 
its input bits. Since the draft SHA-3 standard (FIPS 202) and Keccak only differ in padding scheme, 
our approach extends to round-reduced SHA-3 variants as well. The complexities of the attack increase 
as the number of rounds attacked increase. None of the attacks threaten the security of Keccak as the 
attack complexities are already close to brute force by the time we cross 9 rounds of Keccak. In fact, 
this work shows the limits of polynomial enumeration method based preimage attacks against Keccak. 

Keywords: Keccak, preimage attack, second preimage attack 

1 Introduction 

Keccak, designed by Guido Bertoni, Joan Daemen, Michael Peetërs, and Gilles Van Assche, is a cryptographic 
hash function built upon an earlier design, Radiogatún [3], by the same authors. It was selected as the winner 
of the NIST Secure Hash Algorithm 3 competition [7] in Oct. 2012. All the Keccak versions submitted to 
the SHA-3 competition have an input state size of 1600 bits, and an output size o ∈ {224, 256, 384, 512} 
bits. SHA-3 uses the Sponge construction [2], where the message blocks are first XOR’ed with the initial 
bits of the state, and then permuted through 24 rounds of a non-linear yet invertible round function. 

Despite being in the scrutiny of cryptographers for the past few years, Keccak has remained immune 
to any serious threat. Previous results on Keccak’s internal permutation include zero-sum distinguisher 
presented in [1], and later improved in several papers [5, 6, 13]. Practical attacks on Keccak include Naya-
Plasencia, Rock and Meier’s work on Keccak-224 and Keccak-256 [18], which include a preimage attack on 
2 rounds, as well as collisions on 2 rounds and near-collisions on 3 rounds. Morawiecki et al. [17] used SAT 
solvers to show a preimage attack on 3 round Keccak, and then used rotational cryptanalysis [16] to show a 
preimage attack on 4 round Keccak. Recently, Dinur, Dunkelman and Shamir [9] have developed practical 
collision finding attacks, extending up to 4 rounds. Finally, in the NIST Keccak mailing list, Bernstein [12] 
described a second preimage attack extending to Keccak-512 reduced to 8 rounds. Bernstein’s attack is 
marginally faster than exhaustive search and uses a huge amount of memory. 

Since this work concerns the study of preimage and second preimage attacks on Keccak, we list all the 
previous attacks of this type and our results obtained in the current work in Table 1. 

The paper is organized as follows. We briefly describe the Keccak design in § 2, explain the terminology 
used in § 3 and present an overview of previous polynomial enumeration based preimage attacks on Hamsi 
and Keccak in § 4. We then describe the polynomial enumeration algorithm in details in § 5. We then 
present the idea of using lookup tables to gain some extra rounds in § 6 in combination with the polynomial 
enumeration. This algorithm is used to perform a preimage attack on Keccak. Our attacks are described in 
§ 7. These attacks are further improved based partial last-round inversion in § 8. This is in contrast to the 
full last-round inversion in § 7. We conclude in § 9. 
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Table 1. A summary of the results on the Preimage and Second Preimage attacks on Keccak. Complexity is deter­
mined in terms of number of calls of the compression function and the Improvement Factor denotes the ratio of the 
complexity of generic (exhaustive search) attack and the attack under consideration. We compare our best results 
with earlier reported optimal results [12, 8, 14] on reduced round Keccak-512. Similar improvements can be obtained 
for other versions of Keccak. 

Version Reference No. of 

Rounds 

Type of 

attack 

Time 

Complexity 

Memory 

Complexity 

Improvement 

Factor 

Keccak-256 [18] 2 Preimage 233 2223 

Keccak-512 [17] 3 Preimage 2506 64 

Keccak-512 [16] 4 Preimage 2506 64 

Keccak-512 [12, 8] 6 2nd Preimage 2506 2176 50 

[12, 8, 14] 7 ” 2507 2320 37 

[12, 8, 14] 8 ” 2511.4 2508 1.44 

This work, § 7 6 Preimage/ 
2nd Preimage 

2509.19 298.91 7.01 

This work, § 7 7 ” 2509.39 2172.52 6.13 

This work, § 7 8 ” 2509.73 2315.29 4.81 

Keccak-224 This work, § 8 7 ” 2218.11 2180.12 58.66 

Keccak-256 This work, § 8 8 ” 2255.64 2254.03 1.29 

Keccak-384 This work, § 8 8 ” 2378.74 2324.06 38.36 

Keccak-512 This work, § 8 6 ” 2505.58 2104.23 85.70 

This work, § 8 7 ” 2506.11 2180.12 59.34 

This work, § 8 8 ” 2506.74 2324.07 38.36 

This work, § 8 9 ” 2511.70 2510.02 1.23 

2 Description Of Keccak 

The Keccak family consists of four cryptographic hash functions, called Keccak-224, Keccak-256, Keccak­
384, and Keccak-512. The numerical suffix indicates the fixed length of the digest, e.g., Keccak-256 produces 
256-bit digests etc. 

