Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Accelerating SLH-DSA by Two Orders of Magnitude with a Single Hash Unit

April 11, 2024


Markku-Juhani Saarinen - SoC Hub Research Centre, Tampere University, Finland


We report on efficient and secure hardware implementation techniques for the FIPS 205 SLH-DSA Hash-Based Signature Standard. We demonstrate that very significant overall performance gains can be obtained from hardware that optimizes the padding formats and iterative hashing processes specific to SLH-DSA. A prototype implementation, SLotH, contains Keccak/SHAKE, SHA2-256, and SHA2-512 cores and supports all 12 parameter sets of SLH-DSA. SLotH also supports side-channel secure PRF computation and Winternitz chains. SLotH drivers run on a small RISC-V control core, as is common in current Root-of-Trust (RoT) systems.

The new features make SLH-DSA on SLotH many times faster compared to similarly-sized general purpose hash accelerators. Compared to unaccelerated microcontroller implementations, the performance of SLotH’s SHAKE variants is up to 300× faster; signature generation with 128f parameter set is is 4,903,978 cycles, while signature verification with 128s parameter set is only 179,603 cycles. The SHA2 parameter sets have approximately half of the speed of SHAKE parameter sets. We observe that the signature verification performance of SLH-DSA’s “s” parameter sets is generally better than that of accelerated ECDSA or Dilithium on similarly-sized RoT targets. The area of the full SLotH system is small, from 63 kGE (SHA2, Cat 1 only) to 155 kGe (all parameter sets). Keccak Threshold Implementation adds another 130 kGE.

Presented at

5th PQC Standardization Conference (2024) [in-person]

Event Details


    The NIST PQC conference will be held at the:
    Hilton Washington DC/Rockville Hotel
    1750 Rockville Pike
    Rockville, MD 20852

Related Topics

Security and Privacy: post-quantum cryptography

Created April 10, 2024, Updated April 12, 2024