Published: May 15, 2019
Author(s)
T. Clancy (Virginia Tech), Robert McGwier (Virginia Tech), Lily Chen (NIST)
Conference
Name: 12th ACM Conference on Security and Privacy in Wireless and Mobile Network
Dates: May 15-17, 2019
Location: Miami, FL
Citation: WiSec '19: 12th ACM Conference on Security and Privacy in Wireless and Mobile Networks, pp. 285-287
The Fifth Generation (5G) mobile broadband standards make a fundamental shift in cryptography. Prior generations based their security and privacy principally on symmetric key cryptography. The Subscriber Identity Module (SIM) and its successors contain a shared key used to authenticate the User Equipment (UE) to the network, and vice versa. However 5G is shifting its core network over to a microservices, cloud-first architecture and is heavily leveraging protocols like TLS andOAuth2.0 to authenticate and authorize transactions. As a result, it is shifting to a PKI-based trust model. This shift is happening just as quantum computing threatens to unravel the security of traditional ciphers such as RSA and ECC. In this paper we highlight the need to advance the 3GPP 5G standards and NIST post-quantum cryptography standards in tandem, with the goal of launching a "quantum ready" 5G core network.
The Fifth Generation (5G) mobile broadband standards make a fundamental shift in cryptography. Prior generations based their security and privacy principally on symmetric key cryptography. The Subscriber Identity Module (SIM) and its successors contain a shared key used to authenticate the User...
See full abstract
The Fifth Generation (5G) mobile broadband standards make a fundamental shift in cryptography. Prior generations based their security and privacy principally on symmetric key cryptography. The Subscriber Identity Module (SIM) and its successors contain a shared key used to authenticate the User Equipment (UE) to the network, and vice versa. However 5G is shifting its core network over to a microservices, cloud-first architecture and is heavily leveraging protocols like TLS andOAuth2.0 to authenticate and authorize transactions. As a result, it is shifting to a PKI-based trust model. This shift is happening just as quantum computing threatens to unravel the security of traditional ciphers such as RSA and ECC. In this paper we highlight the need to advance the 3GPP 5G standards and NIST post-quantum cryptography standards in tandem, with the goal of launching a "quantum ready" 5G core network.
Hide full abstract
Keywords
5G; cellular networks; post-quantum cryptography
Control Families
None selected