Keccak uses the Sponge Construction [4]. The version of Keccak used for SHA-3 operates on an internal 
state of t = 1600 bits, which is divided into bitrate η and capacity c. The message block is first XOR’ed with 
the bitrate, after which the full state of t bits is rearranged by a permutation which is operated 24 times. 
This operation is called a “round”. Processing of the message in this construction is divided into two phases: 
the absorption phase and the squeezing phase. The internal state of the Sponge construction consumes the 
message words and modifies itself via the Keccak permutation in the absorption phase. Once the message is 
completely consumed, a part of the state is then output in successive rounds of the squeezing phase. Each 
round R of the permutation is obtained by the composition of five mappings as follows. R = θ o ρ o π o χ o ι. 
Note that the first three permutations are linear while the last two are non-linear. A detailed description of 
all the mappings involved in Keccak is available in the Keccak Reference 3.1, available on the official Keccak 
website [4]. We refer the reader to [3] for further details on the round function. 

A message is padded by the rule pad(m) = m||10∗1 in Keccak, with the asterisk denoting the number of 
zeroes required to get the size of the padded message to be a multiple of bitrate. The four SHA-3 hash func­
tions do have a few differences from the instances of Keccak that were proposed for the Keccak competition. 
In particular, two additional bits(01) are appended to the messages, before the standard Keccak padding is 
applied. This is done in order to differentiate the SHA-3 hash functions from the SHA-3 extendable-output 
functions (XOF) [19]. Thus, at least 4 bits of padding is applied to a message before being processed by the 
draft SHA-3 as against at least two bits of padding in the case of Keccak. 

3 Terminology 

We first explain the terminology and the basic setting used in this work. 
We consider a hash function H : {0, 1}∗ → {0, 1}o. The ith bit of the output of H can be considered 

as a function fi mapping {0, 1}n → {0, 1}, where these n bits are a subset of the input block. We consider 
only 1 block of message, where the message size after padding is m bits. Note that n ≤ m, i.e., we do not 
consider all the m bits of input to fi but only some specific n bits. This will become clear later when the 
attack is described. 

The output of fi on a specific n bit input x can be written as a sum of monomials in the input bits x1, 
x2, . . . , xn. We assume that the maximum degree of the monomials in the description of fi is at most d. 
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Let α be the set of all sets of cardinality up to d constructed out of a universe of size n, with elements 
represented as 1, 2, . . . , n. This set can be represented in the following two equivalent ways. 

α	 = {φ, {1} , . . . , {1, 2, 3} , · · · , {n − d + 1, · · · , n}} , 

= {A : A ⊆ {1, 2, 3, . . . , n} ; 0 ≤ |A| ≤ d} . 

As illustrated, A is an element of α. If A is non-empty then we define it as A = {a1, a2, . . . , ak}, where 
1 ≤ k ≤ d such that a1 < a2 < a3 . . . < ak. This set A of cardinality k is converted to a set SA, which 
is an n bit string. The set SA corresponds to an n-bit string specifying whether or not a specific element 
is present in A. This enables it to be used for computation of the function fi and later H. We define SA 

as SA = (s1, s2, . . . , sσ, . . . , sn) where sσ = 1 if σ ∈ A otherwise sσ = 0 for 1 ≤ σ ≤ n. We extend this 
definition by introducing a new term SA,p for ap ∈ A . Let A = (a1, a2, . . . , ak). We define Ap = A− {ap}. 

′	 ′ ′ ′ ′ The term SA,p can be defined as equal to (s1, s 2, . . . , s ) where s = 1 if i ∈ Ap, otherwise s = 0. n i	 i 

We write fi with n bit input x = x1x2 . . . xn as the sum of monomials in its input bits. As already 
mentioned, we assume that the maximum degree of the monomials is d. Thus, we can express fi as follows. 

fi = fi(x1, x2, . . . , xi, . . . , xn)	 (1) 
I

= Cφ + C{1}x1 + C{2}x2 + . . . + C{1,2}x1x2 + . . . + C{(n−d+1),...,n} xt 

t∈{(n−d+1),...,n} 

4 Previous preimage attacks based on Polynomial enumeration 

Our attack on Keccak hinges on a “polynomial enumeration algorithm” which has already been used by 
Dinur and Shamir [11] in the case of Hamsi-256, and by Bernstein [12] in the case of Keccak-512. 

4.1 Polynomial enumeration 

Polynomial enumeration is an algorithm to efficiently interpolate and evaluate a polynomial of degree d, 
given some inputs and corresponding outputs (or a subset of output bits). We describe this algorithm next. 

1.	 Compute the number of monomials in n variables having degree less than or equal to d. The number of 
monomials obtained is exactly 

d	 ( )

t n 
|α| = .	 (2) 

j
j=0 

2.	 For every element A of α having max size/degree d, compute the coefficient CA associated with it. 
(	 )

Ld 
2l−1 nAccording to Dinur and Shamir [11], complexity of computing all these coefficients is ×l=0 l 

bit operations. However, a separate computation of the same, suggested by Bernstein in his letter to the 
Ld ( )

nKeccak Team [12], showed that this computation could have been achieved at the cost of l× +l=0 l 
Ld ( )

nT × bit operations, where the hash function computation takes T bit operations. Since this l=0 l 
Ld

process is repeated for b bits of the output, the time complexity associated with this step is b× l×l=0 
(	 ) ( )

n Ld n+ T × bit operations. Finally, we allocate a coefficent static array C of size 2n, which is 
l l=0 l 

initialized with all zeros, and copy each coefficient CA of the polynomial into C[SA], where SA is the 
n-bit string as defined in the previous section. However, he did not describe such algorithm in a formal 
way. Moreoever, we need more time and memory complexity to describe such algorithm in a formal way. 
Bernstein’s idea is explained in details as Algorithm 1 with detailed explanation of increased time and 
memory complexity in § 5.1 and a detailed example of this process is provided in the Appendix. 

3.	 Use “Moebius transform” [12] to obtain the truth table static array of size 2n from the coefficent static 
array C given in Step 2. This step is highly memory intensive as 2n bit memory is required for computing 
each bit of the output (refer to § 6). Thus the memory complexity for b bits is b×2n. The time complexity 
for each bit is n × 2n−1. For b bits, the time complexity of this step is 

b× n × 2n−1 .	 (3) 

4.	 All the above steps of the polynomial enumeration algorithm are performed 2o−n times, where o is the 
output size. Such a number of iterations ensure that almost all the input bits are considered. It is to 
be noted that all possible values of the input are not to be considered. Checking the output for all 
possibilities of o bits in the input ensures that the probability of finding a preimage/second preimage 
following this process is approximately equal to 1. 

We direct the reader to similar attacks on round-reduced Hamsi-256 by Dinur and Shamir [11] and on 
round-reduced Keccak-512 by Bernstein [12]. 
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5 Speeding-up Polynomial enumeration 

Bernstein [12], in an informal note, suggested storing the partial sums and reusing them to speed-up the 
polynomial enumeration algorithm. We show an algorithm based on Bernstein’s suggestion. 

5.1	 Algorithm for Computing the Coefficient Static Array C of Size 2n for a n-bit input 

Boolean Function 

The algorithm for computing a coefficient array of a given boolean function f in the polynomial enumeration 
is presented in Algorithm 1. 

Algorithm 1: Computing the Coefficient Static Array of a Boolean Function 
Input: Boolean function f with n-bit input and having algebraic degree at most d 
Result: Coeffient static array C of size 2n, which is initialized with all zeros in the beginning 

1 begin 

2 l=0; 
3 while l ≤ d do 
4 for A ∈ α AND |A| = l do 
5 y=0; 
6 i=0; 
7 y=f(SA); 
8 Sum0[SA] = y; 
9 while i < l do 

10 y = y ⊕ Sumi[SA,i+1]; 
11 i=i+1; 
12 Sumi[SA] = y; 
13 C[SA] = y, where CA is also same as C[SA]; 
14 l=l+1; 

Time Complexity of the Algorithm to compute they coefficient static array of a boolean function f : The 
time complexity of the algorithm is dependent on the three loops running in the program as follows. 

1.	 The outermost while loop ensures that the coefficients of all terms upto degree d are evaluated. 
2.	 The for loop in the middle ensures that coefficients of all terms of a specific degree l, such that l ≤ d 

( )

nare evaluated. This loop runs times. Further, the value for all f(SA) is to be computed as well. Let 
l 

the time complexity of computing f be T bit operations. Then the time required to perform this step is 
( )

nT × . This step needs to repeat for l = 0 to d.
l 

3.	 The innermost while loop computes the coefficient for each and every term of the polynomial. As observed 
in the algorithm, it involves l bit XORs, or l bit operations. In addition, the step incrementing i costs 
about 2 bit-wise XOR operations, on average. The reason for this is as follows. If the least significant bit 
(lsb) of i is 0, then the increment affects only the lsb. This happens with probability 1/2. However, with 
probability 1/2, the lsb is 1 and the increment causes a carry into higher order bits. With probability 
1/4, this carry stops at the next bit else it propagates further. This analysis shows that the cost of 

Ld iincrementing i is which is ≤ 2 for any d. In Steps 10 and 13, we need to take or update an i=1 2i 

element of Sum arrays. Note that each Sum array of size 2n, whose element is 1-bit, are static so it will 
be constant time to take or update an element of a Sum array. Let w be the constant time to take or 
update an 1-bit element of a Sum array of size 2n. In this paper, we assume that w=1. Note that Steps 
7, 10, 11, and 12 occupy most of time complexity of Algorithm 1. Thus, the time complexity of Steps 7, 
10, 11, and 12 is given by the following upper bound. 

Ld ( )
Ld ( )

n nTime complexity = (2w + 3) × ( l × ) + T × bit operations. l=0 l l=0 l 

Memory Complexity of the algorithm to compute the coefficient static array of f : The memory complexity 
of the algorithm is directly related to the ‘Sum’ terms being computed. Each ‘Sum’ term is defined as an 
array of size 2n whose index size is n-bit. The inner while loop in Step 3 with loop counter being equal to l 
uses Sum0[SA,1] to Suml−1[SA,l] for a given set A where |A| = l, i.e. the hamming-weight of the n-bit string 
SA is l. Note that the n-bit strings SA,1, SA,2, . . . , SA,l have hamming-weight (l − 1). We have already 
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stored values Sum0[SB ] = y for all |B| = l− 1 in the previous step when the loop counter is l− 1. We utilize 
these stored values to compute Sum0[], Sum1[], . . . , Suml[]. Step 8 and Step 12 in Algorithm 1 require the 
Sumi[SA] values to be stored. For any iteration, we need to store the current ‘Sum’ values and the previous 
‘Sum’ values. That is, for a loop counter value l in Step 3, we need to use Sum0[SA0 ], Sum1[SA1 ], . . . , 
Suml−1[SAl−1 ] from the previous step for all Ai’s such that |Ai| = l − 1. Further, we need to store the 
current Sumi[SA] values, for all 0 ≤ i ≤ l for all A such that |A| = l. In the next step of the while loop in 
step 3, when loop counter is l + 1, we only need to use ‘Sum’ values from the previous step, and store the 
current ‘Sum’ values for the next step. That is, there is no need to save the values from the loop when the 
loop counter was l − 1. 

In order to store each element value of ‘Sum’ array, we need 1 bits of memory. There are l+ (l+ 1) ’Sum’ 
arrays which are needed to be stored. Hence, the total memory complexity is (2l + 1) × 2n bits. This term 
attains its maximum value at l = d. Further, Step 13 of the algorithm reqiures to replace element values of 
the array C with the coefficients. This step takes 2n additional memory to construct the array C. Hence, 
the maximum memory complexity of Algorithm 1 is given by 

(2d + 1) × 2n + 2n . 

Example of the Algorithm for computing coefficients : An example illustrating Algorithm 1 is provided in 
the Appendix. 

6 General description of the attack 

6.1 Algorithm 

As explained earlier, the Polynomial enumeration method can be used to compute a polynomial relation 
between a subset of input and output bits. Such a relation can be used to compute some output bits for 
some subset of inputs. This, in turn, enables the attacker to determine the appropriate set of input bits for 
some known output bits. However, we introduce a slight modification to this method. Rather than running 
the polynomial enumeration based algorithms for the full hash function H and then calculate some specific 
b output bits, we consider the hash function as composed of two parts as H = H1 ◦H2. 

Given a hash output, we first compute the positions of the q bit input to H2 which affects b bits of final 
output. We store these input-output relations in a table. We expect 2q−b relations to be stored. Then we 
use the polynomial enumeration algorithm to generate truthtable of q bits of output of H1. Finally, we use 
a meet-in-the-middle step to connect the output of H1 to the inputs of H2. If we find a match then we have 
succeeded in finding a preimage for H. We repeat this process sufficient times to ensure that the probability 
of finding the preimage is almost 1. Note that the method of inverting one round (or a part of one round) 
of Keccak has already been used in [10, 15, 16, 18]. We introduce the idea of using a lookup table to perform 
the meet-in-the-middle step at the intersection of H1 and H2. 

Our approach can be easily extended to get a second preimage attack, further details of which are 
mentioned in § 6.3. The attack algorithm is explained in details next. The complexity of each step is also 
mentioned in the description. 

Initialization: This part of the algorithm constructs a lookup table which is used in finding the preimage 
later. 

1.	 As already mentioned, we consider H as being composed of H1 and H2. The output of H is of length o 
bit. Let the message block be of size m bits, out of which some (m − o) bits are fixed to any constant 
value (say all zeros for example) and n bits are variable. We assume that m ≥ o and n ≤ o. The (o − n) 
bits except the variable n bits are exhaustively searched in the preimage attack, as mentioned in Step 5 
and 6 below. For example, we start from all zero bits in these (o−n) bits and increment the bit pattern 
in these set of bits by 1 in each iteration of Step 5a and 5b. 

2.	 We start by first determining the optimal set of b out of o output bits for H2, such that the number of 
bits required to compute them (from the output of H1) is minimum. Let the number of required output 
bits at the matching point be q. 

The preimage attack: This part of the algorithm utilizes the table constructed in the previous steps. 
Given a fixed o-bit hash output, the following steps lead to a preimage. 

3.	 For all possibilities of these q bits, we apply H2 to obtain the final output at the specific b bit locations. 
We discard those inputs which do not provide the desired output in these b bit positions and save the 
rest in a lookup table. The expected number of q bit patterns remaining is 2(q−b). Let the complexity 

′′ of computing H2 be T ′′ , then this step has a cost of 2q × T bit operations. 
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4.	 The lookup table is then sorted, using an algorithm such as merge sort, so that any specific element of q 
bits can be searched efficiently by using any appropriate search algorithm, e.g. binary search. This step 
has an effective complexity of 2q−b × max {q − b, 1} × (q) since the expected size of the table is 2(q−b). 
This lookup table is maintained in a sorted order. 

5.	 Repeat the following steps 2(o−n) times by incrementing the middle (o −n) bit pattern, or until we find 
a preimage. 
(a) At this point, we use polynomial enumeration algorithm to calculate	 q truth table arrays, where 

the size of each array is 2n, corresponding the q output bits at the end of H1 while starting the 
evaluation from n variable input bits at the beginning of the hash computation. Let the complexity 

Ld ( )

′	 ′ nof computing H1 be T bit operation, then the complexity of this step is (T × ) + ((2w +j=0 j
Ld ( )

n3) × q × j × ) + (q × n × 2n−1), where w is the time to take or update an 1-bit element of j=0 j

a static array of size 2n. In this paper, we assume w = 1. 
We already have a sorted lookup table containing 2(q−b) entries each of which is of q bit length. 
We match the q-bit entries in this table with the q truth table arrays and find all the indexes 
of the matched elements of the q truth table arrays, where each index of the matched elements 
is n-bit describing the actual values of the n variable input bits. The cost of this matching is 
(max {q − b, 1} × 2n × q). This is by running binary search between the lookup table (which cosists 
of 2q−b q-bit entries) and the q truth table arrays. 

(b) On average among 2n possible messages, 2(n−b) messages are matched for the specific b bits of the 
hash output. Recall that the matching is being done on partial hash output, while the complete hash 
is of o bit length. Once we have a match, we run the hash function H on 2(n−b) messages and check 
if the output matches with the complete hash output of o bits. If this matches then we have found 
a preimage and we stop. Otherwise, we repeat Steps 5a and 5b by incrementing the value of the 
variable (o−n) bit string. The complexity of running a hash function for 2n−b messages is T × 2n−b 

where T is the complexity of computing H. 

We are repeating Step 5a and Step 5b 2o−n times by incrementing the variable (o−n) bit pattern. This 
ensures that sufficient number of input combinations are considered, such that the probability of finding the 
first and second preimage is very high. 

As a result, the complexity of the algorithm described above is as follows. 

′′ b× 2q × T + 2q−b × (q − b) × q+ 
d	 ( ) d ( )

t	 tn	 n 
2o−n ′ × [(T × ) + ((2w + 3) × q × j × ) + (q × n × 2n−1)]+ (4) 

j	 j
j=0	 j=0 

2o−n × [(T × 2n−b) + (max{(q − b), 1} × 2n × q)], 

where o is the number of output bits of the hash function being analyzed and other variables have meaning 
′ ′′ as described earlier. Note that T = T + T . 

Memory Complexity of the Attack: The memory complexity of our attack consists of two parts: (i) 
computing the Moebius transformation and (ii) preparing the lookup table. The memory Complexity as­
sociated with all other steps are negligible in comparison to these two. These costs can be analyzed as 
follows. 

1.	 The Lookup Table: The lookup table consists of 2(q−b) possible q-bit inputs for H2, all of which produce 
b bits of the desired target hash value. As already mentioned, all entries of the lookup table are of q bits 

× 2q−beach. As a result, the memory complexity of the lookup table is q . 
2.	 Algorithm 1: The memory complexity of this step is at most (2d+ 1) × 2n + q× 2n, where (2d+ 1) × 2n 

is the memory size for Sum arrays and q × 2n indicates the memory size for q coefficient arrays of size 
2n . 

3.	 The Moebius transformation: we do not need more memory, because this transformation just transforms 
the coefficient arrays to the truth table arrays. 

The total memory complexity is upper bounded by the following expression. 

q × 2q−b + (2d + q + 1) × 2n .	 (5) 
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6.2 Choosing an Optimal Set of Output Bits to minimize q 

Our choice of the number of output bits, and their respective positions are dependent on the number of 
output bits q at the end of H1 which are necessary to compute the final output. An optimal choice of output 
bits would minimize q, thereby reducing the number of bits to be computed via the polynomial enumeration 
algorithm. The optimal choice depends on how have we divided H for the meet-in-the-middle step. The 
position of partitioning is the most crucial factor in determining both the time and the memory complexity 
of the attack. 

It is not immediately clear how should one choose the specific location of the output bits for the attack 
to succeed with higher probability. It will depend on the specific hash function being attacked. 

6.3 Second preimage attack 

The attack described above is a preimage attack on any hash function. However, a second preimage attack 
similar to the preimage attack described above can be devised with small modofications. In the case of the 
second preimage attack, we have to ensure that the second preimage, or the second string of input bits 
for which we get the desired set of output bits, is not equal to the first preimage. As a result, to avoid 
such an occurence, the constant set of bits (m-o bits) have to be set such that they do not match with the 
corresponding set of input bits of the first preiamge. It is to be noted that m denotes the total number 
of input bits, whereas o signifies the number of output bits. Moreover, for practical purposes, the number 
of constant input bits to be verified different are taken to be much less than the number of output bits, 
ensuring that the complexity associated with the computation of the specific set of output bits does not add 
significantly to the overall cost of our attack. 

Such a procedure ensures that the cost of the extra step of the preimage being different from the given 
string remains negligible in comparison to the overall attack cost. Thus, the cost of the second preimage 
attack is almost the same as that for the preimage attack. 

7 Attack on Keccak and Result 

7.1 Choosing Output bits to minimize q for Keccak 

The 1600 bit state of Keccak is considered as an array of 64 × 5 × 5 bits. Common representation for 
the structure of Keccak state is in the form of a cuboid, which is represented as an array of the form 
a[0..4][0..4][0..63]. As already mentioned, the choice of number and location of the output bits at the end 
of H1 is crucial to the cost of the attack. We analyzed a number of possibilties for these bits. A detailed 
analysis of the permutations involved in the Keccak compression function, specifically χ, led us to conclude 
that all bits taken along a row would ensure the minimum value of q. Such a case arises due to the fact that 
the permutation χ involves displacement of bits along a given row. As a result, our choice of the output bits 
along the given row would lead them to being dependent upon themselves, thereby reducing q. Bits taken 
along other alignements produced a larger value of q since these bit locations can’t cancel the effect of other 
Keccak permutations. 

Once we have decided on the alignment of the output bits, we need to determine the number of bits, 
or in other words, the number of rows to be considered for output bits to be computed. This leads to 
experimentation with varying number of rows being chosen as the output bits and observing the value of 
the Improvement Factor for the same. Our analysis shows that the optimum balance between minimizing 
the value of q and the reduction in the number of Keccak compression function evaluations takes place when 
output bits are chosen along a single row. In all the calculations considered for this work, the number of 
output bits b is chosen to be 5, as each row consists of 5 bits, thereby leading to q = 55 bits being dependent 
on them. A pictorial representation of the 5 bits chosen for the purpose of this work is shown in Figure 1 in 
Appendix. 

7.2 Attack on Keccak-512 

6 Rounds: We consider the 5 output bits at the end of r = 6 rounds (as shown in Fig. 1 in the Appendix), 
which are dependent on 55 bits of the (r − 1)th round. Since we are considering Keccak-512, there are 512 
output bits. Therefore, we need not consider more than 512 bits of input (trying all 512 bits of the input 
would imply generic preimage attack). 

Consider the number of monomials used in the attack given by Eqn. 2. This expression reduces slowly 
till d ≥ n/2, but starts to decrease rapidly after d < n/2. Therefore, we need to ensure that n > 2d. Since 

http:a[0..4][0..4][0..63
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the degree d of the expression which computes the 5 output bits is 32, we need n > 64. However, larger n 
has the counter effect of increasing the cost of the Moebius transformation step in Eqn. 3. Best trade-off 
is achieved between these two factors when the number of variables n are chosen to be 92. The cost of the 
attack in this case comes out to be as calculated below using Eqn. 4. Note that n = 92, q = 55, b = 5, 
o = 512, d = 32, r = 6 and bit complexity of computing H1 is 5 × 8064 = 40320 (where H1 is first 5 rounds 
of Keccak). The bit complexity of H2 is 8064, where H2 is the 6th round of Keccak. Therefore, the complete 
hash function H = 48384. The values of bit complexities for various rounds of Keccak are taken from [15], 
where the authors have mentioned the number of bit operations for 3-round Keccak to be 24192. As a result, 
the number of bit operations for each Keccak round is 24192/3 = 8064 many bit operations. The complexity 
of our attack on 6-round Keccak-512 comes out to be 2509.19 hash function calls. This is 7.01 times faster 
than the generic preimage attack. The memory complexity of the attack is 2170.88 bits using Eqn. 5. 

7 Rounds: In this case, n = 165, q = 55, b = 5, o = 512, d = 64, r = 7, cost of H1 = 48384 bit operations 
and that of H2 = 8064 bit operations. The cost of the attack is 2509.39 , which is 6.13 times faster than 
exhaustive search. The memory complexity is 2172.52 bits. 

8 Rounds: In this case, n = 307, q = 55, b = 5, o = 512, d = 128, r = 8, cost of H1 = 56448 bit operations 
and that of H2 is 8064 bit operations. The cost of the attack is 2509.73 . This is 4.81 times faster than the 
exhaustive search attack. The memory complexity is 2315.29 bits. 

8 Improving the attacks further 

For most “good” hash functions, inverting few steps of the hash function will have high time/memory 
complexity. Therefore, to achieve optimal attck complexities, H1 will cover (r − 1) rounds and H2 will cover 
1 round while attacking a hash function H of r rounds. That is, the meet-in-the-middle step will typically 
be executed one round before the final hash output. However, as attempted in some previous works [10, 15, 
16, 18], a different approach works better in the case of Keccak. 

The main idea is to do the partial inversion only for the last two permutation of the last rounds (i.e. 
only 0.4 rounds of inversion1, covering χ and ι). Note that the first three permutations in the round func­
tion of Keccak are linear and therefore the algebraic degree, and hence the cost of performing polynomial 
enumeration step, for first 8.6 rounds (i.e. 8 rounds + the permutations θ, ρ and π) is the same as for the 
first 8 rounds. Then performing the meet-in-the-middle step eliminates the requirement of the look up table. 
Using this approach the attacks presented earlier can be improved further. 

Note that q ≥ b due to the diffusion property of H2. Once the algebraic degree has been fixed, the attack 
complexity can be made smaller by choosing smaller values of q and b. The optimal value for attacking the 
hash function H will be when when q = b in Eqn. 4. The suggested approach allows to make q = b for all the 
round-reduced versions of Keccak. For example, by choosing two rows (b = 5) for 9-round Keccak and using 
H1 as 8.6 rounds, H2 as 0.4 rounds we get a 9-round preimage attack on Keccak with lowest complexity. 

We provide brief information about the attack on 9 round Keccak-512 (with other attacks being similar). 
In this case, H1 = first 8.6 rounds of Keccak which can be computed in approximately 67712 bit operations 
and H2 = last 0.4 rounds of Keccak = approximately 4864 bit operations. We take n = 498, o = 512, 
b = q = 5 and d = 256, then using Eqn. 4 and Eqn. 5, the time and memory complexities are 2511.70 and 
2510.02 respectively. The improvement factor is 1.23. Results for 6, 7 and 8 round Keccak can be obtained in 
the same way and are shown in Table 1. Note that we take b = q = 10 for these attacks on round-reduced 
Keccak-224, 384, 512 and we take b = q = 5 on 8-round Keccak-256. 

9 Conclusions and future work 

In this work, we presented preimage and second preimage attacks on reduced-round versions of Keccak­
224, 256, 384 and 512. By using a polynomial enumeration algorithm and a meet-in-the-middle strategy, 
we showed attacks on round-reduced variants of Keccak. Our approach is generic and can be applied to 
any hash function which has low algebraic degree. However, the approach is clearly limited by the degree 
associated with each round of the compression function being analyzed. For this reason, these attacks do not 
extend beyond 9 rounds of Keccak. In fact, even for the 9 round version of Keccak, the attacks are already 
close to brute force complexities in terms of number of compression function calls. 

It remains an interesting open question to attack larger number of rounds of Keccak. 

1 Note that earlier works such as [15, 9] count these as 0.5 rounds. We are using a different convention. 
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A Example run of the algorithm for computing Coefficients 

We show an example of how to apply the algorithm to compute coefficients associated with terms of a 
polynomial equation relating the input and output. We explain the same by providing an input-output 
table, and defining the polynomial function relating them. We then show how the algorithm yields the same 
polynomial function. Let us assume the following polynomial relation. 
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Table 2. Input Bits x1, x2, x3 and corresponding output produced 

Input Output produced 

000 0 
001 0 
010 0 
011 1 
100 1 
101 1 
110 0 
111 1 

According to this polynomial function, the following input output combinations would occur. 
To arrive at a polynomial function relating the input and output, we start with a general function 

composed of 3 variables in this case. The maximum degree of the monomials is taken to be 3. 

f(x1, x2, x3) = Cφ + C{1}x1 + C{2}x2 + C{3}x3 + C{1,2}x1x2 + C{2,3}x2x3 

+C{1,3}x1x3 + C{1,2,3}x1x2x3 

We use algorithm 1 to obtain values of the coefficients associated with various terms of varying degrees. 
We start with degree 0 and move to terms of higher degrees. 

A.1 Computing Cφ 

1.	 For this computation, A = φ. 
2.	 According to the algorithm mentioned, one starts by computing the value of f(000), which is then 

consequentially stored in a variable y . This value is then stored as Sum0(000), or the first partial sum 
used in computing Cφ. Since we do not enter into the loop, we assign the value of y as the value of Cφ. 
As observed in the table, the value of f(000) is 0. Hence, value of Cφ is 0. 

A.2 Computing C{1} 

1.	 For this computation, A = {1}. 
2.	 According to the algorithm, start by computing f(100), which is then consequentially stored in the 

variable y. This value is then stored as Sum0(100). 
3.	 Now, we add Sum0[SA,1] to y. Sum0[SA,1] corresponds to Sum0[000], which has already been stored 

earlier. The value of y is then stored as Sum1[100]. Since the program no longer enters into the loop, 
the updated value of y is now stored as C{1}. 

4.	 As seen in the last 2 steps, computation of C1 would involve the following computation: 

C1 = f(100) + Sum0[000]. 

Since f(100) is 1, as shown in the table, and Sum0[000] is 0, as saved earlier, the value of C{1} is 1. 

A.3 Computing C{2} 

1.	 For this computation, A = {2} 
2.	 According to algorithm 1, we start by computing f(010), which is then consequentially stored in the 

variable y. This value is then stored as Sum0(010). 
3.	 Now, we add Sum0[SA,1] to y. Sum0[SA,1] corresponds to Sum0[000], which has already been stored 

earlier. The value of y is then stored as Sum1[010]. Since the program no longer enters into the loop, 
the updated value of y is now stored as C{2}. 

4.	 As seen in the last 2 steps, computation of C{2} would involve the following computation: 

C2 = f(010) + Sum0[000]. 

Since f(010) is 0, as shown in the table, and Sum0[000] is 0, as saved earlier, the value of C{2} is 0. 
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A.4 Computing C{3} 

1.	 For this computation, A = {3}. 
2.	 According to algorithm 1, start by computing f(001), which is then consequentially stored in the variable 

y. This value is then stored as Sum0[001]. 
3.	 Now, we add Sum0[SA,1] to y. Sum0[SA,1] corresponds to Sum0[000], which has already been stored 

earlier. The value of y is then stored as Sum1[001]. Since the program no longer enters into the loop, 
the updated value of y is now stored as C{3}. 

4.	 As seen in the last 2 steps, computation of C{3} would involve the following computation: 

C3 = f(001) + Sum0[000]. 

Since f(001) is 1, as shown in the table, and Sum0[000] is 0, as saved earlier, the value of C3 is 0. 

A.5 Computing C{1,2} 

1.	 For this computation, A = {1, 2}. 
2.	 Next, we start with f(110), which is then consequentially stored in the variable y. This value is then 

stored as Sum0[110]. 
3.	 We then add Sum0[SA,1] to y. Sum0[SA,1] corresponds to Sum0[010], which has already been stored 

earlier. The value of y is then stored as Sum1[110]. 
4.	 Then add Sum0[SA,2]. It is to be noted that this expression correspond to Sum1[100]. This sum is also 

stored as Sum2[110]. Since the program no longer enters into the loop, the updated value of y is now 
stored as C{1,2}. 

5.	 As seen in the last 3 steps, computation of C{1,2} would involve the following computation: 

C{1,2} = f(110) + Sum0[010] + Sum1[100]. 

Since f(110) is 0, as shown in the table, Sum0[010] is 0, as saved earlier, and the value of Sum1[100] is 
1, as saved earlier, the value of C{1,2} is 1. 

A.6 Computing C{2,3} 

1.	 For this computation, A={2, 3} 
2.	 As per the algorithm, start with f(011), which is then consequentially stored in the variable y. This value 

is then stored as Sum0[011]. 
3.	 We then add Sum0[SA,1] to y. Sum0[SA,1] corresponds to Sum0[001], which has already been stored 

earlier. The value of y is then stored as Sum1[011]. 
4.	 Then we add Sum0[SA,2]. It is to be noted that this expression correspond to Sum1[010]. This sum is 

also stored as Sum2[011]. Since the program no longer enters into the loop, the updated value of y is 
now stored as C{2,3}. 

5.	 As seen in the last 3 steps, computation of C{2,3} would involve the following computation: 

C{2,3} = f(011) + Sum0[001] + Sum1[010]. 

Since f(011) is 1, as shown in the table, Sum0[001] is 0, as saved earlier, and the value of Sum1[010] is 
0, as saved earlier, the value of C{2,3} is 1. 

A.7 Computing C{1,3} 

1.	 For this computation, A = {1, 3}. 
2.	 According to algorithm 1, start with f(101), which is then consequentially stored in the variable y. This 

value is then stored as Sum0[101]. 
3.	 We then add Sum0[SA,1] to y. Sum0[SA,1] corresponds to Sum0[001], which has already been stored 

earlier. The value of y is then stored as Sum1[101]. 
4.	 Then we add Sum0[SA,2]. It is to be noted that this expression correspond to Sum1[100]. This sum is 

also stored as Sum2[101]. Since the program no longer enters into the loop, the updated value of y is 
now stored as C{1,3}. 

5.	 As seen in the last 3 steps, computation of C{1,3} would involve the following computation: 

C2,3 = f(101) + Sum0[001] + Sum1[100]. 

Since f(101) is 1, as shown in the table, Sum0[001] is 0, as saved earlier, and the value of Sum1[100] is 
1, as saved earlier, the value of C{1,2} is 0. 
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A.8 Computing C{1,2,3} 

1.	 For this computation, A = {1, 2, 3}. 
2.	 According to algorithm 1, start with f(111), which is then consequentially stored in the variable y. This 

value is then stored as Sum0[111]. 
3.	 We then add Sum0[SA,1] to y. Sum0[SA,1] corresponds to Sum0[011], which has already been stored 

earlier. The value of y is then stored as Sum1[111]. 
4.	 Then we add Sum1[SA,2]. It is to be noted that this expression correspond to Sum1[101]. This sum is 

also stored as Sum2[111]. 
5.	 Then we add Sum2[SA,3]. It is to be noted that this expression correspond to Sum2[110]. This sum is 

also stored as Sum3[111]. 
6.	 As seen in the last 3 steps, computation of C{1,2,3} would involve the following computation: 

C{1,2,3} = f(111) + Sum0[011] + Sum1[101] + Sum2[110]. 

Since f(111) is 1, as shown in the table, Sum0[011] is 0, as saved earlier, value of Sum1[101] is 1, as saved 
earlier, and the value of Sum2[110] is 1, the value of C{1,2,3} is 0. 

As a result, we could now summarize the value of all the coefficients in a table: 

Table 3. Coefficients and their value 

Input Output produced 

Cφ 0 
C1 1 
C2 0 
C3 0 

C1,2 1 
C2,3 1 
C1,3 0 

C1,2,3 0 

Now, putting the values of the coefficients we obtained in the general equation described earlier. 

f(x1, x2, x3) = Cφ + C{1}x1 + C{2}x2 + C{3}x3 + C{1,2}x1x2 + C{2,3}x2x3 

+C{1,3}x1x3 + C{1,2,3}x1x2x3 

f(x1, x2, x3) = 0 + 1x1 + 0x2 + 0x3 + 1x1x2 + 1x2x3 + 0x1x3 + 0x1x2x3 

This equation finally gets reduced to the following. 

f(x1, x2, x3) = x1 + x1x2 + x2x3 + x1x3 

Hence, we use algorithm 1 to compute the boolean function used to compute output from the input. 

A.9 Permutation and Dependencies on Bits of the Round r − 1 

Fig. 1. Output bits chosen along the row of a slice. 
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Table 4. A summary of the bits required to compute 5 bits of Keccak output. To compute these bits, we invert the 
internal permutations of Keccak. The 5 output bits thus depend on 55 input bits only. 

Permutation Bits at different positions of inversion 

of the Keccak permutations 

Initial Output bits a[0..4][0][0] 
After ι−1 a[0..4][0][0] 
After χ−1 a[0..4][0][0] 
After π−1 a[0][0][0], a[1][1][0], a[2][2][0], a[3][3][0], a[4][4][0] 
After ρ−1 a[0][0][0], a[1][1][20], a[2][2][21], a[3][3][43], a[4][4][50] 
After θ−1 a[0][0][0], a[1][1][20], a[2][2][21], a[3][3][43], a[4][4][50], 

a[4][0..4][0], a[1][0..4][63], a[1][0..4][21], a[3][0..4][20], a[2][0..4][43], 
a[4][0..4][42], a[0][0..4][20], a[2][0..4][19], a[3][0..4][50], a[5][0..4][49] 


